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A B S T R A C T

Fragility curves which express the failure probability of a structure as function of a loading intensity measure are
nowadays widely used to facilitate the design and decision making of structures/infrastructures against seismic
hazard (and possibly other natural hazards), with analysis procedures specified by Seismic Probabilistic Risk
Assessment, Performance-Based Earthquake Engineering, and other frameworks. To avoid the use of parametric
models (such as the lognormal model) to estimate fragility curves from a reduced number of numerical calcu-
lations, a methodology based on Support Vector Machines (SVMs) coupled with an active learning algorithm is
proposed in this paper. In practice, input excitation is reduced to some relevant parameters and then SVMs are
used for a binary classification of the structural responses relative to a limit threshold of exceedance. Since the
output is not binary but a real-valued score, a probabilistic interpretation of the output is exploited to estimate
very efficiently fragility curves as score functions or as functions of classical seismic intensity measures.

1. Introduction

In Seismic Probabilistic Risk Assessment (SPRA, e.g. [1]) as well as
in Performance-Based Earthquake Engineering (PBEE, e.g. [2,3]) fra-
meworks, a key point is the evaluation of fragility curves which express
the failure probability of a structure (or critical components) as a
function of a seismic Intensity Measure (IM) such as the Peak Ground
Acceleration (PGA) or the Pseudo-Spectral Acceleration (PSA). Apart
from the use in SPRA and PBEE frameworks, fragility curves are useful
for making decisions regarding the choice of construction details, to
improve the structural performance of installations under seismic ex-
citations [4–7] or hurricanes [8]. They are also used to evaluate the role
of the ground motion characteristics (near-fault type like, broadband,
e.g. [7,9]), of the soil-structure interaction [10] or of the numerical
modeling assumptions [11] etc. Beyond the seismic hazard, fragility
curves are also used for wind hazards [8,12].

In theory, for complex structures, fragility curves have to be eval-
uated empirically based on a large number of mechanical analyses re-
quiring, in most cases, nonlinear time-history calculations including
both the uncertainties inherent to the system capacity and to the
seismic demand, respectively called epistemic and aleatory un-
certainties [1,13,14]. Nevertheless, the prohibitive computational cost

induced by most nonlinear mechanical models requires the develop-
ment of numerically efficient methods to evaluate such curves from a
limited number of computations.

Following the idea proposed in the early 1980’s in the framework of
nuclear safety assessment [1], the lognormal parametric model was
widely used in many applications to estimate fragility curves from a
limited number of numerical calculations [4–6,9,10,13,15–19]. Dif-
ferent methods can be employed to determine or estimate the para-
meters of the lognormal model [15,16,20,21] as well as different model
assumptions [18,19,22]. However, the validity of the parametric
models is itself questionable [18,19,21–23].

In practice, as it is very difficult to verify the validity of a parametric
model assumption, the need of a numerically efficient non-parametric-
based methodology (which would be accurate with a limited number of
mechanical analyses) is necessary. One way to achieve this goal is to
build a metamodel (i.e. a surrogate model of the mechanical analysis)
which expresses the statistical relation between seismic inputs and
structural outputs also called Engineering Demand Parameters (EDP).
Various metamodeling strategies have been proposed recently in the
literature based on, for example, response surfaces [24,25], kriging [7]
and Artificial Neural Networks (ANNs) [26]. In [8], considering storage
tanks subjected to hurricane induced storm surge, prediction accuracy
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of three metamodels (SVMs, Random Forest and Logistic Regression)
was systematically assessed and compared for various failure modes
and Logistic Regression models were found to be the most accurate in
order to estimate fragility curves.

The goal of this paper is twofold. First, it proposes a simple and
efficient methodology for estimating non-parametric fragility curves
that allows to reduce the number of mechanical numerical simulations
by optimizing their selection. Second, it addresses the question of the
best seismic IM indicator that can be used as the abscissa of the fragility
curves and that can be defined as a simple function of a set of macro-
scopic IMs. This set includes but is not limited to PGA and PSA.
Although the search for an optimal IM indicator is not strictly part of a
fragility analysis, it is not disconnected from the first goal in particular
in the framework of metamodeling strategies since the performance of a
metamodel depends on the IM used. Consequently, many researchers
have addressed this issue in the context of performance-based en-
gineering assessments, see e.g. [19,27–31]. With the strategy im-
plemented in this work the two problems can be addressed together
since the SVM output is not binary but a real-valued score (SVM
margin) and a probabilistic interpretation of this score can be in-
troduced to estimate score-based fragility curves.

Regarding the question of the IM indicators, a complete review of
those proposed in the literature can be found in [19] as well as five
optimality criteria (efficiency, practicality, proficiency, sufficiency and
hazard computability successively introduced in [27–29,31]. According
to these criteria, the methodology proposed here consists in defining a
proficient IM, proficiency being a composite measure of efficiency and
practicality. Indeed, the score function can be viewed as an efficient IM
since a perfect classifier would lead to a fragility curve in the form of a
unit step function when the problem is linearly separable. Moreover, as
it is highly correlated with the EDP, it can be considered as a practical
IM. Hazard compatibility and sufficiency are out of the scope of this
paper.

In contrast to classical learning (passive learning), the active learner
selects the most useful numerical experiments to be carried out and
added to the learning data set. The “learner” chooses the best instances
from a given very large set of unlabeled examples. So, the main ques-
tion in active learning is how to choose new numerical experiments to
be labeled. Various methods proposed in active learning by ANNs are
presented in [32], which are typically based on several “learners”
[33,34]. With SVMs, active learning can be done easily by using only
one “learner” because the distance to the separator hyperplane is a
natural criterion for selecting new points to label [35]. A similar
technique using logistic output ANNs can be used by analyzing the logit
of the output. But in this case, given the non-linearity of the ANNs, the
different learnings of the learner may present a strong variability on the
decision boundary.

The recent progress on the simulation of seismic ground motions
makes it possible to propose an active learning-based methodology,
which requires a number of realizations larger than the size of the
available real signals databases (in order to optimize their selection),
but small enough to be able to use complex mechanical models. Various
techniques can be used to create artificial seismic signals (e.g. the re-
view presented in [36] and non-exhaustive references [23,37–40]). In
this work, we have chosen to enrich a set of acceleration records se-
lected in a real ground motion database using magnitude and distance
criteria. To this end, the parameterized stochastic model of modulated
and filtered white-noise process defined in [41] was implemented. This
model efficiently addresses both temporal and spectral non-
stationarities of seismic signals and has been used in several recent
works [21,42–45]. The advantage of this model is that its constitutive
parameters that characterize its time–frequency envelope can be con-
sidered as input parameters of a metamodel additionnaly with the
classical IM parameters (PGA PSA, , etc.). Indeed, although the links
between the Ground Motion Simulation Model’s (GMSM’s) parameters
and the nonlinear structural responses are complex, intrinsically these

parameters contain information that can help to discriminate seismic
signals from the point of view of their damaging potential. A machine
learning-based approach allows to capture such unintuitive links.

The methodology proposed to estimate fragility curves consists first
of all in generating a large set of artificial seismic signals and to com-
pute the different IM indicators of interest. In practice, this step is not
time consuming in contrast with the nonlinear mechanical calculations.
Then, the second step consists in building a SVM-based classifier by
optimally selecting by active learning the mechanical calculations to
perform. A probabilistic interpretation of the real-valued score given by
the classifier is used in a third step to estimate score-based fragility
curves. The classifier can also be used to predict the scores and prob-
abilities associated to new input parameters in order to estimate fra-
gility curves as functions of the classical seismic IMs. These new input
parameters can be the ones of the artifical signals that have not been
selected for the construction of the classifier, or new ones generated by
new simulations of the GMSM, or new ones that come from new real
seismic signals (the procedure proposed in [41,46] makes it possible to
extract the input parameters of any real signal). Different procedures
can be used to construct empirical fragility curves [3,21,23]. Here we
propose a method based on k-means clustering of the IM data [23]. This
means that in each cluster, the probability of failure corresponds to the
ratio between the number of structural responses that exceed the limit
threshold and the number of structural responses belonging to the
cluster.

In this paper, the GMSM implemented for this work is briefly pre-
sented in Section 2. In order to validate the methodology within a direct
Monte Carlo-based approach, a simple inelastic oscillator is considered.
This structural model is presented in Section 2 as well as the IM in-
dicators. Section 3 is devoted to the presentation of different classifi-
cation methods and the active learning algorithm. Section 4 explains
how the proposed methodology is used to estimate fragility curves,
using either the score functions or the classical IM indicators. The
conclusion is presented in Section 5.

2. Ground motion simulation model, mechanical structure model,
and intensity measure indicators

In this section, the GMSM implemented for this work is briefly
presented, followed by the model of the mechanical structure which is
used to illustrate the methodology, and the choice of the IM indicators
selected as inputs of the classifiers. A discussion is finally proposed
about the GMSMs.

2.1. Model of earthquake ground motion

Following [46], a seismic ground motion s t( ) with t T[0, ] is
modeled as:

=s t q t
t

h t w d( ) ( , ) 1
( )

[ , ( )] ( ) ,
f

t

(1)

where q t( , ) is a deterministic, non-negative modulating function that
is defined piecewisely as

=q t
t T t T

T t T
t T T t T

( , )
/ if 0 ,

if ,
exp[ ( ) ] if ,

1
2

1
2

1

1 1 2

1 2 2 23 (2)

and that depends on the vector-valued parameter
= +T T( , , , , )1 2 3 1 2

5 . The process inside the squared brackets of
Eq. (1) is a filtered white-noise process of unit variance. w t( ) is a white-
noise process and h t( , ) is the Impulse Response Function (IRF) of the
linear filter that depends on the vector-valued parameter .

=t h t d( ) ( , ( ))f
t2 2 is the variance of the process defined by

the integral in Eq. (1). In order to achieve spectral nonstationarity of
the ground motion, the parameter is allowed to depend on the time .
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Following [46], the IRF is of the form:

=

h t

t t 1

[ , ( )]

exp[ ( )( )]sin[ ( ) 1 ( )] ,f f f f t
( )

1
2f

f
2 (3)

where =( ) [ ( ), ], ( )f f f is the natural frequency (that depends
on the time ) and [0, 1]f is the (constant) damping ratio. A linear
form is chosen for the frequency: = +( ) ( )f T n0 0 . The IRF is,
therefore, parameterized by = +( , , )n f0

3 .
The modulation parameters and the filter parameters are

identified independently following the procedure proposed in [41,46]
for the =N 97r acceleration records selected from the European Strong
Motion Database [47] in the domain < <M5.5 6.5 and <R 20km,
where M is the magnitude and R the distance from the epicenter. The
identification of the model parameters = ( , ) for each of the =N 97r
acceleration records, gives Nr data points =( )i i

N
1

r in the parameter space
+
8 . The model then allows to generate artificial signals, thanks to the

white-noise. However, these signals would all have very similar features
due to the limited number of real signals considered to define the
GMSM. In order to estimate fragility curves, a second level of ran-
domness is added in the generation process, coming from the para-
meters themselves. The parameters’ probability distribution function
can be estimated using a Gaussian Kernel Density Estimation (KDE)
method [48]:

=
=

p
N

( ) 1 ( ),KDE
i

N

iH
r 1

r

(4)

where H is a Gaussian kernel centered at 0 with covariance matrix H
properly chosen from the data points =( )i i

N
1

r (see [48]). Finally, the si-
mulation of an artificial ground motion requires three steps:

1. choose an integer i N1, r with a uniform distribution;
2. sample a vector y from a multivariate Gaussian distribution with

probability density function H, and let = + yi (to be precise:
reject the vector if it does not belong to +

8 );
3. sample a realization of w t( ) and compute the signal with parameters

= ( , ) by Eq. (1).

In this work =N 10s
5 artificial seismic ground motions s t( )i are gener-

ated.

2.2. Model of the mechanical structure

In order to illustrate the methodology, a nonlinear single degree of
freedom system is considered. Despite its extreme simplicity, it reflects
the essential features of the nonlinear responses of some real structures.
In addition, in a probabilistic context requiring Monte Carlo simula-
tions, it provides reference results at a reasonable numerical cost. Its
equation of motion is:

+ + =z t z t f t s t i N¨ ( ) 2 ( ) ( ) ( ), 1, ,i i i
nl

iL s (5)

where z t( )i and z t¨ ( )i are respectively the relative velocity and accel-
eration of the unit mass of the system submitted to the ith signal s t( )i
with null initial conditions in velocity and displacement. In Eq. (5), is
the damping ratio, = f2L L is the circular frequency, and f t( )i

nl is the
nonlinear resisting force. In this study, =f 5L Hz, = 2%, the yield
displacement is =Y 5 10 3 m, and the post-yield stiffness, defining ki-
nematic hardening, is equal to 20% of the elastic stiffness. The relative
displacement z t( )i of the Associated Linear System (ALS), assumed to be
known in practice, is governed by the equation:

+ + =z t z t z t s t¨ ( ) 2 ( ) ( ) ( ).i i i iL L
2 (6)

Eqs. (5) and (6) are solved with a finite-difference method and we set:

=Z z tmax | ( )|,i t T i[0, ] (7)

=L z tmax | ( )|.i t T i[0, ] (8)

2.3. Choice of the seismic IM indicators

A complete review of the existing seismic IM indicators can be found
in [19]. The methodology proposed here is intended to take into ac-
count the advantage of using a ground motion parametric model, in
considering its constitutive parameters as input parameters of a meta-
model. Thus, if = s t( ( ))i i N1, sB is the database of Ns simulated ground
motions, we can consider = +( , )i i i

8 the associated modulating
and filter parameters as inputs. However, they can not be used alone
since there is an infinity of possible realizations of the stochastic process
for a set of parameters, due to the white-noise process. They have to be
used additionally with the main classical IM parameters. Thus, for every
signal s t( )i , we also consider:

1. the Peak Ground Acceleration: =PGA s tmax | ( )|i t T i[0, ] ;
2. the Peak Ground Velocity: =V s dmax ( )i t T

t
i[0, ] 0 ;

3. the Peak Ground Displacement: =D s u dudmax ( )i t T
t

i[0, ] 0 0 ;
4. the total energy =E s d( )i

T
i0
2 (this IM parameter is proportional

to the “Arias Intensity” indicator usually considered);
5. the linear displacement Li. The PSA LiL

2 is usually considered as IM
indicator, nevertheless, since the variable of interest is a nonlinear
displacement, it is more suitable to use linear displacement. This
structure-dependent indicator can be easily evaluated from the
signal s t( )i and it improves the performance of the metamodeling
strategy because it is strongly correlated with Zi.

It is worth noting that the use of the classical IM indicators in as-
sociation with the ground motion’s ones does not guarantee that it is
possible to find a perfect “meta-indicator”, i.e. a perfect combination of
the input indicators that can predict the failure of the structure with
very high accuracy. In fact, this is not possible because, for a given
value of PGA, there is an infinite number of possible realizations of the
ground motion. This also applies to all IM indicators and this is the
main challenge for this type of problem. Nevertheless, we will see that
the proposed methodology allows efficient estimations of fragility
curves with very good precision. So, each signal s t( )i is represented by a
vector = +X PGA V D E L( , , , , , , )i i i i i i i i

13 in order to predict whe-
ther the nonlinear displacement Zi is greater than a damage state
threshold, for example twice the yield displacement Y.

2.4. Discussion

Different GMSMs can be used to enrich a database of real seismic
signals [23,36–40], knowing that there is no consensus regarding the
one which has to be privileged. To the best of the knowledge of the
authors, if a generator is defined from real seismic signals, it is con-
sidered as valid if the statistical characteristics of the artificial signals
are close to the ones of the real signals reduced to some scalar in-
dicators (PGA L, , etc), and this is the case here. However, the influence
of the GMSM is out of the scope of this work which aims to propose a
general methodological framework to find an “optimal” classifier (or
indicator) for a non-prohibitive computational cost, whatever the
structure and the GMSM considered.

3. Binary classification and active learning

In Section 3.1, a simple but crucial preprocessing of the data is first
addressed. Indeed, although the results of the comparative study are not
shown here for the sake of brevity, this preprocessing improves the
performance of the classifier. In Sections 3.2–3.5, different classifica-
tion methods and the active learning methodology are presented. The
latter consists in selecting sequentially n signals s t( )i and computing the
corresponding displacements Zi (which is the time-consuming step) in
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order to build a classifier that will predict whether the displacement Z
of a new signal s t( ) exceeds the threshold Y2 . Finally, considering the
structure presented in Section 2.2, which allows calculations of N
structural responses with a reasonable computational time, the per-
formances of different classifiers are compared in Sections 3.6–3.8.
With N n, this comparison is used to give recommendations on the
values of n that can be considered in practice to estimate the fragility
curves of complex structures (Section 3.9).

3.1. Preprocessing of the training data

First of all, recall that =N 10s
5 signals have been generated and, for

each of them, the displacement Li of the ALS have been calculated.
Signals with very small or very large values of L are discarded from the
database. Indeed, on the one hand, the signals which produce values of
L lower than the yield displacement Y are not useful, because the
structural responses do not reach the limit threshold Y2 : if <L Y ,i then

=Z Li i and thus <Z Yi . This discards 66% of the Ns signals. On the
other hand, the very few signals which produce very large values of L
( >L Y6i ) are also discarded because the mechanical model is not rea-
listic beyond that level. This gives a subset I of the database, composed
of =N 33718 signals, such that i I L Y Y, [ , 6 ]i . In addition, a Box-
Cox transform is applied to each of the thirteen entries of

= +X PGA V D E L( , , , , , , )i i i i i i i i
13. This nonlinear step is critical

for the accuracy of the classification, especially for linear SVM classi-
fiers. The Box-Cox transform (parameterized by +[0, )) reads:

=
=

x
x

BC ( ) if 0,
log( ) if 0.

x 1

(9)

The parameter is optimized, for each entry, in order to obtain an
empirical distribution as close as possible to the normal law by max-
imizing the log-likelihood. Finally, all of the thirteen components are
standardized, thus forming the training database = …X X{ , , }1 NX with
Xi

13.

3.2. Simple classifiers

At the most basic level, a binary classifier is a labeling function

X X
l

l
: { 1, 1}

( ),

d

(10)

that, given a vector X d (corresponding to a seismic signal s t( )),
gives an estimated label l . In this work, the true label li of instance Xi is
1 if the displacement Zi is greater than the damage threshold Y2 , and

1 otherwise:

= = >l Z Y Z Ysgn( 2 ) 1 if 2 ,
1 otherwise. (11)

Note that the true label li is not in general a function of the vector Xi,
since it depends on the full signal s t( )i when Xi only gives macroscopic
measures of the signal; therefore, a perfect classifier Xl ( )i may not exist
(see Section 2.3). One simple choice for a classifier is to look at only one
component of the vector X . For example, as the PGA is correlated with
the nonlinear displacement Z, it can be used as a classifier defined by:

=Xl PGA M( ) sgn( ),PGA (12)

where M is a threshold to be adjusted. Moving the threshold up results
in less false positives ( =l 1 when the real label is =l 1) but more
false negatives ( =l 1 when the real label is =l 1); and moving the
threshold down results in the opposite. There is therefore a choice of M
such that the number of false positives and false negatives is equal. Note
that this choice does not guarantee that the total number of mis-
classifications is minimal. Similarly, we can also define a classifier lL
based on the linear displacement L, since it is also highly correlated

with the nonlinear displacement Z. These two simple classifiers give a
baseline to assess the performance of advanced classifiers.

3.3. Support Vector Machines

In machine learning, SVMs are supervised learning models used for
classification and regression analysis. In the linear binary classification
setting, given a training data set …X X{ , , }1 n that are vectors in d, and
their labels …l l{ , , }n1 in { 1, 1}, the SVM is a hyperplane of d that se-
parates the data by a maximal margin. More generally, SVMs allow one
to project the original training data set …X X{ , , }1 n onto a higher di-
mensional feature space via a Mercer kernel operator K. The classifier
then associates to each new signal X a score Xf ( )n given by

= =X X Xf K( ) ( , )in i
n

i1 . A new seismic signal represented by the
vector X has an estimated label l of 1 if >Xf ( ) 0, 1n otherwise. In a
general SVM setting, most of the labeled instances Xi have an associated
coefficient i equal to 0; the few vectors Xi such that 0i are called
“support vectors”, hence the name “support vector machine”. This
historical distinction among labeled instances is less relevant in the case
of active learning (see next section), since most of the i are non-zero. In
the linear case, X XK ( , )i is the scalar product in d, and the score is:

= +X W Xf c( ) ,n
T (13)

where W d and c depend on the coefficients i. Another com-
monly used kernel is the Radial Basis Function (RBF) kernel using
Gaussian radial basis functions.

3.4. Active learning: basic principles

In the case of pool-based active learning, we have, in addition to the
labeled set = …X X{ , , }1 nL , access to a set of unlabeled samples

= …+X X{ , , }n 1 NU (therefore =X L U ). We assume that there exists
a way to provide a label for any sample Xi from this set (in our case,
running a full simulation of the physical model using signal s t( )i ), but
the labeling cost is high. After labeling a sample, we simply add it to the
training set. In order to improve a classifier it seems intuitive to query
labels for samples that cannot be easily classified. Various querying
methods are possible [35,49]. The method presented here only requires
to compute the score Xf ( )n for the samples in the unlabeled set, then to
identify a sample that reaches the minimum of the absolute value

Xf ( )n , since a score close to 0 means a high uncertainty for this sample.
The algorithm starts with =n 2 samples with indices j1 and j2, labeled
+ 1 and 1 (see next section). Recursively, if the labels of signals

…j j, , n1 are known, it consists in:

1. computing the SVM classifier associated with the labeled set
…( ) ( )X Xl l{ , , , , }j jj j1 n n1 ;

2. computing the score Xf ( )in for each unlabeled instance Xi, [4]
…i N j j1, { , , }n1 ;

3. identifying the instance with maximum uncertainty for this classi-
fier:

=+ … Xj fargmin ( ) ,in i N j j n1 1, { , , }n1 (14)

and computing the corresponding displacement +Z jn 1 by running a
full simulation of the mechanical model;

4. adding the instance =+ + +( ( ))X l Z Y, sgn 2j j jn 1 n n1 1 to the labeled
set.

No termination criteria are explicitly given here because, in prac-
tice, the limitation regarding the number of training data available is
mainly due to the computational cost of the numerical mechanical
calculations. The large number of simulations carried out here makes it
possible to give recommendations on the required number of simula-
tions (Section 3.9).
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3.5. Active learning: choice of the starting points

The active learner needs two starting points, one on each side of the
threshold. After the preprocessing step, about 17% of the N remaining
instances have a displacement greater than the threshold (although this
precise value is usually unknown). It can be tempting to choose, for
example, the signal with the smallest PGA as j1 and the signal with the
largest PGA as j2. However, running simulations with these signals is
costly and give a relatively useless information. We prefer to choose the
starting points randomly, which also allows to see how this randomness
affects the final performance of the classifier. As the parameters Li and
PGAi of the ith signal are both strongly correlated with Zi, it is pre-
ferable that the starting points respect the order for these two variables:

< < < <Z Y Z L L PGA PGA2 , , and .j j j j j j1 2 1 2 1 2 (15)

Indeed, if j1 and j2 are such that, for example, < <Z Y Z2j j1 2 but
>PGA PGAj j1 2, then the active learner starts by assuming that the PGA

and Z have negative correlation, and it can take many simulations be-
fore it “flips”; in some rare instances the classifier performs extremely
poorly for several hundreds of simulations. Thus, the starting points j1
and j2 are chosen such that Eq. (15) is satisfied, using empirical
quantiles of PGA and L. j1 is chosen randomly among the instances
whose PGA and L are smaller than their median values (i.e., their
0.5-quantiles q PGA( )0.5 and q L( )0.5 ):

< <j i N PGA q PGA L q L{ 1, ( ) & ( )}.i i1 0.5 0.5 (16)

It is almost certain that any instance in this set satisfies <Z Y2i and
thus =l 1i . Similarly, j2 is chosen using the 0.9-quantile q PGA( )0.9 of
PGA and the 0.9-quantile q L( )0.9 of L:

> >j i N PGA q PGA L q L{ 1, ( ) & ( )}.i i2 0.9 0.9 (17)

In this case, the probability that >Z Y2i is found to be 97%. So, if
<Z Y2i , this signal has to be discarded in order to choose another one.

3.6. Performance checking: ROC curve and PRBP

Two tests of performance are proposed in this section. They are
based on a large set of N nonlinear displacements Z, with N n and n
the number of instances required by the active learning algorithm to
train the classifier. In practice these tests are not possible (because of
the prohibitive cost of the nonlinear displacements), but the model of
mechanical structure described in Section 2.2 makes it possible to
compute them here.

The SVM classifier gives an estimated label li to each signal s t( )i
depending on its score = Xl fsgn( ( ))ii n . As for the simple classifiers
(Section 3.2), the SVM classifier can be defined in terms of a real-valued
limit by:

= Xl f( ) sgn( ( ) ).ii n (18)

If > 0, then the number of false positives ( =l 1i and =l 1i ) is
smaller, but the number of false negatives ( =l 1i and =l 1i ) is larger,
relative to the = 0 case, and the opposite is true if we choose < 0.
Taking all possible values for defines the Receiver Operating
Characteristic (ROC) curve. The area under the ROC curve is a common
measure for the quality of a binary classifier. The classifier is perfect if
there exists a value of such that all estimated labels are equal to the
true labels; in this case the area under the curve is equal to 1. Fig. 1
shows one example of active learning, with ROC curves for different
numbers of labeled signals. As expected, the classifier improves when
the labeled set gets larger; and the active learner becomes better than
the simple PGA classifier as soon as n 10.

Another metric can be used to measure performance: the Precision/
Recall Breakeven Point (PRBP) [49]. Precision is the percentage of
samples a classifier labels as positive that are really positive. Recall is
the percentage of positive samples that are labeled as positive by the

classifier. By altering the decision threshold on the SVM we can trade
precision for recall, until both are equal, therefore defining the PRBP. In
this case the number of false positives and false negatives are equal. Let
us denote by +N the number of instances where the displacement Zi is
greater than the threshold (on a total of N signals in the database):

= =+N i N l#{ 1, 1}.i (19)

We sort all instances according to their score, i.e. we find a permutation
such that …X Xf f( ) ( )n n N(1) ( ) . Then the PRBP is equal to the

proportion of positive instances among the +N instances with the
highest score:

= = > +

+

i N l i N N
N

PRBP #{ 1, 1 & ( ) } .i

(20)

This criterium does not depend on the number of true negatives (unlike
the false positive rate, used in the ROC curve). In particular, it is not
affected by the choice of preprocessing of the training data, where all
the weak signals ( <L Yi ) are rejected. Both metrics are affected by the
choice to discard the very strong signals ( >L Y6i ), but the effect is
negligible in both cases.

3.7. Binary classification results for simple elasto-plastic structures

Considering the simple elasto-plastic structure presented in Section
2.2, performances of different classifiers are compared considering the
PRBP, in order to highlight the effectiveness of the active learning al-
gorithm. More precisely, we compare different orderings of all signals,
since only the order matters to the PRBP; for instance, the PGA does not
give directly a label, but we can compute the PRBP of the PGA classifier
with Eq. (20) using the permutation PGA that sorts the PGA of all sig-
nals. Thus, we compare:

1. the simple PGA and L classifiers lPGA and lL. These simple classifiers
are defined with the =N 33718 signals and labels;

2. ANNs trained with all instances and all labels (i.e. with the N signals
and labels), with either all 13 parameters, or just 4 of them:
L PGA V( , , , )0 (see Section 3.8 for justification of this choice). The
ANNs we use are full-connected Multi Layered Perceptrons (MLPs)
with 2 layers of 26 and 40 neurons for X 4, and two layers of 50
and 64 neurons for X 13. This classifier is considered for com-
pleteness to show the best results we have achieved with the seismic
indicators considered in 4 and in 13 with all the N instances;

Fig. 1. ROC curves for the PGA classifier (black) and for six active learners after
n simulations ( =n 5, 10, 20, 50, 100 and 200).
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3. SVMs given by the active learning algorithm (using a limited
number n of instances).

Fig. 2 shows the PRBP of (i) a linear SVM using all thirteen para-
meters (in blue), (ii) a linear SVM using only four parameters
L PGA V( , , , )0 (in red) and (iii) a RBF SVM, using the same four
parameters (in yellow), as functions of the number n of labeled in-
stances. As active learners depend on the choice of the first two sam-
ples, results of Fig. 2 are averaged over twenty pairs of starting points,
the same starting points being used for all three types of SVMs. In
addtion, Fig. 2 shows the performances of four classifiers built using all
the N signals. These four classifiers are represented as horizontal lines,
since they do not depend on n. Fig. 2 shows that active learning gives a
much better classifier than the standard practice based on a single
parameter (PGA or L). The linear SVM with only four variables has
initially the best performance on average, up to =n 150 200 simu-
lations. The linear SVM with thirteen variables is better when n 200.
The RBF kernel in 4 appears to have the best performance with

=n 1000, outperforming the ANNs in 4 using all N labeled instances.
RBF SVMs with thirteen parameters seem to always perform very
poorly, and are not represented here. So, in conclusion, (i) active
learners need a minimum of =n 30/40 simulations, otherwise they can
end up worse than using the simpler PGA classifier, (ii) between =n 50
and =n 200 simulations, the linear SVM in 4 is the best choice and
(iii) the RBF kernel seems quite unpredictable for less than =n 1000
simulations (not shown here), and its performance strongly depends on
the starting points, probably because of over-fitting. This methodology
was applied to structures with different frequencies (not shown here for
the sake of brevity) and the conclusions were similar.

3.8. Remark about the dimension reduction

In the linear case the score is equal to the distance to the hyper-
plane: = +X W Xf c( )n

T (Eq. (13)). Therefore, since the thirteen com-
ponents of X are standardized in the preprocessing procedure (see
Section 3.1), it can be seen which of them are the most important for
the classification by looking at the values of the components of W .
Fig. 3 shows that the values of W are roughly the same for the twenty
test cases. After =n 1000 simulations, the coefficients for the PGA and L
end up between 3 and 4, the value for V is around 1 and the value for
the signal main frequency 0 is around 1. The other nine components
of W (when working with X 13) are all between 1 and 1, but are
smaller (in absolute value) than these four components. As seen pre-
viously, reducing the dimension from thirteen to four allows for a faster
convergence, although the converged classifier is less precise. Con-
tinuing the active learning after =n 1000 simulations changes only

marginally the results; even with X 13, both the PRBP and the values
of W stay roughly the same between =n 1000 and =n 5000 simula-
tions.

3.9. Synthesis and recommendations

Although the results are not shown here for the sake of brevity, (i)
the simple preprocessing of the data presented in Section 3.1 is neces-
sary to improve the performances of the SVM classifiers especially when
they are linear and (ii) the performances of the SVM classifiers are
structure-dependent. The input parameters in 4 or in 13 are indeed
more or less well correlated with the output according to the structure
considered. Nevertheless, the proposed methodology is very general
and can be applied to a variety of structures. The results show that a
minimum of =n 100 simulations, selected via an active learning algo-
rithm (Sections 3.4 and 3.5), are necessary to obtain very precise
classifiers. For =n 100 simulations, it is shown that linear SVM classi-
fiers in 4 are sufficient. In this case, for the class of structures, the
seismic scenario and the GMSM considered, the main seismic IM
parameters are the classical ones, i.e. PGA V L, , and 0. In the next
section it is shown that such a classifier allows good estimations of
fragility curves.

4. Fragility curves

Different procedures can be used to construct non-parametric fra-
gility curves [3,21,23]. Here, they are constructed based on k-means
clustering of the IM data [23]. In a Monte Carlo-based approach this
means that in each cluster, the empirical probability of failure is eval-
uated by the ratio between the number of structural responses that
exceed the limit threshold and the number of structural responses be-
longing to the cluster. With SVM classifiers which give to each signal
s t( )i a real-valued score Xf ( )in whose sign expresses the estimated label,
we first need to assign a probability to estimate fragility curves. In this
section we explain how SVMs can be used to estimate fragility curves,
using either the score functions (which can be viewed as an optimal
seismic IM since a perfect classifier would lead to a fragility curve in the
form of a unit step function when the problem is linearly separable) or
IM indicators such as the PGA or the PSA (replaced here by L).

4.1. Fragility curves estimations

The estimation of the score-based fragility curve is based on a
probabilistic interpretation of the output of the SVM. The probabilistic
interpretation of the SVM output depends only on the score Xf ( )n . For a
perfect classifier, the probability would be 0 if <Xf ( ) 0n and 1 if

>Xf ( ) 0n ; for the SVM classifiers a logistic function is used in order to
get a probablity in (0, 1):

Fig. 2. Performances of three active learning classifiers (averaged over twenty
test cases) as functions of the number n of labeled instances, and comparison
with classifiers using all =N 33718 instances.

Fig. 3. Evolution of the four main components of W for the twenty test cases.
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where a and b are the slope and intercept parameters of the logistic
function (b should be close to 0 if the classifier has no bias, giving a
probability of 1/2 to signals with Xf ( ) 0n ). These parameters are es-
timated by maximizing the likelihood function from Eq. (21) on the
labeled set …( ) ( )X Xl l{ , , , , }j jj j1 n n1 .

The estimation of the score-based fragility curve is given by Eq.
(21). If we are interested in more-understandable fragility curve such as
PGA-based fragility curve (or an other IM-based fragility curve), the
classifier should first be used to predict the scores and the associated
probabilities by Eq. (21) of several new input parameters. These new
input parameters correspond to those which were not selected for the
construction of the classifier, or other ones generated from new simu-
lations of the GMSM. Then, as in a Monte Carlo-based approach, k-
means clustering has to be used on the IM indicator of interest. In each
cluster, the probability of failure is then evaluated by averaging the
probabilities associated to the input parameters belonging to the
cluster.

4.2. Score-based fragility curve

To compare the estimation given by Eq. (21) with the empirical
failure probability of signals s t( )i , the set of indices … N{1, , } of the
database X is divided into K groups …I I( , , )K1 depending on their score

Xf ( )in , with the k-means algorithm. Then, the estimated pk
est and re-

ference pk
ref probabilities are defined in each group by:

=

= =
=

p p X

p i I l
n I

( ),

#{ 1},
with # .

k
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n
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k
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n k i

k k

1

1

k
k

k (22)

The L2 distance between these two probabilities is given by:

= =
= =N

n p p N n1 ( ) , with .L
k

K

k k
ref

k
est

k

K

k
1

2

1
2

(23)

Fig. 4 shows the L2 distance for different classifiers using
=n 20, 50, 100, 200, 500 and 1000 labeled instances. The three classi-

fiers (linear SVM in 13, linear SVM in 4, and RBF kernels in 4) are
compared considering twenty pairs of starting points. The solid lines
show the average L2 errors, and the dashed lines show the minimum
and maximum errors among all test cases. The average error goes down
from 15% after =n 20 simulations to less than 3% after =n 1000 simu-
lations for the linear SVM in 13, and from 9% to less than 2% for the
linear SVM in .4 For RBF kernels (in yellow), the average error does
not decrease as n increases, and ends up around 20% after =n 1000
simulations.

Fig. 5 shows examples of fragility curves obtained with each method
after =n 1000 simulations. Recall that the logistic functions (in red) are
not fitted using all the real data (in blue), but only the labeled set, i.e.

=n 1000 signals. The linear SVM in 4 has the least errors in terms of
probabilities, although its PRBP is smaller than that of the linear SVM in

13. The RBF kernel shows an unintuitive result. Indeed, the probability
of failure is not an increasing function of the score (Fig. 5c); in parti-
cular, signals with a very negative score still have a 5–10% chance of
exceeding the threshold. This result explains why the L2 error of RBF
kernels is so high (Fig. 4), since we have tried to fit a logistic curve on a
non-monotonous function.

The reason for this major difference between linear and RBF kernels
can be understood if we look at the nonlinear displacement Z as a
function of the score Xf ( )n , using both kernels (see Fig. 6). Let us keep
in mind that the RBF classifier at =n 1000 simulations is the most
precise of all our active learners; it has the fewest false positives and
false negatives of all (Table 1 in red). The sign of the RBF score is thus
an excellent predictor for binary classification.

Fig. 6 shows that for the linear classifier, the score is a good pre-
dictor of the nonlinear displacement Z, with a monotonous relation
between the two; therefore the probability that >Z Y2 can be well-
approximated by a logistic function of the score. The RBF score is a poor
predictor of the probability of failure, since the relation between the
score and the nonlinear displacement Z is not monotonous. This ex-
plains why the L2 errors for RBF kernels are very high. In Fig. 6, we can
see that the weakest signals ( =Z 0.005, just above Y) have a RBF score
between 1 and 0.4. Since these weak signals are very common in
the database, pk

ref goes rapidly from 0.5 for =Xf ( ) 0n
RBF to almost 0 for

=Xf ( ) 0.5n
RBF (Fig. 5c), not because the number of positive signals

changes significantly between =Xf ( ) 0.5n
RBF and =Xf ( ) 0n

RBF , but
because the number of negative signals is more than twenty times
larger. The linear kernels do not have this problem and have much
lower L2 errors.

ROC curves (Fig. 7) give a further insight into the dilemma between
the two kernels. If we look at the unbiased (i.e. = 0) classifiers, the
RBF is slightly superior: it has fewer false positives and slightly fewer
false negatives than the linear classifier. However, for a negative limit
(Eq. (18)), for example = 0.5, some of the weakest signals end up
over the limit ( >Xf ( )1000

RBF ) and thus have an estimated label of
=l ( ) 1. Since these weak signals are so common, the false positive

rate becomes extremely high.

4.3. PGA-based and L-based fragility curves

In the previous section the score Xf ( )n has been used as the para-
meter on the x-axis to build the fragility curves. The method assigns a
probability Xp ( )n to each signal, depending only on a few parameters. If
we consider this probability as a function of four parameters
p L V PGA( ( , , , )n 0 if X )4 , then any of those parameters can be used
to define a posteriori a fragility curve depending on this parameter,
averaging over the other ones:

= Xp PGA p PGA( ) [ ( ) ].n n (24)

In practice, to obtain numerically the corresponding estimated and
reference probabilities, we use k-means algorithm, and divide the da-
tabase into K groups ( …I I, , K1 ) depending on their PGA (resp. on their
L), instead of the score, then compute pk

est and pk
ref using Eq. (22).

Figs. 8 and 9 show two examples of such curves, using PGA or L; Xp ( )n
is computed using a linear SVM classifier in 4 with =n 100 or

=n 1000 simulations. In this case, all twenty test cases are shown in a
single figure, since they share a common x-axis (which is not true when
the score is used). The distance between the reference and estimated
curves is small in all cases, even with =n 100 labeled instances.Fig. 4. Distance L2 for the three different active learners.
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4.4. Trading precision for steepness

The PGA-based and L-based fragility curves (Figs. 8 and 9) are very
close to the reference curves; the distance L2 between the reference
and estimated curves is very small, even smaller than in the case of
score-based fragility curves. In this case, what is the benefit of score-
based fragility curves compared to more-understandable PGA-based
curves? The difference is in the steepness of the curve. Formally, when
we construct a fragility curve, we choose a projection F: 4 to
use as the x-axis. This projection XF ( ) can be one of the 4 variables
(e.g. the PGA), or the score Xf ( )n , which can be a linear or nonlinear (in

Fig. 5. Reference and estimated score-based fragility curves using (a) a linear SVM in 13, (b) a linear SVM in 4 and (c) a RBF SVM in 4 with =n 1000 labeled
instances.

Fig. 6. Nonlinear displacement Z as a function of the score given after =n 1000 simulations by (a) the linear SVM in 4 and (b) the RBF SVM in 4.

Table 1
Confusion matrix for linear SVM in 4 and RBF SVM in 4 with =n 1000.

Fig. 7. (a) ROC curves for two SVM classifiers using linear and RBF kernels, with specific values for the unbiased (i.e. = 0) classifiers. (b) Zoom on the upper-left
corner.
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the case of RBF kernel) combinaison of the four variables. We then use
the k-means algorithm to make K groups of signals which are close
according to this projection, i.e. signals with the same PGA, the same L
or the same score; then we compute the estimated probability pk

est for
each group. Let us assume for a while that the estimation is very pre-
cise, so that =p pk

est
k
ref k. In this case, which fragility curve gives the

most information? To see this, we define:

=
=

R
N

n p1 ( )F

k

K

k k
est( )

1 (25)

for some nonnegative-valued function . Intuitively, a perfect classifier
would give each signal a probability of 0 or 1, while a classifier which
assigns a probability of 1/2 to many signals is not very useful. Therefore,
we want to be positive on (0, 1), equal to 0 for =p 0 and =p 1. We
choose the entropy-like function:

=p p p( ) ln( ), (26)

so that R F( ) is equal to 0 for a perfect classifier and has higher values for
a useless classifier. Other suitable choices could be =p p p( ) (1 ) or

=p 1( ) p [0.1,0.9]. In the latter case, R F( ) has a clear physical meaning: it
is the proportion of uncertain signals, i.e. signals such that
p [0.1, 0.9]k

est . Table 2 shows the value of R F( ) using the entropy
version, for different choices of projection (score, PGA, or L). We can
see in this table that the PGA- and L-based fragility curves are extremely
precise, with very low values of L2 (this can also be seen in Figs. 8 and
9), but their entropy is much higher than the score-based fragility

curves.
One surprising fact of Table 2 is that the entropy is smaller at

=n 100 compared to =n 1000 in all three cases. This shows that after
only =n 100 mechanical calculations, all the classifiers tend to slightly
overestimate the steepness, and give fragility curves that are actually
steeper than the reality (and also steeper than the more realistic curves
obtained with =n 1000). Using the other choices of function p( ) gives
the same conclusions: the proportion of signals with p [0.1, 0.9]k

est is
18.2% if the score is used instead of 28% for PGA and L. Therefore, the
choice of the projection used for a fragility curve is a trade-off between
precision and steepness. Note that the values of the entropy for different
choices of projection can be obtained after the active learning, and the
computationnal cost is very small (mostly the cost of k-means). As a

Fig. 8. Reference and estimated fragility curves as a function of PGA, using (a) =n 100 and (b) =n 1000 labeled points.

Fig. 9. Reference and estimated fragility curves as a function of L, using (a) =n 100 and (b) =n 1000 labeled points.

Table 2
Precision and entropy of fragility curves using different projections (average
and standard deviation over 20 test cases), for =n 100 or =n 1000 labeled
points.

Projection Score PGA L

=n 100 L2 (%) ±3.8 1.6 ±2.6 1 ±2.8 0.9
Entropy (10 )2 ±5.3 1.7 ±12.3 1.8 ±12.2 2

=n 1000 L2 (%) ±1.7 0.6 ±1.6 0.3 ±1.4 0.4
Entropy (10 )2 ±7.2 1.2 ±13.3 1.5 ±13.6 1
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consequence, this choice can be made a posteriori, from the prob-
abilities assigned to each signal.

5. Conclusion

This paper proposes an efficient methodology for estimating non-
parametric seismic fragility curves by active learning with a SVM
classifier. We have introduced and studied this methodology when
aleatory uncertainties have a predominant contribution in the varia-
bility of structural response, that is to say when the contribution of
uncertainties regarding seismic excitation is much larger than the
contribution of uncertainties regarding structural capacity. In this work,
the structure is considered as deterministic and a perfect classifier, if it
exists, would lead to a fragility curve in the form of a unit step function,
i.e. corresponding to a fragility curve “without uncertainty”. That
means the output of this classifier, which is a real-valued score, would
be the best seismic IM indicator to evaluate the damaging potential of
the seismic signals, knowing that such a classifier would necessary be
both structure and failure criterion-dependent, with possibly a depen-
dence on the ground motion characteristics (near-fault type like,
broadband, etc).

The proposed methodology makes it possible to build such a (non
perfect) classifier. It consists in (i) reducing the input excitation to some
relevant parameters and, given these parameters, (ii) using a SVM for a
binary classification of the structural responses relative to a limit
threshold of exceedance. Selection of the mechanical numerical calcu-
lations by active learning dramatically reduces the computational cost
of construction of the classifier. The output of the classifier, the score, is
the desired IM indicator which is then interpreted in a probabilistic way
to estimate fragility curves as score functions or as functions of classical
seismic IMs.

This work shows that a simple and universal preprocessing of the
data (Box-Cox transformation of the input parameters) makes it pos-
sible to use a simple linear SVM to obtain a very precise classifier after
only one hundred mechanical calculations. Moreover, it shows that the
input parameters of the GMSM can be used additionally to the classical
IM parameters to build the classifier and to improve its performance.
For the class of structures considered, with only four classical seismic
parameters (PGA V L, , , 0), the score-based fragility curve is very close
to the reference curve (obtained with a direct Monte Carlo-based ap-
proach) and steeper than the PGA-based one, as expected. L-based
fragility curves appear to perform about as well as PGA-based ones in
our setting. Advanced SVMs using RBF kernel result in less classification
errors when using one thousand mechanical calculations, but do not
appear well suited to making fragility curves.
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