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Classical nonlinear waves exhibit a phenomenon of condensation that results from the natural irreversible
process of thermalization toward the Rayleigh-Jeans equilibrium spectrum. Wave condensation originates
in the divergence of the thermodynamic equilibrium Rayleigh-Jeans distribution, which is responsible for
the macroscopic population of the fundamental mode of the system. Several recent experiments revealed a
remarkable phenomenon of spatial organization of an optical beam that propagates through a graded-index
multimode optical fiber (MMF), a phenomenon termed beam self-cleaning. Our aim in this article is to provide
some physical insight into the mechanism underlying optical beam self-cleaning through the analysis of wave
condensation in the presence of structural disorder inherent to MMFs. We consider experiments of beam
self-cleaning where long pulses are injected and populate many modes of a 10-20 m MMEF, for which the
dominant contribution of disorder originates from polarization random fluctuations (weak disorder). On the
basis of the wave turbulence theory, we derive nonequilibrium kinetic equations describing the random waves
in a regime where disorder dominates nonlinear effects. The theory reveals that the presence of a conservative
weak disorder introduces an effective dissipation in the system, which is shown to inhibit wave condensation
in the usual continuous wave turbulence approach. On the other hand, the experiments of beam cleaning are
described by a discrete wave turbulence approach, where the effective dissipation induced by disorder modifies
the regularization of wave resonances, which leads to an acceleration of condensation that can explain the effect
of beam self-cleaning. By considering different models of weak disorder in MMFs, we show that a model where
the modes experience a partially correlated noise is sufficient to accelerate the thermalization, whereas a fully
mode-correlated noise does not lead to a dissipation-induced acceleration of condensation. The simulations are
in quantitative agreement with the theory, and evidence an effect of beam cleaning even in a regime of moderate
weak disorder. At the leading order linear regime, random mode coupling among degenerate modes (strong
disorder) can enforce thermalization and condensation. The analysis also reveals that the effect of beam cleaning
is characterized by a partial repolarization as a natural consequence of the condensation process. In addition, the
discrete wave turbulence approach explains why optical beam self-cleaning has not been observed in step-index
multimode fibers.

DOI: 10.1103/PhysRevA.100.053835

I. INTRODUCTION

Bose-Einstein condensation refers to a quantum process
characterized by a thermodynamic transition into a single,
macroscopically populated coherent state. This phenomenon
has been observed in a variety of quantum systems, such
as ultracold atoms and molecules [1], exciton polaritons [2],
and photons [3] (also see [4]). On the other hand, several
studies on wave turbulence predicted that completely classical
waves can undergo a condensation process [5—23]. The picture
the reader may have in mind is the following. Considering
an ensemble of weakly nonlinear dispersive random waves,
a redistribution of energy occurs among different modes,
which is responsible for a self-organization process: While the
(kinetic) energy is transferred to the small scales fluctuations
(higher modes), an inverse cascade increases the ‘“number
of particles” into the lowest allowed mode, which leads to
the emergence of a large scale coherent structure. This phe-
nomenon refers to wave condensation. It originates in the
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natural thermalization of the wave system toward the ther-
modynamic Rayleigh-Jeans equilibrium distribution, whose
divergence is responsible for the macroscopic occupation of
the fundamental mode of the system [6,7,10,13,14,17,20,24—
27]. We recall that this self-organization process takes place in
a conservative (Hamiltonian) and formally reversible system:
The (“condensate’) remains immersed in a sea of small-scale
fluctuations (“uncondensed particles”), which store the infor-
mation for time reversal. In this respect, wave condensation is
of different nature than other forms of condensation processes
discussed in optical cavity systems, which are inherently
nonequilibrium forced-dissipative systems [20,28-36].

The observation of wave thermalization with optical waves
in a (cavityless) free propagation is known to require very
large propagation lengths, as discussed recently in different
circumstances [23,26]. The situation is different when the
optical beam propagates in a waveguide configuration. The
finite number of modes supported by the waveguide signif-
icantly reduces the rate of thermalization, in particular by
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regularizing the ultraviolet catastrophe inherent to classical
waves [17]. In this framework, a remarkable phenomenon of
spatial beam self-organization, termed ‘“beam self-cleaning,”
has been recently discovered in graded refractive index MMFs
[37-39]. At variance with an apparently similar effect driven
by the dissipative Raman effect in MMFs, known as Raman
beam cleanup [40], this self-organization is due to a purely
conservative Kerr nonlinearity [39].

Recent works indicate that this phenomenon of beam self-
cleaning can be interpreted as a consequence of wave thermal-
ization and condensation [41-43]. In particular, in Ref. [41] a
previously unrecognized mechanism of acceleration of con-
densation mediated by disorder has been reported, which can
help to understand the effect of beam self-cleaning. Indeed,
light propagation in MMFs is known to be affected by a struc-
tural disorder of the material due to inherent imperfections and
external perturbations [44,45], a feature which is attracting a
growing interest, e.g., in image formation [46,47], or to study
the dynamics of completely integrable Manakov equations
[48-53].

Our aim in this article is to provide some deeper phys-
ical insight into the mechanism underlying optical beam
self-cleaning through the analysis of wave condensation in
the presence of structural disorder of MMFs. We pursue
the work initiated in Ref. [41] along different lines: (i) On the
basis of the wave turbulence theory [6,7,20,24] and related
developments on finite size effects [54—65], we derive kinetic
equations describing the nonequilibrium evolution of random
waves in the regime where disorder effects dominate nonlinear
effects. Considering the dominant contribution of polarization
random fluctuations (weak disorder) [45], the theory shows
that a conservative disorder introduces an effective dissipation
in the evolution of the moments equations. By following the
conventional continuous wave turbulence approach describ-
ing very high MMFs, the analysis reveals that the effective
dissipation introduces a frequency broadening of four wave
resonances, which inhibits the conservation of the (kinetic)
energy and, consequently, the effect of condensation. On the
other hand, usual experiments of beam self-cleaning in MMFs
are described by a discrete wave turbulence approach whereby
dissipation induced by weak disorder modifies the regulariza-
tion of wave resonances, which leads to a significant acceler-
ation of the process of wave condensation. (ii) By considering
different models of weak disorder in MMFs, the theory shows
that when all modes experience the same (correlated) noise,
the effective dissipation induced by disorder vanishes and
the system no longer exhibits a fast process of condensation.
On the other hand, even a small decorrelation among the
noise experienced by the modes is sufficient to re-establish a
dissipation-induced acceleration of condensation mediated by
disorder. (iii) To improve our understanding of beam-cleaning
experiments, we have considered a regime where disorder
effects are of the same order as nonlinear effects. In this
case the simulations reveal the existence of a mixed coherent-
incoherent regime, which is still characterized by a relatively
fast process of self-cleaning condensation that is consistent
with the experiments. (iv) By studying polarization effects
[66], we show that optical beam cleaning is responsible for
an effective repolarization of the central part of the optical
beam, a feature that can be explained by the macroscopic

condensed population of the fundamental mode of the MMF.
(v) The discrete wave turbulence approach also explains why
optical beam self-cleaning has not been observed in step-index
MMFs. This is due to a significant reduction of the number of
resonances and their corresponding efficiencies, which leads
to an effective freezing of the process of thermalization and
condensation. The same argument also explains why con-
densation is not observed in the recent experiments of beam
cleaning under specific injection conditions [67], a feature that
will be discussed in relation with the impact of a perturbation
on the dispersion relations.

It is important to note that in this work we address the
effect of optical beam self-cleaning in the quasicontinuous
wave regime, where long (subnanosecond) temporal pulses
are injected in the MMF. Temporal dispersion effects such
as modal group-velocity mismatch and chromatic dispersion
can be neglected within the short MMF lengths consid-
ered in these experiments. Accordingly, in this work we do
not consider experiments of beam self-cleaning with high-
power femtosecond pulses [68], whose underlying mechanism
should be related to complex spatiotemporal effects involving
multimode solitons [69-74].

II. THEORETICAL MODEL
A. Modal NLS equation

We consider the (24+1)D nonlinear Schrodinger (NLS)
equation (or Gross-Pitaevskii equation), which is known to
describe the transverse spatial evolution of an optical beam
propagating along the z axis of a waveguide modeled by
a confining potential V (r) [with r = (x, y)] [75]. Consider-
ing long temporal pulses (in the subnanosecond range), we
neglect temporal effects related to first- and second-order
chromatic dispersion. The vector NLS equation accounting
for the polarization degree of freedom can then be written

0,9 = —aVY + V(g — nPW), (1)

where ¥(r,z) = (Y, ¥,)7 with ¥, ,(r, z) the vector field
in the linear polarization basis, the superscript 7 denoting
the transpose operation. The parameter o = 1/(2kong) is the
diffraction coefficient where ky = 27 /1 with A the vacuum
laser wavelength and ng the refractive index of the fiber core.
The nonlinear term reads

P = 39 9y + 3979y, )
where the nonlinear coefficient is yy = konp, with n, the
nonlinear Kerr coefficient, and the superscripts *,  stand for
the conjugate, and conjugate transpose operations (1, > 0 for
a focusing fiber nonlinearity in m?/W, |y|? in W/m?).

We expand the random wave into the orthonormal basis
[f u,(ruy, (rydr = 811;1] of the eigenmodes {u,(r)} of the lin-
earized NLS equation with the potential V (r),

N,—1
Y, z) = Z B, (2)uy(r) exp(—ipp2), 3)
p=0
where N, denotes the number of modes of the waveguide,
B,(z) = (Bpx, B),,)" refer to the linear polarization compo-
nents of the pth mode, and B, are the corresponding eigenval-
ues verifying B,u,(r) = —aVzu,,(r) + V(r)u,(r).
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In the following we focus the analysis on GRIN
(graded-index) MMFs in which the effect of beam self-
cleaning has been observed experimentally, while the case
of step-index MMFs will be discussed in Sec. VIA.
For the ideal parabolic potential V(r) = g|r|*> for |r| <
a, a being the fiber core radius, u,(r) refer to the
normalized Hermite-Gaussian functions with correspond-
ing eigenvalues B, = B, », = Bo(px + py + 1), up, p, (x,y) =
Kk (7T py! py1 2P~V B (kex) H, (ky) exp[—k2(x*> + y?)/
2], where « = (q/a)'*, q=ko(ng—n})/(2noa*), Po =
2\/05_ , n; being the cladding refractive index. The number
of modes (without including polarization degeneracy) is N, =~
V¢ /(2B2), where V, denotes the depth of the parabolic poten-
tial. Defining A ,(z) = B,(z) exp(—ifB,z), the evolutions of the
modal components are governed by

i0A, = ppA, — yPp(A). S

The nonlinear term in (4) reads

N.—1
c 1 2
Pp(A) = E Splmn(gA[TAmA;: + gAlemAl>a (5)

1,m,n=0

where S, = [ () (rYuss (r)uc’s (r)dr/ J luo|*(r)dr so that
Sooo0 = 1, and y = yy/A%;, where A% =1/ [ |ug|*(r)dr is
the effective area of the fundamental mode (|JA p|2 in Watts).

The modal NLS Eq. (4) has a form analogous to the basic
equation usually considered to study light propagation in
MMFs in the absence of disorder [51,52,75-77]. It conserves
the total power N = [ [¥[2dr = 3"~ |4,|%, and the Hamil-
tonian H = E + U, which has a linear contribution E =
o [IVYdr + [VE)l¥Pdr = Y0 B,lA,[%, and a nonlin-
ear contribution:

N,—1

]/ _
U = Z Z SlmnpUlmnp + c.c., (6)

l,m,n,p=0

where Uynp = (A An)AJAY) + 3(AJA,)(A]A%) and c.c.
denotes the complex conjugate.

The characteristic length Lo = 1/(yN) = 1/(yoN/A%)
corresponds to the nonlinear propagation length when all the
power is confined in the fundamental mode. Usually the op-
tical beam populates many higher-order modes and the non-
linear length is Ly = 1/(yN/Setr), Where Segr is the effective
surface section of the beam. We also define the linear char-
acteristic length from Eq. (4) as Ly, = 1/8Besr, Where & Beg
denotes the effective (“spectral”) bandwidth of the optical
beam in the mode space. In usual experiments of beam self-
cleaning in GRIN fibers we have 8y ~ 10° m~!, so that the
optical wave evolves in the weakly nonlinear regime:

Liin < Ly, @)

where Ly, < 1 mm while Ly is typically larger than 10 cm.

~

B. Coherent modal regime: Impact of a confining parabolic
potential on wave resonances

In a typical experiment of optical beam self-cleaning a
laser beam featured by a coherent transverse phase front is
launched into the MMF. Under these conditions, the modal
components excited at the fiber input exhibit a strong phase

FIG. 1. Coherent regime of mode interaction: Numerical sim-
ulations of the NLS Eq. (4) showing the evolutions of the modal
components 7,(z) = |A‘,,(z)|2 (in the absence of disorder), starting
from a coherent initial condition (a), starting from a “speckle” beam
with random phase among the modes (b). Evolutions of the modal
populations n,/N: fundamental mode p =0 (red dashed), p=1
(dark blue solid), p = 2 (blue solid), p = 3 (light blue solid), p =
4 (cyan solid), p =5 (light green solid), p = 6 (green solid), p =
7 (yellow solid), and p = 8 (orange solid). The system exhibits
a persistent oscillatory dynamics among the low-order modes. At
complete thermal equilibrium the system would reach the condensate
fraction nj!/N =~ 0.68 in (a), and ny' /N =~ 0.58 in (b). The power is
N = 47.5kW, N, = 120 modes, a = 26 um.

correlation among each other. We remark that this is in con-
trast to usual simulations in wave turbulence where one im-
poses a random phase among the modes in the initial condition
[7,20,22,24,25]. The numerical simulations of the NLS Eq. (4)
reveal a remarkable fact: The strong phase correlation among
the low-order modes is preserved during the propagation, thus
leading to a phase-sensitive mode interaction, as illustrated
in Fig. 1(a). In this coherent regime, the phase relationship
among the modes plays an important role in the dynamics.
The low-order modal components A ,(z) that are strongly pop-
ulated then experience a quasireversible exchange of power
with each other. The corresponding intensity pattern |¥|?(r, z)
exhibits itself an oscillatory dynamics during the propagation:
The beam populates several modes of the potential V(r)
and does not exhibit an enhanced brightness characterizing a
stable self-cleaning effect. As already discussed in Ref. [41],
this coherent regime of mode interactions freezes the thermal-
ization process. In addition, we report in Fig. 1(b) a simulation
of the NLS Eq. (4) starting from a speckle beam. Although the
initial random phases modify the regular oscillatory behavior
shown in Fig. 1(a), the low-order modal amplitudes still
exhibit a rapid and significant power exchange among each
other. This indicates that the phase relationship among the
modes still plays a nontrivial role thus leading to an effective
freezing of the process of thermalization. As will be discussed
throughout this paper, these simulations reflect the discrete na-
ture of the resonance manifold underlying wave turbulence in
MMFs. We note that understanding the mechanisms that can
freeze the process of thermalization is an important problem
that is currently analyzed in various systems, such as, e.g.,
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finite size effects in discrete or mesoscopic wave turbulence
[54-65], in Fermi-Pasta-Ulam chains [78—82], or in nonlinear
disordered systems [83,84].

The phase-sensitive regime of interaction among the highly
populated modes of the MMF originates in the small num-
ber of modes confined in the parabolic potential (typically
~15 groups of degenerate modes, i.e., ~120 modes), which
significantly reduces the effective number of modes that can
interact efficiently. To illustrate this aspect, one can compare
the number of resonances in a GRIN MMF used in the
experiments of beam cleaning and the corresponding number
of resonances in a 2D box. Let consider such two systems
with approximately the same number of modes, say N, = 120
for the GRIN fiber and N, = 121 for the 2D box. In a 2D
box with periodic boundary conditions the resonances ver-
ify energy conservation (wg, + wk, = Wk, + Wk, Wk = alkl?),
and momentum conservation (k| + k, = k3 + k4). In a GRIN
fiber, the resonances verify energy conservation B, + f; =
Bm + Bn, while the tensor Sy, reflects the efficiency of
the corresponding resonance. Because the eigenvalues B, are
regularly spaced for a parabolic potential, there are many more
resonances in a GRIN fiber than in a 2D box. However, most
of the resonances are not efficient: only 41 (1067) resonances
are characterized by a coefficient Sj,,p > 0.4 (S > 0.2),
where we recall that 0 < Sj,,,, < 1. In contrast, the 2D box
exhibits ~103 exact resonances for energy and momentum
conservation (the computation being independent of the box
size). The analysis indicates that, as compared to the 2D box,
the GRIN fiber effectively behaves as a dynamical system
with a relative small number of degrees of freedom, which
provides an intuitive interpretation for the persistent coherent
regime of mode interaction discussed above. In the following
we will see that the introduction of a structural disorder of
the MMF breaks the coherent phase-sensitive regime of modal
interaction.

III. WEAK DISORDER: KINETIC EQUATIONS
AND SIMULATIONS

The modal NLS Eq. (4) assumes that the MMF is ideal,
in the sense that the model does not account for any form
of disorder. However, in practice light propagation in MMFs
is known to be affected by random fluctuations of the lon-
gitudinal and transverse profiles of the index of refraction
as a consequence of external factors such as bending, twist-
ing, tensions, kinks, or core-size variations in the process of
fabrication of the fiber. Such multiple physical perturbations
introduce random polarization fluctuations as well as a ran-
dom coupling among the modes of the fiber. The specific
mechanisms and models that describe how fiber imperfections
impact light propagation in MMF:s still remains an active topic
of research [44,45,49-53]. Usually, one considers that for rel-
ative short propagation lengths (~10 m) as those considered
in optical beam self-cleaning experiments, the dominant con-
tribution of noise arises from polarization modal fluctuations
(weak disorder), while for larger propagation lengths mode
coupling occurs among degenerate modes (mode group cou-
pling state of strong disorder), and for even larger fiber lengths
mode coupling takes place for nondegenerate modes (strong
disorder) [45]. In the following we consider the dominant

contribution of weak disorder [45], while strong disorder will
be considered in Sec. IV. We will see that the source of noise
introduced by weak disorder is sufficient to break the coherent
regime of modal interaction discussed here above in Sec. I B.
The resulting random phase dynamics then leads to a turbulent
incoherent regime of the modal components that we describe
in the framework of the wave turbulence theory.

In the following we discuss in detail the impact of a weak
disorder on the derivation of the wave turbulence kinetic equa-
tion for MMFs. We first discuss the conventional continuous
wave turbulence regime relevant for very highly multimode
fibers, and then the discrete wave turbulence regime relevant
to the experiments of beam self-cleaning. We provide a de-
tailed derivation of the discrete wave turbulence kinetic equa-
tion accounting for weak disorder—a sketch of the derivation
was reported in Ref. [41]. We first consider a model of
weak disorder in which the modes experience an independent
(decorrelated) noise. We note that, in the opposite limit where
the modes experience the same disorder, the analysis reveals
that the optical wave recovers a quasicoherent regime of mode
interaction. In other words, this fully mode-correlated model
of disorder appears ineffective and in this limit the optical
wave does not exhibit a fast process of condensation. Accord-
ingly, we consider an intermediate model of partially corre-
lated disorder where degenerate modes experience the same
noise. The theory shows that this partially mode-correlated
disorder is sufficient to re-establish an efficient acceleration
of condensation.

A. Decorrelated model of disorder
1. Model

As discussed above, in the weak disorder regime different
spatial modes do not couple, but the two polarization states
of each spatial mode exhibit a random coupling [51,52]. The
evolutions of the modal components are governed by

i0:A, = BpA, +D,(2)A, — yP,(A). (8)

Let us recall that longitudinal and transverse fluctuations in
the refractive index profile of the MMF lead to a random
coupling among the modes, as expressed by the coupled-mode
theory [44,51]. However, by following this procedure one
obtains a scalar perturbation that does not introduce coupling
among the polarization components, a feature commented
in particular in Ref. [52]. Accordingly, random polarization
fluctuations are usually introduced in a phenomenological
way, see, e.g. [48,51,52]. Here we consider the most general
form of polarization disorder that conserves the power of the
optical beam. The Hermitian matrices D, (z) are expanded into
the Pauli matrices, which are known to form a basis for the
vector space of 2 x 2 Hermitian matrices. The matrices then
have the form

3
D) =) v,;()a;, ©)
j=0

where o; (j=1,2,3) are the Pauli matrices and o is
the identity matrix. The functions v, ;j(z) are indepen-
dent and identically distributed Gaussian real-valued random
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processes, with

, z—7
sy @) = el s R(75). a0y

Here g is the correlation length of the random process and
ag is its variance. The normalized correlation function is
such that R(0) =1, ffooo R(&)de = 1,and R(z/lg) — 136(z)
in the limit /g — 0. We will consider Ornstein-Uhlenbeck
processes:

1 (oF]
dvy ;= s vp,jdz + \/Ede“,(z),
where W, ; are independent Brownian motions. This means
that v, ; are Gaussian processes with mean zero and covari-
ance function of the form (10) with R(¢) = exp(—|¢])/2. We
introduce an effective parameter of disorder AS = O’élﬁ and
the associated length scale

L, =1/AB. (11)
‘We assume that disorder effects dominate nonlinear effects
Ly < Ly, (12)

and that lg < Ly (or oglg < 1). We recall that usual ex-
periments of beam self-cleaning refer to a weakly nonlinear
regime Ly, < Ly, where we have typically Sy ~ 10° m~',
so that B '« Ly (or AB K Bo). Aside from beam-cleaning
experiments, in the following we will also consider a regime
where the mode spacing can be very small 8y < AS [MMFs
with a huge number of modes N, >~ Vi/(283) > 1] so as to
address a regime described by a continuous wave turbulence
approach. Finally note that since the disorder is (“time”) z
dependent, our system is of different nature than those study-
ing the interplay of thermalization and Anderson localization
[85].

2. Vanishing correlations among modes

First of all, we study the correlations among the modes
through the analysis of the evolution of the second-order mo-
ments in the 2 x 2 matrix (A;Ag)(z). The impact of disorder
is treated by making use of the Furutsu-Novikov theorem.
This reveals that the conservative disorder introduces an ef-
fective dissipation in the system. In this respect we recall that
in principle the laser beam excites strongly correlated modes
at the fiber input, as discussed above through the coherent
modal regime of interaction. It is the effective dissipation due
to disorder that breaks such a strong modal phase correlation.

The analysis developed in Appendix A 1 completes that
reported in the Supplemental Material of Ref. [41], which was
focused on correlations between different modes, (A;A;) for
p # q. The correlations within a single mode (i.e., among the
orthogonal polarization components for p = g) are more del-
icate and it is reported in detail in Appendix A 1. The theory
reveals that in the regime discussed in Sec. III A 1, the correla-
tions among different modes (p # ¢g), or within a single mode
(p = q), both have a form ~y G, [A()]/[4AB — i(By, — By)],
where G, [A(2)] = P,[A(2)]*A, (2) — A5(2)P,[A(2)]". Re-
calling that L; < L, we see that, at leading order, modal
correlations vanish for propagation lengths larger than the
nonlinear length, (A;Ag)(z) >~ 0forz > Ly.

3. Closure of the moments equations

In the following we derive the kinetic equation by fol-
lowing the wave turbulence perturbation expansion procedure
in which linear dispersive effects dominate nonlinear effects
Liin < Ly. Accordingly, an effective large separation of the
linear and the nonlinear lengths scales takes place [6,7]. When
combined with disorder effects, the modes exhibit random
phases with quasi-Gaussian statistics, which allows one to
achieve the closure of the infinite hierarchy of moment equa-
tions. More precisely, because of the nonlinear character of
the NLS equation, the evolution of the second-order moment
of the field depends on the fourth-order moment, while the
equation for the fourth-order moment depends on the sixth-
order moment, and so on. In this way, one obtains an infinite
hierarchy of moment equations, in which the nth-order mo-
ment depends on the (n + 2)th-order moment of the field. This
makes the equations impossible to solve unless some way can
be found to truncate the hierarchy. The closure of the infinite
hierarchy of moment equations can be realized in the weakly
nonlinear regime by virtue of the Gaussian moment theorem.
We remark in this respect that the key assumption underlying
the wave turbulence approach is the existence of a random
phase among the modes rather than a genuine Gaussian statis-
tics, as recently discussed in detail in Refs. [7,86,87]. We
emphasize that in the present work the random phase of the
modes is induced by the structural disorder of the medium
that dominates nonlinear effects (L; < Ly)).

As discussed above, the nondiagonal components of the
2 x 2 matrix (A;AIT,)(z) vanish. Then our aim is to derive an
equation governing the evolutions of the diagonal components
w,(z) = %(IAp(z)|2). Starting from the modal NLS Eq. (8),
we have

1 1 2 2
ey = 3y (X + Sr(XP), (13)
X" =1m{ > s;  (AJA7)ATA,) . (14)
l,m,n
X =1Im Zs;,mp(A,{A;;)(A}Ap) ) (15)
I,m,n

The detailed derivation of the equations for the fourth-
order correlators J! (z) = ((A;A;)(AZA »)) and Jl(jl;p(z) =

Imnp
((AZA;:)(A;A,,)) is given in Appendix A 2. As already no-
ticed, as a result of the Furutsu-Novikov theorem, the con-
servative disorder introduces an effective dissipation in the
system, so that the evolutions of the fourth-order moments
have the form of a forced-damped oscillator equation:

az.l(j)

Imnp — (_8A,3 + iAwlmnp)](j)

Imnp

+iy(rD ), (16)

Imnp

where Awjpp = B + Bn — By — By is the frequency reso-
nance, while (Ylfir)l p) denote the sixth-order moments that have
been split into products of second-order moments by virtue of
the factorizability property of statistical Gaussian fields (see
the detailed expressions of (Y W ) for j = 1,2 in Egs. (A8)

Imnp

and (A15). The solution to Eq. (16) reads

(0)Gimnp(2) + I (2), (17)

Imnp

I (@ =19

Imnp
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where the convolution integral reads
) (@) =iy /0 (Yih )z = )Grunp(2HdZ',  (18)
with the Green function

Glmnp(z) =H(z) exp(iAa)lman - 8A/SZ), (19)

and H(z) the Heaviside function. We now arrive at the key
point of our analysis, in which one distinguishes the continu-
ous from the discrete wave turbulence approaches.

4. Continuous wave turbulence

In general, an exchange of power among four different
modes does not need to satisfy the exact resonance condition
Awpppp = 0. Indeed, it is sufficient for a mode quartet to
verify the quasiresonant condition

| A@pp| S 1/LSCr (20)

to provide a nonvanishing contribution to the convolution
integral (18), where Ll‘fi‘fl‘” denotes the characteristic evolu-

tion length scale of the moments of the field (Yl%; p)(z) [see
Eq. (26) below]. In the usual continuous wave turbulence
approach, there are a large number of nonresonant mode
quartets Awy,,, # 0 that verify the quasiresonant condition
(20) and that contribute significantly to the evolution of the
moments equations.

We anticipate that the continuous wave turbulence regime
does not correspond to the usual experiments of optical beam
self-cleaning [38,39], since we have typically By ~ 10° m~!,
so that By > 1/L3" In other words, since any nonresonant
mode quartet verifies |Awpump| = Po > 1/LE, the system
does not exhibit quasiresonances, but solely exact resonances
Awpmnp = 0. Actually, the experiments of beam self-cleaning
are described by the discrete wave turbulence approach that
will be discussed in detail in Sec. III A 5. Here, for the sake
of clarity, we first discuss the conventional continuous wave
turbulence regime [7], which can be relevant for MMFs char-
acterized by a huge number of modes [N, =~ Vi/(282) > 1
such that By << AB]. The discussion of the usual continuous
regime is also important in that it enlightens the effect of
acceleration of thermalization due to the presence of structural
disorder in the system.

Recalling that L; = 1/AB < Ly, then the Green function
decays on a length scale much smaller than the evolution
length of (Y(’ ) )(2), so that the convolution integral can be

Imn

approximated f%r > Ly,

i8AB — Awpunp
A}, + BABY

Jl(rit)np = <Yl;ﬁp> (21)
By substitution of Eq. (21) in the fourth-order moments (17),
one obtains the expressions of the averaged moments (X,EJ ))
given in (14) and (15). Collecting all terms in (13) gives the
equation for the modal amplitudes n,(z) = 2w,(z). Since the
MMEF supports a large number of modes N, >~ Vi /(262) >
1, we consider the continuous limit where the discrete
sums in (14) and (15) are replaced by continuous integrals

(Bo/Vo < 1). We obtain the continuous kinetic equation

492 AB
07, (2) = . /// dii 23 4 —
365 A2, . + DB

K1K2K3Ky

2.~
X |SK1I(2IC3IC4| MK1K2K3K4

32y AB e
NELd / d, Pty () Gy — i),
96, A&2 .+ AP
(22)
where di| 53 = dkdiydis, A = 8AB, and
1 L
§K|K4(ﬁ) = —Z/dlC Slcllc’lc’m ny . (23)
Bo

The functions with a tilde refer to the natural continuum
extension of ~the corresponding discrete functions, i.e., ix(z) =
Nike/go1(2)s B = Biu/pols  Skcveateses = Slier/Bollies /Bollies/ Bollics /o]
and so on, where [x] denotes the integer part of x. With these
notations  we have My, .y, = e, ey i e, (g, + 7! —
ﬁ;ll - ﬁ;zl)7 Ad)l[]KglC3K4 = ﬁlf] + ,Blcz - ,31c3 - ﬁlau Ad)l{]l[z =
:3K1 - ,BIQa and B, = K, + Ky + Bo, with ik = Bo(px, py) [17].

The main novelty of the kinetic Eq. (23) with respect to
the previous work without any structural disorder [17], is that
the mechanism of disorder-induced dissipation introduces a
finite bandwidth into the four-wave resonances among the
modes. Accordingly, instead of the Dirac § distribution that
guarantees energy conservation at each four-wave interaction,
here the kinetic equation involves a Lorentzian distribution.
We remark that this aspect was already discussed in differ-
ent circumstances [5], in particular in the recent work [34]
dealing with random fiber lasers in the presence of gain and
losses. Here the originality is that the finite bandwidth of the
Lorentzian distribution and the associated effective dissipa-
tion AB originate in the conservative structural disorder of
the material.

Taking the formal limit AB — 0: AB/(Ad

A_ﬂz) — TW8(A&Dy,koi5,), WE TECOVEr @ continuous Kkinetic
equation with a form similar to that derived in [17] in the
absence of disorder (AB = 0) and in the absence of polar-
ization effects (scalar limit A, — A, ;). However, the above
limit AB — 0 is not physically relevant here since we have
assumed L; = 1/AB < Ly to derive Eq. (16). Here we con-
sider the regime Sy < Ap, so that it is the opposite limit that

is physically relevant AB/(A&? + A_,Bz) — 1/AB, and

4 . | K1K2K3Ky
the kinetic equation takes the reduced form:

2
~ Y ~ -
8znx4(z) = 6A—/3ﬂ6 /// dK1,2,3|SK]IC2K3I(4|2MI(]K2K3IC4
0
4)/2
Nz

The second term on the right-hand side of (24) enforces
the isotropization of the mode occupancies 7i,(z) among the
degenerate modes, while the first term enforces the mode
occupancies to reach the most disordered equilibrium distri-
bution. The kinetic equation (24) conserves the power, N =
By 2 [ fiedk, and exhibits a H theorem of entropy growth,
9.;5(z) 2 0, where the nonequilibrium entropy is defined

p +
K1K2K3K4

+

/ i Sy () P, — Fiy). (24)
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by S(z) =B, 2 f log(7i, )dk. However, at variance with the
conventional wave turbulence kinetic equation, the kinetic
Eq. (24) does not conserve the energy, E = f, 2 i Beitdi.
Then the equilibrium distribution maximizing the entropy
given the constraint on the conservation of the power N is
given by the uniform distribution

il = const. (25)

This equilibrium state denotes an equipartition of (“parti-
cles”) power among all modes. Recalling that By < Ap, the
Lorentzian distribution in the kinetic Eq. (22) is dominated
by disorder, so that the length scale characterizing the rate
of thermalization toward the equilibrium distribution (25) is
given by

LE:SOT Aﬂerll/Slzmnp’ (26)

where S,zmn denotes the average square of the tensor Sy,
involving nontrivial resonances among nondegenerate modes.

The main conclusion is that the kinetic Eq. (23) does
not describe a process of condensation characterized by a
macroscopic occupation of the fundamental mode. This in-
dicates that weak disorder should prevent an effect of beam

self-cleaning in MMFs featured by a huge number of modes.

5. Discrete wave turbulence

We have seen that in the continuous wave turbulence
regime quasiresonances verifying A, < 1/L3" con-
tribute to the convolution integral (18). At variance with
the continuous regime, in the discrete case the nonvanishing
minimum value of Awj,,, is such that

min(|A@pmpl) = Bo > 1/LEC. (27)

Accordingly, only exact resonances Awy,,,, = 0 contribute to
the integral (18), while nonresonant mode quartets lead to
a vanishing integral [7]. Note that this procedure can also
be justified by a homogenization procedure, as reported in
[64] in the presence of a nonconservative disorder accounting
for gain and losses in the system. As discussed above, usual
experiments of optical beam self-cleaning are described by
the discrete wave turbulence approach since f8; '~ 107 m
and the above condition is well verified in the experiments
[38,39].

In the discrete wave turbulence regime we need to con-
sider separately the cases of resonant and nonresonant mode
interactions. For mode quartets verifying Awy,,,, =0, the
Green function (19) decays on a length scale much smaller
than the evolution of n,(z), because Ly = (AB )yl Lﬁ;fl"r ,
so that (18) can be approximated by JI(,fIL » (z) = S’Ayﬂ (Yl(m’;p) (2).
For Awjuup # 0, the Green function oscillates rapidly over
a length scale smaller than L, = 8, < ! ﬁ;g"r Such a rapid
phase rotation combined to the fast decay of the Green func-
tion over a length L; < Ly leads to a vanishing convolution
integral in (18). As a result, the fourth-order moment can be
written in the form

iy = w(ngi,,xz)a’fmwlmnp), (28)
where 88 (Awjymp) = 1 if Awpup = 0, and zero otherwise.
Note that the discrete regime discussed here does not exactly

correspond to the discrete regimes due to finite size effects
in homogeneous wave turbulence [7]—here the system is
nonhomogeneous [V (r) # const] and the resonance for the
momentum reflected by the tensor Sy, is not as rigid as the
usual one involving the Dirac § distribution in homogeneous
turbulence.

We provide a detailed computation of the fourth-order
moments J; u L (z) and corresponding moments (X;,j )) defined
in (14) and (15) in Appendix A 2, see Egs. (A12) and (A16).
Then collecting all terms in (13) give the discrete kinetic
equation for the modal amplitudes n,(z) = 2wp(2),

a np(z) Z |Slmnp| 8 (Aa)lmnp)Mlmnp(n)

l,m,n

2K (Awp)(m —ny),  (29)

9A,3
with s,(n) = > Stwwmphty, and My, (0) = nynyn, +
My, — NpRphy, — Nphpny,  with  “n,”  for  “n,,(z),”
Awjp, = Bi — Bp. According to the kinetic Eq. (29), the

length scale characterizing the rate of thermalization is the
same as that obtained in the continuous wave turbulence
regime (26), namely LI ~ ABL2 /52 Imnp

Aside from its discrete form, the kmetic Eq. (29) has
a structure analogous to the conventional wave turbulence
kinetic equation, so that it describes a process of wave conden-
sation that occurs irrespective of the sign of the nonlinearity
vy [see the factor y2 in Eq. (29)] [7,10]. We refer the reader
to Refs. [7,10,13] for details on condensation in the homoge-
neous case [V (r) = 0], and to [17] for the nonhomogeneous
case in a waveguide potential [V (r) £ 0]. It is important
to note that, in contrast to the kinetic Eq. (24) derived in
the continuous wave turbulence regime, here Eq. (29) also
conserves the energy £ = ) » Bpnp(z)—despite the presence
of the dissipation effect AS. The reason for this is that
only exact resonances contribute to the discrete turbulence
regime, so that the discrete kinetic equation is not affected
by the dissipation-induced resonance broadening that inhibits
energy conservation in the continuous turbulence regime. The
kinetic Eq. (29) also conserves the “number of particles”
N=>" »1p(2) and exhibits a H theorem of entropy growth for
the nonequilibrium entropy S(z) = Zp log [n,(2)]. Accord-
ingly, it describes an irreversible evolution to the (maximum
entropy) thermodynamic Rayleigh-Jeans equilibrium

nA =T /(B — ). (30)

The system exhibits a phase transition to condensation when
w— Bo [17]: for E > Eq = NV“(] +280/Voy) there is no
condensation n 9/N = 0, while for E < E; the fundamental
mode of the MMF gets macroscopically populated
eq

o _ 1— ﬂ’ (31)

N Ecrit - EO
where Ey = Nfy is the minimum energy (all particles are
in the fundamental mode). Note that Eq. (31) only provides
an approximation of the condensation curve ny' vs E, see
Ref. [17] for a more detailed discussion. As discussed in [41],
a stable self-cleaned shape of the intensity pattern |y |2(r) can
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FIG. 2. Scaling of acceleration of thermalization with mode-
decorrelated disorder: Numerical simulations of the NLS Eq. (8)
showing the evolutions of the fundamental mode n¢(z), for different
amounts of disorder AB. The dashed lines show the corresponding
simulations of the discrete kinetic Eq. (29), starting from the same
initial condition as the NLS simulations. Parameters are AS =~
2.6 m™! (2n/og =2.1 m, Ig =30 cm) blue (dash-dotted line);
AB ~10.5m ! (27 /o5 = 26 cm, I5 = 1.88 cm) green (dotted line);
AB~42 m™' 27 /op = 6.6 cm, [z = 0.47 cm) red (solid line);
while the power is N = 47.5 kW (N, = 120 modes, a = 26 um).
The curves eventually relax to the common theoretical equilibrium
value ny'/N =~ 0.2 [dashed black line from Eq. (31)] with different
rates, confirming the scaling of acceleration of condensation pre-
dicted by the theory in Eq. (32), without using adjustable parameters.

be interpreted as a consequence of the macroscopic popula-
tion of the fundamental mode of the MMF (see the movie
published in the Supplemental Material of [41]).

6. Acceleration of thermalization mediated by disorder

The length scale characterizing the rate of thermalization
in the absence of structural disorder is obtained from the
continuous kinetic equation that was derived in Ref. [17],
Ly ~ oLy /S},,, As discussed in Appendix B, a similar
scaling behavior is expected in the discrete wave turbulence
regime. Hence, in usual regimes of beam self-cleaning ex-
periments where By > Ap, the weak disorder is responsible
for a significant acceleration of the rate of thermalization and
condensation

L& /LS ~ A/ Bo. (32)

Considering typical values of By ~ 10> m~" and L; = 1/AB
larger than tens of centimeters, we see that we always have
Liisor/0rd 1. Accordingly, weak disorder is responsible for
a significant acceleration of the rate of thermalization and
condensation [41]. Note that the presence of a perturbation on
the dispersion relation can modify the above scaling, a feature
that will be discussed later.

We have confirmed the scaling (32) by performing numer-
ical simulations of the NLS Eq. (8) for different amounts of
disorder A S. We refer the reader to the Supplemental Material
of Ref. [41] for the numerical scheme used to solve the NLS
Eq. (8) in the presence of disorder. The results are reported
in Fig. 2 and confirm the scaling of the rate of acceleration
of thermalization and condensation predicted by the theory.
More precisely, a remarkable quantitative agreement has been
obtained between the simulations of the NLS Eq. (8) and those

of the discrete kinetic Eq. (29), without using any adjustable
parameter. Note that the equilibrium value of the condensate
fraction ngq /N vs the energy E is obtained from a rather
simple analysis of the RJ equilibrium distribution [7,10,17].
In our case, the condensation curve ny' /N vs the energy E has
been reported in explicit form in Ref. [41] [see Egs. (17) and
(18) in the Supplemental Material]. Also note that we have
deliberately chosen a small value of the condensate fraction
no/N =~ 0.2 so as to avoid large deviations from Gaussianity
for the fundamental mode—though the theory has been val-
idated even for large condensate fractions in [41]. We recall
here the recent works showing that a key assumption of the
wave turbulence approach is the existence of a random phase
among the modes rather than a genuine Gaussian statistics
[86,87].

7. Disorder-induced beam cleaning

The amount of “beam cleaning” can be quantified through
the analysis of the fluctuations of the intensity during the
propagation in the MMEF. To this aim we consider the rela-
tive variance of intensity fluctuations relevant for a spatially
nonhomogeneous incoherent beam

[P (r, 2)) — (I(r, 2))?dr
[ U, 2))2dr

ol(z) = : (33)

where the intensity is I(r,z) = |¥|*(r, z). Note that for a
beam with Gaussian statistics we have o = 1. We report in
Fig. 3 the evolutions of the variance of intensity fluctuations
in the presence and the absence of disorder. The brackets
(-) in Eq. (33) refers to an averaging over the propagation
length Az = 10 mm, which is larger than the mode-beating
length scale ~ B, ! (0.2 mm in the example of Fig. 3). The
simulations in Fig. 3 clearly show that the presence of disorder
induces a rapid condensation process, which in turn leads
to a significant reduction of the relative standard deviation
of intensity fluctuations o; >~ 0.1. Conversely, in the absence
of disorder the multimode beam can exhibit an enhanced
brightness at some propagation lengths [see the intensity
pattern at z = 15 m in Fig. 3(b)], however its oscillatory mul-
timode nature prevents a stable beam-cleaning propagation,
as evidenced by the relative standard deviation of intensity
fluctuations that only slowly decreases below o; >~ 0.9.

B. Correlated and partially correlated disorder

In Sec. Il A 1 we have considered a model of disorder
that can be termed “mode decorrelated,” in the sense that
each individual mode of the MMF experiences a different
noise, i.e., the functions v, ;(z) in (9) are independent of each
other. Although this approach can be considered as justified
in different circumstances [47,51,52], one may question its
validity for a MMF featured by a large number of modes.
In the following we address this question by considering two
different models of disorder, namely the fully mode-correlated
disorder model, and the partially mode-correlated disorder
model.
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FIG. 3. Disorder-induced beam cleaning: Numerical simulations
of the NLS Eq. (8) showing the evolutions of the relative variance of
intensity fluctuations o;(z) from Eq. (33) (red circles), and conden-
sate fraction ny(z)/N (blue line), in the presence of disorder (a), and
in the absence of disorder (b). The intensity patterns /(r) inside the
fiber core (circles) are shown at z = 0 and z = 15 m. The horizontal
dashed black line in (a) shows the condensate fraction at thermal
equilibrium, ny'/N >~ 0.68 [from Eq. (31)]. The disorder induces
a stable beam-cleaning condensation characterized by a significant
reduction of intensity fluctuations down to o; >~ 0.1 (a), which is
in contrast with the case without disorder where the variance of
intensity fluctuations remain almost constant throughout propagation
with o7 >~ 0.9. Parameters are A =2.6 m 27 /op = 2.13m, [y =
30 cm), N, = 120 modes, @ = 26 um, N = 47.5 kW.

1. Mode-correlated noise

We first consider the fully mode-correlated model that can
be considered as the opposite limit of the mode-decorrelated
one, in the sense that all modes experience the same noise
(more precisely, the same realization of the noise). In this
limit, the 2 x 2 matrices describing the modal noise in (9)
reduce to D, = D with D = Zi:o V0;.

The theory developed above for the decorrelated model
of disorder can be extended to this fully correlated model.
The theory reveals in this case a remarkable result, namely
that the equations for the fourth-order moments Jl(rfl)np(z)
do not exhibit an effective damping, i.e., AB =0, see
Appendix A 3. This is in marked contrast with the decorre-
lated model of disorder discussed above, see Eqgs. (16). This
result has a major consequence: the fully mode-correlated

0.2 §
il ‘HH:JH"«HU il ““

0 , ! A
0 5 10 15 20
z (m)

FIG. 4. Mode-correlated disorder: Numerical simulations of the
NLS Eq. (8) showing the evolutions of the modal components 1,(z),
starting from a coherent initial condition: fundamental mode p = 0
(red dashed), p = 1 (dark blue solid), p = 2 (blue solid), p = 3 (light
blue solid), p =4 (cyan solid), p =5 (light green solid), p =6
(green solid), p = 7 (yellow solid), and p = 8 (orange solid). The
mode-correlated disorder does not introduce an effective dissipation
in the system (AB = 0): phase correlations among the low-order
modes are preserved and lead to an oscillatory dynamics similar to
that in the absence of disorder (see Fig. 1). At complete thermal
equilibrium the system would reach the condensate fraction ng!/N ~
0.68 [from Eq. (31)]. Parameters are AS ~2.6 m™! Q2n/op =
2.1 m, lg = 30 cm), the power is N = 47.5 kW, N, = 120 modes,
a =26 pm.

noise does not modify the regularization of wave resonances
and the system recovers a dynamics analogous to that obtained
in the absence of any disorder. We illustrate this in Fig. 4 that
reports the evolution of the modal components 7,(z) obtained
by simulation of the modal NLS Eq. (8) in the presence of
a mode-correlated disorder. The initial condition is coherent
(all modes are correlated with each other) and we see in Fig. 4
that the low-order modes recover an oscillatory dynamics
reflecting the presence of strong phase correlations, as for the
coherent regime discussed in the absence of disorder in Fig. 1.
This coherent dynamics is consistent with the intuitive idea
that, in the absence of an effective dissipation (A = 0), the
phase correlations are not forgotten during the evolution.

2. Partially mode-correlated noise

We have seen that the fully mode-correlated disorder does
not introduce an effective dissipation (A B = 0) and thus leads
to a coherent dynamics analogous to that obtained in the
absence of disorder. We have thus considered a “partially
correlated” model of disorder in which modes that belong
to different groups of degenerate modes experience a decor-
related noise, while degenerate modes of the same group
experience the same noise. This artificial model for MMFs can
be considered as an intermediate model between the two limits
of correlated and decorrelated models. It is mathematically
tractable and it illustrates the conjecture that the discrete
kinetic Eq. (29) is robust as soon as disorder is not fully mode
correlated.

The theory developed above for the model of decorrelated
disorder has been extended to address the partially correlated
model, see Appendix A 4. The theory reveals that (second-
order) correlations among nondegenerate modes are vanishing
small and can be neglected, as it was shown for the model
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0.3

FIG. 5. Scaling of acceleration of thermalization with a par-
tially mode-correlated disorder: Numerical simulations of the NLS
Eq. (8) showing the evolutions of the fundamental mode ny(z),
for different amounts of disorder AB. The dashed lines show the
corresponding simulations of the discrete kinetic Eq. (29), starting
from the same initial condition as the NLS simulations. Parameters
are AB ~2.6m™! (27 /op = 2.1 m, Iz = 30 cm) blue (dash-dotted);
AB~10.5 m™! (2w /os =26 cm, l; = 1.88 cm) green (dotted);
AB ~42 m™! (2w /op = 6.6 cm, Iy = 0.47 cm) red (solid); while
the power is N =47.5 kW (N, = 120 modes, a = 26 um). The
curves eventually relax to the common theoretical equilibrium value
ny'/N [dashed black line from Eq. (31)] with different rates, and
confirm the theoretical scaling of acceleration of condensation in
Eq. (32) for a partially mode-correlated disorder.

of decorrelated disorder. However, the computation of the
fourth-order moments JI(,fl)np is more delicate because the
mode-correlated noise introduces more terms in the calcula-
tions of the equations for the moments. We obtain different
results for the fourth-order moments that depend on the spe-
cific modes involved in the moments. Almost all of the fourth-
order moments satisfy an evolution equation with a dissipation
that is proportional to AB. This result is analogous to that
obtained for the model of decorrelated disorder considered
above, though the coefficients in front of AS are different
and their values depend on the specific modes involved in
the fourth-order moment. In addition, at variance with the
model of decorrelated disorder, here there are also particular
cases where the fourth-order moments do not exhibit any
dissipation. Such special cases do not contribute to the fast
thermalization process described by the effective dissipation
AP, but instead they induce a reversible exchange of power
within a group of degenerate modes, see Appendix A 4.

To summarize, the theoretical developments reported in
Appendix A 4 allow us to infer that the kinetic equation is
still of the form given by the discrete kinetic Eq. (29) and
that the scaling of the rate of thermalization is still given by
Ll‘(‘ii;"r ~ A,BLIZII /S‘lzmnp in Eq. (26). This scaling of the rate of
thermalization has been confirmed by the numerical simula-
tions of the NLS Eq. (8). The results are reported in Fig. 5
for the same parameters of disorder as those considered in
Fig. 2, except that a model of partial mode-correlated disorder
has been considered. The agreement with the discrete kinetic
Eq. (29) confirms the scaling (32) of the rate of accelera-
tion of thermalization for the partially correlated model of
disorder.

IV. STRONG DISORDER

In this section we discuss the impact of a strong structural
disorder, i.e., a noise that couples distinct modes on the
evolution of the averaged modal components. More precisely,
here we complete the discussion of Ref. [41] on the impact of
strong disorder in several respects. We show that a general
form of conservative disorder introduces an effective dissi-
pation in the system, which is responsible for an irreversible
decay of the first-order moments, as well as an irreversible re-
laxation of the second-order moments toward different forms
of power equipartition among the modes. In this way, we pro-
vide a detailed derivation of the kinetic equation accounting
for strong disorder at the leading order linear regime, see
Appendix C. We also discuss the different regimes described
by the considered model of strong disorder, namely the ran-
dom coupling among polarization components, as well as ran-
dom coupling among degenerate and nondegenerate modes.
In this way, we relate our approach with the corresponding
limits described by the so-called Manakov approximation
[49-52].

A. Model

Random coupling among the modes can be described by
a generalized form of the modal NLS Eq. (8). The random
field composed of N, spatial modes is represented by a
2N,-dimensional complex valued vector A(z) = [A p(z)]ill*o_l,
which is obtained by stacking the 2/N,.-modal components that
include the polarization degrees of freedom. The vector A(z)

is governed by the modal NLS equation:
i0.A = PA + D (2)A — yP(A), (34)

where B is a diagonal matrix with diagonal terms 8,. Random
linear coupling between the modes are modeled by the random
matrix-valued process D*¢(z). It consists of a 2N, dimensional
generalization of the two-dimensional model of weak disorder
discussed in Sec. III A 1. The 2N, x 2N, Hermitian matrix
D*d(z) can be written as

DY) =) ggrl[vgr@HY + 1y ()K?]

q<r

+ ) gang ()Y, (35)
q

where the matrices H?", K%, J¢ refer to a 2N, dimen-
sional generalization of the Pauli matrices o; [88]: The
matrices H?", K%, J9 also form a basis for the vector
space of 2N, x 2N, Hermitian matrices. In this respect,
the model (35) can be considered as a general model of
strong disorder. For definiteness, the three matrices are given
in explicit form in Appendix C. Following the generaliza-
tion of the weak disorder model of Sec. III A 1, in the
strong disorder model given by Eq. (35) the functions 7,
for 0 < g < 2N, —1, and vy, pg for 0 < g <r < 2N, —
1, are zero mean independent and identically distributed
Gaussian real-valued random processes, with (n,(z)n,(z")) =

(Uqr(z)vqr(z/» = (Mqr(Z)Mqr(Z/)) = O';R(Z[_ﬂz,) We consider

Ornstein-Uhlenbeck processes for n,, v, , and u, ., with
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R(¢) = exp(—|¢])/2. The parameters g, and g, are mode
coupling coefficients of order one.

As will be discussed below, the model of disorder (35) al-
lows us to distinguish three different regimes of random mode
coupling, namely polarization coupling, coupling among de-
generate modes, and coupling among nondegenerate modes.

B. Kinetic equation

In Appendix C we derive the equations that govern the
evolutions of the first-order moments of the field. The main
result obtained by using the Furutsu-Novikov theorem is
that the conservative strong disorder introduces an effective
dissipation for the evolutions of the average (A)(z), which
thus exhibits an exponential decay during the propagation,
see Egs. (C2) and (C3). This result allows us to study the dy-
namics of the second-order moments with strong disorder in
the regime where linear effects dominate nonlinear effects, as
for the weak disorder case considered in Sec. III. However, at
variance with weak disorder where the linear dynamics of the
second-order moments is trivial (i.e., vanishing correlations,
see Sec. Il A 2), the presence of strong disorder introduces
a nontrivial linear dynamics that dominates nonlinear effects.
In the following we study strong disorder at the leading order
linear regime.

In Appendix C we obtain the following equation governing
the evolution of the modal components:

2N,—1

d,w), _20/3 Z pm/ [wn(Z) — wp(2)]

x RI(z —2)/Igl cos[(Bp — Bu)(z — 2)dZ,  (36)

with w,(z) = (|A,1*(2)), p=0,...,2N, — 1. Considering
that the coupling coefficients do not depend on polarization
the 2N, x 2N, matrix g, can be reduced to a N, x N, matrix
Ppm- Furthermore, since I < z, Lﬁ‘s"r the additional term in
the kinetic equation takes the simplified form

N.—1

dnp = AB Y T RIBw — Bp)l)(nm —ny).  (37)

m=0

where n,(z) = wy,(z) + wap41(2) is the power in the mode
p(=0,....,N,—1),and T'),, = pﬁm denotes the mode cou-
pling matrix. The function R(x ) denotes the Fourier transform
of the correlation function R (x), which reads R (x) = 1 /(1 +
«?) for the considered Ornstein-Uhlenbeck process. Note that
Eq. (37) has a form similar to that considered to model power
cross-talk among different modes in optical telecommunica-
tions [44].

C. Characteristic length scales

We first note that by adding the extra term (37) in
the kinetic equation derived above with weak disorder [see
Eq. (29)], the conservation of the energy E is no longer
verified, so that a H theorem of the complete kinetic Egs. (29)
and (37) would describe an irreversible evolution toward
a maximum entropy equilibrium state characterized by an
equipartition of power (“number of particles”) among the
modes. Accordingly, strong disorder would inhibit the self-

cleaning condensation process discussed through weak disor-
der in Sec. III. As will be discussed below (Sec. IV D), this
conclusion is not correct when one considers the usual regime
of optical beam self-cleaning. In this view, we now discuss
the physical meaning of Eq. (37) through the analysis of the
model of disorder considered in Eq. (35) and the correspond-
ing different length scales of random mode coupling.

(1) Polarization coupling: The model (35) describes ran-
dom coupling among the polarizations of a single mode that
occurs over the propagation length L; ~ 1/(ABI",). Consid-
ering a moderate impact of disorder, we can have I',, ~ 1, so
that this length scale of polarization random coupling is the
same as that considered above in Eq. (11).

(i) Coupling among degenerate modes: The model (35)
describes random coupling within a group of M, degenerate
modes over the characteristic propagation length

L ~ 1/(M,ABT ), (38)

where [, is determined by an average of the coupling coef-
ficients I',,, (m # p) among the M, modes of the gth mode
group. Considering a moderate coupling among the modes
Ty < Tpy for m# p, we have Ly < Lgsg. Physically, the

ndeg

length scale L, represents the typical propagation length
such that strong disorder achieves an equipartition of power
within each group of degenerate modes. When one consid-
ers temporal propagation effects through generalized coupled
NLS equations, this effect is known as the Manakov limit of
strongly coupled groups of modes, see [50].

(iii) Coupling among nondegenerate modes (B, # Bn): By
Perron-Frobenius theorem, the symmetric matrix T defined by

Fmp = Fmp,]%[(ﬁp - IBm)lﬂ](l - Srlftp)

Z Ty RIUBy — Bu)lp] | 8, (39)

pim

has a simple zero eigenvalue with the associated unit eigen-
vector, and all other eigenvalues are negative. As a result, the
additional linear coupling terms in the kinetic Eq. (37) tend
to redistribute the power among all modes, at an exponential
rate that can be determined by the second eigenvalue A, (T') of
the matrix I'. The corresponding characteristic length scale is
given by

LY ~ 1/[ABIA(T)]]. (40)

We recall that R (k) decays to zero as « goes to infinity, so that

RI(By — Bw)lg] is much smaller than R(O) =1 and Ldeg

L;‘;eg. In other words, the length scale Lxd “¢ represents the

typical propagation length such that strong disorder achieves
an equipartition of power among the modes. Considering
temporal effects through generalized coupled NLS equations,
this effect of power equipartition among all fiber modes is
known as the strong coupling regime in the Manakov limit
[49,51].

We finally note that typical values of the three length scales
discussed here are estimated in Ref. [45], where complete
polarization random coupling is expected to occur over several
meters, random mode coupling among degenerate modes over
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tens of meters, and mode coupling among nondegenerate
modes over hundreds of meters.

D. Application to beam cleaning: Acceleration of thermalization

The additional term in the kinetic Eq. (37) provides the
characteristic length scales due to strong mode coupling Lf;g

and L. In the usual experiments of beam cleaning we have
Bolg > 1 (since By ~ 10° m~"), so that mode coupling among
nondegenerate modes is quenched by the Fourier transform
of the correlation function R(Bols) < 1, i.e., ijg & L?geg.
However, as discussed here above, mode coupling among
degenerate modes leads to an exponential relaxation to an
equipartition of power within groups of degenerate modes.
Unexpectedly, this is a property of the Rayleigh-Jeans distri-
bution, since this equilibrium only depends on the eigenvalue
B, see the expression of n,,' in Eq. (30). This shows that
the impact of strong disorder is not detrimental to achieve
wave condensation, but instead it enforces the process of
thermalization to the Rayleigh-Jeans distribution, though such
an acceleration of thermalization is negligible with respect
to the acceleration mediated by weak disorder, see Eq. (32).
In addition, considering the short fiber lengths typically used
in the experiments of beam self-cleaning (L ~ 10-20 m),
mode coupling among degenerate modes is expected to play
a negligible role, L, Lisor < Lijg. In the remainder of this
article, we will neglect the impact of random mode coupling
among degenerate modes.

V. REDUCED IMPACT OF DISORDER

The kinetic equations describing the evolution of the modal
components 7,(z) have been derived under the assumption
that disorder effects dominate nonlinear effects L; < Ly.
Although the parameters that characterize the disorder,
namely the correlation length /g and the effective “beating
length” 2m /og (reflecting the “strength” of disorder) are
not precisely known, accurate measurements in single mode
optical fibers indicate that such length scales can be of few to
several meters [89].

A. Mixed coherent-incoherent regime

We report in this section numerical simulations of the
modal NLS Eq. (8) where disorder and nonlinearity are typ-
ically of the same order of magnitude L; ~ L. For com-
pleteness, we consider both models of disorder discussed in
Sec. Il B where the modes experience a decorrelated or a
partially correlated noise. Figure 6 reports the results for a
decorrelated model of disorder in which we have considered
different values of /g and 2 /o of the noise. We note that,
at first sight, for relative small values of (lg, 27 /og), the
global evolutions of the modal components n,(z) are similar
to those reported in the regime where disorder dominates the
nonlinearity. There is however a difference that distinguishes
the two regimes. The rapid fluctuations on the small length
scale of disorder L; («Ly) of Figs. 2-5 get smoother in
the regime where disorder and nonlinearity are of the same
order in Fig. 6. Also remark that a variation of the correlation
length Ig (different lines in Fig. 6) has a marginal impact on
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FIG. 6. Mixed coherent-incoherent regime with mode-

decorrelated disorder: Numerical simulations of the NLS Eq. (8)
showing the evolutions of the modal components 7,(z), for different
amounts of the strengths of disorder 27 /o4, and correlation lengths
lg: fundamental mode p = 0 (red dashed), p = 1 (dark blue solid),
p = 2 (blue solid), p = 3 (light blue solid), p = 4 (cyan solid), p = 5
(light green solid), p = 6 (green solid), p = 7 (yellow solid), and
p = 8 (orange solid). Parameters are 27 /o3 = 5.3 m (first column),
27 fog = 10.6 m (second column). First (top) row: Iz = 0.5 m,
second row: Ig = 1 m, third row: [y = 3 m, fourth row: [z =5 m.
As the impact of disorder is reduced, the modal components enter
a mixed coherent-incoherent regime of interaction characterized by
a (phase-sensitive) oscillatory behavior of the modal components.
At complete thermal equilibrium nj' /N =~ 0.68 [dashed black line
from Eq. (31)]. The power is N = 19 kW, the initial condition is a
coherent Gaussian beam (N, = 120 modes, ¢ = 26 um).

the dynamics as compared to the strength of disorder 27 /oy
(columns in Fig. 6)—note that the values of 27 /og in Fig. 6
correspond to refractive index fluctuations of the order én ~
(oF] / k() ~ 10_7.

It is interesting to note that, by increasing further the
correlation and beating lengths of disorder (lg, 27 /o), the
system enters a different regime, which is characterized by
the presence of pronounced oscillations of the modal com-
ponents. This oscillatory behavior reflects the presence of a
phase correlation among the modal components, as it was
discussed through the coherent modal regime of interaction in
the absence of any disorder in Sec. II B. Here the presence of
a moderate disorder is not sufficient to remove such coherent
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FIG. 7. Mixed coherent-incoherent regime with partially mode-
correlated disorder: Numerical simulations of the NLS Eq. (8)
showing the evolutions of the modal components 7n,(z), for different
amounts of the strengths of disorder 27 /o4, and correlation lengths
lg. Parameters and initial condition are the same as in Fig. 6, except
that a partially mode-correlated disorder has been considered.

phase-correlation dynamics, so that the modes exhibit a mixed
coherent-incoherent regime of interaction.

The same phenomenological behavior about the impact of
disorder on the system is observed by considering a partially
correlated model of noise, as illustrated in Fig. 7. Interesting
to note, for moderate values of disorder the evolutions of
the modal components is very similar to that observed for
a decorrelated model of disorder (compare the first columns
in Figs. 6 and 7). The fact that a partial correlation among
the modes does not alter the rate of thermalization was al-
ready discussed in the regime where disorder dominates the
nonlinearity (see Sec. IIIB). Actually, the main difference
between the decorrelated and partially correlated models of
disorder is observed by further reducing the impact of disorder
(i.e., by further increasing /g and 2 /og). In this case, the
partially correlated noise model leads to a more pronounced
oscillatory behavior, a feature that can easily be interpreted
by remarking that since the degenerate modes see the same
noise, the impact of disorder is less efficient in breaking the
phase correlations among the modes. As a result, when one
considers the partially mode-correlated noise for large values
of g and 27 /o, the mixed coherent-incoherent regime of

interaction becomes clearly apparent, and the corresponding
oscillatory behavior of the modal components leads to a
deceleration of the thermalization process, see the second
column of Fig. 7. We note that the simulations in Figs. 6
and 7 have been realized with the parameters of the recent
experiment of Ref. [41] (in particular the same power). The
simulations then appear consistent with the experimental
results—for instance a propagation length similar to that of
the fiber length used in Ref. [41] (i.e., ~12 m) is sufficient to
evidence a significant process of condensation starting from a
coherent initial condition.

We finally comment the impact of a mode-correlated model
of disorder. We have seen in Sec. III B that in the regime L; <
L, this model of disorder does not introduce an effective
dissipation so that it does not lead to a fast process of con-
densation. In the regime L; ~ Ly, the simulations still reveal a
persistent oscillatory behavior of the modes by starting from
a coherent initial condition (as in Figs. 6 and 7), while a
significant deceleration of condensation featured by a mixed
coherent-incoherent regime has been observed by starting the
simulations from a speckle beam.

B. Polarization effects

In this section we discuss the polarization dynamics of the
modal components during their nonlinear propagation through
the MMF in the presence of disorder effects. We consider
the usual definition of the Stokes vectors integrated over the
transverse spatial section of the optical beam S (z) = f [V
" 2D + ¥y, 2)Pdr,  SD(@) = [ 1Y, 2P = 19, (r, )
dr, SP(z)=2Re [ (r, 2)*Yy(r,2)dr, S¥(z) = —2Im
f Y (r, 2)* Yy (r, 7)dr. By expanding the field over the modes,
we have

N,—1 M—1
SO = > 1Ap@F +14,,@P =Y s,
p=0 p=0

No—1 M—1
SV@ = Y 1A @F — A @F =Y s
p=0 p=0

No—1 No—1
$@ () =2Re Z Apx(2)°Ap,y(2) = Z s(p2)’
p=0 p=0
No—1 N.—1
SV = —2Im Y Ay (2)Apy@) = D s
p=0 p=0

It is important to recall that our model does not account
for the temporal dynamics of the optical wave. Accordingly,
we resort to a definition of an effective degree of polarization
P@) = Zi:l (S1)?/(So), by considering an average ((-))
over the evolution z variable. As is well known, caution should
be exercised with the notion of degree of polarization, which
is inherently related to the underlying averaging procedure. In
this respect, we note that for an averaging length Az much
larger than the correlation lengths Ig, 2 /og, the degree of
polarization vanishes P =~ 0. This results from the theory
developed in Appendix A 1, where we have shown that in
the regime L; < Ly, the correlations among the orthogonal
polarization components are vanishingly small. To study the
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FIG. 8. Evolution during the propagation z of the effective degree
of polarization P computed by taking into account the contribu-
tion of the fundamental mode (red points), and without including
its contribution (gray points) (c). Corresponding evolution of the
condensate amplitude n(z) (blue line) (c). The initial condition is a
speckle beam, so that the Stokes vectors of the modal components
are not aligned with each other (a), leading to a small P(z = 0).
During the propagation, the condensation process entails an effective
repolarization of the beam because |(so)| > |(sp=0)| (a) and (b)—to
improve their visibility the lengths of the Stokes vectors (s,) have
been multiplied by a factor x4 in (b). Parameters: Ig = 30 cm,
2w fog =2.1m, N =47.5kW (N, = 120 modes, a = 26 pum).

correlations (S), here we consider a moderate value of the
spatial averaging Az >~ 15 cm.

We report in Fig. 8 the evolution of P(z) starting from a
random distribution of the modal components with random
phases (speckle beam). Accordingly, the initial Stokes vectors
of the modes s, are not aligned with each other, i.e., their
random orientation leads to a vanishing sum (S) = ) » (sp) >~
0 and thus P(z = 0) ~ 0. As the beam propagates through the
MMF, it undergoes a beam-cleaning condensation in which
the evolution of P(z) follows a behavior similar to that of
the condensate fraction ny(z)/N. This is because the modal
distribution gets dominated by the macroscopic population of
the fundamental mode:

p#0, (42)

where |-| denotes the modulus of the vector. According
to (42) the sum over the modal Stokes vectors no longer
vanishes, (S) =Y » (s,) # 0. Note that the effective degree
of polarization does not increase if P(z) is computed without
including the contribution of the fundamental mode [gray
points in Fig. 8(c)], which confirms that the repolarization of
the beam is a consequence of wave condensation.

Let us now consider the case where the launched optical
beam is spatially coherent and polarized, as for typical ex-
periments of beam self-cleaning. The numerical simulation
corresponding to this initial condition is reported in Fig. 9(a)
for a moderate disorder L; = Ly. In this case, all of the

[{so)| > |(s,)| for

FIG. 9. (a) Evolution during the propagation z of the effec-
tive degree of polarization P (red points), and condensate fraction
no(z)/N (blue line). The initial condition is a polarized coherent
optical beam, i.e., the Stokes vectors of the modal components
are aligned with each other, leading to P(z = 0) = 1. During the
propagation, the disorder misaligns the Stokes vectors leading to a
partial depolarization of the beam. Then the condensation-induced
repolarization effect leads to a saturation of the decrease of P(z).
(b) Trajectory of the Stokes vector s¢(z) on the Poincaré sphere over
the propagation length 17 to 20 m, showing an effect of nonlinear
polarization rotation. Parameters: Iy =5 m, 27 /og =25 m, N =
47.5 kW (N, = 120 modes, a = 26 um).

Stokes vectors are initially aligned, so that P(z = 0) = 1. For
short propagation lengths, the disorder scrambles the phase
relationship among the modes, thus leading to a misalignment
of the Stokes vectors and then to a partial depolarization of
the beam. Subsequently, the effective repolarization induced
by condensation leads to a saturation of the decrease of P(z).

In this regime of beam cleaning where disorder effects are
moderate Ly 2 Ly, the fundamental mode is macroscopically
populated and its polarization dynamics is not significantly
altered by disorder nor by the coupling to other modes. As
a consequence, the polarization dynamics of the fundamental
mode exhibits a well-known effect of nonlinear polarization
rotation on the Poincaré sphere [77], as can be observed in
Fig. 9(b). This effect is characterized by a rotation of the

Stokes vector in the (s(()l) , sg)z)) plane with an ellipticity that can

remain almost constant over some propagation lengths, séf) =
const. Note that this nonlinear polarization rotation of the
self-cleaned optical beam has been observed experimentally
in Ref. [66]. To interpret their results, the authors of [66]
invoke the key impact of the temporal profile of the optical
pulse injected in the MMF. Indeed, the frequency rotation of
the Stokes vector depends on the instantaneous value of the
power, so that different power levels of the injected pulse
profile exhibit different rotation speeds of the Stokes vector.
Accordingly, a quantitative comparison between the experi-
mental results of Ref. [66] and our numerical results is not
possible without including temporal effects in our model, and
specifically the temporal profile of the injected optical pulse.
We followed the experimental procedure of Ref. [66] by
analyzing the polarization properties in the transverse spatial
distribution of the optical beam. The effective degree of
polarization P(x, y = 0) reported in Fig. 10 is computed by
performing a spatial integration over a diaphragm of same
diameter as the fundamental mode of the MMF (9 pum), which
is moved across the beam along the x axis by keeping fixed
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FIG. 10. Polarization properties across the transverse surface
section of the self-cleaned beam reported in Fig. 8: Effective degree
of polarization P computed along the x axis by keeping fixed the y
position (y = 0), at z = 0 m (red triangles), and z = 20 m (blue dots).
As a consequence of wave condensation, the central part of the beam
exhibits a significant repolarization process. Parameters: /g = 30 cm,
2w fog = 2.1 m, N = 47.5kW (N, = 120 modes, a = 26 pum).

the y = 0 position. As expected, the transverse profile of the
degree of polarization exhibits a bell-shaped profile indicating
a significant repolarization of the self-cleaned beam. This
confirms that the effective repolarization of the beam dis-
cussed here results from the process of condensation and the
associated macroscopic population of the fundamental mode
of the MMF.

VI. FREEZING AND SLOWING DOWN OF
THERMALIZATION

In this section we discuss an important consequence of
the discrete nature of wave turbulence in MMFs, namely
an effective freezing of the process of thermalization and
condensation, which should also explain why optical beam
cleaning has not been observed in step-index MMFs. In
addition, we comment the impact on the turbulent dynamics
of a perturbation of the dispersion relation, which is shown
to modify the regularization of wave resonances and then the
rate of thermalization of the optical beam.

A. Absence of beam cleaning in step-index fibers:
Freezing of thermalization

The theory developed in this article can be applied in
principle to different waveguide geometries, such as step-
index MMFs that are characterized by a homogeneous circular
potential V (r). This example is important in that the effect of
optical beam self-cleaning has not been observed in step-index
MMFs.

To discuss this experimental observation, we first note
that at variance with a GRIN MMEF, in a step-index MMF
the eigenvalues B, are not equally spaced and degenerate
modes are scarce. We recall in this respect that thermalization
takes place through the excitation of higher-order modes, a
feature that essentially occurs by “nontrivial” resonances, i.e.,
resonances that involve at least three (or four) nondegener-
ate modes. It is important to note that, at variance with a
GRIN fiber, in step-index MMF such nontrivial resonances

TABLE I. Number of quasiresonances N{:» and corresponding
efficiencies Xét!f’z) = Zlmnp Slzmn » for a step-index MMF for L, = 1 m
and for L, = 25 cm, respectively. For a GRIN MMF, N, denotes
the number of exact resonances. The significant reduction of NY)
and Xe(rjf) for the step-index MMF with respect to the GRIN MMF is
responsible for an effective freezing of the process of thermalization

and condensation.

N, r(els) X;flf) N, r(ezs‘) Xe(fzf)
Step index 1376 4.7 12 256 15
GRIN 8369 504 630 8369 504 630

are not exact resonances verifying Awju,p, = 0. According
to our discussion on discrete vs continuous wave turbulence
(see Secs. III A 4 and III A 5), this means that incoherent
light propagation in step-index MMFs should be described
by quasiresonances through a continuous wave turbulence
approach. However, as will be shown below quasiresonances
are poorly efficient in actual step-index MMFs and many of
them verify | Awjyp| > 1/Ly, i.€., the frequency mismatch is
too large to provide a nonvanishing contribution to the kinetic
equation.

We illustrate this by comparing the number of nontrivial
resonances N for a GRIN and a step-index MMF—more
specifically we compute the number of exact resonances for
the GRIN fiber (Awjpnp = 0), and the number of quasires-
onances for the step-index fiber |Awjump| K Lrﬁl. The reso-
nances are nontrivial in the sense that they involve at least
three different groups of nondegenerate modes. We consid-
ered fibers with approximatively the same number of modes:
N, = 120 for the GRIN (ny = 1.47, ny = 1.457,a = 26 um),
N, = 121 for the step-index fiber (ng = 1.4496, n| = 1.4462,
a =37 um). We also considered different values of the
nonlinear length L, = 25 cm and L, = 1 m, and computed
the number of quasiresonances in the step-index fiber with
the criterion |Awyyp| < Llil /10. The results are reported in
Table I, which show a drastic reduction of the number of
resonances and corresponding efficiencies in the step-index
fiber as compared to the GRIN fiber.

To summarize, incoherent light propagation in a step-index
MMEF is not described by a discrete turbulence regime because
of the absence of exact nontrivial resonances. The step-index
MMF also exhibits poorly efficient quasiresonances that es-
sentially freeze the development of a continuous turbulence
regime. Note that the number of quasiresonances contributing
to the kinetic equation can be increased by considering larger
radii of step-index MMFs, thus leading to a reduced mode
spacing. In this case an efficient continuous turbulence regime
can be established in principle (provided that sufficient power
is launched in the fiber). However, as discussed in Sec. IIT A 4,
in this case the impact of weak disorder is expected to prevent
the conservation of kinetic energy, which would thus inhibit
wave condensation.

B. Freezing discrete turbulence and thermalization
with specific initial conditions

The wave turbulence theory developed in this paper is
relevant when the optical beam populates many modes of
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the MMF. This is the case for instance for the experiments
reported in [41], in which the optical beam is passed through
a diffuser to degrade its transverse wave front profile before
injection into the MMF. It has been shown in this case that,
by increasing the excitation of modes, the effect of beam self-
cleaning is degraded, as described by wave condensation and
the equilibrium condensation curve, see [41]. It is important to
stress, however, that there exist particular conditions of beam
injection into the MMF that can excite only few modes of
the fiber, as it has been recently reported in Refs. [67,90].
Consider for instance the case where a Gaussian beam with a
radius comparable to that of the fundamental mode is injected
at perfect normal incidence and exactly at the center of the
MME. In this case only few radial modes are excited, while
all modes featured by a nonhomogeneous azimuthal profile
are not excited at all. Another important example reported
in Ref. [67] is the excitation with a Gaussian beam whose
incident external angle is adjusted around 2.5 deg, in order
to excite the fiber beyond the numerical aperture of the
fundamental mode. In this way, the amount of power coupled
into the fundamental mode is limited, while a high fraction
of power results to be coupled into the LP;; mode. With this
specific initial condition, the experiments in Ref. [67] reported
a remarkable effect of beam self-cleaning upon power on this
preferentially excited mode LP;; mode.

This latter observation may appear at first sight in contra-
diction with the effect of condensation and thermalization to
the RJ distribution. However, as discussed all along this paper,
incoherent light propagation in MMFs is described by the
discrete wave turbulence regime that is dominated by exact
resonances. Considering the small number of modes excited
with the above specified initial conditions, we shall see that
the processes of thermalization and condensation result to be
essentially frozen. Indeed, following the discussion about the
absence of beam cleaning in step-index MMFs (Sec. VI A),
here the same argument of freezing of thermalization should
explain why condensation of power into the fundamental
mode is not observed with the specific tilted injection favoring
the excitation of the LP;; mode [67]. In the same way, for
perfect normal incidence injection of a small Gaussian beam,
the numerical simulations do not evidence the establishment
of a RJ equilibrium state featured by energy equipartition
among the modes within the short fiber length used in the
experiments. This is a consequence of the discrete nature of
the resonances manifold in MMFs, which exhibits clusters of
resonant mode interactions in relation with finite size effects
in discrete wave turbulence [7,54-65].

We have computed the number of nontrivial resonances
Nees (involving at least three groups of nondegenerate modes)
and their corresponding efficiencies Xefr = )., Sfmnp for
the particular initial conditions discussed above, namely
(i) Gaussian beam at normal incidence and (ii) Gaussian beam
with a specific tilt angle (2.5 deg) favoring the excitation
of the LP;; mode. This computation has been realized for
two different values of the kinetic energy E" and E®,
corresponding to a Gaussian beam with FWHM = 2 FWHM,
for EV, and FWHM = 3 FWHM,, for E®, FWHM, being
the full-width half-maximum of the fundamental mode. The
results are reported in Table II for the values of the energies
EW/E.; = 0.32 (columns 2 and 3) and E®/E.; = 0.54

TABLE II. Number of resonances N{\? and corresponding ef-
ficiencies x> = > mnp S,zmnp for two different values of kinetic
energies EV/E i = 0.32 (columns 2 and 3) and E¥/E.; = 0.54
(columns 4 and 5). The initial conditions (i) and (ii) refer to particular
injection conditions: (i) coherent Gaussian beam at perfect normal
incidence and (ii) coherent Gaussian beam with a specific tilt angle
favoring the excitation of the LP;; mode (see Ref. [67]). The initial
conditions (iii) and (iv) refer to generic incoherent (specklelike)
beams with exponential (iii) and Lorentzian (iv) spectral distributions
in mode space. The number of resonances and their efficiencies
are considerably smaller for the particular excitations (i) and (ii) as
compared to the generic states (iii) and (iv). Since the energy E"
(or E®) is kept fixed, the corresponding “amount of disorder” is the
same for all initial conditions (i)—(iv): The significant reduction of
NY) and xJ for the particular states (i) and (ii) reflects the peculiar
modal excitation due to the specific injection conditions into the
MME.

Mode excitation N xéﬁﬁ NZ Xe(t?
@) 18 380 7.4 93 840 16
(i1) 11 600 10.7 229 776 46
(iii) 96 840 67 1716 000 283

(@iv) 922 944 210 8369 504 603

(columns 4 and 5), where E.;; = NVy(1 + 28y/Vp)/2 denotes
the critical energy of the transition to condensation [17]. We
have compared these results with a generic incoherent (speck-
lelike) beam, which is characterized by an exponential or a
Lorentzian spectral distribution in mode space [see (iii) and
(iv) in Table II]. A resonance is retained in the computation
whenever the modal amplitudes are larger than some threshold
value (n, > 0.1% in Table II, with Zp n, = 1). The main
result is that N5 and x.g decrease in a substantial way for the
particular initial conditions (i) and (ii) where a small Gaussian
beam is injected either at perfect normal incidence or with a
specific tilt angle favoring the excitation of the LP;; mode. It
is important to stress that this comparison is realized for the
same kinetic energy E, i.e., the same “amount of disorder”
in the initial condition. Accordingly, the significant reduction
of Nies and x.g for the particular initial conditions (i) and (ii)
reveals the specificity of such modal excitation as compared to
the generic initial conditions (iii) and (iv). We note that such
specific initial conditions are commented by the authors of
Refs. [67,90], who state that beam cleaning on the LP;; mode
requires “a lengthy and difficult to exactly reproduce manual
procedure, i.e., with a tricky adjustment of tilted launching
conditions.”

To conclude this discussion, we have seen in Sec. II B that
typical MMFs used in beam-cleaning experiments behave as
a dynamical system with a limited number of degrees of free-
dom, in relation with the discrete nature of wave turbulence in
MMFs. When many modes are excited through generic initial
conditions in the presence of a significant amount of structural
disorder (L; < Ly, z), the system exhibits a well developed
discrete turbulence regime that is accurately described by the
discrete kinetic equation derived here. On the other hand, for
specific initial conditions characterized by the excitation of
a small number of modes, then the discrete structure of the
resonance manifold of MMFs can freeze the thermalization
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and thus the condensation processes within the short fiber
lengths considered in the experiments (5—8 m in [67,90]). The
derived kinetic equations should not be relevant to describe
this regime of few-mode interaction over small propagation
lengths. In particular, the impact of disorder may be con-
sidered as perturbative in this regime where the system can
exhibit a partially phase-sensitive coherent interaction, which
may probably be described by the tools developed to study fi-
nite size effects in turbulence, such as discrete and mesoscopic
wave turbulence and the associated clusters of resonant mode
interactions [7,54—65]. Such a partially coherent few-mode
interaction regime can be mastered by a fine tuning of the
transverse profile of the laser excitation [67,90]. In the recent
experiments [90] beam cleaning of many low-order modes
has been reported owing to an ingenious feedback-induced
adaptive profiling of the transverse wave front phase of the
coherent beam excitation (also see [91]). More precisely,
owing to a feedback loop, the transverse wave front phase
of the injected beam is adjusted by an iterative procedure so
as to force the beam to convergence toward a pre-established
target mode at the fiber output. This adaptively controlled
cleaning of low-order modes is of different nature than the
spontaneous phenomenon of condensation on the fundamental
mode resulting from the natural process of thermalization
toward the equilibrium distribution.

C. Corrections of the dispersion relation

The wave turbulence approach developed in this article is
based on the NLS equation with an ideal parabolic potential
and the (linear) dispersion relation B, = Bo(px + py + 1).
Several factors introduce perturbations to this expression of
the dispersion relation, which we write in the form ,Bp =
By + by, where the perturbation b, is a function of (py, py)
with by/Bo < 1. An example of perturbation is provided by
the well known fact that a GRIN MMEF usually exhibits de-
viations from the ideal parabolic shape, i.e., V(r) ~ |r|" with
an exponent that deviates from v = 2. The general expression
of the eigenvalue is rather complicated and of the form Bp x
(1 + px + py)*/*2 [92]. Considering a deviation of a few
percents from v =2 [93], one has by/By ~ 5 x 1073 with
usual parameters of beam-cleaning experiments. Another ex-
ample is the leading order correction due to angular dispersion
effects in the Helmholtz equation, b, = [,33 / 2kong)](1 +
Dx + py)z, which gives by/By ~ 2 x 10~* with usual beam-
cleaning experimental parameters. In addition, we can notice
that the truncation of the parabolic refractive index profile due
to the presence of the fiber cladding introduces significant
perturbations of the higher-order eigenvalues (see Fig. 5 in
Ref. [17]). It is also important to note that the standard
deviation of the fluctuations of the structural disorder of the
MMF due to imperfections and external perturbations [term
D,A, in the modal NLS Eq. (8)] may be of the same order
as the correction of the dispersion relation. In this respect, we
also recall that a bending of the fiber introduces a correction
in the propagation constant of the order ~a/R,, where a is the
fiber radius and R, is the radius of the bending (a/R, =~ 10~
with a >~ 25 um and R, ~ 25 cm).

Let us discuss on the possible impact of perturbations of the
dispersion relations. In this respect, resonances that are exact

at leading order (Awyunp = Br + B — Bn — Bp = 0) exhibit a
residual nonresonant contribution, i.e., A@yup = B + Bu —
Bn — Bp = Abpnp With Abyy, = by + by — by, — by,. We de-
rive the kinetic equation accounting for the correction on the
dispersion relation with the above assumption L; = 1/AB K
L, < Lf(lii;"r. The result of the convolution integral Eq. (18) is
approximated by

(j) lgAﬁ - Ablmnp
V( lmnp>m

Imnp

J9

Imnp —

(SK(AU)Imnp)~ (43)

Proceeding as in Sec. III, we obtain the discrete kinetic
equation

42 AB 8K (Awimp)
aznp(z) = 3 Z N Lz |Slmnp|2Mlmnp(")
l,m,n Ablmnp + Aﬁ
32y%AB K (Awyp)

— |S[ (n)| (‘ll n )7

(44)

where we recall that s;,(n) =Y, Siwm phs Mimnp(n) =
My, + Wi, — NRphy, — nunyny, with Aby, = by — b,
and AB =8AB. As already commented through Eq. (22),
the Lorentzian distribution reflects the finite bandwidth of
the four-wave resonances due to the effective dissipation Ap.
Accordingly, the kinetic Eq. (44) conserves E = ) » Bprtp(2),
but not £ = >, Byn,(2). In addition, the conservation of
the power N = Zl, np(z) and the H theorem of entropy
growth for S(z) = Zp log [n,(z)] describe a relaxation to

nyt = T/(B, — i), i.e., the same equilibrium as in the absence
of the correction on the dispersion relation (b, = 0). The
main difference is that in the regime by ~ Ap, the correction
b, leads to a deceleration of the rate of thermalization and
condensation. On the other hand, in the regime AB > by,
the Lorentzian distribution can be simplified AS/(Ab?  +

Imnp
A_,BZ) — 1/AB, and the kinetic Eq. (44) exactly recovers the
previous kinetic Eq. (29), i.e., the correction of the dispersion
relation b, does not affect the rate of thermalization.

Let us now discuss the impact of a correction on the
dispersion relation in the absence of disorder. This situation is
relevant for direct numerical simulations of the (continuous)
NLS Eqg. (1), where the truncation of the parabolic potential
V (r) introduces a perturbation on the dispersion relation for
higher-order modes (see Fig. 5 in Ref. [17]). At variance with
simulations of the (discretized) modal NLS Eq. (4) without
disorder that do not evidence wave condensation even for
large propagation lengths (see Fig. 1 and the thermalization
length scale LY ~ oLy /S;,,,), the simulations of the NLS
Eq. (1) show a rather rapid condensation process in the
presence of an initial condition with random phases among the
modes, as illustrated in Fig. 11. This rapid condensation can
be explained by the perturbation on the dispersion relation due
to the truncation of the parabolic potential, which modifies
the regularization of wave resonances by removing the mode
degeneracies, Llfie: ~b,L%/S? ,» see Appendix B. However,
at variance with experiments of beam cleaning, this estimation
of L™ assumes that the initial condition exhibits random

m
phases among the modes, a feature of fundamental importance
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FIG. 11. Numerical simulations of the continuous NLS Eq. (1)
showing the evolutions of the modal populations n,/N: fundamental
mode p = 0 (red dashed), p = 1 (dark blue solid), p = 2 (blue solid),
p = 3 (light blue solid), p = 4 (cyan solid), p = 5 (light green solid),
p = 6 (green solid), p = 7 (yellow solid), and p = 8 (orange solid).
(a) Starting from a speckle beam with random phase among the
modes, the beam exhibits a condensation process: ny(z)/N relaxes
to the theoretical equilibrium value nj!/N =~ 0.54 [dashed black line
from Eq. (31)]. (b) Starting from a coherent initial condition, the
modal components exhibit an oscillatory behavior, similar to that
observed for the discretized modal NLS Eq. (4), see Fig. 1(a). At
complete thermal equilibrium, the fundamental mode would reach
the condensate fraction ny'/N ~ 0.8. The power is N = 47.5 kW
(N, = 66 modes, a = 15 um).

for the applicability of the wave turbulence theory [7,86,87].
In addition, this estimation assumes that the perturbation
b, is maintained fixed, while in a real experiment such a
perturbation may not be controlled all over the fiber length
due to inherent imperfections and external perturbations, and
the corresponding fluctuations contribute to the disorder term
in the NLS equation, as discussed through the kinetic Eq. (44).
We finally notice that the refractive index profile of the
MMF can be tailored to optimize mode properties. For in-
stance, one can generalize the GRIN parabolic profile by using
exponents strongly deviating from 2, the higher that exponent,
the closer the profile would be to a step-index profile. Since
the effect of beam cleaning does not occur in step-index
fibers (see Sec. VIA), it would be interesting to study the
degradation of wave condensation in the discrete turbulence
regime by gradually increasing the exponent of the refractive
index profile, in line with the experiments initiated in [94].

VII. CONCLUSION

In summary, we have discussed experiments of beam self-
cleaning where long (~ns) pulses are injected in relative short
multimode fiber lengths (~10 m), for which the dominant
contribution of disorder originates from polarization random
fluctuations (weak disorder) [45]. On the basis of the wave tur-
bulence theory, we have derived kinetic equations describing
the nonequilibrium evolution of random waves in a regime
where disorder dominates nonlinear effects (L; < Ly;). The
theory revealed that the presence of a conservative weak

disorder introduces an effective dissipation in the system
whose resonance broadening prevents the conservation of the
energy, which inhibits the effect of condensation in the usual
continuous wave turbulence approach. On the other hand,
we have shown that usual experiments of beam cleaning
are not described by the continuous wave turbulence theory,
but instead by a discrete wave turbulence approach. In this
discrete turbulence regime only exact resonances contribute to
the kinetic equation, which is no longer sensitive to the effect
of dissipation-induced resonance broadening. Accordingly,
the discrete kinetic equation conserves the energy, which re-
establishes the process of wave condensation. The main result
is that the effective dissipation induced by disorder modifies
the regularization of such discrete resonances, which leads to
an acceleration of the rate of thermalization and condensation.

In order to improve our understanding of beam-cleaning
experiments, we have considered different models of weak
disorder in MMFs. The theory shows that when all modes
experience the same (mode-correlated) noise, the dissipa-
tion induced by disorder vanishes and the system no longer
exhibits a fast process of condensation. However, even a
relative small decorrelation among the noise experienced by
the modes is sufficient to re-establish a disorder-induced
acceleration of condensation. The simulations are in quan-
titative agreement with the theory without using adjustable
parameters in the regime where disorder dominates nonlinear
effects (L; < Ly)). However, the impact of weak disorder due
to polarization fluctuations in beam-cleaning experiments is
expected to be of the same order as nonlinear effects [45].
We have thus considered the impact of a moderate disorder
(Lg Z Ly). In this regime, the phase correlations among the
modes are not completely suppressed and the system enters
a mixed coherent-incoherent regime. Accordingly, the modal
components exhibit an oscillatory behavior that slows down
the thermalization process, though the optical beam still ex-
hibits a fast condensation process that is consistent with the
experimental results reported in Ref. [41]. In addition, the
analysis of polarization effects revealed that optical beam
cleaning is responsible for an effective partial repolarization
of the central part of the beam. This property was observed
experimentally in Ref. [66] and it can be interpreted as a nat-
ural consequence of the condensation-induced macroscopic
population of the fundamental mode of the MMF. To sum-
marize, by considering the dominant contribution of weak
disorder originating in polarization fluctuations, our theory
and simulations provide a qualitative understanding of the
effect of optical beam self-cleaning, in particular when a large
number of modes are excited into the MMF as in the recent
experiments reported in Ref. [41]. On the other hand, the
discrete nature of wave turbulence in MMFs is responsible for
a freezing of thermalization and condensation when a small
number of modes are excited. Such an effective freezing of
condensation also explains why optical beam cleaning has not
been observed in step-index MMFs.

It is important to recall that, at variance with the ex-
periments of beam cleaning where subnanosecond pulsed
are injected into the MMF, we considered in this work a
purely spatial NLS equation to model the propagation of the
beam through the fiber. This is justified by the fact that in
the nanosecond regime temporal dispersion effects can be
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neglected in first approximation. Then although our theory
and simulations describe the essential mechanism underly-
ing beam-cleaning condensation, it is clear that they cannot
provide a quantitative description of the experimental results,
which would require a detailed analysis of the temporal av-
eraging effect inherent to the pulsed regime considered in the
experimental measurements.

We have also considered the impact of strong disorder at
the leading order linear regime, which revealed that random
mode coupling among degenerate modes enforces the ther-
malization toward the Rayleigh-Jeans equilibrium distribu-
tion. We note in this respect that, according to the simulations
reported in [42], strong disorder only weakly affects the evolu-
tions of the modal components as compared to the significant
impact of weak disorder discussed in this work. Nevertheless,
it would be important to extend the theory developed for weak
disorder to strong disorder in order to study the interplay of
random mode coupling and nonlinearity, a feature that will be
considered in future works.

From a broader perspective, the wave turbulence theory
discussed in this work can be extended to study spatiotempo-
ral effects in MMFs [37,38,68-72,95-98]. The development
of a spatiotemporal theory would also be important to study
complex incoherent behaviors, such as the formation of inco-
herent shocks [99,100], or the generation of supercontinuum
radiation in MMFs [72,101-103], in relation with the wave
turbulence kinetic approach developed to study supercontin-
uum generation in single-mode fibers [104—106]. The discrete
wave turbulence approach discussed in this work can also
be extended to study the impact of disorder on turbulence
cascades [7,8,15,107], from both the theoretical and experi-
mental points of views. Extension of the theory to consider
other forms of nonlinear effects would also be interesting,
such as saturable or nonlocal nonlinearities in relation with
atomic vapors beam-cleaning experiments [108]. In addition,
there is a growing interest for experimental demonstrations of
superfluid light flows in bulk materials [109-111]. The exper-
iments of condensation in MMFs would allow us to study the
nucleation of superfluid vortices induced by a rotating con-
fining potential (along the “time” z variable) in manufactured
multimode fibers, in analogy with rotating trapped BECs [1].

The acceleration of the process of thermalization reported
in this work is also relevant to the notion of prethermalization
to out of equilibrium states [23,112—115], which is attracting a
growing interest in different research communities, including
long range interacting systems with fast relaxation towards
quasistationary states [116—118], or one-dimensional (nearly)
integrable (quantum) systems [113,119—-122]. From a broader
perspective, the present work can contribute to the challenging
question of spontaneous organization of coherent states in
nonlinear disordered (turbulent) systems [84,85,123—127], in
relation with the paradigm of statistical light-mode dynamics
(glassy behaviors) and complexity in random lasers [128,129].
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APPENDIX A: DERIVATION OF THE DISCRETE KINETIC
EQUATION WITH WEAK DISORDER

To study correlations among the modes, we derive an
equation for the moments of the 2 x 2 matrix (A:Ag)(z). The
computation for distinct modes (p # g) was reported in the
Supplemental Material of Ref. [41]. The computation for the
correlations within a specific mode (p = ¢) is more delicate
and it is detailed here below.

1. Modal correlations

The second moments satisfy
MATAT) = (DIATAT) ~ iATATD ) -

where G ,4(A(2)) = P,(A)*Al () —
to the Furutsu-Novikov theorem:

z S(G*A;AT(Z)) z—7
kA% AT\ __ J )4 2 /
(vp.jo3ATAT) —/0 < S ) >aﬁR< ’ )dz.

The variational derivative can be computed by following
[130]. For z > 7/ it is the solution of

(Gpp(A)),

A;Pq (A7 (2). According

o L I L) N
Cupi@) T uy(@) vy (@) 7
. S{Gpp[A(Z)]}
8vp, ()
starting from
3[AA, @] s "
T,iz) == i07ALA (1) — iAJA ()0 -

We need to know the form of the variational derivative for
7 <zand |z—2Z|=0(g). As oplg < 1 and lg K Ly, all
terms on the right-hand side of the differential equation
(A1) satisfied by the variational derivative are negligible for
|z — 2’| = O(lp), so that the leading-order expression of the

variational derivative for 7 < z and |z — Z/| = O(lg) is
8[AZAT (2)
a4, @] / I_ iotATAT () — iATAT (Z)eT,  (Al)
8vp, i (2)

and therefore
z2—7 > o
lg

z
prsmiasarl =i [ (oA loir(
—i/z(a*A;AT(z’)oT»>a2R k3 dz7 .
0 J I3 A lﬂ
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For j = 0 this is zero and for j = 1, 2, 3 this can be approxi-
mated by (using lg < z)

(vp10545A7) = S (07034347 ) — (054747 o7)).

and we find

3
o45) = —AB| 34jA0) = ) oA o]
j=1
_iy(Gpp(A»-

The mean 2 x 2 matrix (A:A;) is Hermitian and therefore it
can be expanded as

3
<A;AIT,) = wp(z)oo + Z w), (2)0;.
j=1
The real-valued functions w, and (wp,‘,-)i=1 satisfy

d.w, = —yMo{(iP,(A)A] —iAIP,(A) )}, (A2)

owp ;= —4ABw, ; — yILi{(iG,p(A))}, (A3)

where IT;W = coefficient of the decomposition of the Hermi-
tian matrix W on o ;. In particular, IIoW = Tr(W)/2 so that

Ho{(iG,p(A))} = —Im(P,(A)'4,).

9, (AJAZ)(ATA,) = i(Bi + Bu — Bn
+iA]D;A")(ATA,) —

Ylglii)lp Z Sl/mn’l|: ATA* )(A

Um0

U'.m'.n'

VAR) +

)|ata,)
1 . 2
= X St 3 AIA0 + SEAL) D |4la,)
) )}(A

The coefficients w,, ; for j =1, 2, 3 satisfy the damped equa-
tions

dwp ;= —4ABw, ; — vII;{{iG,,(A))}.

They are of the form
wp,j(2) = wp,j(0) exp(—4Apfz)
- V/ exp[—4AB(z — 2HI;{(iG,,(A))}(2)d7 .
0

As we have z, Ly > 1/Ap, the initial condition is forgotten
in (A4) and the second term on the right-hand side can be
simplified and we get for j = 1,2, 3

14 .
Wy, = _mnj{OGpp[A(Z)])}- (A4)
Using the assumption L; = 1/AB < Ly, we have
w,; =0 (AS)

to leading order.

2. Closure of the moments equations

The diagonal modal components w), in (A2) satisfy the
undamped equation

dw, = yIm(P,(A)'A,).

With the expression (5) of the nonlinear term, we get that the
mode occupancies w), satisfy the coupled equations (13)—(15).
We now derive the equations governing the evolutions of the
fourth-order moments (X") and (X{*) given by Egs. (14) and
(15).

a. Computation of the term (X )

We first write the equation satisfied by the product of four-
vector fields:

|
— B)AJAL)(ATA,) +i(A]D]A%)(ATA,)
i(AJAZ)(ATDIA,) — i(A]AZ)(AID,A,) + iyY) (A6)

Imnp>®

S(a7az)ala;

N 2
+ ) S mnn[ (ATAW)A}A,) + A1 A (A]4,) (A]A3)
U'm' n
1 2
+ > S;rmfn/,,[g(A,T/Am,)(A,{A,j,) + g(AZ,Am,)(A,{A,,)](A*A;;) (A7)
U',m'.n'
We take the expectation and we apply the Gaussian summation rule to the sixth-order moments in the expression of (Ylfir), p)
) 16 16 g
(Ylmnp> = ?Slmﬂl’(wlwmwp + WiWy Wy — wnwpwm - wnwpwl) + ?ampsln(w)wp(wl - wn)
K 1 16
+ ?(Smnslp(w)wn(wl wp) + Szpsmn(w)wp(wm - wn) + Slnsmp(w)wn(wm - wp)v (AS)
Sln(w) = Zsln’n’nwn’- (A9)
n/
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We now extend the procedure of Appendix A 1 to the computation of fourth-order modes considered here. Making use of the
Furutsu-Novikov theorem, and considering the general case | # m # n # p in the regime oglg < 1 and lg < Ly, we obtain

0.((AJAL)(ATA,)) = [=8AB +i(B + Bu — Bu — BOIA]AL(ATA)) + iv (VS ). (A10)

whose solution has the form

(AjA)(ATA,)) @) = ((A]AZ)(ALA,))(0) expll—8AB + i(B + B — B — B2}
+iy f (Yo @) expl[=8AB + i(By + Bu — Bu — Bp)I(z — 2)}d7 . (Al1)

These equations correspond to those reported in Eqs. (16) and (17) for the fourth-order moment Jl(nlgl

In the other cases when (at least) two indices are equal, i.e., the fourth-order moments 1nvolve degenerate modes, the
calculation shows that there is still a damping in the moment equation, although the damping factor can be different from 8A 8.
However, we will neglect this change because: (i) these terms are negligible in the triple sum and when the number of modes is
large (V, > 1), and (ii) this change only affects the multiplicative coefficient 8 A8 in (A10). Finally, we give the expression of

(X [Sl)) in the discrete wave turbulence regime where By >> Ap. Collecting all terms we obtain

2
(X[§1)> = ﬁ Z |Slmnp|25K(ﬂ[ + B — Bn — ,Bp)(wlwmwp + W W W, — WyW Wy, — wnw,,w,)
l,m,n
+375 ﬁ Z Is1p (w285 (B — Bp)(wi — w)). (A12)

b. Computation of the term (X*)

The equation satisfied by the product of four-vector fields reads
0-(A7AL)AJA) = (B + Bn — Bu — Bp)(A[A})(A[A,) + (A7 A},)(A]D]A,)
+i(ATD:AY)(AA,) — i(ATDIAY)(AJA,) — i(ATAL)A]D,A,) +iyY D) | (A13)

m Imnp>®

1 2
Yl(n%r)Lp - Z S;k’m’n’lI:g(A;L’A:l’)(A;’AI’) + g(A;A;’)(A;’AP)} (ALAW)

U'.m' .n

1 . 2
> sr,m,,,,m[;A;A;o(A;An) 3< ALz ) alan |aja,

U'.m',n
U.m' n
2
+ > Siww p[ Aw)ALAD) + §<A1,Am/>(AZA;‘)}<A;An). (A14)
U.m'n
We take the expectation and we apply the Gaussian summation rule to the sixth-order moments in the expression of (Ylfuz p)
@) 16
(Ylmnp> 3 Slmnp(wlwmwp + WWyW, — Wy WpWy, — wnwpwl) + = 3 mpsln(w)wp(wl — wy)

32, 32 16
+ ?(Smnslp(w)wn(wl wp) + 81psmn(w)wp(wm wy,) + Slnsmp(w)wn(wm - wp)~

If | # m # n # p, then Furutsu-Novikov formula gives
0.((ATAL)AJA,)) = [=8AB +i(B + Bu — Bu — B)N(ATAL)A]A)) + iy (Y2 )

This equation corresponds to that reported in Eq. (16) for the fourth-order moment J;}?n .
Following the same procedure, we have also derived the following equation:
3:((A]A7)A]A) =0, (A153)

for any /, m. This implies in particular that the variance of the intensity fluctuations of each modal component p is preserved
(|A ,,|4) = const, i.e., Gaussian statistics is preserved during the propagation.

Note that Eq. (A15) is undamped, but this does not affect our results. Indeed, ((AZTA}*)(A;Am)) is real valued so that it does
not contribute when it is substituted into Eq. (15) because S;;,,; is real valued as well.
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By neglecting the small corrections that appear in the cases when (at least) two indices are equal (i.e., fourth-order modes
involving degenerate modes), we obtain in the discrete wave turbulence regime (8y > Ap):

2y
(52) = 55 Do 8" Bt Bn = Bu = Bl ity + winw, = wywpwy = wyw,w)
l,m,n
+ A—fg Zs"wz — Bp)lsip )P (w; — wp), (A16)

By replacing the expressions of (X, Dy (j j =1,2) given in (A12) and (A16) into the equation for the evolution of the modal
components (13), we obtain the discrete kinetic Eq. (29).

3. Impact of a correlated noise model of disorder on the Kinetic equation
a. Computation of the moment ((A]A*)(ATA,))

In the model of correlated disorder, all modes experience the same noise, D, =D = Z?:o v;o ;. Equation (A6) for the
evolution of the product of four fields now reads

0:(AJA})(ALA,) = i(Br + Bu — Br — B)AJAL)(ATA,) +i(A]D'A})(ATA,)
+i(A]D*A%)(ATA,) — i(AJA})(ATDTA,) — i(AJA})(ATDA,) + iyY,)) (A17)

Imnp*

We note that A]DAY, + A/D*A, =2 )" jetia) v jATa A%, We follow the procedure outlined above in Appendices A 1 and A 2.

Using the Furutsu-Novikov theorem and assuming oy lﬂ < land lg < Ly we obtain

8ATa;AXATA(2)
5v,(z )

= 2i[A]A}ATA,(Z) — A]0 ;AL AL 6 A,()) expli(Br + B — Bu — Bp)(z — 2]

and therefore
0((AJA;)(ATA,)) = [—4AB +i(Bi + B — Br — BINAJAL(ALA)) + iv (Y, )
+2A8 Z (AfoAz)(ATa;A,)). (A18)
je{1,3}
The last term can also be written as
> (AfoA;)(AT04,)) = (AJADA]A)) + (A]024,)(A]024,)).
Je(1,3}

The analysis reveals that the terms involving the dissipation that are proportional to A in (A18) essentially vanish. Indeed, using
the factorlzablhty property of statlstlcal Gaussian fields to split the fourth-order moments into products of second-order moments,
then we get ((AJA)ATA,) = Lww,, (855K +8KsK ) and > e (Ajo;A%)ATa,A,)) = wiw,,(3K8K + 8K 5K ). This

In mp lp mn In mp lp mn
shows that, to leadmg order, the terms involving the dissipation indeed compensate with each other.

b. Computation of the moment ((AZ A;)(A,TA p))

Equation (A13) for the evolution of the product of four fields now reads

3 (ATAL)AJA)) = i(Bi + Bu — Bu — B(ALAZ)AJA,) +i(ATA})(A]D'A))

+i(ATD*A)(A]A,) — i(ATDT A} ) (AJA,) — i(ALA})(A]DA,) + iy Y, . (A19)
[
Since the random matrix is Hermitian (D' = D), the expres- 4. Impact of a partially correlated noise model
sion can be reduced of disorder on the Kkinetic equation

In the partially correlated model of disorder, all degenerate

. B modes experience the same realization of disorder. Groups of
aZ(AZA;)(A;AP) =i(Br+ Bn—Bn— ﬁp)(AZAfn)(A2Ap) degenerate modes with the same reduced eigenvalue § are
+ sz(z) indexed by p, the modes within the pth group are indexed by

lmnp* (p, J), and the linear polarization components of the (p, j)th

mode are A ;. The structural disorder induces a linear random
coupling between the modes of different groups, as described

The fourth-order moment (A’ A* )(A] A,,)) then evolves as in by the 2 x 2 matrix D,(z) = Z?_O v,.1(2)07, where p labels

m

the absence of any disorder (A = 0)
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the mode group number, i.e., degenerate modes that belong
to the same group experience the same noise through the
random process v, ;(z) (this notation should not be confused
with the decorrelated model of disorder where p labels indi-
vidual modes). The evolutions of the modal components are
governed by

10:Apj = BpApj +Dp(2)Ap; — yPpji(A).

We look at the second-order moments (A;‘,J-Agl). We follow

the procedure outlined above in Appendix A 1 by using the

Furutsu-Novikov theorem with oglg <« 1 and lg < Ly.
Considering nondegenerate modes (p # g), we obtain

iy
4AB —i(Bp — By)
In the regime L; = 1/AB < Ly the correlation is vanishing
small, (A; jAgl)(z) =~ 0, as in the model of decorrelated disor-
der.

Let us now consider correlations among the orthogonal
polarization components of a mode (p = g and j = [), then
we find as before
(A5,A5,)@) = wp, ;(2)00.

pi*tpj

(A3,AT) @) =

pi‘tql

(ij(A)*Ag, — A} Py @?).

We consider correlations among distinct degenerate modes
(p=gq and j #1). We define the two Hermitian matrices
1 * * X i *
W, i = 5((Aij§Z) + (AplA;j)) and W, j; = §(<Aij,T71> -
(A;“,,A[T)j)) and then by carrying out the same calculations as
in the case p = g and j = [, we find

(arAL)2) = wy j1(z)a0.

The coefficients w,, j; satisfy
14
dw, 1= E1m<P,,j(A)TA,,, +PL(A)A,;)

= Ly XD L@ 4 x @)

6 p.jl p.lj 3 p.Jjl pli
n _ Z * + * T .
quﬂ =1Im SPZ»Pljl»szsz3j3(AP1j1AP2]'2)(APUSAW) ’

PUj1sP2J2:P3J3
T * T .
AP3j3A1’2j2) (API j]Al’/)

*
Z S1717171j1,P2j2qP3j3(

P1Jj1,P2J2:P3J3

Let us look at the fourth-order = moments
((AILIJ'IA;zjz )(A1€3J3A1’4f4 )) or ((Aglle;ZjZ )(A;3J3Ap4j4 ).

There are different types of such fourth-order moments that
depend on the specific modes that they involve. Almost all of
them satisfy an evolution equation with damping proportional
to A, with different coefficients in front of AS that depend
on the number of equal indices. These terms are of the same
form as those obtained by considering the decorrelated model
of disorder, see Appendix A 2. There are special cases when
p; are equal by pairs (e.g., pi = p> and p3 = p4) where

az((Aglle;;ljz)(AjizjaAmﬁ)) = iyyp(zzj?.%,]’]jz,mjl,mjzx’

which shows that there is no damping. From the expression
of Y@ [see Eq. (A14)], and the evaluation of its expectation

in terms of the w), ;; according to the Gaussian rule for sixth-
order moments, such terms induce a reversible exchange of
energy between the modes within each group.

APPENDIX B: KINETIC EQUATIONS
WITHOUT DISORDER

1. Continuous and discrete wave turbulence regimes

The continuous kinetic equation describing weak turbu-
lence in the presence of a parabolic potential was derived in
Ref. [17], see Eqgs. (17) and (18). The presence of the factor
1/ ,38 in the kinetic equation is due to the introduction of a
continuous frequency variable k¥ = Bo(px, py), as discussed
through the continuous kinetic Eq. (22) above. The charac-
teristic scale of evolution of the modal components then reads
ord ~ oL /Sfmnp, as given in Eq. (32).

Let us now consider the discrete wave turbulence regime
without disorder. By ignoring polarization effects (4, —
A, 1), the set of closed equations for the second- and fourth-
order moments read [17]

8znp = _Vl Z Slmnpj[mnp exp(iAa)lman)

l,m,n
V1Y Shunplinnp XP(—iA@p2),  (B1)
I,m,n
8zj[mnp = Zi)/Sl*manlmnp(n)exp(_iAwlman)a (BZ)
where Mj,,(n) = nn,n, + mngn, — nynpn, — nanpny,

Jimnp(z) = (ATA; A,Ap) is the fourth-order moment with
jlmnp = Jlmnp eXP(—iAwlman) and Aa)lmnp = ,Bl +/3m -
Bn — By [Bp = Bo(1 + px + py)]. Note that for the sake of
simplicity and clarity, we do not write in Eq. (B1) the con-
tribution that leads to the second term on the right-hand side
of the kinetic equations (24) or (29), whose main effect is
to enforce energy equipartition within groups of degenerate
modes.

Recalling that ByL, > 1, we make use of the standard
homogenization theorem to obtain the effective equations for
Vaad Lnl:

aznp = l)/ Z SK(Awlmnp)(_Slmnpjlmnp + Sl*mnpjltnnp)’

l,m,n

(B3)

8zflmnp = 2iysl*manlmnp(n)5K(Awlmnp)a (B4)

where we recall that 8% (Awpmp) =1 if Awjyyp =0, and
zero otherwise. Accordingly, one obtains an equation for
the modal components that is formally reversible in z. This
equation is valid for propagation lengths of the order of
Ly. For longer propagation lengths, corrective terms must
be taken into account [131], showing that the characteristic
length of evolution of the modal components n,(z) scales as
in the continuous case LYY ~ ByL2 /S’sznp (up to corrective
prefactors).
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2. Impact of a perturbation of the dispersion relation

In this paragraph we consider the impact of a perturbation
of the dispersion relation B, = 8, + b, (with b,/B, < 1) on
the kinetic equation without disorder. This issue is addressed
in Sec. VIC in the presence of disorder. The equations for
the second- and fourth-order moments (B1) and (B2) take the
form

aZnP = 27/ Z Im[slmnpjlmnp(z)L

l,m,n

= Jlmnp(o) exP(iACT)lman) + 21)/

(BS)

Jlmnp(z)

x / S Minnp (2 Y] €XPli Ay (z — O,
0
(B6)

where A@punp = B + Bn — Br — Bp- In the following we ne-
glect the initial condition J,,,(0). This can be justified when
the initial condition exhibits random phases among the modes,
but not when the initial condition is a coherent beam as in
usual experiments of beam self-cleaning. Resonances that
are exact at leading order (Awy,p = B + B — B — Bp =0)
e~xhibi~t a re~sidua~1 nonresonant contribution, i.e., A®pnp, =
:Bl + IBm - ﬂn - ﬂp = Ablmnp with Ablmnp = bl + bm - bn -
bp. Since BoLy >> 1 only leading order exact resonances can

J

contribute:

aznl) = 4)/2 Z |Slmnp|28K(Awlmnp)

I,m,n

X / " COS[ABlp (@ — EMipln(©)1dE. (BT)
0

If the resonances are approximate, then the quartets
{l, m, n, p} such that |Abl,,m,,|LI"erl ~ 1 contribute to the con-

kin
volution in (B7), where L' is the characteristic evolution
length of the moments in the presence of the perturba-

tion by. Those quartets for which |Abpum,|LE > 1 aver-

age out to zero. Those quartets for which |Ab,|L <
1 should give rise to reversible equations but we neglect
them because we assume here that there are many more
quasiresonances than resonances. Since quasiresonances are
more important than exact resonances we can take the con-
tinuous limit with sin(Abypz)/ Abinp — 78(Abpy,) for
Z > 7 /min(Ab;,,p), where 6(x) denotes the Dirac distri-
bution. Note that the passage to the continuous limit can
be justified for a perturbation that removes mode degenera-
cies, such as the truncation of the parabolic potential (see
Fig. 5 in [17]), but not for the perturbation induced by
the Helmholtz equation that does not remove degeneracies,
see Sec. VIC. According to the continuous kinetic equa-
tion, the characteristic evolution length of the kinetics scales
as [P ~ b,L2/S?

kin Imnp*

APPENDIX C: DERIVATION OF THE DISCRETE KINETIC EQUATION WITH STRONG DISORDER

1. First-order moments

The model of strong disorder is defined from the 2N, x 2N, random matrix D in Eq. (35). The matrices H?", K?", J9 are

defined by
1 if(,0)=(q,r),
H")j=—=11 if(G,D=(q),
V2 0 otherwise,

We have the identity

KMy =—

D IHTY + (K ]+Z(J4) — NI

q<r

AN

i (. ) = (q.7),
it (j, 1) =(r, q),
otherwise,

if (j,1) = (g, q),
otherwise.

dDju = {(1)

(CI)

In these conditions i[$ + D(z)] generates a shifted unitary Brownian motion U(z),

o,U=i[B+D@IU, Uiz=0)=I,

which is a random diffusion on the group of unitary matrices whose stationary distribution is the uniform (Haar) measure. We

have ||U(z)Agl|| = ||Ao]l for any constant vector Ay.

The evolution of the average of the unitary matrix U is governed by

dE[U(2)]

e = iBE[U(x)] +

m{q<r

> 8 HYE vy (U] + KYEl 14 U + Y g Elng (U ()]

o)

We follow the same procedure as in Appendix A to evaluate the averages by using the Furutsu-Novikov theorem:

Elv, (2)U)] = /0 [

The variational derivative satisfies for z > 7':
U(2)

§U(2) Z— ,
_— R dz
Vgr(Z) ]G ( lg )

8U(z)

8U(z)

Z3vqr(z/) =ip

SV (2')

D(z)

8vgr(2)’

053835-24



WAVE CONDENSATION WITH WEAK DISORDER VERSUS ... PHYSICAL REVIEW A 100, 053835 (2019)

with

(SU(Z) i ’
2 = ———g HTU).
Sy = g st V)

Therefore, if 03l < 1, we get the simplified equation
§U(z) i
Sv(Z) /2N,

< i e 8U(2)
2N, Svgr(2)

8qr explif(z — Z/)]quU(Z/)a

1
) = —ngﬂ{% explif,(z — 2)] + 85 expliB,(z — ) Uj(2)
il *

= L@ (5K expli(B, — B)(z — )] + 5 expliC, — B — DN ()
= 4N*gq’ q; SXPLi(Br — By)(z —z rj €Xpli(Bg — Br)z —z j1(2)s

and

( i HWE[vqr<z>U(z>])

1 2 7—7 : ,
- 1 = —ﬁgj,/o ajR( ){8,’; expli(B, — By)(z — 2]

j lg

+ 85 expli(By — )z — AU (z).

We get similarly

. . . -
( : qulE[uqr(z)U@]) =—Wg§, /0 oéR(Z Z){Bf,»exp[i(ﬁ,—ﬂqxz—z/)]
[ k

V2N, i %
+ 85 expli(B, — Bz — )}d'Uji (),
i _ 1 /12 (z—z’) ooy
<~/2_N*J ]E[nq(z)U(z)]>ﬂ 2N*g2q ; R I dz'1,()HUji ()
Therefore, using z >> Ig,
dE[U
% = iBE[U(z)] — QE[U(2)], (C2)
with Q the diagonal matrix with diagonal coefficients
AB [ . .
O =35 | a,%R(s)(gi, + [;ng%,,p expli(By — Bn)lps] + ggf,m expli(B) — ﬂm)lﬁs]ds) (C3)

The real part of Q,,,,, is positive (because it is the sum of Fourier coefficients of R, which are non-negative by Bochner’s theorem),
which means that the mean wave mode amplitudes decay exponentially with the decay rate 1/Q,;,.

2. Second-order moments

We can proceed in the same way for the second-order moment. Let us denote a,(z) = [U(z)A¢],. We have

da . i . .
d_n = iBna, + T {qunvqnaq + Zgnqvnqaq —1 qunﬂqnaq +1 Zgnqﬂnqaq + ﬁgnnlian } ,
Z B Y N* q<n qg>n q<n q>n
and therefore
d|a”|2 i { Z * * * *
= I~ gqnvqn(aqan - anaq ) + Zgnqvnq(aqan - anaq )
dz N gq<n q>n

—i Z 8anlgn(aqan™ + anay) +i Z 8ngling(aqan™ + anaq*)}.

g<n g>n
By Furutsu-Novikov formula, we have for g < n

“ [ danay*(2) 7—7
E n n * = E 1 2 d /.
(@, @) = [ [ e }fﬂn( : ) :
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The variational derivative 8;3“"(;,?, for g < n, satisfies for z > 7'
e
2" @) _ g, — )
© Svgn(2) "o
with
danay*(z)

80gn(2) lo=e=
Therefore, if 04l < 1, then we get

danag*(z)

1
Svgn(z) /AN,

danay*(z)

_ 4. s
8vgn(2')

4 2 2 ’
2(lag|” — |a,|")(Z).
mgqq ql lan|")(z)

gn(lag* — la, 1))@ ) expli(By — Bz — 2],

and we have similar expressions for the other terms. Consequently, w,, = E[|a,,|?] satisfy Eq. (36):

2N,—1

d m ¢ / -7 / ’
=207 Y & fo (wp—wmxzm(Z Z)cos[(ﬁ,,— Bu)(z — 2)d7. (C4)
p=0

dz

lg
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