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The main goal of this paper is to estimate the regional acoustic and geoacoustic shallow-water environ-
ment from data collected by a vertical hydrophone array and transmitted by distant time-harmonic point
sources. The aim is to estimate the statistical properties of the random fluctuations of the index of
refraction in the water column and the characteristics of the sea bottom. It is explained from first princi-
ples how acoustic wave propagation can be expressed as Markovian dynamics for the complex mode
amplitudes of the sound pressure. This makes it possible to express the cross moments of the sound
pressure in terms of the parameters to be estimated. Then it is shown how the estimation problem can
be formulated as a nonlinear inverse problem using this formulation, which can be solved by minimiza-
tion of a misfit function. The method is applied to experimental data collected by the Acoustic
Laboratory for Marine Applications system. A Bayesian analysis quantifies the uncertainty of the esti-
mation. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5116569
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I. INTRODUCTION

In this paper we consider acoustic wave propagation in
a randomly perturbed shallow-water waveguide with an
absorbing sea bottom. The random perturbations of the index
of refraction are due to internal waves, which induce temper-
ature and salinity fluctuations, and the sea bottom is made of
sediments, which induce dissipation. In the regime where
random perturbations and dissipation are small and propaga-
tion distance large, it is possible to get an effective descrip-
tion of the acoustic wave propagation in terms of Markovian
dynamics for the complex mode amplitudes of the expansion
of the pressure field to the guided modes of the unperturbed
and non-dissipative waveguide. These Markovian dynamics
involve coupling terms between guided modes and mode-
dependent dispersion and loss terms. The coupling terms
between guided modes come from the random perturbations
in the water column. The effective dispersion and loss terms
come from two effects: the random perturbations in the
water column induce coupling between the guided and radia-
tive modes, and the deterministic dissipation in the sediment
layer induces an exponential decay of the guided mode
amplitudes. Both effects generate an irreversible, mode-
dependent loss of energy carried by the guided modes.

The mathematical literature contains a lot of results on
wave propagation in randomly perturbed waveguides moti-
vated by underwater acoustics, see, for example, Refs. 1–3.
Those results derive from first principles and make it possi-
ble to relate the coefficients of the effective Markovian
model to the physical parameters of the waveguide (in

particular, the statistics of the fluctuations of the index of
refraction and the complex acoustic impedance of the sea
bottom). The mathematical statements also make it clear in
which sense the Markovian model approximates the random
dynamics of the mode amplitudes in the waveguide, because
there are subtle effects that follow from the fact that the
results are established and only hold in a weak topology, as
explained in Appendix B. Comparisons between theory and
numerical simulations show good agreement, both for direct
and synthetic inverse problems,4 but there has not been, so
far, much comparison between the detailed mathematical
predictions and real experiments. On the other hand, the
physics literature contains many theoretical results essen-
tially based on coupled mode equations.5–10 However, the
equations are derived ad hoc and it is not always straightfor-
ward to relate the coefficients of the effective equations to
the physical and statistical parameters of the medium. This
is problematic as we have in mind to use such results to
solve an inverse problem based on real experimental data.
Geo-acoustic inversion has, in general, the form of a
matched field process.11 Severe problems appear, however,
when modeling shallow-water acoustic propagation at ranges
beyond a few kilometers in the frequency band of 1 kHz and
higher because of ocean sound speed fluctuations.12 Here,
we deal with a situation where the observed field is incoher-
ent and the information is encoded in the cross-correlation
function (or cross power spectral density).

As we will see in this paper, the effective attenuation of
the mode amplitudes plays a key role. In the physics litera-
ture, modal attenuation coefficients are introduced directly
into the coupled mode equations without derivation from
first principles.8,13,14 On the other hand, most mathematical
studies do not take into account the attenuation of the bottom
layer. Even though dissipation is weak, it still plays an
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important role in long-range propagation. For the direct
problem point of view the equipartition regime that is well
characterized by Gaussian statistics15 and a scintillation
index (relative intensity variance) that is close to one in the
absence of dissipation looks very different in the presence of
weak attenuation and it may give rise to high fluctuations in
intensity. This was first pointed out by Creamer.8 For the
inverse problem point of view, signals measured by hydro-
phone array can be processed to extract these attenuation
coefficients, which, in turn, make it possible to get informa-
tion on the medium, in particular, the bottom properties. In
Refs. 16 and 17 the seabed attenuation is inferred from mea-
sured modal dispersion and/or modal attenuation. In Ref. 18,
the measurements of the reverberation vertical coherence are
used to estimate acoustic seabed properties (see also Ref. 19
for the use of longitudinal horizontal coherence). Here, we
use the full expressions of the modal attenuation coefficients
(in terms of the seabed properties and fluctuations of the
sound speed in the water column) and of the modal coupling
coefficients to solve the inverse problem when the recorded
wavefield is incoherent. We exploit data from at-sea experi-
ments based on DGA’s Acoustic Laboratory for Marine
Applications (ALMA) system.20 The signals recorded by the
hydrophone array can be processed by cross-correlation cal-
culations to estimate the properties of the medium, as we
show in Sec. V.

The paper is organized as follows. The direct problem is
analyzed in Secs. II–IV. Section III is a review of the modal
decomposition of the sound pressure in a homogeneous,
non-dissipative waveguide. Section IV describes the
Markovian dynamics of the mode amplitudes in a random,
dissipative waveguide. The inverse problem is formulated
and solved using experimental data in Sec. V.

II. WAVE PROPAGATION IN WAVEGUIDES

Our model consists of a two-dimensional waveguide
with the range axis denoted by x 2 R and the transverse
coordinate denoted by z 2 [0, þ1). We suppose that the sea
depth is constant and equal to zb. When z 2 [0, zb], the
medium is water; when z > zb, it becomes sediments. A
point-like source at a fixed position (x, z)¼ (0, z0) transmits
a time-harmonic signal at frequency x, which is collected by
a vertical array of receivers (hydrophones) at x¼ xa. We con-
sider that the density q is stepwise constant and equal to
qw in the water and qs in the sediments. The acoustic pres-
sure p̂ðx; zÞ satisfies the Helmholtz equation,

ð@2
x þ @

2
z Þ þ

x2

cðx; zÞ2

" #
p̂ðx; zÞ ¼ dðxÞdðz% z0Þ; (1)

for x 2 R; z 2 ð0; zbÞ[ ðzb;þ1Þ, where c(x, z) is the sound
speed at position (x, z). The acoustic pressure also satisfies the
Dirichlet boundary condition on the top of the water column
p̂ðx; 0Þ ¼ 0 for all x 2 R, and the continuity conditions at depth
zb : p̂ðx; z%b Þ ¼ p̂ðx; zþb Þ and @zp̂ðx; z%b Þ=qw ¼ @zp̂ðx; zþb Þ=qs.

Remark. The model (1) can be derived from a more
realistic three-dimensional situation, in which the pressure
field P̂ satisfies in cylindrical coordinates

@2
r þ

1

r
@rþ

1

r2
@2

h þ@
2
z þ

x2

cðr; zÞ2

" #
P̂ ¼ 1

2pr
dðrÞdðz% z0Þ:

The solution is radially symmetric and, if we neglect a near
field factor of the form p̂=r5=2, then the scaled pressure field
p̂ðr; zÞ ¼

ffiffi
r
p

P̂ðr; zÞ satisfies Eq. (1).
Let us now describe the results we obtain in this

model. We compute in Sec. III the pressure for an ideal
(homogeneous) waveguide. Next we analyze how it
behaves when the sound speed in the water is no longer
constant, but weakly randomly perturbed and the sedi-
ments are weakly dissipative. The wave modes interact
with each other, and the asymptotic regime with small per-
turbation and large propagation distance is studied in Sec.
IV. In particular, we compute correlations of the recorded
pressure signals for hydrophones located in a vertical seg-
ment for exponentially decaying correlations of the
medium in Sec. IV E.

III. HOMOGENEOUS WAVEGUIDE

In this section, we consider a wave speed c(x, z) that is
constant both in the water and in the sediments,

c0ðzÞ ¼ cw1 0;zb½ 'ðzÞ þ cs1ðzb;þ1ÞðzÞ; (2)

with cs > cw (Pekeris waveguide). We denote kw ¼ x=cw

and ks ¼ x=cs. There is no dissipation, no fluctuation along
the x axis. The analysis of the perfect waveguide is classi-
cal;21 we only give the main results. The Helmholtz operator
has a spectrum of the form

%1; k2
s

" #
[ fk2

zN;…; k2
z1g; (3)

where the N modal wavenumbers kzj are positive and k2
s

< k2
zN < ( ( ( < k2

z1 < k2
w. The generalized eigenfunctions /c

associated with the spectral parameter c in the continuous
spectrum ð%1; k2

s Þ and the eigenfunctions /j, j¼ 1,…, N,
associated with the discrete spectrum, are given in Appendix A.
Any function can be expanded on the set of the eigenfunc-
tions of the Helmholtz operator. In particular, any solution
of the Helmholtz equation in homogeneous medium can be
expanded as

p̂ðx; zÞ ¼
XN

j¼1

p̂jðxÞ/jðzÞ þ
ðk2

s

%1
p̂cðxÞ/cðzÞdc: (4)

The modes for j¼ 1,…, N are guided, the modes for
c 2 ð0; k2

s Þ are radiating, and the modes for c 2 (–1, 0) are
evanescent. Indeed, the complex mode amplitudes satisfy
@2

x p̂j þ k2
zjp̂j ¼ 0 for j¼ 1,…, N and @2

x p̂c þ cp̂c ¼ 0 for
c 2 ð%1; k2

s Þ. Therefore, if the source is on the plane x¼ 0,
at (0, z0), as in Eq. (1), we have for x> 0

p̂ðx; zÞ ¼
XN

j¼1

âj;0ffiffiffiffiffi
kzj

p eikzjx/jðzÞ þ
ðk2

s

0

âc;0

c1=4
ei
ffiffi
c
p

x/cðzÞdc

þ
ð0

%1

âc;0

jcj1=4
e%

ffiffiffiffi
jcj
p

x/cðzÞdc; (5)
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with the mode amplitudes determined by the source

âj;0 ¼
ffiffiffiffiffi
kzj

p

2
/jðz0Þ; j ¼ 1;…;N; (6)

âc;0 ¼
jcj1=4

2
/cðz0Þ; c 2 ð%1; k2

s Þ: (7)

IV. RANDOM AND DISSIPATIVE WAVEGUIDE

Here we assume that the waveguide is weakly randomly
perturbed and weakly dissipative

c2ðx; zÞ ¼ c2
0ðzÞ

1þ Vðx; zÞ
: (8)

The perturbation V(x, z) has two components: random sound
speed perturbation in water and deterministic constant dissi-
pation in sediments

Vðx; zÞ ¼ !ðx; zÞ1ð0;zbÞðzÞ þ i!s1ðzb;þ1ÞðzÞ; (9)

where !(x, z) is a zero-mean random process that describes
the relative fluctuations of the propagation speed in water,
and !s > 0 models the damping in the sediments. The ran-
dom process ! is assumed to possess stationary and ergodic
properties in the x-direction.2,3,22 It is not, however, assumed
to be delta-correlated in x. Indeed, we address a relatively
high-frequency regime in which the correlation length of the
medium is not smaller than the typical wavelength, so the
delta correlation assumption is not fulfilled.

A. Coupled mode equations

The solution of the perturbed Helmholtz equation (1) for
x> 0 can be expanded as Eq. (4), and the complex mode
amplitudes satisfy the coupled equations3

@2
x p̂j þ k2

zjp̂j ¼ %x2
XN

l¼1

CjlðxÞp̂l % x2

ðk2
s

%1
Cjc0ðxÞp̂c0dc0;

(10)

for j¼ 1,…, N,

@2
x p̂c þ cp̂c ¼ %x2

XN

l¼1

CclðxÞp̂l % x2

ðk2
s

%1
Ccc0ðxÞp̂c0dc0;

(11)

for c 2 ð%1; k2
s Þ, with

CjlðxÞ ¼ /j;/lVðx; (Þc%2
0

% &

L2
; (12)

and similar expressions for Cjc0 ; Ccl, and Ccc0 . Here ð:; :ÞL2

stands for the scalar product (A2). The coupling term Cjl has
two components,

CjlðxÞ ¼ Cw
jl ðxÞ þ Cs

jl; (13)

where

Cw
jl ðxÞ ¼ c%2

w q%1
w

ðzb

0

!ðx; zÞ/jðzÞ/lðzÞdz; (14)

Cs
jl ¼ i!s q%1

s c%2
s

ðþ1

zb

/jðzÞ/lðzÞdz; (15)

and similarly for the other coupling terms.
We introduce the amplitudes of the generalized right-

and left-going mode amplitudes âj and b̂j for the guided and
radiating modes defined by

âjðxÞ ¼
ffiffiffiffiffi
kzj

p

2
p̂jðxÞ þ

1

2i
ffiffiffiffiffi
kzj

p @xp̂jðxÞ

 !

e%ikzjx; (16)

b̂jðxÞ ¼
ffiffiffiffiffi
kzj

p

2
p̂jðxÞ %

1

2i
ffiffiffiffiffi
kzj

p @xp̂jðxÞ

 !

eikzjx; (17)

for j¼ 1,…, N. They satisfy

p̂jðxÞ ¼
1ffiffiffiffiffi
kzj

p âjðxÞeikzjx þ b̂jðxÞe%ikzjx
% &

; (18)

@xp̂jðxÞ ¼ i
ffiffiffiffiffi
kzj

p
âjðxÞeikzjx % b̂jðxÞe%ikzjx
% &

; (19)

for j¼ 1,…, N. We define âc and b̂c similarly so that

p̂cðxÞ ¼
1

c1=4
âcðxÞei

ffiffi
c
p

x þ b̂cðxÞe%i
ffiffi
c
p

x
% &

; (20)

@xp̂cðxÞ ¼ ic1=4 âcðxÞei
ffiffi
c
p

x % b̂cðxÞe%i
ffiffi
c
p

x
% &

; (21)

for c 2 ð0; k2
s Þ. We say that âjðxÞ is the generalized right-

(left-)going mode amplitude, because it is the amplitude of
the mode going into the positive (negative) x-direction. By
differentiating Eqs. (16) and (17) with respect to x and using
Eqs. (10), (11) and (18), (19), we find that the mode ampli-
tudes satisfy the coupled differential equations

@xâj ¼
ix2e%ikzjx

2
ffiffiffiffiffi
kzj

p

)
XN

l¼1

CjlðxÞffiffiffiffiffi
kzl
p ðâlðxÞeikzlx þ b̂lðxÞe%ikzlxÞ

(

þ
ðk2

s

0

Cjc0ðxÞffiffiffiffiffiffi
c04
p ðâc0ðxÞei

ffiffiffi
c0
p

x þ b̂c0ðxÞe%i
ffiffiffi
c0
p

xÞdc0

þ
ð0

%1
Cjc0ðxÞp̂c0ðxÞdc0

)

; (22)

@xb̂j ¼ %
ix2eikzjx

2
ffiffiffiffiffi
kzj

p

)
XN

l¼1

CjlðxÞffiffiffiffiffi
kzl
p ðâlðxÞeikzlx þ b̂lðxÞe%ikzlxÞ

(

þ
ðk2

s

0

Cjc0ðxÞffiffiffiffiffiffi
c04
p ðâc0ðxÞei

ffiffiffi
c0
p

x þ b̂c0ðxÞe%i
ffiffiffi
c0
p

xÞdc0

þ
ð0

%1
Cjc0ðxÞp̂c0ðxÞdc0

)

: (23)
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The radiating mode amplitudes âcðxÞ and b̂cðxÞ; c 2 ð0; k2
s Þ,

satisfy the same equations upon replacing j by c in the
formulas above. The evanescent mode amplitudes p̂cðxÞ; c
2 ð%1; 0Þ, satisfy the differential equations

@2
x p̂c þ cp̂c ¼ %gcðxÞ % ĝev

c ðxÞ; x 6¼ 0; (24)

where ĝcðxÞ and ĝev
c ðxÞ are given by

ĝcðxÞ ¼ x2
XN

l0¼1

Ccl0ðxÞffiffiffiffiffiffi
kzl0
p al0ðxÞeikzl0 x þ bl0ðxÞe%ikzl0 x

' (

þx2

ðk2
s

0

Ccc0ðxÞffiffiffiffiffiffi
c04
p ac0ðzÞei

ffiffiffi
c0
p

x þ bc0ðxÞe%i
ffiffiffi
c0
p

z
h i

dc0;

(25)

ĝev
c ðxÞ ¼ x2

ð0

%1
Ccc0ðxÞp̂c0ðxÞdc0: (26)

B. Asymptotic analysis

We wish to understand the evolution of the complex mode
amplitudes in the regime where the random sound speed per-
turbation in water and the seabed dissipation give rise to cumu-
lative effects of the same order of magnitude. This is the most
interesting and complete regime from the theoretical point of
view, and also from the practical point of view, because the
data set we deal with in Sec. V clearly reveals that both sound
speed perturbations and seabed dissipation are significant. We
use the multiscale analysis approach originally proposed in
Ref. 3 and refined in Ref. 2, and we describe in this subsection
the main steps. This approach requires quantifying the scaling
ratios between the different physical parameters by the same
dimensionless small parameter e > 0. We consider the regime
where the random perturbations are weak, of order e, and dissi-
pation is even weaker, of order e2. This choice of renormaliza-
tion is the one for which the cumulative effects of both
phenomena become of order one for long propagation distan-
ces, of order e%2, as we will see below. Therefore, in this sec-
tion, we assume that the sound speed has the form (8) with

Vðx; zÞ ¼ e!ðx; zÞ1z2ð0;zbÞ þ ie2!s1z2ðzb;þ1Þ; (27)

and that the waveguide is perfect (homogeneous and non-
dissipative) outside the region x 2 (0, x1/e2) for some x1
> 0. We carry out an asymptotic analysis in the small e limit.
In this framework, the evanescent mode amplitudes can be
expressed in terms of the propagating mode amplitudes via
Green’s function of the Eq. (24).2,23 The forward scattering
approximation can be proved rigorously,2 which makes it
possible to decouple the a and b modes. The differential
equation for âe

j ðx; xÞ :¼ âjðx; x=e2Þ can be written as

@xâe
j ¼

ix2

2

XN

l¼1

1

e
Cw

jl

x

e2

) *
þCs

jl

ffiffiffiffiffiffiffiffiffiffi
kzjkzl

p âe
l ðxÞe

iðkzl%kzjÞ x=e2ð Þ þ ( ( ( :

Here, we write only the coupling terms with the guided
mode amplitudes âe

l , the “( ( (” contains the coupling terms

(with similar forms) with âe
c0 [the second term on the right-

hand side of Eq. (22)] and the coupling terms coming from
the third term on the right-hand side of Eq. (22) and the
expression of the evanescent modes p̂e

c0 in terms of the
propagating ones. It is now clear that the scaling in Eq.
(27) is such that the contributions of the seabed dissipation
Cs

jl is of order 1, and the contributions of the zero-mean
random sound speed perturbation in water appear in the
form ð1=eÞCw

jl ðx=e2Þ, which give rise to effective terms of
order one by diffusion approximation theory.22 We deal
with âe

cðx; xÞ :¼ âcðx; x=e2Þ similarly. By taking the limit e
! 0 as in Ref. 2, we can determine the asymptotic behav-
ior of the complex guided and radiating mode amplitudes
as expressed in Appendix B. The fourth remark in
Appendix B shows that the process ðjâe

j ðxÞj
2ÞNj¼1 (the vector

of the guided mode powers) converges as e! 0 towards a
Markov process PðxÞ ¼ ðPjðxÞÞNj¼1 whose generator is
described below.

C. The effective Markovian dynamics of the mode
powers

From Sec. IV B, in the regime of interest for this paper,
the effective dynamics of the vector of the guided mode
powers PðxÞ ¼ ðPjðxÞÞNj¼1,

PjðxÞ ¼ jâjðxÞj2; (28)

is Markovian with infinitesimal generator LP,

LP ¼
X

j6¼l

Clj PlPjð@Pj % @PlÞ@Pj þ ðPl % PjÞ@Pj

' (

%
XN

j¼1

KjPj@Pj ; (29)

with

Clj ¼
x4

2kzjkzl

ð1

0

Rw
jl ðxÞ cos ðkzl % kzjÞx

" #
dx; (30)

Kj ¼
ðk2

s

0

x4

2
ffiffiffi
c
p

kzj

ð1

0

Rw
jcðxÞ cos c% kzjð Þxð Þdxdc

þ!s
x4

kzjc2
s qs

ð1

zb

/jðzÞ
2dz; (31)

for j 6¼ l, where

Rw
jl ðxÞ :¼E Cw

jl ð0ÞC
w
jl ðxÞ

' (
¼q%2

w c%4
w

)
ðzb

0

ðzb

0

/j/lðzÞE !ð0;zÞ!ðx;z0Þ
' (

/j/lðz0Þdzdz0;

(32)

and similarly forRw
jcðxÞ ¼ E½Cw

jcð0ÞCw
jcðxÞ'.

This means that, for any test function F : RN ! R, the
expectation E½FðPðxÞÞ' satisfies the Kolmogorov forward
equation22

@xE FðPðxÞÞ½ ' ¼ E LPFðPðxÞÞ½ '; (33)
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which makes it possible to compute any moment of the
mode powers.

The coefficients Cjl describe the effective mode cou-
pling between guided modes due to random sound speed.
The coefficients Kj are effective mode-dependent damping
factors and have two contributions: the first contribution in
Eq. (31) comes from the coupling between guided and radia-
tive modes due to random sound speed; the second contribu-
tions in Eq. (31) come from the attenuation in the sediments.

From the form of the generator LP, one can establish
that the nth-order moments of the mode powers satisfy
closed equations. We will apply this to the first moment of
P, as well as its second moment later in Sec. IV G.

Using Eqs. (29) and (33) with FðPÞ ¼ Pj, we find that
the mean mode powers

QjðxÞ ¼ E PjðxÞ
' (

¼ E jâjðxÞj2
h i

(34)

satisfy the closed system of equations

@xQj ¼ %KjQj þ
XN

l¼1

Clj Ql % Qjð Þ; (35)

starting from Qjð0Þ ¼ jâj;0j2. The form of these coupled-
mode equations is well-known;9 although the mode-
dependent attenuation term Kj was thus far introduced only
heuristically. The solution is explicitly written as

QðxÞ ¼ expðAxÞQð0Þ; (36)

with the matrix A defined by (djl is the Kronecker symbol
and Cjj ¼ %

P
l0 6¼jCjl0 )

A :¼ ðCjl % KjdjlÞNj;l¼1: (37)

D. Computation of the coefficients of matrix A

The goal of this section is to show how to get closed-form
expressions of the coefficients of matrix A when the correlation
of the perturbation decreases exponentially as a function of the
horizontal distance between the two points, i.e.,

E !ðx; zÞ!ðx0; z0Þ
' (

¼ r2 expð%jx% x0j=‘hÞRðz; z0Þ; (38)

where ‘h is the horizontal correlation radius of the random
fluctuations of the index of refraction, and R is the vertical
correlation function of the perturbation. By substituting Eq.
(38) into Eq. (32), we obtain

ð1

0

Rw
jl ðxÞ cos ðkzl % kzjÞx

" #
dx

¼ r2q%2
w c%4

w ‘h

1þ ðkzl % kzjÞ2‘2
h

)
ðzb

0

ðzb

0

Rðz; z0Þ/j/lðzÞ/j/lðz0Þdzdz0; (39)

which gives with Eq. (30) the following expression of Cjl:

Cjl ¼
x4

2kzjkzl

r2q%2
w c%4

w ‘h

1þ ðkzl % kzjÞ2‘2
h

)
ðzb

0

ðzb

0

Rðz; z0Þ/j/lðzÞ/j/lðz0Þdzdz0 (40)

for j 6¼ l. Similarly, we can compute Kj from the same quanti-
ties upon substituting c for l. Replacing /j for all j by their

expression, and using the notation kw
j :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

w % k2
zj

q
, we obtain

ðzb

0

ðzb

0

Rðz; z0Þ/j/lðzÞ/j/lðz0Þdzdz0

¼
v2

j v
2
l

4
Sðkw

j % kw
l ; k

w
j % kw

l Þ þ Sðkw
j þ kw

l ; k
w
j þ kw

l Þ
%

%Sðkw
j % kw

l ; k
w
j þ kw

l Þ % Sðkw
j þ kw

l ; k
w
j % kw

l Þ
&
;

(41)

where

Sðk; k0Þ :¼
ðzb

0

ðzb

0

Rðz; z0Þ cosðkzÞ cosðk0z0Þdzdz0: (42)

When R has the exponential form Rðz; z0Þ ¼ expð%jz% z0j=
‘vÞ=2, where ‘v is the vertical correlation radius of the ran-
dom fluctuations of the index of refraction, then the relative
variance of the fluctuations is r2/2, and Sðk; k0Þ has a closed-
form expression. We use this particular form of the correla-
tion function of the medium in Sec. V, because it gives simple
expressions for the coefficients Cjl and Kj. This is convenient
for the resolution of the inverse problem, which requires
many evaluations of such coefficients for different values r,
‘v, ‘h of the statistics of the random medium and qs, !s of the
sea bottom. We could as well use the Garrett–Munk correla-
tion function at the expense of some computational overbur-
den,24 but the impact of the exact form of the correlation
function turns out to be negligible.

E. Pressure field correlations

We now compute the correlation of the received signal
on a vertical segment at a fixed horizontal distance xa. When
xa* 1, we can use the asymptotic study from above, and the
decomposition of p̂ðxa; zÞ is

p̂ðxa; zÞ ’
XN

j¼1

1ffiffiffiffiffi
kzj

p âjðxaÞ/jðzÞeikzjxa : (43)

Here, we do not write the contributions of the radiating
modes or the evanescent modes, which are much smaller
inside the water column. Therefore,

E p̂ðxa; zÞp̂ðxa; z
0Þ

h i

¼
XN

j¼1

E jâjðxaÞj2
h i

kzj
/jðzÞ/jðz0Þ

þ
X

j 6¼l

E âjðxaÞâlðxaÞ
h i

ffiffiffiffiffiffiffiffiffiffi
kzjkzl

p /jðzÞ/lðz0Þeiðkzj%kzlÞxa : (44)
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The cross second moments E½âj âl' for j 6¼ l decay exponen-
tially with the propagation distance x as shown in Ref. 1 (see
also Ref. 7), and they can be neglected as soon as the propa-
gation distance x is larger than the scattering mean free path
that depends on the coefficients Cjl. Roughly speaking, this
is the distance beyond which the phase of the field has a ran-
dom part whose variance is on the order of or larger than
one, so that the coherent field is vanishing.1,4 The second
moments E½jâjj2' were computed in the previous paragraph
using the exponential of matrix A,

E jâjðxaÞj2
h i

¼
XN

l¼1

ðexpðAxaÞÞjljâl;0j2; (45)

where âl;0 is given by Eq. (6). We can now write the correla-
tion between the sound pressure signals recorded by two
receivers, which are separated by y along the vertical seg-
ment at distance xa and of depth [zm, zM]; where 0< zm < zM

< zb. For all y 2 [0, zM – zm], the spatial correlation Cxa
ðyÞ is

written as

Cxa
ðyÞ : ¼ 1

zM % zm % y

ðzM%y

zm

E p̂ðxa; zÞp̂ðxa; zþ yÞ
h i

dz

¼ 1

zM % zm % y

XN

j¼1

E jâjðxaÞj2
h i

kzj

v2
j

2

) cos ðkwjyÞðzM % zm % yÞ
)

%
sin ðkwjð2zM % yÞÞ % sin ðkwjð2zm þ yÞÞ

2kwj

*
:

(46)

F. Equipartition regime

By (36) the mean mode powers satisfy

QjðxÞ ’
x!þ1

cVVj exp %kxð Þ 1þ oð1Þð Þ;

where ðV;%kÞ is the first eigenvector/eigenvalue of
matrix A ¼ C%U, with Cjl given by (30) for j 6¼ l; Cjj

¼ %
P

l0 6¼jCjl0 ; Ujl ¼ Kjdjl, and

cV ¼
XN

l¼1

Vljâl;0j2:

By using classical Perron–Frobenius arguments25 one can get
information about the spectrum of A: First, the coefficients of
V have all the same sign (so we can assume that they are non-
negative). Second, the eigenvalue –k is simple and k + 0.

In the following, we discuss cases with zero or weak
dissipation, where explicit expressions can be obtained.
Remember that the effective dissipation is the sum of two
effects: power leakage from the guided modes to the radiat-
ing modes and dissipation in the sediments.

1. No effective dissipation

If there is no effective dissipation U ¼ 0, then the first
eigenvector/eigenvalue ðVð0Þ;%kð0ÞÞ of the matrix C is

Vð0Þ ¼ 1=
ffiffiffiffi
N
p% &N

j¼1
; kð0Þ ¼ 0;

which gives the standard equipartition result1,8,22

QjðxÞ!
x!þ1 1

N

XN

l¼1

jâl;0j2:

The total input energy
PN

l¼1jâl;0j2 becomes equipartitioned
amongst all propagating modes.

2. Weak effective dissipation

We next consider the case when the effective dissipation
is weak, that is to say, the matrix U is much smaller than the
matrix C, with a typical ratio on the order of the small dimen-
sionless parameter d , 1. We then assume that Kj ¼ dKð1Þj .
Then we can write U ¼ dUð1Þ with Uð1Þjl ¼ Kð1Þj djl and
C ¼ Cð0Þ, and the first eigenvector/eigenvalue ðV;%kÞ of the
matrix C%U can be expanded as

V ¼ Vð0Þ þ dVð1Þ þ Oðd2Þ; k ¼ dkð1Þ þ d2kð2Þ þ Oðd3Þ;

with

kð1Þ ¼ Vð0ÞTUð1ÞVð0Þ ¼ 1

N

XN

j¼1

Kð1Þj ; (47)

kð2Þ ¼ Vð0ÞTCð0ÞVð1Þ; (48)

and Vð1Þ is a solution to Cð0ÞVð1Þ ¼ ðUð1Þ % kð1ÞÞVð0Þ and is
orthogonal to Vð0Þ. If, for instance, Cjl - C > 0 for all j 6¼ l,
then Vð1Þ ¼ %½1=ðCN3=2Þ'ðKð1Þj Þ

N
j¼1 and

kð2Þ ¼ % 1

CN2

XN

j¼1

ðKð1Þj % kð1ÞÞ2:

G. Fluctuation analysis

By Eq. (29), we find that the second-order moments of
the mode powers

RjlðxÞ ¼ E PjðxÞPlðxÞ
' (

; j; l ¼ 1;…;N; (49)

satisfy the closed equations

@xRjj ¼ %2KjRjj þ
X

n6¼j

Cjnð4Rjn % 2RjjÞ; (50)

@xRjl ¼ %ð2Cjl þ Kj þ KlÞRjl þ
X

n 6¼l

ClnðRjn % RjlÞ

þ
X

n 6¼j

CjnðRnl % RjlÞ; (51)

for j 6¼ l. This system has the same form as the one found
in the literature dedicated to coupled mode theory.8,9 The
initial conditions are Rjlð0Þ ¼ jâj;0j2jâl;0j2. Let us introduce
S ¼ ðSjlÞ1.j.l.N defined by
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Sjl ¼
Rjl þ Rlj if j < l;

Rjj if j ¼ l:

(

(52)

The Sjl’s satisfy the system

@xSjl ¼ %ðKj þ KlÞSjl þ 2Cjl1j 6¼lðSjj þ Sll % 2SjlÞ

þ
X

n 62fj;lg
ClnðSjn % SjlÞ þ CjnðSnl % SjlÞ
' (

; (53)

with the convention that whenever Sjl occurs with j> l, it is
replaced by Slj. This can be written in the form @xS ¼ ðH
%WÞS. The linear operator W (that depends on the Kj’s) is
diagonal, and the linear operator H (that depends on Cjl’s)
is self-adjoint: for any T and ~T, we have

P
j.lðHTÞjl ~Tjl

¼
P

j.lTjlðH~TÞjl. As a consequence, U%W can be diago-
nalized, and we find that

SðxÞ ’x!þ1
cWW exp %lxð Þ 1þ oð1Þð Þ;

where cW is the projection on the first eigenvector W on the
basis of eigenvectors of U%W, –l is the first eigenvalue,
and

cW ¼
XN

j;l¼1

Wjljâj;0j2jâl;0j2;

with the convention that whenever Wjl occurs with j> l, it is
replaced by Wlj.

1. No effective dissipation

If there is no effective dissipation, then the first eigen-

vector/eigenvalue ðWð0Þ;%lð0ÞÞ of the matrix H is Wð0Þ

¼ ðcNÞ1.j.l.N; lð0Þ ¼ 0, with cN ¼
ffiffiffi
2
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

p
. We

have SðxÞ !x!þ1
cWWð0Þ. As

P
j.lSjlðxÞ ¼

P
j;lRjlðxÞ

¼ ð
PN

j¼1jâj;0j2Þ2, we deduce that, for any j, l,

RjlðxÞ!
x!þ1 XN

l0¼1

jâl0;0j2
 !2

1þ djl

NðN þ 1Þ
:

This means that, when N * 1, the mode powers Pj become
uncorrelated and their marginal distributions have the same
moments as exponential distributions. In other words, the
mode powers behave as the square moduli of independent
and identically distributed complex Gaussian variables.

2. Weak effective dissipation

We next consider the case when the effective dissipation
is weak, say Kj ¼ dKð1Þj with d , 1. Then we can write
W ¼ dWð1Þ and H ¼ Hð0Þ, and the first eigenvector/eigen-
value ðW;%lÞ of the matrix H%W can be expanded as

W ¼ Wð0Þ þ dWð1Þ þ Oðd2Þ; l ¼ dlð1Þ þ d2lð2Þ þ Oðd3Þ;

with

lð1Þ ¼ Wð0ÞTWð1ÞWð0Þ ¼ 2

N

XN

j¼1

Kð1Þj ¼ 2kð1Þ;

lð2Þ ¼ Wð1ÞTHð0ÞWð1Þ; (54)

and Wð1Þ is a solution to Hð0ÞWð1Þ ¼ ðWð1Þ % lð1ÞÞWð0Þ and is
orthogonal to Wð0Þ. If, for instance, Cjl - C > 0 for all j 6¼ l,
then

Wð1Þjl ¼ %
cN

CN
Kð1Þj þ Kð1Þl % 2kð1Þ
% &

; j . l;

and

lð2Þ ¼
X

j.l

Wð1Þjl ðH
ð0ÞWð1ÞÞjl

¼ % 2ðN þ 2Þ
N2ðN þ 1ÞC

XN

j¼1

ðKð1Þj % kð1ÞÞ2:

Note that

l% 2k ¼ d2 lð2Þ % 2kð2Þ
" #

þ Oðd3Þ

¼ % 2d2

N2ðN þ 1ÞC
XN

j¼1

ðKð1Þj % kð1ÞÞ2 þ Oðd3Þ

(55)

is negative-valued.

3. Exponential growth of the intensity fluctuations

It is a general feature that, for any matrix C and effec-
tive dissipation coefficients Kj, we have l – 2k . 0 [we have
equality when there is no effective dissipation, a conse-
quence of the forthcoming result (58) and Cauchy–Schwarz
inequality when there is dissipation]. The first two moments
of the pointwise intensity jp̂ðx; zÞj2 for large x are

E jp̂ðx; zÞj2
h i

¼
XN

j¼1

/jðzÞ
2

kzj
cVVje

%kx; (56)

E jp̂ðx; zÞj4
h i

¼
XN

j;l¼1

/jðzÞ
2/lðzÞ

2

kzjkzl
cWWjle

%lx: (57)

Without dissipation, we have the following result for the
fluctuations of the pointwise intensity:

E jp̂ðx; zÞj4
h i

E jp̂ðx; zÞj2
h i2

!x!1 2N

N þ 1
;

which is equal to 2 when N* 1, and with weak dissipation

E jp̂ðx; zÞj4
h i

E jp̂ðx; zÞj2
h i2

’x!1 2N

N þ 1
exp %ðl% 2kÞxð Þ; (58)

which grows exponentially with the propagation distance
(for very long distances, however, as jl% 2kj is very small,
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as shown above). Equation (55) gives the expression of
the exponential growth rate when dissipation is weak and Cjl

- C for j 6¼ l: the growth rate increases when the effective
modal dissipation coefficients become different from each
other and decreases when the number of modes increases.

V. INVERSE PROBLEM

The goal of this section is to show that it is possible to
estimate the statistical properties of the index of refraction in
the water column and the sea bottom properties from the
incoherent sound pressure recorded by a vertical hydrophone
array and transmitted by distant time-harmonic sources. This
inverse problem can be formulated as a minimization prob-
lem that tries to match empirical quantities with theoretical
ones that depend on the parameters to be estimated. The the-
oretical model of the Sec. IV shows that the correlation func-
tion of the sound pressure has a non-trivial behavior that
makes it possible to identify many relevant parameters, as
we will explain below. We first present the ALMA experi-
mental data, then formulate the inverse problem, and finally
estimate the model parameters.

A. ALMA 2016 experiment

ALMA is a series of at-sea experiments carried out by
the French DGA Naval Systems.20 In 2016, the experiment
took place from November 7–17 near the shores of North
East Corsica26 (cf. Fig. 1). There is a moored pinger at the
z0¼ 50 m immersion depth and a passive array with 128
hydrophones at the 60 m immersion depth. More exactly, the
array consists of 4 vertical arms of 32 hydrophones. The
arms are 0.5 m apart from each other, and for each vertical
arm the hydrophones are regularly spaced between the

depths zm¼ 58.35 m and zM¼ 63 m, at 0.15 m apart from
each other. The distance between the source and the array is
xa¼ 9000 m. The sea bottom is relatively flat on the line
between the pinger and the array (the bottom depth is some-
where between 100 and 115 m) but sloppy on the orthogonal
direction. Seafloor is composed of sand and gravelly sand.
The sea was calm, with a roughness height around 0.1 m (sea
state 1). The pinger transmitted, for a period of approxi-
mately 2.5 h, a sequence consisting of several time-harmonic
waves, with a repetition rate of three minutes. The sequence
is a train of two-second time-harmonic waves, at the follow-
ing K¼ 6 frequencies: 2, 5, 7, 9, 11, and 13 kHz. Acquisition
is sampled at 48 kHz. The Fourier coefficients for each fre-
quency are extracted using a Hann window function with a
duration of 1 s. This gives 50 time samples by frequency.

At frequency x, for y 2 [0, zM – zm], we denote the spa-
tial correlation between the signals recorded by two hydro-
phones at a distance y from each other by Cxa

ðyÞ [cf. Eqs.
(45) and (46) for the theoretical expression predicted by our
model]. Then we define the correlation radius r as the half-
width at half-maximum (i.e., the distance between hydro-
phones for which the correlation is 1/2)

Cxa
ðrÞ ¼ 1

2
Cxa
ð0Þ ¼ 1

2
: (59)

From the experimental data at frequencies f1,…, fK (with
x¼ 2pf), we extract the experimental correlation radii
reðf1Þ;…; reðfKÞ. For U ¼ ðcs; qs; !s; r; ‘v; ‘hÞ, a set of
parameters of our theoretical model (assuming that we know
the sound speed cw and density qw in water and the depth of
the sea bottom), we compute the theoretical correlation radii
rtðf1;UÞ;…; rtðfK;UÞ. Then we define the misfit function

EðUÞ ¼
XK

k¼1

rtðfk;UÞ % reðfkÞð Þ2; (60)

and we determine the parameters U by minimizing over U
the misfit function E(U) (by the L-BFGS-B algorithm27).

B. Estimation of the model parameters

We assume that sound speed is constant in water, taking
value cw¼ 1523 m/s from CTD (conductivity, temperature,
and depth) measurements, and we set the density of water

FIG. 1. (Color online) Top view of the experimental setup measurements
region (source: Ref. 30); the blue cross (bottom right) is the source
(42/19.656 N 9/37.004E); the green cross (top right) is the receiver array
(42/24.693 N 9/37.363E); yellow region: sand sediment; orange region:
gravelly sand sediment. The bathymetry contour line that goes through the
crosses is 100 m. The one on the right (left) of the crosses is 200 m (50 m).

FIG. 2. (Color online) Comparisons between experimental and theoretical
correlation radii.
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qw at 1000 kg/m3 (we could have taken a more precise value,
but density has little influence on the model). Figure 2 presents
the correlation radii obtained from experimental data for each
frequency, and the theoretical correlation radii predicted by
our model with the parameters determined by minimization
of the misfit function (60): cs ¼ 1599 m=s; a ¼ 1:51 dB=
wavelength; r¼0:0030 (r2/2¼relative variance); ‘v¼12:1m;
‘h¼100 m; qs¼1700 kg=m3. Parameter !s is computed from
the attenuation coefficient a expressed in decibels by wavelength.
The values of the parameters seem compatible with experimental
measurements carried out in similar environments.28 Figure 3
shows theoretical and experimental correlation functions at the
different frequencies. The empirical correlation functions at large
offsets are noisy because there are a limited number of samples
for these large offsets.

We carry out a global sensitivity analysis by computing
first-order and total Sobol indices29 of the theoretical correla-
tion radii rt (fk, U) based on the expressions (45) and (46) as
functions of the six parameters U ¼ ðcs; qs; a; r; ‘v; ‘hÞ (fol-
lowing the uniform distribution on the hypercube ½1530;
1630' ) ½1650; 1750' ) ½0:5; 2:0' ) ½0; 0:005' ) ½5; 50' ) ½50;
150', that encompasses the physical data reported in Ref. 28).
We can see in Fig. 4 that the two most important parameters
are cs and r, that a and ‘v have less influence, but are still sig-
nificant. Finally, qs and ‘h have no noticeable effect, whatever
the frequency. We can also quantify the uncertainty in the
parameter estimation by a Bayesian analysis. The a priori dis-
tribution is the uniform distribution on the hypercube. The

likelihood is obtained by assuming that the errors in the experi-
mental correlation radii are independent, Gaussian, with the
same variance. The variance is obtained from the residuals
evaluated for the optimal U minimizing the misfit function
(60). The a posteriori distribution of the parameters qs and ‘h

is the a priori one (uniform), because the theoretical model is
not sensitive to these parameters. In Fig. 5 we plot the four-
dimensional a posteriori distribution of (r, a, cs, ‘v). We can
see a posteriori correlations between r, ‘v, and a, which may
make them difficult to identify individually.

The inspection of the numerical values of the two terms
that determine Kj [cf. Eq. (31)] give interesting information.
We can see that for each frequency, the radiative contributions
are approximately one thousand times smaller than the attenua-
tion ones. In the experimental configuration addressed in this
paper, we can claim that radiation effects can be neglected.

Finally, if we denote by ðznÞ16n6Nh
the depths of the Nh

hydrophones of the array, we can compare the theoretical,
frequency-dependent the scintillation indices defined by

St ¼
1

Nh

XNh

n¼1

E jp̂ðxa; znÞj4
h i

%E jp̂ðxa; znÞj2
h i2

E jp̂ðxa; znÞj2
h i2

; (61)

with the experimental values Se determined by empirical
averages instead of expectations. Table I shows experimental
scintillation indices compared to theoretical ones, with the
optimal parameters U determined from the correlation radii. In

FIG. 3. (Color online) Experimental and theoretical correlation functions at
different frequencies.

FIG. 4. (Color online) First-order (red) and total (green) Sobol indices of the
theoretical correlation radii as functions of cs, qs, a, r, ‘v, and ‘h.

FIG. 5. (Color online) A posteriori distribution of the four parameters cs (in
m/s), a (in dB/wavelength), r, and ‘v (in m). Two-dimensional marginal dis-
tributions are plotted for all pairs of parameters. The red point is the maxi-
mum a posteriori estimator, that is, the minimum of the misfit function (60).

TABLE I. Experimental and theoretical scintillation indices at different
frequencies.

2 kHz 5 kHz 7 kHz 9 kHz 11 kHz 13 kHz

Experiment 0.82 0.89 1.06 1.41 1.16 1.89

Theory 0.97 0.99 0.99 0.99 0.99 0.99
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the experimental and theoretical configurations scintillation
indices are approximately equal to one. One should have
longer propagation distances to observe scintillation indices
larger than one, as suggested in Ref. 8. We report in Fig. 6 the
scintillation indices when the propagation distance is large
(xa¼ 200 km) or when the sound speed mismatch between the
water column and the sediments is small (cs¼ 1530 m/s). In
these cases, the scintillation indices are significantly larger
than one. In the case of a large propagation distance, this can
be understood by the fact that the scintillation index grows
exponentially with the propagation distance. In the case of
small sound speed mismatch, this can be explained by the fact
that the waveguide then supports a small number of propagat-
ing modes and we have shown that the growth rate increases
when the number of modes decreases.

VI. CONCLUSION

This paper proposes a complete description of the statis-
tics of the mode amplitudes of the sound pressure in a
shallow-water waveguide. The effective parameters (fre-
quency- and mode-dependent attenuation, dispersion, and
coupling) are identified from first principles and expressed in
terms of the statistical properties of the index of refraction of
the water column and the sea bottom properties. This theo-
retical analysis makes it possible to formulate an inverse
problem for the estimation of the model parameters from the
sound pressure recorded by a vertical hydrophone array and
transmitted by distant time-harmonic sources. This inverse
problem is solved using data collected during the ALMA
2016 experiment.

In the experimental configuration addressed in this paper,
it turns out that radiation effects can be neglected (compared
to dissipation in the sediments) and non-Gaussian scintillation
effects can be neglected as well. The extraction of the
frequency-dependent correlation radii of the recorded sound
pressure signals makes it possible to estimate different acoustic
and geoacoustic parameters: the sediment sound speed cs, the
standard deviation of the index of refraction in the water col-
umn r, the attenuation parameter in the sediments a, and the
vertical correlation radius of the index of refraction in the
water column ‘v can be robustly estimated, although the
Bayesian analysis reveals some correlations between r, ‘v, and
a. The sediment density qs and the horizontal correlation
radius ‘h are difficult to estimate, because they have small
effects on the correlation radii of the sound pressure.
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APPENDIX A: WAVE MODE DECOMPOSITION

Let us introduce the Helmholtz operator

H ¼ q0ðzÞ@zq0ðzÞ
%1@z þ x2c0ðzÞ%2; (A1)

where q0ðzÞ ¼ qw1½0;zb'ðzÞ þ qs1ðzb;þ1ÞðzÞ, with the Dirichlet
boundary condition at the top: /(0)¼ 0 and continuity condi-
tions at z ¼ zb and /0ðz%b Þ=qw ¼ /0ðzþb Þ=qs. The Helmholtz
operator H is self-adjoint with respect to the scalar product
defined on L2ðRþ; q%1

0 Þ by

ð/1;/2ÞL2 : ¼
ð1

0

q%1
0 ðzÞ/1ðzÞ/2ðzÞdz

¼ q%1
w

ðzb

0

/1ðzÞ/2ðzÞdzþ q%1
s

)
ðþ1

zb

/1ðzÞ/2ðzÞdz: (A2)

The Helmholtz operator has a spectrum of the form (3)
where the N modal wavenumbers kzj are positive and
k2

s < k2
zN < ( ( ( < k2

z1 < k2
w.

Discrete spectrum. The jth eigenvector associated with
the eigenvalue k2

zj is

/jðzÞ ¼
vj sinðrjz=zbÞ if 0 . z . zb;

vj sinðrjÞ expð%fjðz% zbÞ=zbÞ if z + zb;

(

(A3)

where

rj ¼ zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

w % k2
zj

q
; fj ¼ zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

zj % k2
s

q
; (A4)

v2
j ¼

2=zb

1

qw

1%
sin ð2rjÞ

2rj

 !
þ 1

qs

sin2ðrjÞ
fj

: (A5)

The rj’s are the solutions in 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

w % k2
s

p
zb

% &
of

tan ðrÞ ¼ % rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

bðk2
w % ksÞ2 % r2

q qs

qw

; (A6)

and N is the number of solutions.
Continuous spectrum. For c 2 ð%1; k2

s Þ, the improper
eigenvector has the form

/cðzÞ ¼

vc sin ðgcz=zbÞ if 0. z. zb;

vc sin ðgcÞcos ðncðz% zbÞ=zbÞ
+

þ qs

qw

gc

nc
cos ðgcÞ sin ðncðz% zbÞ=zbÞ

,
; if z+ zb;

8
>>>>>><

>>>>>>:

(A7)

where

FIG. 6. (Color online) Scintillation indices when cs¼ 1530 m/s (left) or when
the propagation distance xa¼ 200 km (right).
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gc ¼ zb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

w % c
q

; nc ¼ zb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s % c
q

; (A8)

v2
c ¼

ncqszb

p n2
c sin2ðgcÞ þ

q2
s

q2
w

g2
c cos2ðgcÞ

 ! : (A9)

We remark that /c does not belong to L2ðRþ; q%1
0 Þ,

but ð/c;/ÞL2 can be defined for any test function
/ 2 L2ðRþ; q%1

0 Þ as

/c;/
" #

L2
¼ lim

M!þ1

ðM

0

/cðzÞ/ðzÞq0ðzÞ
%1dz; (A10)

where the limit holds on L2ðð%1; k2
s ÞÞ.

Completeness. We have for any / 2 L2ðRþ; q%1
0 Þ,

/;/ð ÞL2 ¼
XN

j¼1

j /j;/
" #

L2
j2þ

ðk2
s

%1
j /c;/
" #

L2
j2dc: (A11)

The map that assigns the coefficients of its spectral decom-
position to every element of / 2 L2ðRþ; q%1

0 Þ,

/ 7! /j;/
" #

L2
; j ¼ 1;…;N; /c;/

" #
L2
; c 2 ð%1; k2

s Þ
% &

is an isometry from L2ðRþ; q%1
0 Þ onto CN ) L2ðð%1; k2

s ÞÞ.
This means that any function / 2 L2ðRþ; q%1

0 Þ can be
expanded on the set of the eigenfunctions ofH.

APPENDIX B: THE EFFECTIVE MARKOVIAN SYSTEM
FOR THE COMPLEX MODE AMPLITUDES

We assume that the reduced wavenumbers ðkzjÞNj¼1

are distinct. Then, for any x1> 0, the process ððâe
j ðxÞÞ

N
j¼1;

ðâe
cðxÞÞc2ðð0;k2

s ÞÞ
Þ converges in distribution in C0ð½0; x1';CN

)L2ðð0; k2
s ÞÞÞ, the space of continuous functions from [0,

x1] to CN ) L2ðð0; k2
s ÞÞ, to the Markov process ððajðxÞÞNj¼1;

ðacðxÞÞc2ð0;k2
s ÞÞ with infinitesimal generator L. Here, CN

)L2ðð0; k2
s ÞÞ is equipped with the weak topology and the

infinitesimal generator L ¼ L1 þ L2 þ L3 where Lj; 1 . j
. 3, are the differential operators

L1 ¼ 1

2

XN

j;l¼1

Cjl ajaj@al@al
þ alal@aj@aj

% ajal@aj@al

"

%ajal@aj@al

#
1j 6¼l þ

1

2

XN

j;l¼1

C1
jl ajal@aj@al þ ajal@aj@al

"

%ajal@aj@al % ajal@aj
@al

#
þ 1

2

XN

j¼1

Cjj % C1
jj

% &

) aj@aj þ aj@aj

" #
þ i

2

XN

j¼1

Cs
jj aj@aj % aj@aj

" #
; (B1)

L2 ¼ % 1

2

XN

j¼1

ðKj þ iKs
j Þaj@aj þ ðKj % iKs

j Þaj@aj
; (B2)

L3 ¼ i
XN

j¼1

jj aj@aj % aj@aj

" #
: (B3)

In these definitions, we use the classical complex derivative: if
f¼ frþ ifi, then @f ¼ ð1=2Þð@fr

% i@fi
Þ and @"f ¼ ð1=2Þð@fr

þi@fi
Þ, and the coefficients of the operators (B1)–(B3) are

defined for j, l¼ 1,…, N, as follows.

• For all j 6¼ l, Cjl is defined by Eq. (30) and

Cs
jl ¼

x4

2kzjkzl

ð1

0

Rw
jl ðxÞ sin ðkzl % kzjÞx

' (
dx;

withRw
jl ðxÞ defined by Eq. (32).

• For all j, l,

C1
jl ¼

x4

2kzjkzl

ð1

0

E Cw
jj ð0ÞC

w
ll ðxÞ

' (
dx:

• For all j, Kj is defined by Eq. (31) and

Cjj ¼ %
XN

l¼1;l6¼j

Cjl; Cs
jj ¼ %

XN

l¼1;l 6¼j

Cs
jl;

Ks
j ¼

ðk2
s

0

x4

2
ffiffiffi
c
p

kzj

ð1

0

Rw
jcðxÞ sin

ffiffiffi
c
p
% kzj

" #
x

' (
dxdc;

jj ¼
ð0

%1

x4

2
ffiffiffiffiffi
jcj

p
kzj

ð1

0

Rw
jcðxÞ cosðkzjxÞe%

ffiffiffiffi
jcj
p

xdxdc:

Remarks

(1) The convergence result holds in the weak topology (this
follows from the proof that is based on the perturbed test
function method22). This means that we can only com-
pute quantities of the form E½Fða1;…; aN ;

Ð k2
s

0 acacdcÞ'
for any test functions a 2 L2ðð0; k2

s ÞÞ and F : RNþ1

! R, which are the limits of E½Fðâe
1;…; âe

N;Ð k2
s

0 acâ
e
cdcÞ' as e! 0.

(2) The generator L does not involve @ac . This shows that
ðâe

j ðxÞÞ
N
j¼1 converges in distribution in C0ð½0; x1';CNÞ to

the Markov process ðajðxÞÞNj¼1 with generator L. The
weak and strong topologies are the same in CN , so we
can compute any moment of the form E½Fða1;…; aNÞ',
which are the limits of E½Fðâe

1;…; âe
NÞ'.

(3) L1 is the contribution of the coupling between guided
modes, which gives rise to power exchange between the
guided modes; L2 is the contribution of the coupling
between guided and radiating modes, which gives rise to
power leakage from the guided modes to the radiating
ones (effective diffusion) and addition of frequency-
dependent phases on the guided modes (effective disper-
sion); L2 also contains the effective mode-dependent
term due to dissipation in the sediments; L3 is the contri-
bution of the coupling between guided and evanescent
modes, which gives rise to additional phase terms on the
guided modes (effective dispersion23).

(4) If the generator L is applied to a test function that
depends only on the mode powers ðPj ¼ jajj2ÞNj¼1, then

468 J. Acoust. Soc. Am. 146 (1), July 2019 Dumaz et al.



the result is a function that depends only on ðPjÞNj¼1. This
shows that22 the mode powers ðPjðxÞÞNj¼1 define a
Markov process, with the generator given by Eq. (29).

(5) The radiation mode amplitudes remain constant on
L2ðð0; k2

s ÞÞ, equipped with the weak topology, as e ! 0.
This does not describe, however, the power

Ð k2
s

0 jâ
e
cj

2dc
transported by the radiation modes, because the conver-
gence does not hold in the strong topology of
L2ðð0; k2

s ÞÞ, so we do not have
Ð k2

s

0 jâ
e
cj

2dc!
Ð k2

s

0 jacj2dc
as e! 0.
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