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Classical nonlinear waves exhibit a phenomenon of condensation that results from the natural
irreversible process of thermalization, in analogy with the quantum Bose-Einstein condensation. Wave
condensation originates in the divergence of the thermodynamic equilibrium Rayleigh-Jeans distribution,
which is responsible for the macroscopic population of the fundamental mode of the system. However,
achieving complete thermalization and condensation of incoherent waves through nonlinear optical
propagation is known to require prohibitive large interaction lengths. Here, we derive a discrete kinetic
equation describing the nonequilibrium evolution of the random wave in the presence of a structural
disorder of the medium. Our theory reveals that a weak disorder accelerates the rate of thermalization and
condensation by several order of magnitudes. Such a counterintuitive dramatic acceleration of con-
densation can provide a natural explanation for the recently discovered phenomenon of optical beam self-
cleaning. Our experiments in multimode optical fibers report the observation of the transition from an
incoherent thermal distribution to wave condensation, with a condensate fraction of up to 60% in the
fundamental mode of the waveguide trapping potential.
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Introduction.—The observation of the phenomenon of
Bose-Einstein condensation has been reported in a variety
of genuine quantum systems, such as ultracold atoms and
molecules [1], exciton polaritons [2], and photons [3]. On
the other hand, recent studies on wave turbulence revealed
that a purely classical system of random waves can exhibit
a process of condensation with thermodynamic properties
analogous to those of Bose-Einstein condensation [4–14].
Classical wave condensation finds its origin in the natural
thermalization of the wave system toward the Rayleigh-
Jeans equilibrium distribution, whose divergence is respon-
sible for the macroscopic occupation of the fundamental
mode of the system [4–7,15–19]. This self-organization
process takes place in a formally reversible system: the
formation of the coherent structure (“condensate”) remains
immersed in a sea of small-scale fluctuations (“uncon-
densed particles”), which store the information for time
reversal.
There is a current surge of interest in studying quantum

properties of fluids with light waves, such as superfluidity
and the generation of Bogoliubov sound waves [2,20,21].
Along this way, different forms of condensation processes
have been reported in optical cavity systems, which are
inherently nonequilibrium forced-dissipative systems
[18,22–24]. On the other hand, the irreversible process
of condensation is predicted for purely conservative and
formally reversible (Hamiltonian) systems of random
waves. Unfortunately, however, the experimental study
of condensation in a conservative (cavityless) configuration

constitutes a major challenge because of the prohibitive
large propagation lengths required to achieve thermaliza-
tion [14,17]. In marked contrast with this commonly
accepted opinion, an astonishing phenomenon of spatial
beam self-organization, termed beam self-cleaning, has
been recently discovered in multimode optical fibers
(MMFs) [25–27]. This phenomenon is due to a purely
conservative Kerr nonlinearity [27] and, so far, its under-
lying mechanism remains unexplained.
As a matter of fact, light propagation in MMFs is known

to be affected by a structural disorder of the material due to
inherent imperfections and external perturbations [28], a
feature of interest, e.g., in image formation [29] or to study
integrable nonlinear Manakov systems [30–33]. The
remarkable result of our Letter is to show that a (“time”-
dependent) structural disorder is responsible for a dramatic
acceleration of the process of wave condensation. On the
basis of the wave turbulence theory [4,5,15] and related
recent developments on finite size effects [34–37], we
formulate a nonequilibrium kinetic description of the
random waves that accounts for the impact of disorder.
The theory reveals that a conservative disorder introduces
an effective dissipation in the system, which is shown to
deeply modify the regularization of resonant wave inter-
actions. We derive a discrete kinetic equation revealing that
a weak disorder accelerates the rate of thermalization and
condensation by several order of magnitudes. Note that, at
variance with the notion of prethermalization to out of
equilibrium states [14,38,39], here the system achieves a
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fast relaxation to a fully thermalized equilibrium state. The
counterintuitive mechanism of condensation acceleration
can provide a natural explanation for the effect of optical
beam self-cleaning. Our experiments realized in MMFs
report the first observation of wave condensation featured
by a macroscopic population of the fundamental mode of a
(cavityless) waveguide trapping potential.
The present Letter contributes to the challenging ques-

tion of spontaneous organization of coherent states in
nonlinear disordered (turbulent) systems [40–47]. Further-
more, MMFs are attractive for telecommunication appli-
cations [28] and novel fiber laser sources [48].
Nonlinear Schrödinger model.—We consider the stan-

dard scalar ð2þ 1ÞD nonlinear Schrödinger (NLS) equa-
tion, which is known to describe the propagation (along z)
of a polarized optical beam in a waveguide modeled by a
confining potential VðrÞ [with r ¼ ðx; yÞ] [49]. The poten-
tial VðrÞ is parabolic shaped, which models graded-index
MMFs [18,25–28] or trapped Bose-Einstein condensates
[1]. We expand the random wave into the basis of the linear
eigenmodes upðrÞ (with eigenvalues βp) of theN� modes of
the fiber, ψðr; zÞ ¼ P

pApðzÞupðrÞ. The modal compo-
nents ApðzÞ of the NLS equation verify

i∂zAp ¼ βpAp − γFpðAÞ; ð1Þ

where the modal expansion of the cubic Kerr nonlinearity
reads FpðAÞ ¼

P
q;l;mSpqlmAqAlA�

m and the tensor Spqlm
accounts for the spatial overlap among the eigenmodes
[18,49].
We report in Fig. 1(a) the evolution of the modal

components ApðzÞ and corresponding intensity pattern
jψ j2ðr; zÞ, obtained by solving the NLS equation (1)
with typical experimental parameters [27], i.e., a MMF
with N� ¼ 120 modes (core radius R ¼ 26 μm, n2 ¼
3.2 × 10−20 m2=W) and injected power N ¼ 47.5 kW.
At variance with usual simulations of wave turbulence
[5,13,16,18], we did not impose a random phase among the
initial modes Apðz ¼ 0Þ, which is consistent with the
experimental conditions where a laser beam featured by
a coherent transverse phase front is launched into the
optical fiber. The simulations of Eq. (1) show that a strong
phase correlation among the modes is preserved during the
propagation, thus leading to a phase-sensitive “coherent
regime” of modal interaction. The modes ApðzÞ then
experience a quasireversible exchange of power with each
other [Fig. 1(a)], which leads to an oscillatory dynamics of
the intensity pattern jψ j2ðr; zÞ (see the video in the
Supplemental Material [50]). Such a multimode beam does
not exhibit an enhanced brightness that characterizes a
stable self-cleaning effect. This coherent regime of mode
interactions then freezes the thermalization process, a
feature of growing interest that is analyzed in the frame-
work of finite size effects in discrete or mesoscopic wave
turbulence [34–37].

Kinetic equation with weak disorder.—Light propaga-
tion in MMFs is known to be affected by a structural
disorder. We show below that disorder breaks the coherent
modal regime discussed in Fig. 1(a) and leads to a turbulent
incoherent regime with uncorrelated random phase fluctu-
ations of the modes. We stress that the acceleration of
thermalization predicted by our theory is not simply due to
a breaking of the coherent regime by disorder, but solely
results from the interplay of disorder and the incoherent
modal interaction. Note that our theory goes beyond the
mean-field approximation reported in [27], which is a
formally reversible theory inherently unable to explain
the irreversible process of spatial beam self-cleaning.
Random mode coupling in MMFs has been widely

studied in recent years [28,30–33]. Here, we consider
the most general form of “space-time” disorder by intro-
ducing the random potential Ŵðr; zÞ in the vector NLS
equation i∂zψ ¼ −α∇2ψ þ VðrÞψ − γ0F ðψÞ þ Ŵðr; zÞψ.
Its vector form accounts for the polarization degree of
freedom of the field ψðr; zÞ ¼ ðψ1;ψ2ÞT , where F ðψÞ
describes the corresponding cubic nonlinearity. Because
of the conservation of the power (“number of particles”)
N ¼ R jψj2dr, the random potential Ŵðr; zÞ is Hermitian.
Therefore, it can be expanded on the complete basis formed
by the Pauli matrices Ŵðr; zÞ ¼ P

3
j¼0 ν̂jðr; zÞσj, where
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FIG. 1. Disorder-induced condensation. (a) Numerical simu-
lations of the modal NLS equation (1) in the absence of structural
disorder (a) and in the presence of structural disorder (b) [NLS
equation (2)], starting from the same initial coherent condition.
Evolutions of the modal populations np=N: fundamental mode
p ¼ 0 (red), p ¼ 1 (dark blue), p ¼ 2 (blue), p ¼ 3 (light blue),
p ¼ 4 (cyan), p ¼ 5 (light green), p ¼ 6 (green), p ¼ 7 (yellow),
p ¼ 8 (orange). A structural disorder breaks the coherent modal
interaction (a) and induces condensation in the fundamental mode
n0 (b), which relaxes to the theoretical value neq0 =N ¼ 0.67 at
thermal equilibrium (dashed black). The dotted red line in
(b) reports n0ðzÞ from the simulation of the kinetic Eq. (3).
(Insets) Corresponding intensity patterns jψ j2ðr; zÞ where the
circles depict the core of the multimode fiber (N� ¼ 120 modes
without including polarization degeneracy).
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ν̂jðr; zÞ are independent and identically distributed real-
valued random processes, with variance σ2β and correlation
length lβ. The effective strength of disorder is controlled by
the parameter Δβ ¼ σ2βlβ. We assume that disorder is a
perturbation with respect to linear propagation Llin ¼
β−10 ≪ Ldisor ¼ 1=Δβ (with β0lβ ≫ 1) and that it dominates
nonlinear effects (Ldisor ≪ Lnl). As for the modal NLS
equation (1), we expand the random wave into the
eigenmodes of the linearized NLS equation without dis-
order, ψðr; zÞ ¼ P

pApðzÞupðrÞ,

i∂zAp ¼ βpAp þWpðzÞAp − γFpðAÞ; ð2Þ

where the random matrices WpðzÞ ¼
P

3
j¼0 νp;jðzÞσj

describe the dominant “weak disorder” contribution [32]
and FpðAÞ the nonlinear coupling among the modes
[γ ¼ γ0

R ju0j4ðrÞdr] (Supplemental Material [50]). The
modal NLS equation (2) conserves the power N ¼P

pjApj2ðzÞ and the linear contribution to the energy
E ¼ P

pβpjApj2ðzÞ, which dominates the nonlinear con-
tribution. Indeed, in the experiments of beam self-cleaning,
the system evolves in the weakly nonlinear regime where
linear dispersion (diffraction) effects dominate nonlinear
effects Llin ¼ β−10 ≪ Lnl. Notice that, since disorder is
(“time”) z dependent, our system is of a different nature
than those studying the interplay of thermalization and
Anderson localization [45].
In the limit of rapid disordered fluctuations, the gener-

alized NLS equation has been reduced to the integrable
Manakov equation [30–33], which, however, does not
describe the process of beam self-cleaning. Here, we go
beyond the Manakov limit by deriving the following kinetic
equation governing the evolution of the averaged modal
components npðzÞ ¼ hjApðzÞj2i (Supplemental Material
[50]):

∂znpðzÞ ¼
γ2

6Δβ

X

q;l;m

δKβqþβl−βm−βp jSpqlmj2MpqlmðnÞ

þ 4γ2

9Δβ

X

q

δKβq−βp jspqðnÞj2ðnq − npÞ; ð3Þ

with spqðnÞ ¼
P

m0Spqm0m0nm0 , and MpqlmðnÞ ¼ nqnlnpþ
nqnlnm − nmnpnl − nmnpnq, where nm stands for nmðzÞ,
while the Kronecker symbol reflects energy conservation of
wave resonances. The discrete nature of the kinetic equa-
tion originates in finite size effects due to the relative small
number of modes of the trapping potential (∼100 modes
with β0 ≫ 1=Lnl) [50].
Acceleration of thermalization.—The originality of our

theoretical approach with respect to the conventional wave
turbulence approach [5,6,15] and the recent developments
[34–37] relies on the fact that it accounts for the presence of

a structural disorder. By using the Furutsu-Novikov theo-
rem, our theory reveals that disorder deeply affects the
evolution of the moments equations. Specifically, the
dynamics of a fourth-order moment of the random wave
is governed by an effective forced-damped oscillator
equation, in which the dissipation originates from the
conservative disorder. It turns out that the singularity
associated with a resonance is regularized by the dissipa-
tion due to disorder: the lower the magnitude of disorder
Δβ, the stronger the efficiency of the wave resonance.
Clearly, the amount of disorder Δβ cannot decrease
arbitrarily since ΔβLnl ≳ 1; in the opposite regime
Δβ ≪ 1=Lnl, the regularization due to disorder is negligible
and the kinetic equation recovers the standard continuous
form [5,18]. The characteristic lengths (“times”) of ther-
malization (ζth) in the presence and the absence of disorder
scale as

ζdisorth =ζordth ∼ Δβ=β0: ð4Þ

This shows that thermalization is significantly accelerated
by the perturbative disorder Δβ=β0 ≪ 1. Considering
typical experimental parameters [27] used in the simula-
tions of Figs. 1 and 2, β0 ≃ 5 × 103 m−1, Ldisor ≃ 0.4 m
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FIG. 2. Condensation to equilibrium. (a) Simulation of the
modal NLS equation (2) (accounting for structural disorder)
showing the evolution of npðzÞ for the fundamental mode p ¼ 0
(red), and p ¼ 3 (blue), and corresponding simulation of the
kinetic equation (3) (dotted red and blue lines) starting from the
same initial incoherent condition: n0ðzÞ reaches the theoretical
equilibrium value neq0 =N ≃ 0.57 (dashed black). (b) Correspond-
ing energy per mode EpðzÞ ¼ ðβp − β0ÞnpðzÞ at z ¼ 0 (blue
dots), and at z ¼ 20 m (red dots) showing that the beam reaches
thermal equilibrium with “energy equipartition” Eeq

p ¼ T.
(c) Condensate fraction at equilibrium neq0 =N vs energy E
(keeping constant the power N): For E ≤ Ecrit the system
undergoes a phase transition to condensation. The NLS simu-
lations of Eq. (2) (red circles) are in quantitative agreement with
the theory (blue line) without adjustable parameters.
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(beat length 2π=σβ ≃ 2.14 m, lβ ≃ 30 cm), one obtains
Δβ=β0 ≲ 5 × 10−4: the rate of thermalization is increased
by several orders of magnitude by the disorder. Although
the experimental parameters of disorder are not precisely
known, the effect of disorder induces beam cleaning
(shown in Figs. 1 and 2), is robust, and has been observed
over a wide range of parameters (e.g., 2π=σβ and lβ of
several meters) (Supplemental Material [50]).
The kinetic equation (3) describes a process of

wave condensation [5,7,18]. It conserves the number of
particles N, the energy E, and exhibits an H theorem
of entropy growth for the nonequilibrium entropy
SðzÞ ¼ P

pnpðzÞ log½npðzÞ�, so that it describes an irre-
versible evolution to the Rayleigh-Jeans equilibrium dis-
tribution realizing the maximum of entropy neqp ¼
T=ðβp − μÞ. Proceeding as in Refs. [5,7,9,18], the system
exhibits a phase transition to condensation: for E ≤ Ecrit≃
Nβ0

ffiffiffiffiffiffiffiffiffiffiffi
N�=2

p
, μ → β0 and the condensate amplitude

increases as the energy decreases, n0=N ≃ 1 − ðE − Nβ0Þ=
ðEcrit − Nβ0Þ. The fundamental mode then gets macro-
scopically populated n0 ≫ np, while the higher-order
modes exhibit energy equipartition Eeq

p ¼ðβp−β0Þneqp ¼T.
Note that Ecrit only depends on the geometry of the
waveguide potential, whose finite number of modes N�
regularizes the ultraviolet catastrophe of classical waves.
These theoretical predictions have been confirmed by the
simulations of the NLS equation (2) and kinetic equa-
tion (3): a quantitative agreement has been obtained with-
out adjustable parameters even well beyond the validity
regime of the kinetic equation (see Fig. 2 and the
Supplemental Material [50]). We have checked through
a scale-by-scale analysis [57] that even the low-order
modes evolve in the weakly nonlinear regime. As a
consequence of the macroscopic population of the funda-
mental mode u0ðrÞ, the intensity pattern of the random
wave jψ j2ðrÞ exhibits a stable self-cleaned shape (see the
video in the Supplemental Material [50]).
Impact of strong disorder.—For relatively large propa-

gation lengths, a strong coupling among different modes
can no longer be neglected [28,30–33]. We have extended
the above theory by considering a general form of the N� ×
N� matrix WðzÞ modeling random mode coupling. The
theory shows that strong disorder introduces an additional
term in kinetic equation (3),

∂znp ¼ Δβsd
X

q

ΓpqR̂½ðβp − βqÞlβ�½nqðzÞ − npðzÞ�; ð5Þ

where the matrix Γpq describes mode coupling and Δβsd is
the corresponding amount of strong disorder (Supplemental
Material [50]). Note that Eq. (5) has a form similar to power
coupling models [28]. In principle, the extra term (5) breaks
the conservation of energy E, so that an H theorem of the
complete kinetic equations (3) and (5) would describe an

irreversible thermalization toward an equilibrium state of
power equipartition among all the modes. Strong disorder
would then deteriorate the condensation process. However,
the key observation is that mode coupling among non-
degenerate modes is quenched by the Fourier transform of
the correlation function of the fluctuations R̂ðβ0lβÞ ≃ 0

[28] because β0lβ ≫ 1 in the experiments of beam self-
cleaning. Mode coupling is then restricted to degenerate
modes [R̂ð0Þ ¼ 1], and Eq. (5) describes an exponential
relaxation to an equipartition of power within groups of
degenerate modes. Interestingly, this is a property of the
Rayleigh-Jeans distribution (neqp only depends on βp). This
reveals that strong disorder does not deteriorate condensa-
tion, but instead enforces the thermalization to the
Rayleigh-Jeans equilibrium distribution. However, given
the short fiber lengths considered in beam cleaning experi-
ments (∼10–20 m) [27], such an acceleration of thermal-
ization is negligible with respect to the dramatic
acceleration due to weak disorder [see Eq. (4)].
Experiments.—We performed experiments in a MMF to

evidence the transition to light condensation by varying the
coherence of the input beam. The energy E provides a
measure of the “coherence” of the beam in the sense that E
increases as the beam populates higher-order modes: by
increasing the coherence, E decreases and this leads to an
increase of the condensate amplitude n0 after nonlinear
propagation in the MMF, as described by the condensation
curve in Fig. 2(c). The subnanosecond pulses delivered by a
Nd:YAG laser (λ ¼ 1.06 μm) are passed through a diffuser
to generate a beam with different properties of coherence.
The beam is subsequently injected into a graded-index
MMF, and the near-field intensity is recorded at the fiber
output with a (CMOS) camera. The specific fiber launch
conditions are known to significantly alter the number of
modes excited at the fiber input. Hence, it is important to
compare with the same launch conditions and the same
power, the intensity pattern after a small propagation length
(Z0) representing the “input” (initial) field, with the
corresponding intensity pattern after propagation through
the whole fiber length L. To this aim, the field intensity has
been recorded at the output of the fiber length L ¼ 13 m,
which has been subsequently cut to Z0 ¼ 20 cm to record
the corresponding input field.
The input and output intensity patterns are reported in

Fig. 3 for a power fixed to N ¼ 19 kW (at the fiber output).
The incoherent beam evolves in the weakly nonlinear
regime, Llinð≃0.2 mmÞ ≪ Lnlð≃1 mÞ. When a large
number of modes are excited by the “initial” beam
(i.e., E > Ecrit), the intensity distribution tends to relax
to the equilibrium Rayleigh-Jeans distribution IincðrÞ ¼P

pn
eq
p jupðrÞj2 [see Fig. 3(d)]. By reducing the excitation

of modes (i.e., E < Ecrit), the power gradually condenses
into the fundamental Gaussian mode u0ðrÞ of the
parabolic potential VðrÞ, see the orange-filled region in
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Figs. 3(a)–3(c). This allowed us to compute with accuracy
the condensate contribution in the fundamental mode
IcondðrÞ ¼ n0u20ðrÞ (orange region) and the incoherent con-
tribution from all other modes IincðrÞ ¼

P
p≠0n

eq
p jupðrÞj2

(gray region). We observe a transition from a vanishing n0
to a condensate fraction of up to ≃60% as the coherence of
the input beam is increased—these measurements being
only weakly affected by the Raman effect (Supplemental
Material [50]).
Conclusion.—We have shown that the previously unrec-

ognized process of disorder-induced acceleration of con-
densation can explain the phenomenon of optical beam
self-cleaning. The discrete nature of the kinetic equation (3)
also explains why beam self-cleaning has not been
observed in step-index optical fibers [i.e., homogeneous
potential VðrÞ] because of the absence of exact resonances.
The theory and the experiment can be extended to study
turbulence cascades [5,6], or spatiotemporal effects
[25,26,58–60]. Even more important, the theoretical
approach developed to tackle the impact of a structural
disorder is general and can be applied to different types of
disordered nonlinear systems (Bose-Einstein condensates,
hydrodynamics, condensed matter, etc.). At variance with
recent observations of superfluid light flows [20,21], our
experiment of light condensation could demonstrate a key
manifestation of superfluidity, namely, the nucleation of
vortices induced by a rotating confining potential (along the
time “z” variable) in manufactured fibers, in complete
analogywith rotating trappedBose-Einstein condensates [1].
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FIG. 3. Experiments. Intensity patterns recorded at Z0 ¼ 20 cm
(i)–(l) and at the output of the whole fiber length L ¼ 13 m
(e)–(h): by reducing the number of modes initially excited (i.e.,
by decreasing E), a transition occurs from n0 ¼ 0 to a condensate
fraction of n0=N ≃ 0.63. (a)–(d) The fundamental Gaussian mode
u0ðrÞ of the MMF gets macroscopically populated as evidenced
by the intensity lineouts Iðx; y ¼ 0Þ recorded experimentally at
z ¼ L (blue line), the corresponding fits of the condensate
contribution IcondðrÞ (orange-filled region), and the incoherent
contribution IincðrÞ (gray-filled region). The red dashed line
denotes IcondðrÞ þ IincðrÞ. Above the transition to condensation
n0 ¼ 0 (d), we computed the angle averaged distance jrj of the
intensity recorded experimentally (blue), which is in agreement
with the Rayleigh-Jeans distribution IincðrÞ (red dashed).
R ¼ 26 μm is the fiber core radius [corresponding to the circles
(e)–(l)], N� ¼ 120 modes, N ¼ 19 kW.

PHYSICAL REVIEW LETTERS 122, 123902 (2019)

123902-5

https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1038/nature09567
https://doi.org/10.1016/S0167-2789(01)00192-0
https://doi.org/10.1016/S0167-2789(01)00192-0
https://doi.org/10.1146/annurev-fluid-122109-160807
https://doi.org/10.1146/annurev-fluid-122109-160807
https://doi.org/10.1103/PhysRevLett.95.263901
https://doi.org/10.1103/PhysRevLett.95.263901
https://doi.org/10.1103/PhysRevLett.99.145301
https://doi.org/10.1103/PhysRevLett.99.145301
https://doi.org/10.1016/j.physd.2009.04.014
https://doi.org/10.1016/j.physd.2009.04.014
https://doi.org/10.1038/nphys2278
http://arXiv.org/abs/1307.5034
https://doi.org/10.1103/PhysRevLett.115.157203
https://doi.org/10.1103/PhysRevLett.115.157203
https://doi.org/10.1103/PhysRevA.90.013624
https://doi.org/10.1103/PhysRevA.90.013624
https://doi.org/10.1103/PhysRevLett.120.055301
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Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz,
Observation of Geometric Parametric Instability Induced
by the Periodic Spatial Self-Imaging of Multimode Waves,
Phys. Rev. Lett. 116, 183901 (2016).

[26] L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N.
Christodoulides, and F. W. Wise, Self-organized instability
in graded-index multimode fibres, Nat. Photonics 10, 771
(2016).

[27] K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A.
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