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Abstract
Recent empirical studies suggest that the volatility of an

underlying price process may have correlations that decay

slowly under certain market conditions. In this paper, the

volatility is modeled as a stationary process with long-range

correlation properties in order to capture such a situation,

and we consider European option pricing. This means that

the volatility process is neither a Markov process nor a mar-

tingale. However, by exploiting the fact that the price pro-

cess is still a semimartingale and accordingly using the mar-

tingale method, we can obtain an analytical expression for

the option price in the regime where the volatility process

is fast mean reverting. The volatility process is modeled as

a smooth and bounded function of a fractional Ornstein–

Uhlenbeck process. We give the expression for the implied

volatility, which has a fractional term structure.
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1 INTRODUCTION

1.1 Stochastic volatility and the implied surface
Under many market scenarios, the assumption that volatility is constant, as in the standard Black–

Scholes model, is not realistic. Practically, this reflects itself in an implied volatility that depends on
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the pricing parameters. This means that in order to match observed prices, the volatility that one needs

to use in the Black–Scholes option pricing formula depends on time to maturity and log-moneyness,

with moneyness being the strike price over the current price of the underlying. The implied volatility

is a convenient way to parameterize the price of a financial contract relative to a particular under-

lying. It gives insight about how the market deviates from the ideal Black–Scholes situation. After

calibration of an implied volatility model to liquid contracts, this model can be used for pricing

less liquid contracts written on the same underlying. It is therefore of interest to identify a consis-

tent parameterization of the implied volatility that corresponds to an underlying model for stochastic

volatility fluctuations. As in Garnier and Sølna (2017), a main objective is to construct a stochas-

tic volatility model that is a stationary process and that makes it possible to consider general times

to maturity. For background on stochastic volatility models, we refer the reader to the books and

surveys by Fouque, Papanicolaou, Sircar, and Sølna (2011), Gatheral (2006), Ghysels, Harvey, and

Renaud (1995), Gulisashvili (2012), Henry-Labordère (2009), and Rebonato (2004) (see the refer-

ences therein). We also refer the reader to our paper on fractional stochastic volatility (fSV), Garnier and

Sølna (2017), for further references on the recent literature on the class of volatility models we consider

here.

Empirical studies suggest that volatility may exhibit a “multiscale” character with long-range corre-

lations, as in Bollerslev, Osterrieder, Sizova, and Tauchen (2013), Breidt, Crato, and De Lima (1998),

Chronopoulou and Viens (2012b), Cont (2001, 2005), Engle and Patton (2001), and Oh, Kim, and

Eom (2008). It means that correlations decay as a power law in time offset, while they would decay

as an exponential function if stochastic volatility were Markovian. Here, we seek to identify paramet-

ric forms for the implied volatility consistent with such long-range correlations. In our recent paper,

Garnier and Sølna (2017), we considered this question within the context where the magnitude of the

volatility fluctuations is small. Here, we consider the situation where the magnitude of the volatility

fluctuations is of the same order as the mean volatility. Indeed, empirical studies show that the volatil-

ity fluctuations may be quite large: Breidt et al. (1998), Cont (2001), and Engle and Patton (2001).

While in Garnier and Sølna (2017) the volatility fluctuations were small, leading to a (regular) pertur-

bative situation, here the situation is different in that it is the fast mean reversion (fast relative to the

diffusion time of the underlying) that allows us to push through an asymptotic analysis. The presence

of long-range correlations in this context gives a novel, singular perturbation situation. The analysis

becomes significantly more complex. In particular, the detailed analysis of the covariation process is

an important ingredient. We consider here option pricing, but the approach set forth is general and will

be useful in other financial contexts as well.

It follows from our analysis that the form of the implied volatility surface is similar to the one

obtained in the Markovian case. This confirms the robustness of the implied volatility parametric model

with respect to the underlying price dynamics. There are, however, central differences. In particular, the

long-range correlations produce a volatility covariance that is not integrable, which, in turn, gives an

implied volatility surface that is a random field, whose statistics can be described in detail. Moreover,

in the long-range case, the implied volatility has a fractional behavior as a function of time to maturity.

The empirical study in Fouque et al. (2003) shows that in order to fit well the implied volatility, it is

appropriate to consider a two-time scale model with one slow and one fast volatility factor. In Garnier

and Sølna (2017), we considered a slow factor, which is closely associated with a small fluctuation

factor. Here, we consider a fast factor with large fluctuations. Taken together, we have a generalization

of the two-factor model of Fouque et al. (2003, 2011) for processes with long-range correlations. This

leads to a fractional term structure of the implied volatility. It was shown in Fouque, Papanicolaou,

Sircar, and Sølna (2004) that such a term structure may be useful for fitting the implied volatility under

certain market conditions.
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1.2 Long memory and fast mean reversion
As mentioned above, the asymptotic regime considered in this paper is the situation where the volatility

is fast mean reverting. We denote its time scale by 𝜀, the small parameter in our model. The volatility

then decorrelates on the time scale 𝜀.

Stochastic volatility models are most often set with a volatility driving process that has mean zero and

mixing properties. This means that the random values of the volatility driving process at times 𝑡 and 𝑡 +
Δ𝑡, which are 𝑍𝜀

𝑡 and 𝑍𝜀
𝑡+Δ𝑡

, become rapidly uncorrelated when Δ𝑡 → ∞; that is, the autocovariance

function 𝜀(Δ𝑡) = 𝔼[𝑍𝜀
𝑡 𝑍

𝜀
𝑡+Δ𝑡

] decays rapidly to zero as Δ𝑡 → ∞. More precisely, we say that the

volatility driving process is mixing if its autocovariance function decays fast enough at infinity, so that

it is absolutely integrable

∫
∞

0
|𝜀(𝑡)|𝑑𝑡 < ∞ . (1)

In this case, we may associate the process with the finite correlation time 𝑡𝑐 = 2 ∫ ∞
0 𝜀(𝑡)𝑑𝑡∕𝜀(0),

which is of order 𝜀.

Stochastic volatility models with long-range correlation properties have recently attracted a lot of

attention, as more and more data collected under various situations confirm that this situation can be

encountered in many different markets. Qualitatively, the long-range correlation property means that

the random process has long memory (in contrast to a mixing process). This means that the correla-

tion between the random values 𝑍𝜀
𝑡 and 𝑍𝜀

𝑡+Δ𝑡
taken at two times separated by Δ𝑡 is not completely

negligible even for large Δ𝑡. More precisely, we say that the random process 𝑍𝜀
𝑡 has the 𝐻-long-range

correlation property if its autocovariance function satisfies

𝜀(𝑡)
|𝑡|→∞
≃ 𝑟𝐻

|||| 𝑡𝜀 ||||2𝐻−2
, (2)

where 𝑟𝐻 > 0 and 𝐻 ∈ (1∕2, 1). We refer to 𝐻 as the Hurst exponent. Here, the correlation time 𝜀 is

the critical time scale beyond which the power law behavior (2) is valid. Note that the autocovariance

function is not integrable as 2𝐻 − 2 ∈ (−1, 0), which means that a random process with the 𝐻-long-

range correlation property is not mixing. As we describe in more detail below, a common approach

for modeling long-range dependence is by using fractional Brownian motion (fBm) processes as intro-

duced in Mandelbrot and Van Ness (1968).

Long-memory stochastic volatility models are easy to introduce, but difficult to analyze. This is

largely due to the fact that the volatility process is neither a Markov process nor a semimartingale. It is,

however, important to note that the price process is still a semimartingale, and the problem formulation

does not entail arbitrage (Mendes, Oliveira, & Rodrigues, 2015), as has been argued for some models

whose price process itself is driven by fractional processes, as in Bjork and Hult (2005), Rogers (1997),

and Shiryaev (1998). A main motivation for long memory is to be able to fit observed implied volatil-

ities. One common challenge regarding the fitting of implied volatility surfaces is to capture a strong

moneyness dependence for short time to maturity without creating artificial behavior for long time

to maturity. Another typical challenge is to retain a strong parametric dependence for long maturities

despite averaging effects that occur in this regime, as discussed in Bollerslev and Mikkelsen (1999),

Bollerslev et al. (2013), Comte et al. (2012), and Sundaresan (2000). We remark that models involv-

ing jumps have been promoted as one approach to meet these challenges by Carr and Wu (2003) and

Mijatovic and Tankov (2016). Recent works show that stochastic volatility models with long-range

dependence also provide a promising framework for meeting such challenges. Approaches based on
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using fractional noises in the description of the stochastic volatility process were used by Comte and

Renault (1998) and Comte et al. (2012). Such stochastic volatility models with long-range dependence

can capture the steepness of long-term volatility smiles without overemphasizing the short-run persis-

tence. In order to get explicit results for the implied volatility, a number of asymptotic regimes have

been considered. Chief among them has been the regime of short time to maturity. The model pre-

sented in Comte et al. (2012) was recently revisited in Guennoun, Jacquier, and Roome (in press),

where short and long times to maturity asymptotics are analyzed using large deviations theory. In Alòs

et al. (2007), the authors use Malliavin calculus to decompose the option price as the sum of the classic

Black–Scholes formula price and a term due to the volatility of the volatility. In the Black–Scholes for-

mula, they use a volatility parameter that is equal to the root mean square future average volatility plus

a term due to the leverage effect (i.e., the correlation between the underlying return and its changes

in volatility). Their model is a fractional version of the Bates model (Bates, 1996). They find that

the implied volatility flattens in the long-range-dependent case in the limit of short time to maturity.

In Forde and Zhang (2015), the authors use large deviation principles to compute the short-time-to-

maturity asymptotic form of the implied volatility. They consider the leverage effect and obtain results

that are consistent with those in Alòs et al. (2007). They consider stochastic volatility models driven

by fBms, which are analyzed using rough path theory. They also consider long time asymptotics for

some fractional processes. Short-time-to-maturity asymptotic results were also recently presented in

Gulisashvili, Viens, and Zhang (2018) in a context of long-range processes. In Bayer, Friz, and Gatheral

(2016), the authors consider the rough Bergomi model, or “rBergomi” model, and discuss the form of

the associated implied volatility term structure. In Fukasawa (2011), the author discusses how small

volatility fluctuations with long-range dependence impact the implied volatility as an application of the

general theory he sets forth. In that paper, as well as in Alòs et al. (2007), the authors use a model where

time 0 plays a special role, and hence the modeling is not completely satisfactory, because it leads to a

nonstationary volatility model. On the other hand, in Garnier and Sølna (2017), which deals with small

volatility fluctuations, the authors use a formulation with a stationary model. This is also the case in

the recent paper by Fukasawa (2017), which considers short-time asymptotics in the rough volatility

case, with 𝐻 < 1∕2. This distinction is important: If the volatility factor is an fBm emanating from the

origin, then the implied volatility surface is identified conditioned on the present value of the volatility

factor only. In our paper, we use a stationary model so that the implied volatility surface depends on

the path of the volatility factor until the present, reflecting the non-Markovian nature of fBm. We dis-

cuss in detail in Section 6 the consequences of this for interpretating the implied volatility surface as a

random field. Recently, pricing approximations in the regime of small fractional volatility fluctuations

were presented in Alòs and Yang (2017). In terms of computation of prices for general maturities and

fractional volatility fluctuations, so far mainly numerical approximations have been available. Here, we

present an asymptotic regime based on fast mean reversion that gives explicit price approximations.

Together, the results of Garnier and Sølna (2017) and the current paper make it possible to construct

a fractional, two-time-scale stochastic volatility model, which gives enough flexibility to fit both the

short and long times to maturity parts of the implied volatility surface.

Let us note that we consider here the long-range correlation case where 𝐻 > 1∕2 as opposed to the

rough volatility case where 𝐻 < 1∕2. Indeed, both regimes have been identified from the empirical

perspective. We refer the reader, for instance, to Gatheral, Jaisson, and Rosenbaum (2018) for obser-

vations of rough volatility, and to Chronopoulou and Viens (2012a) for cases of long-range volatility.

A long-range, mean-reverting volatility situation is reported in Jensen (2016) in a discrete model-

ing framework. Long-range volatility situations are also reported for currencies in Walther, Klein,

Thu, and Piontek (2017), for commodities in Charfeddine (2014), and for equity indices in Chia et al.

(2015). Analysis of electricity markets data typically gives 𝐻 < 1∕2, as reported in Simonsen (2002),
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Rypdal and Lovsletten (2013), and Bennedsen (2015). We believe that both the rough and the long-

range cases are important and can be observed depending on the specific market and regime. Even

though the “rough” case with 𝐻 < 1∕2 may be the most common situation, the understanding of the

situation where 𝐻 > 1∕2 may be of particular importance for pricing and hedging. In this paper, we

only consider the analytic aspects of our model. The fitting with respect to specific data is beyond the

scope of this paper and will be presented in future work.

The fractional model we set forth here produces typical “stylized facts,” such as heavy tails of returns,

volatility clustering, mean reversion, and long memory or volatility persistence. Additionally, here,

we incorporate the leverage effect. This term was coined by Black (1976), referring to stock price

movements that are correlated (typically negatively) with volatility, as falling stock prices may imply

more uncertainty, and hence volatility. Note, however, that the model for the implied volatility surface

derived below is linear in log-moneyness. This may seem somewhat restrictive from the point of view

of fitting, because, in many cases, a strong skew in log-moneyness may be observed in certain markets.

This has particularly been the case for stock markets, but relatively less so in other markets, such

as fixed income markets. Nevertheless, if one considers higher order approximations, then they also

generate skew effects. A number of modeling issues not considered here, such as transaction costs,

bid–ask spreads, and liquidity, may also affect the skew shape. Note also that, for simplicity, we do not

incorporate a nonzero interest rate or a market price for risk aspects.

1.3 Rapid clustering, long memory, and the implied surface
Next, we will summarize the main result of the paper from the point of view of calibration, that is, the

form of the implied volatility surface in the context of a stochastic volatility modeled by a fast process

with long-range correlation properties. We will first summarize some aspects of the modeling.

We consider a continuous-time stochastic volatility model that is a smooth function of a Gaus-

sian long-range process. Explicitly, we model the fSV as a smooth function of a fractional Ornstein–

Uhlenbeck (fOU) process. The fOU process is a classic model for a stationary process with a fractional

long-range correlation structure. This process can be expressed in terms of an integral of an fBm pro-

cess. The distribution of an fBm process is characterized in terms of the Hurst exponent 𝐻 ∈ (0, 1).
The fBm process is locally Hölder continuous of exponent 𝐻 ′ for all 𝐻 ′ < 𝐻 , and this property is

inherited by the fOU process. The fBm process, 𝑊 𝐻
𝑡 , is also self-similar in that{

𝑊 𝐻
𝛼𝑡 , 𝑡 ∈ ℝ

} 𝑑𝑖𝑠𝑡.
=

{
𝛼𝐻𝑊 𝐻

𝑡 , 𝑡 ∈ ℝ
}

for all 𝛼 > 0. (3)

The self-similarity property is inherited approximately by the fOU process on time scales smaller than

the mean-reversion time of the fOU process, which we denote by 𝜀 below. In this sense, we may refer

to the fOU process as a multiscale process on short time scales. The case 𝐻 ∈ (1∕2, 1) that we address

in this paper gives an fOU process that is long-range. This regime corresponds to a persistent process

where consecutive increments of the fBm are positively correlated. The stronger, positive correla-

tion for the consecutive increments of the associated fBm process with increasing 𝐻 values gives a

smoother process whose autocovariance function decays slowly. For more details regarding the fBm

and fOU processes, we refer the reader to Biagini, Hu, Øksendal, and Zhang (2008), Coutin (2007),

Doukhan, Oppenheim, and Taqqu (2003), Mandelbrot and Van Ness (1968), Cheridito, Kawaguchi,

and Maejima (2003), and Kaarakka and Salminen (2011).

The volatility driving process is the 𝜀-scaled fOU process defined by

𝑍𝜀
𝑡 = 𝜀−𝐻 ∫

𝑡

−∞
𝑒
− 𝑡−𝑠

𝜀 𝑑𝑊 𝐻
𝑠 . (4)
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It is a zero-mean, stationary Gaussian process that exhibits long-range correlations for the Hurst expo-

nent 𝐻 ∈ (1∕2, 1). It is important to note that this is a process whose “natural time scale” is 𝜀, in the

sense that the mean-reversion time, or time before the process reaches its equilibrium distribution, is

of the order of 𝜀. It is also important to note that the decay of the correlations (on the 𝜀 time scale)

is polynomial rather than exponential, as in the standard Ornstein–Uhlenbeck process. Explicitly, the

correlation of the process between times 𝑡 and 𝑡 + Δ𝑡 decays as (Δ𝑡∕𝜀)2𝐻−2, while the variance of the

process is independent of 𝜀.

In this paper, we consider a stochastic volatility model that is a smooth function of the rapidly varying

fOU process with Hurst coefficient 𝐻 ∈ (1∕2, 1). It is given by

𝜎𝜀
𝑡 = 𝐹 (𝑍𝜀

𝑡 ), (5)

where 𝐹 is a smooth, positive, one-to-one bounded function with bounded derivatives, and with an

additional technical condition that is given in equation (26). The process 𝜎𝜀
𝑡 inherits the long-range

correlation properties of the fOU 𝑍𝜀
𝑡 .

The main result, in Section 5, is an expression for the implied volatility of the European call option

for strike 𝐾 , maturity 𝑇 , and current time 𝑡,

𝐼𝑡 = 𝔼
[

1
𝑇 − 𝑡 ∫

𝑇

𝑡

(𝜎𝜀
𝑠 )

2𝑑𝑠
|||||𝑡

]1∕2

+ 𝜎𝑎𝐹

[(
𝜏

𝜏

)𝐻−1∕2
+

(
𝜏

𝜏

)𝐻−3∕2
log

(
𝐾

𝑋𝑡

)]
. (6)

Here

𝑎𝐹 = 𝜀1−𝐻
𝜎𝜌 ⟨𝐹𝐹 ′⟩ 𝜏𝐻

23∕2𝜎Γ(𝐻 + 3∕2)
, (7)

𝜏 = 𝑇 − 𝑡 is time to maturity, 𝜌 the correlation between the Brownian motion driving the fBm and the

Brownian motion driving the underlying, and

𝜏 = 2
𝜎
2 (8)

is the characteristic diffusion time. Furthermore, we have

𝜎
2 =

⟨
𝐹 2⟩ = ∫ℝ 𝐹 (𝜎ou𝑧)2𝑝(𝑧)𝑑𝑧,

𝜎 = ⟨𝐹 ⟩ = ∫ℝ 𝐹 (𝜎ou𝑧)𝑝(𝑧)𝑑𝑧,

⟨
𝐹𝐹 ′⟩ = ∫ℝ 𝐹 (𝜎ou𝑧)𝐹 ′(𝜎ou𝑧)𝑝(𝑧)𝑑𝑧,

where 𝜎2
ou = 1∕(2 sin(𝜋𝐻)) and 𝑝(𝑧) is the probability density function (pdf) of the standard normal

distribution. In other words, we form moments of the volatility function averaged with respect to the

invariant distribution of the fOU process 𝑍𝜀
𝑡 .

The first term in equation (6) is indeed the expected effective volatility until maturity conditioned

on the present. The second term is a skewness term that is nonzero only when the volatility process

and the underlying are correlated so that 𝜌 is nonzero. Note that the exponent of the fractional term

structure depends on the Hurst exponent, which determines the smoothness and the decorrelation rate



GARNIER AND SØLNA 7

of the volatility driving process 𝑍𝜀
𝑡 . The smoother the process, the larger the implied volatility for long

times to maturity.

In the fast case presented here with large and fast volatility fluctuations, the implied volatility

explodes in the regime of short time to maturity. Indeed, short time to maturity means that the time to

maturity is smaller than the diffusion time (8), but larger than the mean-reversion time 𝜀. Therefore,

short time to maturity involves large volatility fluctuations over a short maturity horizon resulting in a

moneyness correction that explodes and dominates the pure maturity term. In the context of short or

long times to maturity, the conditional expected effective volatility gives a small contribution, and we

have for short times to maturity and 𝐾 ≠ 𝑋𝑡

𝐼𝑡 ∼ 𝜎𝑎𝐹

[(
𝜏

𝜏

)𝐻−3∕2
log

(
𝐾

𝑋𝑡

)]
, (9)

and for long times to maturity

𝐼𝑡 ∼ 𝜎𝑎𝐹

(
𝜏

𝜏

)𝐻−1∕2
. (10)

We note here that the fractional scaling in the skewness term in equation (6) is exactly the fractional

scaling that corresponds to the case of long time to maturity and small volatility fluctuations given in

Garnier and Sølna (2017). That means that with long times to maturity, we have a situation reminiscent

of the one we have here with rapid volatility fluctuations. Here, however, the volatility fluctuations are

large compared to the small volatility fluctuations considered in Garnier and Sølna (2017).

We remark also that the case with a mixing volatility, and hence integrable correlation function

for the volatility fluctuations, would correspond to 𝐻 ↘ 1∕2. Note, however, that our derivation is

valid only for 𝐻 ∈ (1∕2, 1). If we consider the formula (39) for 𝜎𝜙 that determines the variance of the

first term in equation (6), we observe that it vanishes when 𝐻 ↘ 1∕2, which shows that the first term

in equation (6) becomes deterministic. In the mixing case, the first-order correction to the implied

volatility is deterministic, while the nonintegrability of the volatility covariance function makes it a

stochastic process in the general, long-range case with a variance that goes to zero as 𝐻 ↘ 1∕2. Indeed,

in the limit case 𝐻 ↘ 1∕2, we get a result similar to the one obtained in Fouque, Papanicolaou, and

Sircar (2000, section 5.2.5) that deals with the mixing case. Explicitly, we consider the mixing case

where the volatility driving process is an ordinary Ornstein–Uhlenbeck process; moreover, the interest

rate and market price of volatility risk are zero. Then, Fouque et al. (2000, equation (5.55)) give the

implied volatility in terms of a coefficient 𝑉3 defined in Fouque et al. (2000, section 5.2.5),

𝐼𝑡 = 𝜎 − 𝑉3

[
1
2𝜎

+ 1
𝜎
3
𝜏
log

(
𝐾

𝑋𝑡

)]
, (11)

which has the same form as the formal limit of (6) as 𝐻 ↘ 1∕2. The averaging expression giving the

coefficient 𝑉3 does not, however, correspond to the interpretation we arrive at here by the formal limit

𝐻 ↘ 1∕2. That is because the singular perturbation situation we consider is, in fact, “singular” at 𝐻 =
1∕2, and the ordering of important terms changes. Nevertheless, it is important from the calibration

point of view that we have continuity of the implied volatility parameterization and its form at𝐻 = 1∕2,

providing robustness to the asymptotic framework.

In Section 6, we give the complete statistical description of the stochastic correction coefficient,

which determines the random component of the price correction and the implied volatility (the first term

in equation (6)). It is a random function of the maturity 𝑇 and the current time 𝑡 with Gaussian statistics

and with a covariance function that we describe in detail. This covariance function has interesting and
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nontrivial, self-similar properties, and this function is important in order to construct and characterize

estimators of the implied volatility surface.

1.4 Outline
The outline of the paper is as follows. In Section 2, we describe the fOU process and derive some

fundamental a priori bounds. In Section 3, we describe the stochastic volatility model. In Section 4, we

derive the expression for the price in the fast mean-reverting fractional case. The derivation is based

on the martingale method. That is, we make an ansatz for the price as a process that has the correct

payoff and whose leading-order term is a martingale. Then, indeed, this process is the leading-order

expression for the price with an error that is of the order of the nonmartingale part. This approach

involves introducing correctors so that the nonmartingale part is pushed to a small term; we give the

resulting decomposition in Section 4. Based on the expression for the price, we derive the associated

implied volatility in Section 5 and present our concluding remarks in Section 7. We give a convenient

Hermite decomposition of the volatility in Appendix A. A number of the technical lemmas are proved

in Appendix B.

2 THE RAPID FRACTIONAL ORNSTEIN–UHLENBECK
PROCESS

We use a rapid fOU process as the volatility factor and describe here how this process can be represented

in terms of an fBm. Because fBm can be expressed in terms of ordinary Brownian motion, we also

arrive at an expression for the rapid fOU process as a filtered version of Brownian motion.

An fBm is a zero-mean Gaussian process (𝑊 𝐻
𝑡 )𝑡∈ℝ with the covariance

𝔼[𝑊 𝐻
𝑡 𝑊 𝐻

𝑠 ] =
𝜎2
𝐻

2
(|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻)

, (12)

where 𝜎𝐻 is a positive constant. We use the following moving-average stochastic integral representa-

tion of the fBm (Mandelbrot & Van Ness, 1968)

𝑊 𝐻
𝑡 = 1

Γ(𝐻 + 1
2 )

∫ℝ
(
(𝑡 − 𝑠)

𝐻−1
2

+ − (−𝑠)
𝐻−1

2
+

)
𝑑𝑊𝑠, (13)

where (𝑊𝑡)𝑡∈ℝ is a standard Brownian motion over ℝ. Then, (𝑊 𝐻
𝑡 )𝑡∈ℝ is indeed a zero-mean Gaussian

process with the covariance (12), and we have

𝜎2
𝐻

= 1
Γ(𝐻 + 1

2 )
2

[
∫

∞

0

(
(1 + 𝑠)𝐻−1

2 − 𝑠
𝐻−1

2
)2

𝑑𝑠 + 1
2𝐻

]

= 1
Γ(2𝐻 + 1) sin(𝜋𝐻)

. (14)

We introduce the 𝜀-scaled fOU as

𝑍𝜀
𝑡 = 𝜀−𝐻 ∫

𝑡

−∞
𝑒
− 𝑡−𝑠

𝜀 𝑑𝑊 𝐻
𝑠 = 𝜀−𝐻𝑊 𝐻

𝑡 − 𝜀−1−𝐻 ∫
𝑡

−∞
𝑒
− 𝑡−𝑠

𝜀 𝑊 𝐻
𝑠 𝑑𝑠. (15)
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Thus, the fOU process is, in fact, an fBm with a restoring force toward zero. It is a zero-mean, stationary

Gaussian process, with variance

𝔼[(𝑍𝜀
𝑡 )

2] = 𝜎2
ou, with 𝜎2

ou =
1
2
Γ(2𝐻 + 1)𝜎2

𝐻
= 1

2 sin(𝜋𝐻)
, (16)

which is independent of 𝜀, and covariance

𝔼[𝑍𝜀
𝑡 𝑍

𝜀
𝑡+𝑠] = 𝜎2

ou𝑍

(
𝑠

𝜀

)
,

which is a function of 𝑠∕𝜀 only, with

𝑍 (𝑠) =
1

Γ(2𝐻 + 1)

[
1
2 ∫ℝ 𝑒−|𝑣||𝑠 + 𝑣|2𝐻𝑑𝑣 − |𝑠|2𝐻]

= 2 sin(𝜋𝐻)
𝜋 ∫

∞

0
cos(𝑠𝑥)𝑥

1−2𝐻

1 + 𝑥2
𝑑𝑥.

This shows that 𝜀 is the natural scale of variation of the fOU 𝑍𝜀
𝑡 . Note that the random process 𝑍𝜀

𝑡

is neither a martingale nor a Markov process. For 𝐻 ∈ (1∕2, 1), it possesses long-range correlation

properties

𝑍 (𝑠) =
1

Γ(2𝐻 − 1)
𝑠2𝐻−2 + 𝑜

(
𝑠2𝐻−2) , 𝑠 ≫ 1. (17)

This shows that the correlation function is nonintegrable at infinity. In this paper, we focus on the case

𝐻 ∈ (1∕2, 1).
We remark that if 𝐻 = 1∕2, then the standard Ornstein–Uhlenbeck process (synthesized with a

standard Brownian motion) is a stationary Gaussian Markov process with an exponential correlation,

and hence a mixing process. It is possible to simulate paths of the fOU process using the Cholesky

method (see Figure 1), or other well-known methods described in Omre, Sølna, and Tjelmeland (1993)

and Bardet, Lang, Oppenheim, Philippe, and Taqqu (2003).

Using equations (13) and (15), we arrive at the moving-average integral representation of the scaled

fOU as

𝑍𝜀
𝑡 = 𝜎ou ∫

𝑡

−∞
𝜀(𝑡 − 𝑠)𝑑𝑊𝑠, (18)

where

𝜀(𝑡) = 1√
𝜀
(

𝑡

𝜀

)
, (𝑡) = 1

Γ(𝐻 + 1
2 )𝜎ou

[
𝑡
𝐻−1

2 − ∫
𝑡

0
(𝑡 − 𝑠)𝐻−1

2 𝑒−𝑠𝑑𝑠

]
. (19)

The main properties of the kernel  in our context are the following (valid for any 𝐻 ∈ (1∕2, 1)):

–  is nonnegative-valued,  ∈ 𝐿2(0,∞) with ∫ ∞
0 2(𝑢)𝑑𝑢 = 1, but  ∉ 𝐿1(0,∞),

– for short times 𝑡 ≪ 1

(𝑡) = 1
Γ(𝐻 + 1

2 )𝜎ou

(
𝑡
𝐻−1

2 + 𝑂
(
𝑡
𝐻+1

2
))

, (20)
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F I G U R E 1 The top plot shows a realization, 𝑍𝜀
𝑡
, 𝑡 ∈ (0, 10), of the fOU process with Hurst index 𝐻 = 0.6 and

correlation time 𝜀 = 1 (blue solid line) and a realization of the standard Ornstein–Uhlenbeck process with 𝐻 = 1∕2 and

𝜀 = 1 (red dashed line). The trajectories are more regular when 𝐻 is larger. The bottom plot shows the corresponding

correlation functions, 𝑍 (𝑠), and the “heavy” tail of the blue solid line of the case 𝐻 = 0.6 gives the long-range property

[Color figure can be viewed at wileyonlinelibrary.com]

– for long times 𝑡 ≫ 1

(𝑡) = 1
Γ(𝐻 − 1

2 )𝜎ou

(
𝑡
𝐻−3

2 + 𝑂
(
𝑡
𝐻−5

2
))

, (21)

and, in particular, (𝑡) − 1
𝜎ouΓ(𝐻−1

2 )
𝑡
𝐻−3

2 ∈ 𝐿1(0,∞).

3 THE STOCHASTIC VOLATILITY MODEL

The price of the risky asset follows the stochastic differential equation

𝑑𝑋𝑡 = 𝜎𝜀
𝑡 𝑋𝑡𝑑𝑊

∗
𝑡 , (22)

where the stochastic volatility is

𝜎𝜀
𝑡 = 𝐹 (𝑍𝜀

𝑡 ), (23)

and 𝑍𝜀
𝑡 is the scaled fOU introduced in the previous section, which is adapted to the Brownian motion

𝑊𝑡. Moreover, 𝑊 ∗
𝑡 is a Brownian motion that is correlated to the stochastic volatility through

𝑊 ∗
𝑡 = 𝜌𝑊𝑡 +

√
1 − 𝜌2𝐵𝑡, (24)

where the Brownian motion 𝐵𝑡 is independent of 𝑊𝑡.

The function 𝐹 is assumed to be one-to-one, positive-valued, smooth, bounded, and with bounded

derivatives. Accordingly, the filtration 𝑡 generated by (𝐵𝑡,𝑊𝑡) is also the one generated by 𝑋𝑡. Indeed,

it is equivalent to the filtration generated by (𝑊 ∗
𝑡 ,𝑊𝑡), or (𝑊 ∗

𝑡 , 𝑍𝜀
𝑡 ). Because 𝐹 is one-to-one, it is

equivalent to the filtration generated by (𝑊 ∗
𝑡 , 𝜎𝑡). Because 𝐹 is positive valued, it is equivalent to the

filtration generated by (𝑊 ∗
𝑡 , (𝜎𝜀

𝑡 )
2), or 𝑋𝑡.



GARNIER AND SØLNA 11

We denote the Hermite coefficients of the volatility function 𝐹 with respect to the invariant distri-

bution of the fOU process by 𝐶𝑘,

𝐶𝑘 = ∫ℝ 𝐻𝑘(𝑧)𝐹 2(𝜎ou𝑧)𝑝(𝑧)𝑑𝑧, 𝐻𝑘(𝑧) = (−1)𝑘𝑒𝑧2∕2 𝑑𝑘

𝑑𝑧𝑘
𝑒−𝑧

2∕2, (25)

with 𝑝(𝑧) = exp(−𝑧2∕2)∕
√
2𝜋. We use these in Appendix A to derive some technical lemmas. Indeed,

there is a technical reason requiring that 𝐹 satisfies the following condition: There exists some 𝛼 > 2
such that

∞∑
𝑘=0

𝛼𝑘𝐶2
𝑘

𝑘!
< ∞. (26)

As discussed above, the volatility driving process 𝑍𝜀
𝑡 possesses long-range correlation properties.

As we now show, the volatility process 𝜎𝜀
𝑡 itself inherits this property.

Lemma 3.1. We denote, for j = 1, 2,

⟨
𝐹 𝑗

⟩
= ∫ℝ 𝐹 (𝜎ou𝑧)𝑗𝑝(𝑧)𝑑𝑧,

⟨
𝐹 ′𝑗

⟩
= ∫ℝ 𝐹 ′(𝜎ou𝑧)𝑗𝑝(𝑧)𝑑𝑧, (27)

where 𝑝(𝑧) is the pdf of the standard normal distribution.

1. The process 𝜎𝜀
𝑡 is a stationary random process with mean 𝔼[𝜎𝜀

𝑡 ] =< 𝐹 > and variance Var(𝜎𝜀
𝑡 ) =

< 𝐹 2 > − < 𝐹 >2, independently of 𝜀.
2. The covariance function of the process 𝜎𝜀

𝑡 is of the form

Cov
(
𝜎𝜀
𝑡 , 𝜎

𝜀
𝑡+𝑠

)
=

(⟨
𝐹 2⟩ − ⟨𝐹 ⟩2)𝜎

(
𝑠

𝜀

)
, (28)

where the correlation function 𝜎 satisfies 𝜎(0) = 1 and

𝜎(𝑠) =
1

Γ(2𝐻 − 1)
𝜎2
ou ⟨𝐹 ′⟩2⟨

𝐹 2
⟩
− ⟨𝐹 ⟩2 𝑠2𝐻−2 + 𝑜

(
𝑠2𝐻−2) , for 𝑠 ≫ 1. (29)

Consequently, the process 𝜎𝜀
𝑡 possesses long-range correlation properties (i.e., its correlation func-

tion is not integrable at infinity).

Proof. The fact that 𝜎𝜀
𝑡 is a stationary random process with mean <𝐹 > is straightforward in view of

the definition (23) of 𝜎𝜀
𝑡 .

For any 𝑡, 𝑠, the vector 𝜎−1
ou (𝑍

𝜀
𝑡 , 𝑍

𝜀
𝑡+𝑠) is a Gaussian random vector with mean (0,0) and 2 × 2 covari-

ance matrix

𝐂𝜀 =
(

1 𝑍 (𝑠∕𝜀)𝑍 (𝑠∕𝜀) 1

)
.

Therefore, denoting 𝐹𝑐(𝑧) = 𝐹 (𝜎ou𝑧)− <𝐹 >, the covariance function of the process 𝜎𝜀
𝑡 is

Cov(𝜎𝜀
𝑡 , 𝜎

𝜀
𝑡+𝑠) = 𝔼

[
𝐹𝑐(𝜎−1

ou 𝑍
𝜀
𝑡 )𝐹𝑐(𝜎−1

ou 𝑍
𝜀
𝑡+𝑠)

]
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= 1
2𝜋

√
det 𝐂𝜀 ∬ℝ2

𝐹𝑐(𝑧1)𝐹𝑐(𝑧2) exp

(
−
(𝑧1, 𝑧2)𝐂𝜀−1(𝑧1, 𝑧2)𝑇

2

)
𝑑𝑧1𝑑𝑧2

= Ψ
(𝑍

(
𝑠

𝜀

))
,

with

Ψ(𝐶) = 1

2𝜋
√
1 − 𝐶2 ∬ℝ2

𝐹𝑐(𝑧1)𝐹𝑐(𝑧2) exp

(
−
𝑧21 + 𝑧22 − 2𝐶𝑧1𝑧2

2(1 − 𝐶2)

)
𝑑𝑧1𝑑𝑧2 .

This shows that Cov(𝜎𝜀
𝑡 , 𝜎

𝜀
𝑡+𝑠) is a function of 𝑠∕𝜀 only. Moreover, the function Ψ can be expanded in

powers of 𝐶 for small 𝐶 ,

Ψ(𝐶) = 1
2𝜋 ∬ℝ2

𝐹𝑐(𝑧1)𝐹𝑐(𝑧2) exp

(
−
𝑧21 + 𝑧22

2

)
𝑑𝑧1𝑑𝑧2

+𝐶 1
2𝜋 ∬ℝ2

𝑧1𝑧2𝐹𝑐(𝑧1)𝐹𝑐(𝑧2) exp

(
−
𝑧21 + 𝑧22

2

)
𝑑𝑧1𝑑𝑧2 + 𝑂(𝐶2), 𝐶 ≪ 1,

which gives with (17) the form (29) of the correlation function for 𝜎𝜀
𝑡 . □

4 THE OPTION PRICE

Our aim is to compute the option price defined as the martingale

𝑀𝑡 = 𝔼
[
ℎ(𝑋𝑇 )|𝑡

]
, (30)

where ℎ is a smooth function. Weaker assumptions are, in fact, possible for ℎ, as we only need to

control the function 𝑄
(0)
𝑡 (𝑥) defined below rather than ℎ.

We introduce the operator

BS(𝜎) = 𝜕𝑡 +
1
2
𝜎2𝑥2𝜕2𝑥, (31)

that is, the standard Black–Scholes operator at zero interest rate and (constant) volatility 𝜎.

We next exploit the fact that the price process is a martingale to obtain an approximation, by con-

structing an explicit function 𝑄𝜀
𝑡 (𝑥), so that 𝑄𝜀

𝑇
(𝑥) = ℎ(𝑥) and 𝑄𝜀

𝑡 (𝑋𝑡) is a martingale up to first-order

terms. Then, 𝑄𝜀
𝑡 (𝑋𝑡) gives the approximation for 𝑀𝑡 to this order.

The following proposition gives the first-order correction to the expression for the martingale 𝑀𝑡 in

the regime of small 𝜀.

Proposition 4.1. When 𝜀 is small, we have

𝑀𝑡 = 𝑄𝜀
𝑡 (𝑋𝑡) + 𝑜(𝜀1−𝐻 ), (32)

where

𝑄𝜀
𝑡 (𝑥) = 𝑄

(0)
𝑡 (𝑥) +

(
𝑥2𝜕2𝑥𝑄

(0)
𝑡 (𝑥)

)
𝜙𝜀
𝑡 + 𝜀1−𝐻𝜎𝜌𝑄

(1)
𝑡 (𝑥). (33)
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The function 𝑄
(0)
𝑡 (𝑥) is deterministic and given by the Black–Scholes formula with constant volatility

𝜎,

BS(𝜎)𝑄
(0)
𝑡 (𝑥) = 0, 𝑄

(0)
𝑇
(𝑥) = ℎ(𝑥). (34)

The parameters 𝜎
2 and 𝜎 are deterministic and given by

𝜎
2 =

⟨
𝐹 2⟩ = ∫ℝ 𝐹 (𝜎ou𝑧)2𝑝(𝑧)𝑑𝑧, 𝜎 = ⟨𝐹 ⟩ = ∫ℝ 𝐹 (𝜎ou𝑧)𝑝(𝑧)𝑑𝑧, (35)

where 𝑝(𝑧) is the pdf of the standard normal distribution. The random component 𝜙𝜀
𝑡 is given by

𝜙𝜀
𝑡 = 𝔼

[
1
2 ∫

𝑇

𝑡

(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝑑𝑠

|||||𝑡

]
. (36)

The function 𝑄
(1)
𝑡 (𝑥) is the deterministic correction

𝑄
(1)
𝑡 (𝑥) = 𝑥𝜕𝑥

(
𝑥2𝜕2𝑥𝑄

(0)
𝑡 (𝑥)

)
𝐷𝑡, (37)

with 𝐷𝑡 defined by

𝐷𝑡 = 𝐷(𝑇 − 𝑡)𝐻+1
2 , 𝐷 =

⟨𝐹𝐹 ′⟩
Γ(𝐻 + 3

2 )
= 1

Γ(𝐻 + 3
2 )

∫ℝ 𝐹𝐹 ′(𝜎ou𝑧)𝑝(𝑧)𝑑𝑧. (38)

As shown in Lemma B.3 (first item), as 𝜀 → 0, the zero-mean random variable 𝜀𝐻−1𝜙𝜀
𝑡 has a vari-

ance that converges to 𝜎2
𝜙
(𝑇 − 𝑡)2𝐻 , with

𝜎2
𝜙
=

⟨
𝐹𝐹 ′⟩2 ⎛⎜⎜⎝ 1

Γ(2𝐻 + 1) sin(𝜋𝐻)
− 1

2𝐻Γ(𝐻 + 1
2 )

2

⎞⎟⎟⎠ . (39)

Moreover, it converges in distribution to a Gaussian random variable with mean zero and variance

𝜎2
𝜙
(𝑇 − 𝑡)2𝐻 . This shows that the two corrective terms in (33) are of the same order 𝜀1−𝐻 , but the

first one is random, zero-mean, and approximately Gaussian distributed, while the second one is

deterministic.

Proof. For any smooth function 𝑞𝑡(𝑥), we have by Itô's formula

𝑑𝑞𝑡(𝑋𝑡) = 𝜕𝑡𝑞𝑡(𝑋𝑡)𝑑𝑡 +
(
𝑥𝜕𝑥𝑞𝑡

)
(𝑋𝑡)𝜎𝜀

𝑡 𝑑𝑊
∗
𝑡 + 1

2
(
𝑥2𝜕2𝑥𝑞𝑡

)
(𝑋𝑡)(𝜎𝜀

𝑡 )
2𝑑𝑡

= BS(𝜎𝜀
𝑡 )𝑞𝑡(𝑋𝑡)𝑑𝑡 +

(
𝑥𝜕𝑥𝑞𝑡

)
(𝑋𝑡)𝜎𝜀

𝑡 𝑑𝑊
∗
𝑡 ,

where the last term is a martingale. Therefore, by (34), we have

𝑑𝑄
(0)
𝑡 (𝑋𝑡) =

1
2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝑡 + 𝑑𝑁

(0)
𝑡 , (40)

where 𝑁
(0)
𝑡 is a martingale

𝑑𝑁
(0)
𝑡 =

(
𝑥𝜕𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝑑𝑊
∗
𝑡 .
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Note also that in equation (40) (and below), we use the notation(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡) =

((
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑥)

)||||𝑥=𝑋𝑡

.

Let 𝜙𝜀
𝑡 be defined by (36). We have

𝜙𝜀
𝑡 = 𝜓𝜀

𝑡 − 1
2 ∫

𝑡

0

(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝑑𝑠,

where the martingale 𝜓𝜀
𝑡 is defined by

𝜓𝜀
𝑡 = 𝔼

[
1
2 ∫

𝑇

0

(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝑑𝑠

|||||𝑡

]
. (41)

We can write

1
2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝑡 =

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝜓𝜀

𝑡 −
(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝜙𝜀

𝑡 .

By Itô's formula,

𝑑
[
𝜙𝜀
𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)

]
=

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝜙𝜀

𝑡 +
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝜙
𝜀
𝑡 𝑑𝑊

∗
𝑡

+BS(𝜎𝜀
𝑡 )

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)𝜙𝜀

𝑡 𝑑𝑡

+
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝑑 ⟨𝜙𝜀,𝑊 ∗⟩𝑡 .
Because BS(𝜎𝜀

𝑡 ) = BS(𝜎) +
1
2 ((𝜎

𝜀
𝑡 )

2 − 𝜎
2)(𝑥2𝜕2𝑥) and BS(𝜎)(𝑥2𝜕2𝑥)𝑄

(0)
𝑡 (𝑥) = 0, this gives

𝑑
[
𝜙𝜀
𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)

]
= −1

2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝑡

+1
2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜙𝜀

𝑡 𝑑𝑡

+
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝑑 ⟨𝜙𝜀,𝑊 ∗⟩𝑡
+
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝜙
𝜀
𝑡 𝑑𝑊

∗
𝑡 +

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝜓𝜀

𝑡 .

We have <𝜙𝜀,𝑊 ∗>𝑡=<𝜓𝜀,𝑊 ∗>𝑡= 𝜌 < 𝜓𝜀,𝑊 >𝑡, and therefore

𝑑
[
(𝜙𝜀

𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)

]
= −1

2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝑡

+1
2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜙𝜀

𝑡 𝑑𝑡

+𝜌
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝑑 ⟨𝜓𝜀,𝑊 ⟩𝑡
+𝑑𝑁 (1)

𝑡 ,

where 𝑁
(1)
𝑡 is a martingale

𝑑𝑁
(1)
𝑡 =

(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝜙
𝜀
𝑡 𝑑𝑊

∗
𝑡 +

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)𝑑𝜓𝜀

𝑡 .
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Therefore,

𝑑
[
𝑄

(0)
𝑡 (𝑋𝑡) + 𝜙𝜀

𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡)

]
= 1

2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜙𝜀

𝑡 𝑑𝑡

+𝜌
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝑑 ⟨𝜓𝜀,𝑊 ⟩𝑡
+𝑑𝑁 (0)

𝑡 + 𝑑𝑁
(1)
𝑡 . (42)

The deterministic function 𝑄
(1)
𝑡 defined by (37) satisfies

BS(𝜎)𝑄
(1)
𝑡 (𝑥) = −

(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥𝑄

(0)
𝑡 (𝑥)

))
𝜃𝑡, 𝑄

(1)
𝑇
(𝑥) = 0,

where 𝜃𝑡 = −𝑑𝐷𝑡∕𝑑𝑡 is such that

𝑑 ⟨𝜓𝜀,𝑊 ⟩𝑡 = (
𝜀1−𝐻𝜃𝑡 + 𝜃𝜀𝑡

)
𝑑𝑡,

as shown in Lemmas B.1–B.2 with 𝜃𝜀𝑡 characterized in equation (B.9). By applying Itô's formula, we

obtain

𝑑𝑄
(1)
𝑡 (𝑋𝑡) = BS(𝜎𝜀

𝑡 )𝑄
(1)
𝑡 (𝑋𝑡)𝑑𝑡 +

(
𝑥𝜕𝑥

)
𝑄

(1)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝑑𝑊
∗
𝑡

= BS(𝜎)𝑄
(1)
𝑡 (𝑋𝑡)𝑑𝑡 +

1
2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
)
𝑄

(1)
𝑡 (𝑋𝑡)𝑑𝑡

+
(
𝑥𝜕𝑥

)
𝑄

(1)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝑑𝑊
∗
𝑡

= 1
2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
)
𝑄

(1)
𝑡 (𝑋𝑡)𝑑𝑡 −

(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜃𝑡𝑑𝑡 + 𝑑𝑁

(2)
𝑡 ,

where 𝑁
(2)
𝑡 is a martingale

𝑑𝑁
(2)
𝑡 =

(
𝑥𝜕𝑥

)
𝑄

(1)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝑑𝑊
∗
𝑡 .

Therefore,

𝑑
[
𝑄

(0)
𝑡 (𝑋𝑡) + 𝜙𝜀

𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑋𝑡) + 𝜀1−𝐻𝜌𝜎𝑄

(1)
𝑡 (𝑋𝑡)

]
= 1

2

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜙𝜀

𝑡 𝑑𝑡 +
𝜀1−𝐻

2
𝜌𝜎

(
(𝜎𝜀

𝑡 )
2 − 𝜎

2
) (

𝑥2𝜕2𝑥
)
𝑄

(1)
𝑡 (𝑋𝑡)𝑑𝑡

+𝜀1−𝐻𝜌
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)(𝜎𝜀

𝑡 − 𝜎)𝜃𝑡𝑑𝑡 + 𝜌
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄

(0)
𝑡 (𝑋𝑡)𝜎𝜀

𝑡 𝜃
𝜀
𝑡 𝑑𝑡

+𝑑𝑁 (0)
𝑡 + 𝑑𝑁

(1)
𝑡 + 𝜀1−𝐻𝜌𝜎𝑑𝑁

(2)
𝑡 . (43)

We next show that the first four terms of the right-hand side are smaller than 𝜀1−𝐻 . We introduce, for

any 𝑡 ∈ [0, 𝑇 ],

𝑅
(1)
𝑡,𝑇

= ∫
𝑇

𝑡

1
2
(
𝑥2𝜕2𝑥

(
𝑥2𝜕2𝑥

))
𝑄(0)

𝑠 (𝑋𝑠)
(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝜙𝜀
𝑠𝑑𝑠, (44)



16 GARNIER AND SØLNA

𝑅
(2)
𝑡,𝑇

= ∫
𝑇

𝑡

𝜀1−𝐻

2
𝜌𝜎

(
𝑥2𝜕2𝑥

)
𝑄(1)

𝑠 (𝑋𝑠)
(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝑑𝑠, (45)

𝑅
(3)
𝑡,𝑇

= ∫
𝑇

𝑡

𝜀1−𝐻𝜌
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄(0)

𝑠 (𝑋𝑠)𝜃𝑠(𝜎𝜀
𝑠 − 𝜎)𝑑𝑠, (46)

𝑅
(4)
𝑡,𝑇

= ∫
𝑇

𝑡

𝜌
(
𝑥𝜕𝑥

(
𝑥2𝜕2𝑥

))
𝑄(0)

𝑠 (𝑋𝑠)𝜎𝜀
𝑠 𝜃

𝜀
𝑠𝑑𝑠. (47)

We show that, for 𝑗 = 1, 2, 3, 4,

lim
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝑅(𝑗)

𝑡,𝑇
)2
]1∕2

= 0. (48)

Step 1: Proof of (48) for 𝑗 = 1.

We denote

𝑌 (1)
𝑠 =

(
𝑥2𝜕2𝑥

(
𝑥2𝜕2𝑥

))
𝑄(0)

𝑠 (𝑋𝑠)

and

𝛾𝜀𝑡 = 1
2 ∫

𝑡

0

(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝜙𝜀
𝑠𝑑𝑠, (49)

so that we can write

𝑅
(1)
𝑡,𝑇

= ∫
𝑇

𝑡

𝑌 (1)
𝑠

𝑑𝛾𝜀𝑠

𝑑𝑠
𝑑𝑠.

Note that 𝑌
(1)
𝑠 is a bounded semimartingale with bounded quadratic variations, so that its mean square

increments 𝔼[(𝑌 (1)
𝑠 − 𝑌

(1)
𝑠′

)2] are uniformly bounded by 𝐾|𝑠 − 𝑠′|. Let 𝑁 be a positive integer. We

denote 𝑡𝑘 = 𝑡 + (𝑇 − 𝑡)𝑘∕𝑁 . We have

𝑅
(1)
𝑡,𝑇

=
𝑁−1∑
𝑘=0

∫
𝑡𝑘+1

𝑡𝑘

𝑌 (1)
𝑠

𝑑𝛾𝜀𝑠

𝑑𝑠
𝑑𝑠 = 𝑅

(1,𝑎)
𝑡,𝑇

+𝑅
(1,𝑏)
𝑡,𝑇

,

𝑅
(1,𝑎)
𝑡,𝑇

=
𝑁−1∑
𝑘=0

∫
𝑡𝑘+1

𝑡𝑘

𝑌
(1)
𝑡𝑘

𝑑𝛾𝜀𝑠

𝑑𝑠
𝑑𝑠 =

𝑁−1∑
𝑘=0

𝑌
(1)
𝑡𝑘

(
𝛾𝜀𝑡𝑘+1

− 𝛾𝜀𝑡𝑘

)
,

𝑅
(1,𝑏)
𝑡,𝑇

=
𝑁−1∑
𝑘=0

∫
𝑡𝑘+1

𝑡𝑘

(
𝑌 (1)
𝑠 − 𝑌

(1)
𝑡𝑘

) 𝑑𝛾𝜀𝑠

𝑑𝑠
𝑑𝑠.

Note that we obtain by Minkowski's inequality

𝔼
[
(𝑅(1,𝑎)

𝑡,𝑇
)2
]1∕2 ≤ 2

𝑁∑
𝑘=0

‖𝑌 (1)‖∞𝔼[(𝛾𝜀𝑡𝑘)
2]1∕2 ≤ 2(𝑁 + 1)‖𝑌 (1)‖∞ sup

𝑠∈[0,𝑇 ]
𝔼[(𝛾𝜀𝑠 )

2]1∕2,

so that, by Lemma B.4, we have, for any fixed 𝑁 ,

lim
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝑅(1,𝑎)

𝑡,𝑇
)2
]1∕2

= 0.
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On the other hand,

𝔼
[
(𝑅(1,𝑏)

𝑡,𝑇
)2
]1∕2 ≤ ‖𝐹‖2∞ 𝑁−1∑

𝑘=0
∫

𝑡𝑘+1

𝑡𝑘

𝔼[
(
𝑌 (1)
𝑠 − 𝑌

(1)
𝑡𝑘

)4
]1∕4𝔼[(𝜙𝜀

𝑠)
4]1∕4𝑑𝑠

≤ 𝐾

𝑁−1∑
𝑘=0

∫
𝑡𝑘+1

𝑡𝑘

(𝑠 − 𝑡𝑘)1∕2𝑑𝑠 sup
𝑠∈[0,𝑇 ]

𝔼[(𝜙𝜀
𝑠)
4]1∕4

≤ 𝐾 ′√
𝑁

sup
𝑠∈[0,𝑇 ]

𝔼[(𝜙𝜀
𝑠)
4]1∕4.

Therefore, by Lemma B.3 (fourth item), we get

lim sup
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝑅(1)

𝑡,𝑇
)2
]1∕2 ≤ lim sup

𝜀→0
𝜀𝐻−1 sup

𝑡∈[0,𝑇 ]
𝔼
[
(𝑅(1,𝑏)

𝑡,𝑇
)2
]1∕2 ≤ 𝐾 ′√

𝑁
.

Because this is true for any 𝑁 , we get the desired result.

Step 2: Proof of (48) for 𝑗 = 2.

We denote

𝑌 (2)
𝑠 = 𝜌𝜎

(
𝑥2𝜕2𝑥

)
𝑄(1)

𝑠 (𝑋𝑠)

and

𝜅𝜀
𝑡 = 𝜀1−𝐻

2 ∫
𝑡

0

(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝑑𝑠, (50)

so that we can write

𝑅
(2)
𝑡,𝑇

= ∫
𝑇

𝑡

𝑌 (2)
𝑠

𝑑𝜅𝜀
𝑠

𝑑𝑠
𝑑𝑠.

Note that 𝑌
(2)
𝑠 is a bounded semimartingale with bounded quadratic variations. Let 𝑁 be a positive

integer. We denote as above 𝑡𝑘 = 𝑡 + (𝑇 − 𝑡)𝑘∕𝑁 . We then have

𝑅
(2)
𝑡,𝑇

=
𝑁−1∑
𝑘=0

∫
𝑡𝑘+1

𝑡𝑘

𝑌 (2)
𝑠

𝑑𝜅𝜀
𝑠

𝑑𝑠
𝑑𝑠 = 𝑅

(2,𝑎)
𝑡,𝑇

+𝑅
(2,𝑏)
𝑡,𝑇

,

𝑅
(2,𝑎)
𝑡,𝑇

=
𝑁−1∑
𝑘=0

∫
𝑡𝑘+1

𝑡𝑘

𝑌
(2)
𝑡𝑘

𝑑𝜅𝜀
𝑠

𝑑𝑠
𝑑𝑠 =

𝑁−1∑
𝑘=0

𝑌
(2)
𝑡𝑘

(
𝜅𝜀
𝑡𝑘+1

− 𝜅𝜀
𝑡𝑘

)
,

𝑅
(2,𝑏)
𝑡,𝑇

=
𝑁−1∑
𝑘=0

∫
𝑡𝑘+1

𝑡𝑘

(
𝑌 (2)
𝑠 − 𝑌

(2)
𝑡𝑘

) 𝑑𝜅𝜀
𝑠

𝑑𝑠
𝑑𝑠.

Then, on the one hand,

𝔼
[
(𝑅(2,𝑎)

𝑡,𝑇
)2
]1∕2 ≤ 2

𝑁∑
𝑘=0

‖𝑌 (2)‖∞𝔼[(𝜅𝜀
𝑡𝑘
)2]1∕2 ≤ 2(𝑁 + 1)‖𝑌 (2)‖∞ sup

𝑠∈[0,𝑇 ]
𝔼[(𝜅𝜀

𝑠 )
2]1∕2,

so that, by Lemma B.6, we obtain

lim
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝑅(2,𝑎)

𝑡,𝑇
)2
]1∕2

= 0.
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On the other hand,

𝔼
[
(𝑅(2,𝑏)

𝑡,𝑇
)2
]1∕2 ≤ 𝜀1−𝐻‖𝐹‖2∞ 𝑁−1∑

𝑘=0
∫

𝑡𝑘+1

𝑡𝑘

𝔼[
(
𝑌 (2)
𝑠 − 𝑌

(2)
𝑡𝑘

)2
]1∕2𝑑𝑠

≤ 𝐾𝜀1−𝐻
𝑁−1∑
𝑘=0

∫
𝑡𝑘+1

𝑡𝑘

(𝑠 − 𝑡𝑘)1∕2𝑑𝑠

≤ 𝐾 ′𝜀1−𝐻√
𝑁

.

Therefore, we get

lim sup
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝑅(2)

𝑡,𝑇
)2
]1∕2 ≤ lim sup

𝜀→0
𝜀𝐻−1 sup

𝑡∈[0,𝑇 ]
𝔼
[
(𝑅(2,𝑏)

𝑡,𝑇
)2
]1∕2 ≤ 𝐾 ′√

𝑁
.

Because this is true for any 𝑁 , we get the desired result.

Step 3: Proof of (48) for 𝑗 = 3.

This proof follows the same lines as the proof of Step 2 with

𝜂𝜀𝑡 = 𝜀1−𝐻 ∫
𝑡

0

(
𝜎𝜀
𝑠 − 𝜎

)
𝑑𝑠, (51)

instead of 𝜅𝜀
𝑡 , and using the fact that 𝜃𝑡 is bounded. We then get the desired result by Lemma B.5.

Step 4: Proof of (48) for 𝑗 = 4.

We have

𝔼
[
(𝑅(4)

𝑡,𝑇
)2
]1∕2 ≤ 𝐾 ∫

𝑇

𝑡

𝔼
[
(𝜃𝜀𝑠 )

2
]1∕2

𝑑𝑠 ≤ 𝐾 ′ sup
𝑠∈[0,𝑇 ]

𝔼
[
(𝜃𝜀𝑠 )

2
]1∕2

.

By Lemma B.2, we obtain

lim
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝑅(4)

𝑡,𝑇
)2
]1∕2

= 0.

We can now complete the proof of Proposition 4.1. In (33), we introduced the approximation

𝑄𝜀
𝑡 (𝑥) = 𝑄

(0)
𝑡 (𝑥) + 𝜙𝜀

𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑥) + 𝜀1−𝐻𝜌𝜎𝑄

(1)
𝑡 (𝑥).

We then have

𝑄𝜀
𝑇
(𝑥) = ℎ(𝑥),

because 𝑄
(0)
𝑇
(𝑥) = ℎ(𝑥), 𝜙𝜀

𝑇
= 0, and 𝑄

(1)
𝑇
(𝑥) = 0. Let us denote

𝑅𝑡,𝑇 = 𝑅
(1)
𝑡,𝑇

+𝑅
(2)
𝑡,𝑇

+𝑅
(3)
𝑡,𝑇

+𝑅
(4)
𝑡,𝑇

, (52)

𝑁𝑡 = ∫
𝑡

0
𝑑𝑁 (0)

𝑠 + 𝑑𝑁 (1)
𝑠 + 𝜀1−𝐻𝜌𝜎𝑑𝑁 (2)

𝑠 . (53)

By (43), we have

𝑄𝜀
𝑇
(𝑋𝑇 ) −𝑄𝜀

𝑡 (𝑋𝑡) = 𝑅𝑡,𝑇 +𝑁𝑇 −𝑁𝑡.
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Therefore,

𝑀𝑡 = 𝔼
[
ℎ(𝑋𝑇 )|𝑡

]
= 𝔼

[
𝑄𝜀

𝑇
(𝑋𝑇 )|𝑡

]
= 𝑄𝜀

𝑡 (𝑋𝑡) + 𝔼
[
𝑅𝑡,𝑇 |𝑡

]
+ 𝔼

[
𝑁𝑇 −𝑁𝑡|𝑡

]
= 𝑄𝜀

𝑡 (𝑋𝑡) + 𝔼
[
𝑅𝑡,𝑇 |𝑡

]
, (54)

which gives the desired result, because 𝔼[𝑅𝑡,𝑇 |𝑡] is of order 𝑜(𝜀1−𝐻 ) in 𝐿2. □

5 CALL PRICE CORRECTION AND IMPLIED VOLATILITY

We denote the Black–Scholes call price, with current time 𝑡, maturity 𝑇 , strike 𝐾 , underlying value 𝑥,

and volatility 𝜎, by 𝐶BS(𝑡, 𝑥;𝐾, 𝑇 ; 𝜎), so that 𝑄
(0)
𝑡 in equation (34) is

𝑄
(0)
𝑡 (𝑥) = 𝐶BS(𝑡, 𝑥;𝐾, 𝑇 ; 𝜎).

Indeed,𝐶BS gives an explicit formula for the price when volatility is constant. In the case with stochastic

volatility as considered here, no explicit pricing formula exists. As shown in equation (33), however,

we can get an asymptotic expression for the price in the case with the stochastic volatility model (5) as

a correction to 𝑄
(0)
𝑡 (𝑥), the Black–Scholes price evaluated at the effective, or “homogenized,” volatility

𝜎̄. Here, we show that this corrected price takes on a rather simple, generic form in the two parameters:

relative time to maturity and moneyness. This representation then leads to a simple representation

for the implied volatility, as we show below. The long-range character of the volatility fluctuations

indeed has a strong impact on the form of the implied volatility, and this observation is important in a

calibration context.

We denote the time to maturity by 𝜏 = 𝑇 − 𝑡, and we introduce the characteristic diffusion time

𝜏 = 2∕𝜎2
and the dimensionless effective skewness factor

𝑎𝐹 = 𝜀1−𝐻
𝜌𝜎𝐷𝜏𝐻

23∕2𝜎
= 𝜀1−𝐻

𝜎𝜌 ⟨𝐹𝐹 ′⟩ 𝜏𝐻
23∕2𝜎Γ(𝐻 + 3∕2)

, (55)

with 𝜎, 𝜎, and 𝐷 given in Proposition 4.1 and the correlation 𝜌 introduced in equation (24).

Lemma 5.1. The price correction in equation (33), normalized by the strike 𝐾 , can be written in the
form

1
𝐾

(
𝜙𝜀
𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑥) + 𝜀1−𝐻𝜌𝜎𝑄

(1)
𝑡 (𝑥)

)
=

⎛⎜⎜⎝
𝑒−𝑑

2
1∕2 𝑥

𝐾√
𝜋

⎞⎟⎟⎠
{

𝜙𝜀
𝑡

2

(
𝜏

𝜏

)−1∕2
+ 𝑎𝐹

[(
𝜏

𝜏

)𝐻

+
(
𝜏

𝜏

)𝐻−1
log

(
𝐾

𝑥

)]}
, (56)

with

𝑑1 =
√

𝜏

2𝜏

[
𝜏

𝜏
− log

(
𝐾

𝑥

)]
. (57)

Here, the dimensionless random and deterministic correction coefficients are small,

𝜙𝜀
𝑡 = 𝑂

((
𝜀

𝜏

)1−𝐻 (
𝜏

𝜏

)𝐻
)

, 𝑎𝐹 = 𝑂
(
𝜀

𝜏

)1−𝐻
, (58)
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F I G U R E 2 Price correction as a function of the relative time to maturity 𝜏∕𝜏. The three solid lines correspond

(from bottom to top) to the mean price correction for 𝐾∕𝑋 = 0.9, 1.0, and 1.1, respectively. The dashed/dotted lines

correspond to the mean ±1 standard deviation. Here, 𝐻 = 0.6, 𝑎𝐹 = 0.1, and ((𝜀∕𝜏)(1−𝐻)𝜏𝜎𝜙) = 0.04 [Color figure can

be viewed at wileyonlinelibrary.com]

where we used the fact that 𝜙𝜀
𝑡 as defined in Proposition 4.1 is centered and with standard deviation

Var
(
𝜙𝜀
𝑡

)1∕2 = (
𝜀

𝜏

)1−𝐻 (
𝜏

𝜏

)𝐻 (
𝜏𝜎𝜙

)
+ 𝑜(𝜀1−𝐻 ), (59)

with 𝜎𝜙 defined by equation (39) (see also equation (B.14) in Lemma B.3). We comment in more detail

about the statistical structure of 𝜙𝜀
𝑡 in the next section.

It follows from the above that the normalized price correction depends on the two parameters—

the moneyness 𝐾∕𝑥 and the relative time to maturity 𝜏∕𝜏—and exhibits a term structure in fractional

powers of relative time to maturity.

In Figure 2, we show the relative price correction in equation (56) as a function of relative time

to maturity 𝜏∕𝜏 for three values of the moneyness 𝐾∕𝑥. The solid lines plot the mean relative price

correction, and the dashed lines give the mean plus/minus one standard deviation. We use here 𝐻 =
0.6, 𝑎𝐹 = 0.1, and ((𝜀∕𝜏)(1−𝐻)𝜏𝜎𝜙) = 0.04. The mean relative price correction is largest for a midrange

of times to maturity. For very short times to maturity relative to the characteristic diffusion time, the

effect of the volatility fluctuations is small, while for long times, the rapid mean reversion “averages”

out the effect of the fluctuations. Note, however, that at the money, the random component of the price

correction decays slowly as (
𝜏

𝜏

)𝐻−1∕2
,

as 𝜏 → 0, while “around the money” with the moneyness 𝐾∕𝑥 being different from one, the decay has

the form (
𝜏

𝜏

)𝐻−1∕2
exp

(
−
𝜏| log(𝐾∕𝑥)|2

4𝜏

)
.

This reflects the fact that the vega is diverging in this limit so that the sensitivity to volatility fluctua-

tions becomes strong. We remark that this would affect calibration schemes using at-the-money data.

Moreover, results regarding short-time asymptotics for the coherent-implied volatility become ques-

tionable in this context as the dominating contribution comes from the random component of the price
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F I G U R E 3 The price correction surface as a function of the relative time to maturity 𝜏∕𝜏 and the moneyness

𝐾∕𝑋. The parameters are like those in Figure 2 [Color figure can be viewed at wileyonlinelibrary.com]

correction. Note also that the parameters are not calibrated to market data; this will be considered in

another publication.

In Figure 3, we show the price correction surface as a function of the relative time to maturity 𝜏∕𝜏
and the moneyness 𝐾∕𝑥. The figure shows that the price correction is large when the time to maturity

is of the order of the characteristic diffusion time.

We next present the proof of Lemma 5.1.

Proof. For the European call option with payoff ℎ(𝑥) = (𝑥 −𝐾)+, we have

𝐶BS(𝑡, 𝑥;𝐾, 𝑇 ; 𝜎) = 𝑥Φ

(
1

𝜎
√

𝑇 − 𝑡
log

(
𝑥

𝐾

)
+

𝜎
√

𝑇 − 𝑡

2

)

−𝐾Φ

(
1

𝜎
√

𝑇 − 𝑡
log

(
𝑥

𝐾

)
−

𝜎
√

𝑇 − 𝑡

2

)
,

where Φ is the cumulative distribution function of the standard normal distribution. We then have, in

particular, the “Greek” relationships for the call price

𝜕𝜎𝐶BS = (𝑇 − 𝑡)𝜎𝑥2𝜕2𝑥𝐶BS, 𝑥𝜕𝑥𝜕𝜎𝐶BS =

(
1
2
+

log 𝐾

𝑥

𝜎
2(𝑇 − 𝑡)

)
𝜕𝜎𝐶BS.

We then get

𝑥2𝜕2𝑥𝑄
(0)
𝑡 (𝑥) = 1

𝜎(𝑇 − 𝑡)
𝜕𝜎̄𝐶BS(𝑡, 𝑥;𝐾, 𝑇 ; 𝜎), (60)

𝑥𝜕𝑥𝑥
2𝜕2𝑥𝑄

(0)
𝑡 (𝑥) =

[
1

2𝜎(𝑇 − 𝑡)
+

log 𝐾

𝑥

𝜎
3(𝑇 − 𝑡)2

]
𝜕𝜎̄𝐶BS(𝑡, 𝑥;𝐾, 𝑇 ; 𝜎), (61)

where the “vega” is given by

𝜕𝜎𝐶BS(𝑡, 𝑥;𝐾, 𝑇 ; 𝜎) =
𝑥𝑒−𝑑

2
1∕2

√
𝑇 − 𝑡√

2𝜋
, 𝑑1 =

1
2𝜎

2(𝑇 − 𝑡) − log 𝐾

𝑥

𝜎
√

𝑇 − 𝑡
. (62)
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Then, with 𝑄
(1)
𝑡 (𝑥) given in equation (37), we can identify the form of the price correction as

𝜙𝜀
𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑥) + 𝜀1−𝐻𝜌𝜎𝑄

(1)
𝑡 (𝑥)

= 𝜙𝜀
𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑥) + 𝜀1−𝐻𝜌𝜎𝐷(𝑡)𝑥𝜕𝑥𝑥2𝜕2𝑥𝑄

(0)
𝑡 (𝑥)

= 𝜙𝜀
𝑡

(
𝑥𝑒−𝑑

2
1∕2

𝜎
√
2𝜋(𝑇 − 𝑡)

)
+ 𝜀1−𝐻

(
𝑥𝜌𝜎𝐷𝑒−𝑑

2
1∕2√

2𝜋

)[
(𝑇 − 𝑡)𝐻

2𝜎
+

log 𝐾

𝑥

𝜎
3(𝑇 − 𝑡)1−𝐻

]
, (63)

which, in turn, gives (56). □

We next consider the implied volatility associated with the price correction. For the stochastic

volatility model in equation (5), we want to identify the implied volatility 𝐼𝑡 so that in terms of the

corrected price in Lemma 4.1, we have

𝐶BS(𝑡, 𝑥;𝐾, 𝑇 ; 𝐼𝑡) = 𝑄
(0)
𝑡 (𝑥) + 𝜙𝜀

𝑡

(
𝑥2𝜕2𝑥

)
𝑄

(0)
𝑡 (𝑥) + 𝜀1−𝐻𝜌𝜎𝑄

(1)
𝑡 (𝑥). (64)

We define the relative implied volatility correction 𝛿𝐼𝑡 by

𝐼𝑡 = 𝜎(1 + 𝛿𝐼𝑡). (65)

Lemma 5.2. The relative implied volatility correction has the form

𝛿𝐼𝑡 =
𝜙𝜀
𝑡

2

(
𝜏

𝜏

)−1
+ 𝑎𝐹

[(
𝜏

𝜏

)𝐻−1∕2
+

(
𝜏

𝜏

)𝐻−3∕2
log

(
𝐾

𝑋𝑡

)]
+ 𝑜(𝜀1−𝐻 ), (66)

where 𝜙𝜀
𝑡 is defined by (36) and 𝑎𝐹 by (55).

In Figure 4, we show the implied volatility correction in equation (66) as a function of relative

time to maturity 𝜏∕𝜏 for three values of the moneyness 𝐾∕𝑥. We again used 𝐻 = 0.6, 𝑎𝐹 = 0.1, and

((𝜀∕𝜏)(1−𝐻)𝜏𝜎𝜙) = 0.04. Note that due to the form of the “vega” (which is the sensitivity of the price

to the volatility), the form of the implied volatility surface is very different from that of the price
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F I G U R E 5 The mean implied volatility correction surface as a function of the relative time to maturity 𝜏∕𝜏 and

the moneyness 𝐾∕𝑋. The parameters are like those in Figure 4 [Color figure can be viewed at wileyonlinelibrary.com]

correction. In Figure 5, we show the implied volatility correction surface as a function of the relative

time to maturity 𝜏∕𝜏 and the moneyness 𝐾∕𝑥.

Proof. We find by using equations (63) and (62) that the implied volatility is given by

𝐼𝑡 = 𝜎 +
𝜙𝜀
𝑡

𝜎(𝑇 − 𝑡)
+ 𝜀1−𝐻𝜎𝜌𝐷𝑡

⎡⎢⎢⎣ 1
2𝜎(𝑇 − 𝑡)

+
log 𝐾

𝑋𝑡

𝜎
3(𝑇 − 𝑡)2

⎤⎥⎥⎦ + 𝑜(𝜀1−𝐻 ). (67)

Because 𝐷𝑡 is deterministic and given by (38), we can then write

𝐼𝑡 = 𝜎 +
𝜙𝜀
𝑡

𝜎(𝑇 − 𝑡)
(68)

+ 𝜀1−𝐻
𝜎𝜌 ⟨𝐹𝐹 ′⟩
𝜎Γ(𝐻 + 3

2 )

⎡⎢⎢⎣12(𝑇 − 𝑡)𝐻−1
2 +

log 𝐾

𝑋𝑡

𝜎
2(𝑇 − 𝑡)

3
2−𝐻

⎤⎥⎥⎦ + 𝑜(𝜀1−𝐻 ),

and the lemma follows. □

The first two terms in equation (68) can be combined and rewritten as (up to terms of order

𝑜(𝜀1−𝐻 ))

𝜎 +
𝜙𝜀
𝑡

𝜎(𝑇 − 𝑡)
= 𝔼

[
1

𝑇 − 𝑡 ∫
𝑇

𝑡

(𝜎𝜀
𝑠 )

2𝑑𝑠
|||||𝑡

]1∕2

+ 𝑜(𝜀1−𝐻 ). (69)

Because 𝐷𝑡 is deterministic and given by (38), we can then write

𝐼𝑡 = 𝔼
[

1
𝑇 − 𝑡 ∫

𝑇

𝑡

(𝜎𝜀
𝑠 )

2𝑑𝑠
|||||𝑡

]1∕2

+𝜎𝑎𝐹
[(

𝜏

𝜏

)𝐻−1∕2
+

(
𝜏

𝜏

)𝐻−3∕2
log

(
𝐾

𝑋𝑡

)]
+ 𝑜

(
𝜀1−𝐻

)
, (70)

so that the implied volatility is the expected effective volatility over the remaining time horizon con-

ditioned on the present and with an added skewness correction.
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In view of equation (59), when the time to maturity is short, the fourth term (in 𝜏
𝐻−3

2 ) dominates in

(66). We remark here that this is related to the fact that the small parameter in our problem is the mean-

reversion time, so that for any time to maturity of order one in this regime, the volatility has enough time

to fluctuate and mean revert, giving a price correction as in Lemma 5.1. Moreover, because the “vega,”

𝜕𝜎𝐶BS, is small away from the money (see equation (62)), we get a strong moneyness dependence, and

the implied volatility blows up when the time to maturity goes to zero.

When the time to maturity is long, the third term (in 𝜏
𝐻−1

2 ) dominates in (66). The long-range

dependence gives smooth volatility fluctuations, which gives an implied volatility that blows up when

the time to maturity goes to infinity. The current value of the underlying is less important in this long-

time-to-maturity regime.

6 THE t-T PROCESS AND THE STOCHASTIC IMPLIED
SURFACE

We introduced in equation (36) the stochastic correction coefficient 𝜙𝜀
𝑡 ≡ 𝜙𝜀

𝑡,𝑇
, which gives the random

component of the price correction and the implied volatility. Note that we explicitly display here the

dependence on maturity 𝑇 . If the volatility process had been a Markovian process, then the correction

would have been deterministic, as in Fouque et al. (2011). The presence of long-range memory in the

volatility process means that information from the past (volatility path) must be carried forward, and

this makes the price correction relative to the price at the homogenized volatility a stochastic process;

this is also the case for the implied volatility.

Here, we discuss the statistical structure of the random field, which describes the implied volatility

surface in the scaling regime that we consider. The implied volatility is the central quantity in typical

calibration processes. To design efficient estimators for both the coherent and incoherent parts of the

implied volatility, as well as to characterize the resulting estimation precision, it is important to under-

stand the statistical fluctuations of the observed implied surface. We give a precise characterization of

these fluctuations below. The fluctuations of the implied volatility for long times to maturity (relative to

𝜏) become strong when the Hurst exponent is large, because the large Hurst exponent gives strong tem-

poral coherence and large correction to the anticipated volatility. On the other hand, for short times to

maturity, the fluctuations become large when the Hurst exponent is small, because the small Hust expo-

nent gives a rough process with large fluctuations even over very small intervals. It is also interesting to

note that the correlation structure of the implied volatility surface, in fact, encodes information about

the long-range character of the underlying stochastic volatility. Observing, for instance, at-the-money

implied volatility fluctuations as a function of current time for fixed time to maturity gives information

that makes it possible to estimate the Hurst exponent and to check for the consistency of the model-

ing framework. In Livieri, Mouti, Pallavicini, and Rosenbaum (2017), observed at-the-money implied

volatility was used to estimate the Hurst exponent. The authors found a coefficient that was slightly

larger than the corresponding estimates using historical data and explained this discrepancy in terms

of a smoothing effect due to the remaining time to maturity. To construct and interpret estimators of this

kind, a model for the implied surface as a random field relating it to the underlying volatility parameters

is clearly essential.

In order to understand the implied volatility random field, note first that it follows from Lemma B.3

that as 𝜀 → 0, the random process 𝜀𝐻−1𝜙𝜀
𝑡,𝑇

∕[𝜎𝜙(𝑇 − 𝑡)𝐻 ], 𝑡 < 𝑇 , converges in distribution (in the

sense of finite-dimensional distributions) to a Gaussian stochastic process 𝜓𝑡,𝑇 , 𝑡 < 𝑇 , the normalized
t-T correction process, with mean zero, variance one, and covariance 𝔼[𝜓𝑡,𝑇 𝜓𝑡′,𝑇 ′ ] = 𝜙(𝑡, 𝑡′; 𝑇 , 𝑇 ′)



GARNIER AND SØLNA 25

for any 𝑡 ∈ [0, 𝑇 ), 𝑡′ ∈ [0, 𝑇 ′). The four-parameter function 𝜙 is given by equation (B.16). We will

discuss next in more detail the 𝑡-𝑇 process 𝜓𝑡,𝑇 , a two-parameter process of current time 𝑡 and maturity

𝑇 . This process is defined on 0 < 𝑡 < 𝑇 ; it is a nonstationary Gaussian process, and it is scaled to have

constant unit variance. As we see below, close to maturity 𝑡 ≈ 𝑇 , the process is strongly affected by

the presence of the maturity boundary.

Let us first consider the case of a fixed maturity 𝑇 and introduce the process

𝜓0(𝑡; 𝑇 ) = 𝜓𝑡,𝑇 , 𝑡 ∈ [0, 𝑇 ]. (71)

When the times are short relative to the time to maturity, that is, for |𝑡 − 𝑡′| ≪ 𝑇 − 𝑡, it follows from

equation (B.16) that the process (𝜓0(𝑡; 𝑇 ))𝑡∈[0,𝑇 ] decorrelates as

𝔼
[
𝜓0(𝑡; 𝑇 )𝜓0(𝑡′; 𝑇 )

]
∼ 1 − |𝑡 − 𝑡′|

2(𝑇 − 𝑡)
,

which means that it decorrelates as a Markovian process for short times. More generally, the autoco-

variance function of (𝜓0(𝑡; 𝑇 ))𝑡∈[0,𝑇 ] is

𝔼
[
𝜓0(𝑡; 𝑇 )𝜓0(𝑡′; 𝑇 )

]
= (Δ0(𝑡, 𝑡′; 𝑇 )),

(Δ) =
∫ ∞
0 𝑑𝑢

⎡⎢⎢⎣
(
𝑢 + |Δ|+1√

1−Δ2

)𝐻−1
2
− 𝑢

𝐻−1
2

⎤⎥⎥⎦
⎡⎢⎢⎣
(
𝑢 + |Δ|+1√

1−Δ2

)𝐻−1
2
−

(
𝑢 + 2|Δ|√

1−Δ2

)𝐻−1
2 ⎤⎥⎥⎦

∫ ∞
0 𝑑𝑢

[
(1 + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
]2 ,

with

Δ0(𝑡, 𝑡′; 𝑇 ) =
𝑡′ − 𝑡|2𝑇 − (𝑡 + 𝑡′)| , (72)

which shows that the correlation function of the process (𝜓0(𝑡; 𝑇 ))𝑡∈[0,𝑇 ] depends only on this relative

separation, giving a situation with a canonical relative decorrelation that depends only on the times to

maturity 𝜏 = 𝑇 − 𝑡, 𝜏′ = 𝑇 − 𝑡′. Therefore, we introduce the process (𝜓1(𝜏; 𝑇 ))𝜏∈[0,𝑇 ] defined by

𝜓1(𝜏; 𝑇 ) = 𝜓𝑇−𝜏,𝑇 , 𝜏 ∈ [0, 𝑇 ]. (73)

The process (𝜓1(𝜏; 𝑇 ))𝜏∈[0,𝑇 ] is Gaussian with mean zero and autocovariance function

𝔼
[
𝜓1(𝜏; 𝑇 )𝜓1(𝜏′; 𝑇 )

]
= (Δ1(𝜏, 𝜏′)),

with  as above and

Δ1(𝜏, 𝜏′) =
𝜏 − 𝜏′|𝜏 + 𝜏′| . (74)

For |𝜏 − 𝜏′| ≪ 𝜏, the process decorrelates on the time scale 𝜏 so that the process fluctuations become

more rapid close to maturity. Close to maturity, the price fluctuations become small. When we magnify

them, however, we see fluctuations on small time scales when the time to maturity is short, which

reflects the self-similarity of the driving volatility factor. In Figure 6, we show the correlation function

Δ1 → (Δ1) as a function of the relative separation time Δ1 ∈ [−1, 1] and for 𝐻 = 0.6. The process

decorrelates as a Markovian process for short times; indeed, as one of the times to maturity goes to

zero (relative to the other time to maturity), the correlation goes rapidly to zero.

Note that it follows from the expression (74) for Δ1 that it is scale invariant, in that Δ1(𝑎𝜏, 𝑎𝜏′) =
Δ1(𝜏, 𝜏′) for 𝑎 > 0, giving rapid fluctuations for short times to maturity. The process indeed has a
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F I G U R E 6 Autocovariance function of the 𝑡-𝑇 process 𝜓1(𝜏; 1) as a function of the relative time to maturity

separation Δ1 = (𝜏 − 𝜏′)∕|𝜏 + 𝜏′| with 𝐻 = 0.6. The correlation decays approximately linearly at the origin and rapidly

as one of the times to maturity goes to zero [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 7 Realizations of the process 𝜓1(𝜏; 1) as a function of the time to maturity 𝜏 for fixed maturity 𝑇 = 1
with 𝐻 = 0.6 [Color figure can be viewed at wileyonlinelibrary.com]

self-similar property. We have in distribution(
𝜓1(𝜏; 1)

)
𝜏∈[0,1] ∼

(
𝜓1(𝜏𝑇 ; 𝑇 )

)
𝜏∈[0,1] ,

for any 𝑇 > 0. In Figure 7, we show two realizations of the process 𝜓1(𝜏; 1) as a function of time to

maturity 𝜏.

One can also investigate the structure of the 𝑡-𝑇 process for a fixed time to maturity 𝜏, as a function

of time 𝑡. Thus, if we observe the price for a given time to maturity, we would like to know how the

price correction (and the implied volatility) would fluctuate with respect to the current time, or time

translation. Accordingly, we consider the process

𝜓2(𝑡; 𝜏) = 𝜓𝑡,𝜏+𝑡, 𝑡 ≥ 0, (75)
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F I G U R E 8 Autocovariance function of the 𝑡-𝑇 process 𝜓2(𝑡; 1) as a function of the time 𝑡′ − 𝑡 for fixed time to

maturity 𝜏 = 1 with 𝐻 = 0.6. On the short time scales, the process decorrelates as a Markovian process; on the long

time scales, it exhibits long-range correlations [Color figure can be viewed at wileyonlinelibrary.com]

for fixed 𝜏 > 0. The process (𝜓2(𝑡; 𝜏))𝑡∈[0,∞) is Gaussian with mean zero and autocovariance

function

𝔼
[
𝜓2(𝑡; 𝜏)𝜓2(𝑡′; 𝜏)

]
= 2(Δ2(𝑡, 𝑡′; 𝜏)), (76)

2(Δ) =
∫ ∞
0 𝑑𝑢

[
(𝑢 + 1)𝐻−1

2 − 𝑢
𝐻−1

2
] [

(𝑢 + 1 + |Δ|)𝐻−1
2 − (𝑢 + |Δ|)𝐻−1

2
]

∫ ∞
0 𝑑𝑢

[
(1 + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
]2 ,

with

Δ2(𝑡, 𝑡′; 𝜏) =
𝑡′ − 𝑡

𝜏
. (77)

The expression of Δ2 shows that the coherence time of this process is proportional to the time to

maturity 𝜏. We see again that the rescaled implied volatility surface fluctuations are more rapid when

they are close to maturity. We also see that on transects parallel to the maturity boundary in the 𝑡, 𝑇

plane, these fluctuations are stationary. This is consistent with the fact that we have an underlying

consistent model with a stationary volatility driving factor. The fluctuations, moreover, have a self-

similar property. We have in distribution(
𝜓2(𝑡; 1)

)
𝑡∈[0,∞) ∼

(
𝜓2(𝜏𝑡; 𝜏)

)
𝑡∈[0,∞) ,

for any 𝜏 > 0. The autocovariance function of (𝜓2(𝑡; 1))𝑡∈[0,∞) is plotted in Figure 8. In the figure, one

can see the rapid decay at the origin followed by a long-range behavior. This shows how the implied

surface decorrelates as we move in time. In Figure 9, we show the autocorrelation function in a log-log
plot with the dashed line corresponding to the correlation decay |𝑡′ − 𝑡|2𝐻−2. In Figure 10, we show

two realizations of the process 𝜓2(𝑡; 1).
Finally, it is of interest to consider the case where we evaluate the stochastic correction factor as a

function of time to maturity for the fixed current time 𝑡,

𝜓3(𝜏; 𝑡) = 𝜓𝑡,𝑡+𝜏 , 𝜏 ≥ 0. (78)
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brary.com]

The process (𝜓3(𝜏; 𝑡))𝜏∈[0,∞) is Gaussian with mean zero and autocovariance function

𝔼
[
𝜓3(𝜏; 𝑡)𝜓3(𝜏′; 𝑡)

]
= 3(Δ3(𝜏, 𝜏′)),

3(Δ) =
∫ ∞
0 𝑑𝑢

[
(𝑢 + 1∕

√
1 + |Δ|)𝐻−1

2 − 𝑢
𝐻−1

2
] [

(𝑢 +
√
1 + |Δ|)𝐻−1

2 − 𝑢
𝐻−1

2
]

∫ ∞
0 𝑑𝑢

[
(1 + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
]2 ,

with

Δ3(𝜏, 𝜏′) =
𝜏 − 𝜏′

𝜏 ∧ 𝜏′
. (79)

This covariance function is plotted in Figure 11. Note that it follows from the expression (79) for Δ3
that it is scale invariant in that Δ3(𝑎𝜏, 𝑎𝜏′) = Δ3(𝜏, 𝜏′) for 𝑎 > 0, so that again, the process fluctuates
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separation Δ3 = (𝜏 − 𝜏′)∕(𝜏 ∧ 𝜏′) with 𝐻 = 0.6. Note that the correlation function exhibits slow decay [Color figure can

be viewed at wileyonlinelibrary.com]
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F I G U R E 1 2 Realizations of the process 𝜓3(𝜏; 1) for fixed current time 𝑡 = 1 and 𝐻 = 0.6, with the smooth and

slow decay of the correlations giving a smooth time-to-maturity dependence [Color figure can be viewed at wileyon-

linelibrary.com]

more rapidly for small maturities. The distribution of the process (𝜓3(𝜏; 𝑡))𝜏∈[0,∞) does not depend on

𝑡, and it has a self-similar property. For any 𝑎 > 0, we have in distribution(
𝜓3(𝜏; 𝑡)

)
𝜏∈[0,∞) ∼

(
𝜓3(𝑎𝜏; 𝑡)

)
𝜏∈[0,∞) .

In Figure 12 , we show two realizations of the process (𝜓3(𝜏; 𝑡))𝜏∈[0,1).

7 CONCLUSION

We have considered a continuous time stochastic volatility model with long-range correlation proper-

ties. We have addressed the regime of fast mean reversion. This makes it possible to derive an explicit
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expression for the approximate European call option price and the implied volatility. Specifically, the

volatility is a smooth function of an fOU process. Analyzing such a non-Markovian situation is chal-

lenging. To the best of our knowledge, we present the first analytical expression for the price approx-

imation for general maturities when the volatility fluctuations are of order 1. So far, the price com-

putations for such situations have been based on numerical approximations. The main result from the

applied viewpoint is then the form of the fractional term structure that we obtain for the implied volatil-

ity surface. Indeed, we get an implied volatility that grows large with time to maturity while generating

a strong skew for short times to maturity, which is consistent with common observations. We stress that

in our formulation, the mean-reversion time is small compared to any fixed maturity as we consider

a fast mean-reverting process. Let us note, finally, that we have considered the case of processes with

long-range correlation properties with the Hurst exponent 𝐻 > 1∕2 explaining the growth of implied

volatility for large maturity.
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APPENDIX A: HERMITE DECOMPOSITION OF THE STOCHASTIC
VOLATILITY MODEL
We denote

𝐹 (𝑧) = 𝐹 (𝜎ou𝑧)2. (A.1)

Because 𝔼[𝐹 (𝑍)2] < ∞ is finite when 𝑍 is a standard normal variable, the function 𝐹 can be expanded

in terms of the Hermite polynomials

𝐻𝑘(𝑧) = (−1)𝑘𝑒𝑧2∕2 𝑑𝑘

𝑑𝑧𝑘
𝑒−𝑧

2∕2, (A.2)

https://doi.org/10.1111/mafi.12186
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and the series
∞∑
𝑘=0

𝐶𝑘

𝑘!
𝐻𝑘(𝑧), (A.3)

with

𝐶𝑘 = 𝔼
[
𝐻𝑘(𝑍)𝐹 (𝑍)

]
= ∫ℝ 𝐻𝑘(𝑧)𝐹 (𝑧)𝑝(𝑧)𝑑𝑧, (A.4)

converges in 𝐿2(ℝ, 𝑝(𝑧)𝑑𝑧) to 𝐹 (𝑧). The Hermite polynomials satisfy

𝔼[𝐻𝑘(𝑍)𝐻𝑗(𝑍)] = ∫ℝ 𝐻𝑘(𝑧)𝐻𝑗(𝑧)𝑝(𝑧)𝑑𝑧 = 𝛿𝑘𝑗𝑘!,

and we have
∑∞

𝑘=0
𝐶2
𝑘

𝑘! = 𝔼[𝐹 (𝑍)2] < ∞. Note that 𝐶0 =<𝐹 2>.

Lemma A.1. If there exists 𝛼 > 2 such that the function 𝐹 defined by (A.1) satisfies
∞∑
𝑘=0

𝛼𝑘𝐶2
𝑘

𝑘!
< ∞, (A.5)

then the random process

𝐼𝜀
𝑡 = ∫

𝑡

0
𝐹 2(𝑍𝜀

𝑠 ) −
⟨
𝐹 2⟩ 𝑑𝑠 (A.6)

satisfies

sup
𝑡∈[0,𝑇 ]

𝔼[(𝐼𝜀
𝑡 )

4] ≤ 𝐾𝜀4−4𝐻, (A.7)

for some constant 𝐾 .

Proof. Denoting 𝑍𝜀
𝑡 = 𝜎−1

ou 𝑍
𝜀
𝑡 , which is a zero-mean Gaussian process with covariance function

𝔼[𝑍𝜀
𝑡 𝑍

𝜀
𝑡+𝑠] = 𝑍 (𝑠∕𝜀), we have

𝐼𝜀
𝑡 = ∫

𝑡

0
𝐹 (𝑍𝜀

𝑠 ) −
⟨
𝐹 2⟩ 𝑑𝑠 =

∞∑
𝑚=1

𝐶𝑚𝐼
𝜀
𝑡,𝑚,

where

𝐼𝜀
𝑡,𝑚 = 1

𝑚! ∫
𝑡

0
𝐻𝑚(𝑍𝜀

𝑠 )𝑑𝑠, 𝑚 ≥ 1.

From Taqqu (1978, lemma 2.2), the fourth-order moment of 𝐼𝜀
𝑡,𝑚 can be expanded as

𝔼[(𝐼𝜀
𝑡,𝑚)

4] = 1
2𝑚(2𝑚)!

∑
∫

𝑡

0
⋯∫

𝑡

0
𝑑𝑡1𝑑𝑡2𝑑𝑡3𝑑𝑡4

𝑚∏
𝓁=1

𝑍

(
𝑡𝑖𝓁 − 𝑡𝑗𝓁

𝜀

)
,

where the sum is over all indices 𝑖1, 𝑗1,… , 𝑖2𝑚, 𝑗2𝑚 such that:

(i) 𝑖1, 𝑗1,… , 𝑖2𝑚, 𝑗2𝑚 ∈ {1, 2, 3, 4},

(ii) 𝑖1 ≠ 𝑗1, …, 𝑖2𝑚 ≠ 𝑗2𝑚,

(iii) each number 1,2,3,4 appears exactly 𝑚 times in (𝑖1, 𝑗1,… , 𝑖2𝑚, 𝑗2𝑚).

The number 𝑁2𝑚 of terms in this sum is therefore smaller than (4𝑚)!∕𝑚!4 (it would be exactly this

cardinal without the second condition; therefore, it is smaller than this number).
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Because 𝑍 (𝑠) ≤ 1 ∧𝐾|𝑠|2𝐻−2 for some constant 𝐾 , we have, for any 𝑡 ∈ [0, 𝑇 ],

𝔼[(𝐼𝜀
𝑡,𝑚)

4] ≤ 1
22𝑚(2𝑚)!

∑
∫

𝑇

0
⋯∫

𝑇

0
𝑑𝑡1𝑑𝑡2𝑑𝑡3𝑑𝑡4

2𝑚∏
𝓁=1

1 ∧𝐾

(|𝑡𝑖𝓁 − 𝑡𝑗𝓁 |
𝜀

)2𝐻−2

.

For each term of the sum, we apply the change of variables 𝑠1 = 𝑡𝑖1 , 𝑠2 = 𝑡𝑗1 , 𝑠3 = 𝑡min({1,2,3,4}∖{𝑖1,𝑗1}),

and 𝑠4 = 𝑡max({1,2,3,4}∖{𝑖1,𝑗1}). In the product, we keep the first term: 𝐾(|𝑠1 − 𝑠2|∕𝜀)2𝐻−2, and the first

term that has 𝑠3 in it: 𝐾(|𝑠3 − 𝑠𝑗|∕𝜀)2𝐻−2, so that we can write, for any 𝑡 ∈ [0, 𝑇 ],

𝔼
[
(𝐼𝜀

𝑡,𝑚)
4
] ≤ 𝑁2𝑚𝐾

2

22𝑚(2𝑚)! ∫
𝑇

0
⋯∫

𝑇

0
𝑑𝑠1𝑑𝑠2𝑑𝑠3𝑑𝑠4

(|𝑠1 − 𝑠2|
𝜀

)2𝐻−2
[(|𝑠3 − 𝑠1|

𝜀

)2𝐻−2

+
(|𝑠3 − 𝑠2|

𝜀

)2𝐻−2
+

(|𝑠3 − 𝑠4|
𝜀

)2𝐻−2
]

≤ 𝐾 ′ (4𝑚)!
22𝑚(2𝑚)!𝑚!4

𝜀4−4𝐻,

for some constant 𝐾 ′ (which depends on 𝐻 and 𝑇 ), because 𝑠2𝐻−2 is integrable over [0, 𝑇 ]. By Stir-

ling's formula, we obtain

(4𝑚)!
22𝑚(2𝑚)!𝑚!4

≃ 22𝑚

𝑚!2
1√
2𝜋𝑚

.

Therefore, by Minkowski's inequality, we have, for any 𝑡 ∈ [0, 𝑇 ],

𝔼
[(

𝐼𝜀
𝑡

)4)]1∕4 ≤
∞∑

𝑚=1
|𝐶𝑚|𝔼 [(

𝐼𝜀
𝑚

)4)]1∕4 ≤ 𝐾 ′′𝜀1−𝐻
∞∑

𝑚=1
|𝐶𝑚| (2𝑚𝑚!)1∕2

≤ 𝐾 ′′𝜀1−𝐻

( ∞∑
𝑚=1

𝛼𝑚𝐶2
𝑚

𝑚!

)1∕2 ( ∞∑
𝑚=1

2𝑚
𝛼𝑚

)1∕2

,

for some constant 𝐾 ′′, which gives the desired result. □

The hypothesis (A.5) in Lemma A.1 requires some smoothness for the function 𝐹 . The following

lemma gives a sufficient condition.

Lemma A.2. If the function 𝐹 defined by (A.1) is of the form

𝐹 (𝑥) = ∫
𝑥

−∞
𝑓 (𝑦)𝑑𝑦, (A.8)

where the Fourier transform of the function 𝑓 satisfies |𝑓 (𝜈)| ≤ 𝐶 exp(−𝜈2) for some 𝐶 > 0; then there
exists 𝐾 > 0 such that, for any 𝑘 ≥ 0,

𝐶2
𝑘

𝑘!
≤ 𝐾3−𝑘. (A.9)

The inequality (A.9) is sufficient to ensure that the hypothesis (A.5) is fulfilled. We may, for instance,

consider

𝐹 (𝑥) = ∫
𝑥

−∞
𝑒−𝑦

2∕4𝑑𝑦 or 𝐹 (𝑥) = ∫
𝑥

−∞
sinc2(𝑦)𝑑𝑦. (A.10)
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Proof. The function 𝐹 is of class ∞, and we have, for any 𝑘 ≥ 1, using integration by parts,

𝐶𝑘 = ∫ℝ 𝐹 (𝑧)𝐻𝑘(𝑧)𝑝(𝑧)𝑑𝑧 = ∫ℝ 𝐹 (𝑘)(𝑧)𝑝(𝑧)𝑑𝑧 = ∫ℝ 𝑓 (𝑘−1)(𝑧)𝑝(𝑧)𝑑𝑧.

By Parseval formula, we have

𝐶𝑘 = 1
2𝜋 ∫ℝ 𝑒−𝜈

2∕2(𝑖𝜈)𝑘−1𝑓 (𝜈)𝑑𝜈.

Because |𝑓 (𝜈)| ≤ 𝐶 exp(−𝜈2), we obtain

|𝐶𝑘| ≤ 𝐶 ∫ℝ 𝑒−3𝜈
2∕2|𝜈|𝑘−1𝑑𝜈 = 𝐶

(2
3

) 𝑘

2

∫
∞

0
𝑒−𝑠𝑠

𝑘

2 −1𝑑𝑠 = 𝐶
(2
3

) 𝑘

2 Γ
(
𝑘

2

)
,

which gives the desired result using Stirling's formula Γ(𝑧) ∼ 𝑧𝑧−1∕2𝑒−𝑧
√
2𝜋. □

APPENDIX B: TECHNICAL LEMMAS
We denote

𝐺(𝑧) = 1
2

(
𝐹 (𝑧)2 − 𝜎

2
)
. (B.1)

The martingale 𝜓𝜀
𝑡 defined by (41) has the form

𝜓𝜀
𝑡 = 𝔼

[
∫

𝑇

0
𝐺(𝑍𝜀

𝑠 )𝑑𝑠
|||||𝑡

]
. (B.2)

Lemma B.1. (𝜓𝜀
𝑡 )𝑡∈[0,𝑇 ] is a square-integrable martingale and

𝑑 ⟨𝜓𝜀,𝑊 ⟩𝑡 = 𝜗𝜀
𝑡 𝑑𝑡, 𝜗𝜀

𝑡 = 𝜎ou ∫
𝑇

𝑡

𝔼
[
𝐺′(𝑍𝜀

𝑠 )|𝑡

]𝜀(𝑠 − 𝑡)𝑑𝑠. (B.3)

An alternative expression of the bracket <𝜓𝜀,𝑊 >𝑡 is given in (B.5) and (B.6).

Proof. For 𝑡 ≤ 𝑠, the conditional distribution of 𝑍𝜀
𝑠 given 𝑡 is Gaussian with mean

𝔼
[
𝑍𝜀

𝑠 |𝑡

]
= 𝜎ou ∫

𝑡

−∞
𝜀(𝑠 − 𝑢)𝑑𝑊𝑢,

and deterministic variance given by

Var
(
𝑍𝜀

𝑠 |𝑡

)
= (𝜎𝜀

0,𝑠−𝑡)
2,

where we have defined, for any 0 ≤ 𝑡 ≤ 𝑠 ≤ ∞,

(𝜎𝜀
𝑡,𝑠)

2 = 𝜎2
ou ∫

𝑠

𝑡

𝜀(𝑢)2𝑑𝑢. (B.4)

We thus have that the distribution of

1
𝜎𝜀
0,𝑠−𝑡

((
𝑍𝜀

𝑠 − 𝜎ou ∫
𝑡

−∞
𝜀(𝑠 − 𝑢)𝑑𝑊𝑢

)|||||𝑡

)
is standard normal. Therefore, we have

𝔼
[
𝐺(𝑍𝜀

𝑠 )|𝑡

]
= ∫ℝ 𝐺

(
𝜎ou ∫

𝑡

−∞
𝜀(𝑠 − 𝑢)𝑑𝑊𝑢 + 𝜎𝜀

0,𝑠−𝑡𝑧

)
𝑝(𝑧)𝑑𝑧,
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where 𝑝(𝑧) is the pdf of the standard normal distribution. As a random process in 𝑡, it is a continuous

martingale. By Itô's formula, for any 𝑡 ≤ 𝑠,

𝔼
[
𝐺(𝑍𝜀

𝑠 )|𝑡

]
= ∫ℝ 𝐺

(
𝜎ou ∫

0

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠𝑧

)
𝑝(𝑧)𝑑𝑧

+∫
𝑡

0 ∫ℝ 𝐺′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑧𝑝(𝑧)𝑑𝑧𝜕𝑢𝜎𝜀

0,𝑠−𝑢𝑑𝑢

+𝜎ou ∫
𝑡

0 ∫ℝ 𝐺′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑝(𝑧)𝑑𝑧𝜀(𝑠 − 𝑢)𝑑𝑊𝑢

+
𝜎2
ou
2 ∫

𝑡

0 ∫ℝ 𝐺′′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑝(𝑧)𝑑𝑧𝜀(𝑠 − 𝑢)2𝑑𝑢

and

𝐺(𝑍𝜀
𝑠 ) = 𝐺

(
𝜎ou ∫

𝑠

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣

)
= ∫ℝ 𝐺

(
𝜎ou ∫

𝑠

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,0𝑧

)
𝑝(𝑧)𝑑𝑧

= ∫ℝ 𝐺

(
𝜎ou ∫

0

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠𝑧

)
𝑝(𝑧)𝑑𝑧

+∫
𝑠

0 ∫ℝ 𝐺′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑧𝑝(𝑧)𝑑𝑧𝜕𝑢𝜎𝜀

0,𝑠−𝑢𝑑𝑢

+𝜎ou ∫
𝑠

0 ∫ℝ 𝐺′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑝(𝑧)𝑑𝑧𝜀(𝑠 − 𝑢)𝑑𝑊𝑢

+
𝜎2
ou
2 ∫

𝑠

0 ∫ℝ 𝐺′′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑝(𝑧)𝑑𝑧𝜀(𝑠 − 𝑢)2𝑑𝑢.

Therefore,

𝜓𝜀
𝑡 = ∫

𝑡

0
𝐺(𝑍𝜀

𝑠 )𝑑𝑠 + ∫
𝑇

𝑡

𝔼
[
𝐺(𝑍𝜀

𝑠 )|𝑡

]
𝑑𝑠

=

[
∫ℝ ∫

𝑇

0
𝐺

(
𝜎ou ∫

0

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠𝑧

)
𝑑𝑠𝑝(𝑧)𝑑𝑧

]

+∫
𝑡

0

[
∫

𝑇

𝑢 ∫ℝ 𝐺′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑧𝑝(𝑧)𝑑𝑧𝜕𝑢𝜎𝜀

0,𝑠−𝑢𝑑𝑠

]
𝑑𝑢

+𝜎ou ∫
𝑡

0

[
∫

𝑇

𝑢 ∫ℝ 𝐺′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑝(𝑧)𝑑𝑧𝜀(𝑠 − 𝑢)𝑑𝑠

]
𝑑𝑊𝑢

+
𝜎2
ou
2 ∫

𝑡

0

[
∫

𝑇

𝑢 ∫ℝ 𝐺′′
(
𝜎ou ∫

𝑢

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑢𝑧

)
𝑝(𝑧)𝑑𝑧𝜀(𝑠 − 𝑢)2𝑑𝑠

]
𝑑𝑢.
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This gives

𝑑 ⟨𝜓𝜀,𝑊 ⟩𝑡 = 𝜗𝜀
𝑡 𝑑𝑡, (B.5)

with

𝜗𝜀
𝑡 = 𝜎ou ∫

𝑇

𝑡 ∫ℝ 𝐺′
(
𝜎ou ∫

𝑡

−∞
𝜀(𝑠 − 𝑣)𝑑𝑊𝑣 + 𝜎𝜀

0,𝑠−𝑡𝑧

)
𝑝(𝑧)𝑑𝑧𝜀(𝑠 − 𝑡)𝑑𝑠, (B.6)

which can also be written as stated in the lemma. □

The important properties of the random process 𝜗𝜀
𝑡 are stated in the following lemma.

Lemma B.2. For any 𝑡 ∈ [0, 𝑇 ], we have

𝜗𝜀
𝑡 = 𝜀1−𝐻𝜃𝑡 + 𝜃𝜀𝑡 , (B.7)

where 𝜃𝑡 is deterministic and defined by

𝜃𝑡 = 𝜃(𝑇 − 𝑡)𝐻−1
2 , 𝜃 =

⟨𝐺′⟩
Γ(𝐻 + 1

2 )
, (B.8)

and 𝜃𝜀𝑡 is random, but smaller than 𝜀1−𝐻 ,

lim sup
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝜃𝜀𝑡 )

2
]1∕2

= 0. (B.9)

Proof. Recall first from equation (19) that

𝜀(𝑡) = 1√
𝜀
(

𝑡

𝜀

)
, (𝑡) = 1

𝜎ouΓ(𝐻 + 1
2 )

[
𝑡
𝐻−1

2 − ∫
𝑡

0
(𝑡 − 𝑠)𝐻−1

2 𝑒−𝑠𝑑𝑠

]
.

The expectation of 𝜗𝜀
𝑡 is then equal to

𝔼
[
𝜗𝜀
𝑡

]
= 𝜎ou

⟨
𝐺′⟩∫

𝑇−𝑡

0
𝜀(𝑠)𝑑𝑠 = 𝜎ou

⟨
𝐺′⟩√

𝜀∫
(𝑇−𝑡)∕𝜀

0
(𝑠)𝑑𝑠.

Therefore, the difference

𝔼
[
𝜗𝜀
𝑡

]
− 𝜀1−𝐻𝜃𝑡 = 𝜎ou

⟨
𝐺′⟩ 𝜀1∕2 ∫

(𝑇−𝑡)∕𝜀

0
(𝑠) − 𝑠

𝐻−3
2

𝜎ouΓ(𝐻 − 1
2 )

𝑑𝑠

can be bounded by |||𝔼 [
𝜗𝜀
𝑡

]
− 𝜀1−𝐻𝜃𝑡

||| ≤ 𝐶𝜀1∕2, (B.10)

uniformly in 𝑡 ∈ [0, 𝑇 ], for some constant 𝐶 , because (𝑠) − 𝑠
𝐻− 3

2

𝜎ouΓ(𝐻−1
2 )

is in 𝐿1.

We have

Var(𝜗𝜀
𝑡 ) = 𝜎2

ou ∫
𝑇

𝑡

𝑑𝑠∫
𝑇

𝑡

𝑑𝑠′𝜀(𝑠 − 𝑡)𝜀(𝑠′ − 𝑡)Cov
(
𝔼
[
𝐺′(𝑍𝜀

𝑠 )|𝑡

]
,𝔼

[
𝐺′(𝑍𝜀

𝑠′ )|𝑡

])
≤ 𝜎2

ou

(
∫

𝑇

𝑡

𝑑𝑠𝜀(𝑠 − 𝑡)Var
(
𝔼
[
𝐺′(𝑍𝜀

𝑠 )|𝑡

])1∕2)2

= 𝜎2
ou

(
∫

𝑇−𝑡

0
𝑑𝑠𝜀(𝑠)Var

(
𝔼
[
𝐺′(𝑍𝜀

𝑠 )|0
])1∕2)2

.
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The conditional distribution of 𝑍𝜀
𝑡 given 0 is Gaussian with mean

𝔼
[
𝑍𝜀

𝑡 |0
]
= 𝜎ou ∫

0

−∞
𝜀(𝑡 − 𝑢)𝑑𝑊𝑢

and variance

Var
(
𝑍𝜀

𝑡 |0
)
= (𝜎𝜀

0,𝑡)
2 = 𝜎2

ou ∫
𝑡

0
𝜀(𝑢)2𝑑𝑢.

Therefore,

Var
(
𝔼
[
𝐺′(𝑍𝜀

𝑡 )|0
])

= Var
(
∫ℝ 𝐺′

(
𝔼
[
𝑍𝜀

𝑡 |0
]
+ 𝜎𝜀

0,𝑡𝑧
)
𝑝(𝑧)𝑑𝑧

)
.

The random variable 𝔼[𝑍𝜀
𝑡 |0] is Gaussian with mean zero and variance

(𝜎𝜀
𝑡,∞)2 = 𝜎2

ou ∫
∞

𝑡

𝜀(𝑢)2𝑑𝑢,

so that

Var
(
𝔼
[
𝐺′(𝑍𝜀

𝑡 )|0
])

= 1
2 ∫ℝ ∫ℝ 𝑑𝑧𝑑𝑧′𝑝(𝑧)𝑝(𝑧′)∫ℝ ∫ℝ 𝑑𝑢𝑑𝑢′𝑝(𝑢)𝑝(𝑢′)

×
[
𝐺′

(
𝜎𝜀
𝑡,∞𝑢 + 𝜎𝜀

0,𝑡𝑧
)
− 𝐺′

(
𝜎𝜀
𝑡,∞𝑢′ + 𝜎𝜀

0,𝑡𝑧
)]

×
[
𝐺′

(
𝜎𝜀
𝑡,∞𝑢 + 𝜎𝜀

0,𝑡𝑧
′
)
− 𝐺′

(
𝜎𝜀
𝑡,∞𝑢′ + 𝜎𝜀

0,𝑡𝑧
′
)]

≤ ‖𝐺′′‖2∞(𝜎𝜀
𝑡,∞)2 1

2 ∫ℝ ∫ℝ 𝑑𝑢𝑑𝑢′𝑝(𝑢)𝑝(𝑢′)(𝑢 − 𝑢′)2

= ‖𝐺′′‖2∞(𝜎𝜀
𝑡,∞)2. (B.11)

Therefore,

Var(𝜗𝜀
𝑡 )
1∕2 ≤ ‖𝐺′′‖∞𝜎2

ou ∫
𝑇−𝑡

0
𝑑𝑠𝜀(𝑠)

(
∫

∞

𝑠

𝑑𝑢𝜀(𝑢)2
)1∕2

≤ ‖𝐺′′‖∞𝜎2
ou𝜀

1∕2 ∫
(𝑇−𝑡)∕𝜀

0
𝑑𝑠(𝑠)

(
∫

∞

𝑠

𝑑𝑢(𝑢)2
)1∕2

.

Because (𝑠) ≤ 1 ∧𝐾𝑠
𝐻−3

2 , this gives

Var(𝜗𝜀
𝑡 )
1∕2 ≤ 𝐶

⎧⎪⎨⎪⎩
𝜀1∕2 if 𝐻 < 3∕4,
𝜀1∕2 ln(𝜀) if 𝐻 = 3∕4,
𝜀2−2𝐻 if 𝐻 > 3∕4,

(B.12)

uniformly in 𝑡 ∈ [0, 𝑇 ], for some constant 𝐶 . This completes the proof of the lemma. □

The random term 𝜙𝜀
𝑡 defined by (36) has the form

𝜙𝜀
𝑡,𝑇

= 𝔼
[
∫

𝑇

𝑡

𝐺(𝑍𝜀
𝑠 )𝑑𝑠

|||||𝑡

]
. (B.13)

Here, we write explicitly the argument 𝑇 (maturity) as we compute the correlations of these random

terms for different maturities.
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Lemma B.3.

1. For any 𝑡 ≤ 𝑇 , 𝜙𝜀
𝑡,𝑇

is a zero-mean random variable with standard deviation of order 𝜀1−𝐻 ,

𝜀2𝐻−2𝔼[(𝜙𝜀
𝑡,𝑇

)2]
𝜀→0
←→ 𝜎2

𝜙
(𝑇 − 𝑡)2𝐻, (B.14)

where 𝜎𝜙 is defined by (39).
2. The covariance function of 𝜙𝜀

𝑡,𝑇
has the following limit for any 𝑡 ≤ 𝑇 , 𝑡′ ≤ 𝑇 ′, with 𝑡 ≤ 𝑡′:

𝜀2𝐻−2𝔼[𝜙𝜀
𝑡,𝑇

𝜙𝜀
𝑡′,𝑇 ′ ]

𝜀→0
←→ 𝜎2

𝜙
(𝑇 − 𝑡)𝐻 (𝑇 ′ − 𝑡′)𝐻𝜙(𝑡, 𝑡′; 𝑇 , 𝑇 ′), (B.15)

where the limit correlation is

𝜙(𝑡, 𝑡′; 𝑇 , 𝑇 ′) =
∫ ∞
0 𝑑𝑢

[
(𝑢 + 𝑟)𝐻−1

2 − 𝑢
𝐻−1

2
] [

(𝑢 + 𝑠)𝐻−1
2 − (𝑢 + 𝑞)𝐻−1

2
]

∫ ∞
0 𝑑𝑢

[
(1 + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
]2 , (B.16)

with

𝑞 = 𝑡′ − 𝑡√
(𝑇 − 𝑡)(𝑇 ′ − 𝑡′)

, 𝑟 =
√

𝑇 − 𝑡√
𝑇 ′ − 𝑡′

, 𝑠 = 𝑇 ′ − 𝑡√
(𝑇 − 𝑡)(𝑇 ′ − 𝑡′)

.

3. As 𝜀 → 0, the random process 𝜀𝐻−1𝜙𝜀
𝑡,𝑇

, 𝑡 ≤ 𝑇 , converges in distribution (in the sense of finite-
dimensional distributions) to a Gaussian random process 𝜙𝑡,𝑇 , 𝑡 ≤ 𝑇 , with mean zero and covari-
ance 𝜀2(𝐻−1)𝔼[𝜙𝑡,𝑇 𝜙𝑡′,𝑇 ′ ] = 𝜎2

𝜙
(𝑇 − 𝑡)𝐻 (𝑇 ′ − 𝑡′)𝐻𝜙(𝑡, 𝑡′; 𝑇 , 𝑇 ′) for any 𝑡 ∈ [0, 𝑇 ], 𝑡′ ∈ [0, 𝑇 ′],

with 𝑡 ≤ 𝑡′.
4. The fourth-order moments of 𝜀𝐻−1𝜙𝜀

𝑡,𝑇
are uniformly bounded: There exists a constant 𝐾𝑇 inde-

pendent of 𝜀 such that

sup
𝑡∈[0,𝑇 ]

𝔼[(𝜙𝜀
𝑡,𝑇

)4]1∕4 ≤ 𝐾𝑇 𝜀
1−𝐻. (B.17)

Note that the mean square increment of the limit process 𝜙𝑡,𝑇 satisfies, for 𝑡, 𝑡 + ℎ ∈ [0, 𝑇 ],

𝔼
[
(𝜙𝑡,𝑇 − 𝜙𝑡+ℎ,𝑇 )2

]
= 1

Γ(𝐻 + 1
2 )

2 ∫
∞

0
𝑑𝑢

[
(𝑇 − 𝑡 − ℎ + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
]2

−
[
(𝑇 − 𝑡 + 𝑢)𝐻−1

2 − (𝑢 + ℎ)𝐻−1
2
]2

+
[
(𝑢 + ℎ)𝐻−1

2 − 𝑢
𝐻−1

2
]2

= (𝑇 − 𝑡)2𝐻−1

Γ(𝐻 + 1
2 )

2
ℎ + 𝑜(ℎ), ℎ → 0. (B.18)

This shows that the limit Gaussian process 𝜙𝑡,𝑇 has the same local regularity (as a function of 𝑡) as a

standard Brownian motion. We also have, for any 𝑡 < 𝑇 ≤ 𝑇 + ℎ,

𝔼
[
(𝜙𝑡,𝑇+ℎ − 𝜙𝑡,𝑇 )2

]
= (𝑇 − 𝑡)2𝐻−2

(2 − 2𝐻)Γ(𝐻 − 1
2 )

2
ℎ2 + 𝑜(ℎ2), ℎ → 0. (B.19)

This shows that the limit Gaussian process 𝜙𝑡,𝑇 is smooth (mean square differentiable) as a function of

the maturity 𝑇 .
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Proof. Let us fix 𝑇0 > 0. For 𝑡 ∈ [0, 𝑇 ], 𝑡′ ∈ [0, 𝑇 ′], with 𝑇 , 𝑇 ′ ≤ 𝑇0, and 𝑡 ≤ 𝑡′, the covariance of 𝜙𝜀
𝑡,𝑇

is

Cov(𝜙𝜀
𝑡,𝑇

, 𝜙𝜀
𝑡′,𝑇 ′ ) = 𝔼

[
𝔼
[
∫

𝑇

𝑡

𝐺(𝑍𝜀
𝑠 )𝑑𝑠

|||||𝑡

]
𝔼

[
∫

𝑇 ′

𝑡′
𝐺(𝑍𝜀

𝑠 )𝑑𝑠
|||||𝑡′

]]

= 𝔼

[
𝔼
[
∫

𝑇

𝑡

𝐺(𝑍𝜀
𝑠 )𝑑𝑠

|||||𝑡

]
𝔼

[
∫

𝑇 ′

𝑡′
𝐺(𝑍𝜀

𝑠 )𝑑𝑠
|||||𝑡

]]

= ∫
𝑇−𝑡

0
𝑑𝑠∫

𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′Cov

(
𝔼
[
𝐺

(
𝑍𝜀

𝑠

) |0
]
,𝔼

[
𝐺

(
𝑍𝜀

𝑠′
) |0

])
.

Then, proceeding as in the proof of the previous lemma, we obtain

Var(𝜙𝜀
𝑡,𝑇

) ≤
(
∫

𝑇−𝑡

0
𝑑𝑠Var

(
𝔼
[
𝐺(𝑍𝜀

𝑠 )|0
])1∕2)2

≤ ‖𝐺′‖2∞ (
∫

𝑇−𝑡

0
𝑑𝑠𝜎𝜀

𝑠,∞

)2

.

Because (𝑠) ≤ 1 ∧𝐾𝑠
𝐻−3

2 , this gives

Var(𝜙𝜀
𝑡,𝑇

) ≤ 𝐶𝑇0
𝜀2−2𝐻,

uniformly in 𝑡 ≤ 𝑇 ≤ 𝑇0, for some constant 𝐶𝑇0
. More precisely, for 𝑡 ∈ [0, 𝑇 ], 𝑡′ ∈ [0, 𝑇 ′], with

𝑇 , 𝑇 ′ ≤ 𝑇0, and 𝑡 ≤ 𝑡′, we have

Cov(𝜙𝜀
𝑡,𝑇

, 𝜙𝜀
𝑡′,𝑇 ′ ) = ∫

𝑇−𝑡

0
𝑑𝑠∫

𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′ ∫ℝ ∫ℝ 𝑑𝑧𝑑𝑧′𝑝(𝑧)𝑝(𝑧′)

×𝔼

[
𝐺

(
𝜎ou ∫

0

−∞
𝜀(𝑠 − 𝑢)𝑑𝑊𝑢 + 𝜎𝜀

0,𝑠𝑧

)
𝐺

(
𝜎ou ∫

0

−∞
𝜀(𝑠′ − 𝑢′)𝑑𝑊𝑢′ + 𝜎𝜀

0,𝑠′𝑧
′

)]
.

Using the fact that < 𝐺 >= 0, we can write

Cov
(
𝜙𝜀
𝑡,𝑇

, 𝜙𝜀
𝑡′,𝑇 ′

)
= ∫

𝑇−𝑡

0
𝑑𝑠∫

𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′ ∫ℝ ∫ℝ 𝑑𝑧𝑑𝑧′𝑝(𝑧)𝑝(𝑧′)

×𝔼

[(
𝐺

(
𝜎ou ∫

0

−∞
𝜀(𝑠 − 𝑢)𝑑𝑊𝑢 + 𝜎𝜀

0,𝑠𝑧

)
− 𝐺(𝜎ou𝑧)

)

×

(
𝐺

(
𝜎ou ∫

0

−∞
𝜀(𝑠′ − 𝑢′)𝑑𝑊𝑢′ + 𝜎𝜀

0,𝑠′𝑧
′

)
− 𝐺(𝜎ou𝑧′)

)]
.

Therefore,

Cov
(
𝜙𝜀
𝑡,𝑇

, 𝜙𝜀
𝑡′,𝑇 ′

)
= ∫

𝑇−𝑡

0
𝑑𝑠∫

𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′ ∫ℝ ∫ℝ 𝑑𝑧𝑑𝑧′𝑝(𝑧)𝑝(𝑧′)𝐺′(𝜎ou𝑧)𝐺′(𝜎ou𝑧′)

×𝔼

[(
𝜎ou ∫

0

−∞
𝜀(𝑠 − 𝑢)𝑑𝑊𝑢 +

(
𝜎𝜀
0,𝑠 − 𝜎ou

)
𝑧

)

×

(
𝜎ou ∫

0

−∞
𝜀(𝑠′ − 𝑢′)𝑑𝑊𝑢′ +

(
𝜎𝜀
0,𝑠′ − 𝜎ou

)
𝑧′

)]
+ 𝑉 𝜀

3 ,
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up to a term 𝑉 𝜀
3 , which is of order 𝜀3−3𝐻 ,

𝑉 𝜀
3 ≤ 2‖𝐺′‖∞‖𝐺′′‖∞ ∫

𝑇−𝑡

0
𝑑𝑠∫

𝑇 ′−𝑡

0
𝑑𝑠′ ∫ℝ ∫ℝ 𝑑𝑧𝑑𝑧′𝑝(𝑧)𝑝(𝑧′)

×𝔼
⎡⎢⎢⎣
(
𝜎ou ∫

0

−∞
𝜀(𝑠 − 𝑢)𝑑𝑊𝑢 +

(
𝜎𝜀
0,𝑠 − 𝜎ou

)
𝑧

)2

×
|||||𝜎ou ∫

0

−∞
𝜀(𝑠′ − 𝑢′)𝑑𝑊𝑢′ + (𝜎𝜀

0,𝑠′ − 𝜎ou)𝑧′
|||||
]

≤ 𝐶‖𝐺′‖∞‖𝐺′′‖∞ ∫
𝑇0−𝑡

0
𝑑𝑠∫

𝑇0−𝑡

0
𝑑𝑠′ ∫ℝ ∫ℝ 𝑑𝑧𝑑𝑧′𝑝(𝑧)𝑝(𝑧′)

×

(
𝜎2
ou ∫

0

−∞
𝜀(𝑠 − 𝑢)2𝑑𝑢 + (𝜎𝜀

0,𝑠 − 𝜎ou)2𝑧2
)

×

(
𝜎2
ou ∫

0

−∞
𝜀(𝑠′ − 𝑢′)2𝑑𝑢′ +

(
𝜎𝜀
0,𝑠′ − 𝜎ou

)2
𝑧′2

)1∕2

≤ 𝐶 ′‖𝐺′‖∞‖𝐺′′‖∞ [
∫

𝑇0−𝑡

0
𝑑𝑠∫ℝ 𝑑𝑧𝑝(𝑧)

((
𝜎𝜀
𝑠,∞

)2
+ (𝜎𝜀

0,𝑠 − 𝜎ou)2𝑧2
)]3∕2

≤ 𝐶 ′‖𝐺′‖∞‖𝐺′′‖∞ [
∫

𝑇0−𝑡

0
𝑑𝑠

(
𝜎𝜀
𝑠,∞

)2
+

(
𝜎𝜀
0,𝑠 − 𝜎ou

)2
]3∕2

.

Using (𝜎𝜀
𝑠,∞)2 + (𝜎𝜀

0,𝑠)
2 = 𝜎2

ou and

|𝜎ou − 𝜎𝜀
0,𝑠| = 𝜎ou

⎛⎜⎜⎝1 −
(
∫

𝑠∕𝜀

0
(𝑢)2𝑑𝑢

)1∕2⎞⎟⎟⎠ = 𝜎ou

(
1 −

(
1 − ∫

∞

𝑠∕𝜀
(𝑢)2𝑑𝑢

)1∕2
)

≤ 𝜎ou ∫
∞

𝑠∕𝜀
(𝑢)2𝑑𝑢 ≤ 𝜎ou

(
1 ∧𝐾

(
𝑠

𝜀

)2𝐻−2
)

, (B.20)

where the fist inequality follows from
√
1 − 𝑥 > 1 − 𝑥 for 0 ≤ 𝑥 ≤ 1, we get

𝑉 𝜀
3 ≤ 𝐶 ′‖𝐺′‖∞‖𝐺′′‖∞ [

∫
𝑇0−𝑡

0
𝑑𝑠2𝜎ou(𝜎ou − 𝜎𝜀

0,𝑠)
]3∕2

≤ 𝐶 ′′‖𝐺′‖∞‖𝐺′′‖∞𝜀3−3𝐻.

This gives

Cov(𝜙𝜀
𝑡,𝑇

, 𝜙𝜀
𝑡′,𝑇 ′ ) = ∫

𝑇−𝑡

0
𝑑𝑠∫

𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′ ∫ℝ ∫ℝ 𝑑𝑧𝑑𝑧′𝑝(𝑧)𝑝(𝑧′)𝐺′(𝜎ou𝑧)𝐺′(𝜎ou𝑧′)

×
(
𝜎2
ou ∫

∞

0
𝜀(𝑠 + 𝑢)𝜀(𝑠′ + 𝑢)𝑑𝑢 + (𝜎𝜀

0,𝑠 − 𝜎ou)(𝜎𝜀
0,𝑠′ − 𝜎ou)𝑧𝑧′

)
+ 𝑉 𝜀

3

= 𝑉 𝜀
1
⟨
𝐺′⟩2 + 𝑉 𝜀

2 𝜎
2
ou

⟨
𝐺′′⟩2 + 𝑉 𝜀

3 ,
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with

𝑉 𝜀
1 = 𝜎2

ou ∫
∞

0
𝑑𝑢

(
∫

𝑇−𝑡

0
𝑑𝑠𝜀(𝑠 + 𝑢)

)(
∫

𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′𝜀(𝑠′ + 𝑢)

)
,

𝑉 𝜀
2 =

(
∫

𝑇−𝑡

0
𝑑𝑠(𝜎𝜀

0,𝑠 − 𝜎ou)
)(

∫
𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′(𝜎𝜀

0,𝑠′ − 𝜎ou)

)
.

Using again (B.20), we find that

𝑉 𝜀
2 ≤ 𝐶𝜀4−4𝐻,

while

𝑉 𝜀
1 = 1

Γ(𝐻 + 1
2 )

2 ∫
∞

0

(
(𝑇 − 𝑡 + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
)

×
(
(𝑇 ′ − 𝑡 + 𝑢)𝐻−1

2 − (𝑢 + 𝑡′ − 𝑡)𝐻−1
2
)
𝑑𝑢 𝜀2−2𝐻

+𝑜(𝜀2−2𝐻 ).

Applying the change of variable

𝑢 → (𝑇 − 𝑡)
1
2 (𝑇 ′ − 𝑡′)

1
2 𝑢

gives the first and second items of the lemma with

𝜎2
𝜙
=

⟨𝐺′⟩2
Γ(𝐻 + 1

2 )
2 ∫

∞

0

(
(1 + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
)2

𝑑𝑢,

which is equivalent to (39).

In order to prove the third item, we introduce

𝜙̌𝜀
𝑡,𝑇

= 𝔼
[
∫

𝑇

𝑡

𝑍𝜀
𝑠 𝑑𝑠

|||||𝑡

]
, (B.21)

which is a Gaussian random process with mean zero and covariance, for 𝑡 ∈ [0, 𝑇 ], 𝑡′ ∈ [0, 𝑇 ′], with

𝑡 ≤ 𝑡′,

Cov
(
𝜙̌𝜀
𝑡,𝑇

, 𝜙̌𝜀
𝑡′,𝑇 ′

)
= ∫

𝑇

𝑡

𝑑𝑠∫
𝑇 ′

𝑡′
𝑑𝑠′𝔼

[
𝔼[𝑍𝜀

𝑠 |𝑡]𝔼[𝑍𝜀
𝑠 |𝑡′ ]

]
= ∫

𝑇

𝑡

𝑑𝑠∫
𝑇 ′

𝑡′
𝑑𝑠′𝔼

[
𝔼[𝑍𝜀

𝑠 |𝑡]𝔼[𝑍𝜀
𝑠 |𝑡]

]
= 𝜎2

ou ∫
𝑇−𝑡

0
𝑑𝑠∫

𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′𝔼

[(
∫

0

−∞
𝜀(𝑠 − 𝑢)𝑑𝑊𝑢

)(
∫

0

−∞
𝜀(𝑠′ − 𝑢)𝑑𝑊𝑢

)]

= 𝜎2
ou ∫

∞

0
𝑑𝑢

(
∫

𝑇−𝑡

0
𝑑𝑠𝜀(𝑠 + 𝑢)

)(
∫

𝑇 ′−𝑡

𝑡′−𝑡
𝑑𝑠′𝜀(𝑠′ + 𝑢)

)
.

Therefore, for 𝑡𝑗 ∈ [0, 𝑇𝑗], with 𝑡1 ≤ ⋯ ≤ 𝑡𝑛, the random vector (𝜀𝐻−1 < 𝐺′ > 𝜙̌𝜀
𝑡1,𝑇1

,… , 𝜀𝐻−1 <𝐺′>

𝜙̌𝜀
𝑡𝑛,𝑇𝑛

) converges to a Gaussian random vector with mean 0 and covariance matrix (𝜎2
𝜙
(𝑇𝑗 − 𝑡𝑗)𝐻 (𝑇𝑙 −
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𝑡𝑙)𝐻𝜙(𝑡𝑗 , 𝑡𝑙; 𝑇𝑗, 𝑇𝑙))𝑛𝑗,𝑙=1. In other words, the random process (𝜀𝐻−1 <𝐺′> 𝜙̌𝜀
𝑡,𝑇

)0≤𝑡≤𝑇<∞ converges

in the sense of finite-dimensional distributions to a Gaussian process (𝜙𝑡,𝑇 )0≤𝑡≤𝑇<∞ with mean 0 and

covariance function 𝔼[𝜙𝑡,𝑇 𝜙𝑡′,𝑇 ′ ] = 𝜎2
𝜙
(𝑇 − 𝑡)𝐻 (𝑇 ′ − 𝑡′)𝐻𝜙(𝑡, 𝑡′; 𝑇 , 𝑇 ′), for 𝑡 ∈ [0, 𝑇 ], 𝑡′ ∈ [0, 𝑇 ′],

with 𝑡 ≤ 𝑡′.

Moreover, we have

Var
(
𝜙̌𝜀
𝑡,𝑇

)
= 1

Γ(𝐻 + 1
2 )

2 ∫
∞

0

(
(1 + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
)2

𝑑𝑢 (𝑇 − 𝑡)2𝐻𝜀2−2𝐻 + 𝑜(𝜀2−2𝐻 ).

Similarly,

𝔼
[
𝜙̌𝜀
𝑡,𝑇

𝜙𝜀
𝑡,𝑇

]
=

⟨𝐺′⟩
Γ(𝐻 + 1

2 )
2 ∫

∞

0

(
(1 + 𝑢)𝐻−1

2 − 𝑢
𝐻−1

2
)2

𝑑𝑢 (𝑇 − 𝑡)2𝐻𝜀2−2𝐻 + 𝑜(𝜀2−2𝐻 ).

As a result,

𝜀2𝐻−2𝔼
[
(𝜙𝜀

𝑡,𝑇
−

⟨
𝐺′⟩ 𝜙̌𝜀

𝑡,𝑇
)2
]

𝜀→0
←→ 0,

and the random process (𝜀𝐻−1 < 𝐺′ > 𝜙̌𝜀
𝑡,𝑇

)0≤𝑡≤𝑇<∞ converges in the sense of finite-dimensional dis-

tributions to a Gaussian process (𝜙𝑡,𝑇 )0≤𝑡≤𝑇<∞ with mean 0 and covariance function 𝔼[𝜙𝑡,𝑇 𝜙𝑡′,𝑇 ′ ] =
𝜎2
𝜙
(𝑇 − 𝑡)𝐻 (𝑇 ′ − 𝑡′)𝐻𝜙(𝑡, 𝑡′; 𝑇 , 𝑇 ′) for 𝑡 ∈ [0, 𝑇 ], 𝑡′ ∈ [0, 𝑇 ′], with 𝑡 ≤ 𝑡′. This gives the third item

of the lemma.

To prove the fourth item of the lemma, we note that

𝜙𝜀
𝑡,𝑇

= 1
2
𝔼
[
𝐼𝜀
𝑇
|𝑡

]
− 1

2
𝐼𝜀
𝑡 ,

where 𝐼𝜀
𝑡 is defined by (A.6). Therefore,

sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝜙𝜀

𝑡,𝑇
)4
] ≤ sup

𝑡∈[0,𝑇 ]
𝔼
[
(𝐼𝜀

𝑡 )
4] ,

and the result follows from Lemma A.1, equation (A.7). □

Lemma B.4. Let us define, for any 𝑡 ∈ [0, 𝑇 ],

𝛾𝜀𝑡 = 1
2 ∫

𝑡

0

(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝜙𝜀
𝑠𝑑𝑠, (B.22)

as in (49). We have

lim sup
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝛾𝜀𝑡 )

2]1∕2 = 0. (B.23)

Proof. Let us define, for any 𝑡 ∈ [0, 𝑇 ],

Γ𝜀
𝑡 = ∫

𝑇

𝑡

(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝜙𝜀
𝑠𝑑𝑠. (B.24)

By the definition (41) of 𝜙𝜀
𝑠 , we have

Γ𝜀
𝑡 = 2∫

𝑇

𝑡

𝑑𝑠∫
𝑇

𝑠

𝑑𝑢𝔼
[
𝐺(𝑍𝜀

𝑠 )𝐺(𝑍𝜀
𝑢 )|𝑠

]
.



44 GARNIER AND SØLNA

Therefore,

𝔼
[(
Γ𝜀
𝑡

)2] = 2∫
𝑇

𝑡

𝑑𝑠∫
𝑇

𝑠

𝑑𝑢∫
𝑇

𝑠

𝑑𝑠′ ∫
𝑇

𝑠′
𝑑𝑢′𝔼

[
𝔼
[
𝐺(𝑍𝜀

𝑠 )𝐺(𝑍𝜀
𝑢 )|𝑠

]
𝔼
[
𝐺(𝑍𝜀

𝑠′
)𝐺(𝑍𝜀

𝑢′
)|𝑠′

]]
= 2∫

𝑇

𝑡

𝑑𝑠∫
𝑇

𝑠

𝑑𝑢∫
𝑇

𝑠

𝑑𝑠′ ∫
𝑇

𝑠′
𝑑𝑢′𝔼

[
𝐺(𝑍𝜀

𝑠 )𝐺(𝑍𝜀
𝑢 )𝔼

[
𝐺(𝑍𝜀

𝑠′ )𝐺(𝑍𝜀
𝑢′ )

|||𝑠

]]

= ∫
𝑇

𝑡

𝑑𝑠∫
𝑇

𝑠

𝑑𝑢𝔼

[
𝐺(𝑍𝜀

𝑠 )𝐺(𝑍𝜀
𝑢 )𝔼

[(
∫

𝑇

𝑠

𝐺(𝑍𝜀
𝑠′ )𝑑𝑠

′
)2||||||𝑠

]]

= ∫
𝑇

𝑡

𝑑𝑠𝔼

[
𝐺(𝑍𝜀

𝑠 )𝔼

[
∫

𝑇

𝑠

𝐺(𝑍𝜀
𝑢 )𝑑𝑢 ||𝑠

]
𝔼

[(
∫

𝑇

𝑠

𝐺(𝑍𝜀
𝑠′ )𝑑𝑠

′
)2||||||𝑠

]]

≤ ‖𝐺‖∞ ∫
𝑇

𝑡

𝑑𝑠𝔼

[||||||𝔼
[(

∫
𝑇

𝑠

𝐺(𝑍𝜀
𝑠′
)𝑑𝑠′

)2||||||𝑠

]||||||
3∕2⎤⎥⎥⎦

≤ ‖𝐺‖∞ ∫
𝑇

𝑡

𝑑𝑠𝔼

[|||||∫
𝑇

𝑠

𝐺(𝑍𝜀
𝑠′ )𝑑𝑠

′
|||||
3]

≤ ‖𝐺‖∞ ∫
𝑇

𝑡

𝑑𝑠𝔼

[(
∫

𝑇

𝑠

𝐺(𝑍𝜀
𝑠′ )𝑑𝑠

′
)4]3∕4

,

where in the first inequality, we use that||||||𝔼
[
∫

𝑇

𝑠

𝐺
(
𝑍𝜀

𝑢

)
𝑑𝑢

|||||𝑠

]|||||| ≤
||||||𝔼

[(
∫

𝑇

𝑠

𝐺
(
𝑍𝜀

𝑢

)
𝑑𝑢

)2||||||𝑠

]||||||
1∕2

,

which follows from the conditional version of Jensen's inequality. It follows by Lemma A.1 that

𝔼[(Γ𝜀
𝑡 )
2] is smaller than 𝐾 ′𝜀3−3𝐻 for some constant 𝐾 ′. This proves

lim sup
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(Γ𝜀

𝑡 )
2]1∕2 = 0. (B.25)

Note that 𝛾𝜀𝑡 defined by (49) is related to Γ𝜀
𝑡 through

𝛾𝜀𝑡 = 2
(
Γ𝜀
0 − Γ𝜀

𝑡

)
.

Therefore, equation (B.25) also implies

lim sup
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝛾𝜀𝑡 )

2]1∕2 = 0,

which is the desired result. □

Lemma B.5. Let us define, for any 𝑡 ∈ [0, 𝑇 ],

𝜂𝜀𝑡 = 𝜀1−𝐻 ∫
𝑡

0

(
𝜎𝜀
𝑠 − 𝜎

)
𝑑𝑠, (B.26)

as in (51). We have

lim sup
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝜂𝜀𝑡 )

2]1∕2 = 0. (B.27)
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Proof. By Lemma 3.1, we obtain

𝔼
[
(𝜂𝜀𝑡 )

2] = 𝜀2−2𝐻𝔼

[(
∫

𝑡

0

(
𝜎𝜀
𝑠 − 𝜎

)
𝑑𝑠

)2]

= 𝜀2−2𝐻 ∫
𝑡

0 ∫
𝑡

0
Cov

(
𝐹 (𝑍𝜀

𝑠 ), 𝐹 (𝑍𝜀
𝑠′ )

)
𝑑𝑠𝑑𝑠′

= 𝜀2−2𝐻
(⟨

𝐹 2⟩ − ⟨𝐹 ⟩2)∫
𝑡

0 ∫
𝑡

0
𝜎

(
𝑠 − 𝑠′

𝜀

)
𝑑𝑠𝑑𝑠′

≤ 𝐾𝜀2−2𝐻 ∫
𝑇

0 ∫
𝑇

0

(|𝑠 − 𝑠′|
𝜀

)2𝐻−2
𝑑𝑠𝑑𝑠′

≤ 𝐾 ′𝜀4−4𝐻,

for some constants 𝐾,𝐾 ′, because 𝑠2𝐻−2 is integrable over (0, 𝑇 ), which gives the desired result. □

Lemma B.6. Let us define, for any 𝑡 ∈ [0, 𝑇 ],

𝜅𝜀
𝑡 = 𝜀1−𝐻

2 ∫
𝑡

0

(
(𝜎𝜀

𝑠 )
2 − 𝜎

2
)
𝑑𝑠, (B.28)

as in (50). We have

lim sup
𝜀→0

𝜀𝐻−1 sup
𝑡∈[0,𝑇 ]

𝔼
[
(𝜅𝜀

𝑡 )
2]1∕2 = 0. (B.29)

Proof. The proof is similar to the one in Lemma B.5. □


