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LASER BEAM IMAGING FROM THE SPECKLE PATTERN
OF THE OFF-AXIS SCATTERED INTENSITY∗

LILIANA BORCEA† AND JOSSELIN GARNIER‡

Abstract. We study the inverse problem of localization (imaging) of one laser beam from
measurements of the intensity of light scattered off-axis by a Poisson cloud of small particles. Starting
from the wave equation, we analyze the microscopic coherence of the scattered intensity and show
that it is possible to determine the laser beam from the speckle pattern captured by a group of
cameras. Two groups of cameras are sufficient when the particles are either small or large with
respect to the wavelength. For general particle sizes the accuracy of the laser localization with two
groups of cameras is subject to knowing the scattering properties of the cloud. However, three or
more groups of cameras allow accurate localization that is robust to uncertainty of the type, size,
shape, and concentration of the particles in the cloud. We introduce a novel laser beam localization
algorithm and give some numerical illustrations in a regime relevant to the application of imaging
high energy lasers in a maritime atmosphere.
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1. Introduction. We study an inverse problem for the wave equation, moti-
vated by the application of detection and characterization of high energy laser beams
propagating in a maritime atmosphere. The data are gathered by sensors that lie not
in the footprint of the laser beam (assumed to be unique) but at remote locations off
its axis. These sensors measure the intensity of incoherent light scattered by a cloud
of particles suspended in air (aerosols), with sizes ranging from a few nanometers to
a hundred micrometers [11]. Maritime environments have a mixture of aerosols like
sea salts, dust particles, water droplets, etc., with concentration and composition of
the cloud depending on factors such as weather and location [10, 17]. The aerosols
are typically modeled as spherical particles, so that their interaction with the laser
beam can be described by the Mie scattering theory [8, 16]. This seems to capture
well experimental observations [3, 17, 10].

We refer to [3, 11, 14, 15] for studies of detection of laser beams from off-axis
measurements of the scattered intensity. Pulsed laser beam localization is studied
in [7, 19], using a camera that can measure the intensity resolved over both time
and direction of arrival. We are interested in continuous wave (time harmonic) laser
beams, where arrival times cannot be measured. The localization of such lasers was
studied in [6] using intensity measurements at two cameras placed in the focal plane
of lenses which Fourier transform the light wave in order to resolve the intensity over
direction of arrival. The setup requires knowledge of the focal length of the lenses,
which depends on the wavelength λ of the laser. The localization becomes ambiguous
when the two cameras and the axis of the beam are in the same plane, as shown in

∗Received by the editors July 17, 2017; accepted for publication (in revised form) January 2, 2018;
published electronically March 1, 2018.

http://www.siam.org/journals/siap/78-2/M113905.html
Funding: This work was supported in part by the U.S. Office of Naval Research under award

N00014-17-1-2057 and by AFOSR under award FA9550-15-1-0118.
†Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 (borcea@umich.edu).
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[6], where an improvement based on the relative radiance of scattering at the cameras
is proposed. This approach may be susceptible to uncertainty in the composition of
the cloud of particles and of the mathematical model of the scattered intensity.

In this paper we introduce an original method for laser beam localization, using
the microscopic coherence properties of the intensity measured off-axis. It has the
advantage of robustness to uncertainty of the wavelength of the laser beam, the shape
and size of the particles, and the concentration and composition of the cloud. However,
it requires more measurements of the intensity, at two or more groups of cameras, and
these measurements must be spatially resolved according to the speckle size, which
is determined by the dominant type of particles in the cloud. If most particles are
small with respect to the wavelength λ, the speckle size is of the order λ, and the
cameras may need to be equipped with microscopes for proper spatial resolution. The
speckle size increases for larger particles, so conventional cameras, such as charge-
coupled devices (CCDs), have sufficient resolution. Another advantage of our beam
localization method is that it relies only on speckle pattern statistics (i.e., correlations)
and therefore it does not depend on the particular realization of the cloud particle
distribution. Consequently, as long as the cameras acquire images of the speckle
pattern while the laser is on, these images do not need to be taken at exactly the
same time in order to apply our algorithm. This avoids synchronization of different
camera groups that may be difficult to realize in practice. Moreover, if the laser lasts
long enough, on the order of seconds, multiple frames over time could be used to
improve the beam localization and to track its movement.

We derive from first principles, starting from the wave equation, the mathematical
model of the intensity of the incoherent light scattered off-axis by a cloud of particles
encountered by the laser beam. The locations of the particles are modeled by a
Poisson point process, which corresponds to having statistically independent numbers
of particles in nonoverlapping domains [5]. We begin with a Poisson cloud of identical,
spherical particles of radius a and derive a simple model of the scattered intensity using
the single scattering (Born) approximation and the Mie theory. This gives an explicit
mathematical expression of the incoherent intensity that shows the dependence of
the speckle pattern on the ratio a/λ. Then we explain how the results generalize to
mixtures of particles of different sizes and shapes and to multiple scattering regimes,
as long as the waves reaching the cameras do not travel longer than the transport
mean free path in the Poisson cloud. This is the characteristic length scale over which
the light forgets its initial direction due to multiple scattering [18]. At larger travel
distances the angle of arrival of the recorded intensity is not meaningful, and imaging
should be based on diffusion models.

In this paper we image at distances smaller than the transport mean free path
and show how to extract information about the laser beam from the speckle pattern of
the off-axis scattered intensity. We introduce a novel imaging algorithm and analyze
how many measurements are needed for accurate beam localization that is robust to
uncertainty of the cloud of particles and therefore of the model of the measurements.

The paper is organized as follows. We begin in section 2 with the formulation of
the problem and the scaling regime. Then we give in section 3 the statistics of the
waves scattered off-axis and describe in detail the covariance of the speckle intensity.
The imaging algorithm is introduced in section 4 and its performance is illustrated
with some numerical simulations in section 5. We end with a summary in section 6.

2. Formulation of the problem. We give here a simple model of the interac-
tion of a laser beam with a Poisson cloud of particles. We derive it in section 2.1,
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using the single scattering approximation and the Mie scattering theory, in the scaling
regime described in section 2.2.

2.1. Model of the scattered waves. Let us begin with the Helmholtz equation

∆u(~x) + (k + ikd)2
[
1 + V (~x)

]
u(~x) = 0,(2.1)

satisfied by a time harmonic wave u(~x)e−iωt at frequency ω and location ~x ∈ R3. The
wave propagates in a medium with constant wave speed c, containing small particles
modeled by the scattering potential V (~x). The coefficient k in (2.1) is the wavenumber

k =
ω

c
=

2π

λ
,

and kd is a small damping parameter, satisfying k � kd > 0, which models atten-
uation in the medium and extinction of the beam due to scattering by the cloud of
particles [17].

The scattering potential V (~x) is supported on the particles, modeled as spheres
B(aj , ~xj) of radius aj and center ~xj , for j ≥ 1,

V (~x) =
∑
j

σj1B(aj ,~xj)(~x).(2.2)

Here 1B(aj ,~xj) is the indicator function of the support of the jth particle and σj is
its reflectivity, the change in the index of refraction. The locations {~xj}j≥1 of the
particles are modeled as a Poisson point process with homogeneous intensity ρ. This
is the mean number of particles per unit volume, and it can be written as

ρ = 1/`3,(2.3)

with ` interpreted as the mean distance between the particles. We consider first
identical particles with radius a, so that we can study the effect of the ratio a/λ on
the speckle pattern registered at the cameras. As explained later, the imaging method
applies to a mixture of particle sizes and shapes.

The wave field

u(~x) = ub(~x) + us(~x)(2.4)

is the superposition of the incident field ub(~x), which models the laser beam, and the
scattered field us(~x). For convenience in the calculations, we assume that the beam
has a Gaussian profile, with axis parametrized by z and beam waist in the plane z = 0.
The radius at the waist is denoted by ro. It is large with respect to the wavelength,
so we are in a paraxial regime with the beam modeled by [12, Chapter 5]

ub(~x) =
r2
o

R2
z

exp

(
−|x|

2

R2
z

+ ikz − kdz

)
, Rz = ro

(
1 +

2iz

kr2
o

)1/2

.(2.5)

Here we introduced the system of coordinates ~x = (x, z), with z on the axis of the
laser beam, and the two-dimensional vector x in the plane orthogonal to it.1

1We denote herein vectors in three dimensions by bold letters and arrows and two-dimensional
vectors by bold letters. We also denote unit vectors by hats. If these are three-dimensional, they are

also denoted by arrows, as in ~̂u.
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In the single scattering (Born) approximation, the scattered field is modeled by
the solution of the inhomogeneous Helmholtz equation

∆us + (k + ikd)2us = −(k + ikd)2V (~x)ub(~x),(2.6)

satisfying the Sommerfeld radiation condition away from the beam and outside the
support of V (~x). It is given explicitly by

us(~x) = (k + ikd)2

∫
R3

d~yG(~x, ~y)V (~y)ub(~y),(2.7)

where

G(~x, ~y) =
1

4π|~x− ~y|
exp

[
(ik − kd)|~x− ~y|

]
(2.8)

is the Green’s function. Using the model (2.2) of the scattering potential, we rewrite
(2.7) as a sum over the particles

us(~x) ≈ k2
∑
j

IMie

(
α(~x, ~xj); ka, σ

)
G(~x, ~xj)ub(~xj).(2.9)

Here we neglected the small damping term kd in the multiplicative factor (k + ikd)2

and introduced the Mie scattering kernel IMie [16, Chapter 9], which depends on the
ratio of the radius a of the particles and the wavelength (i.e., ka), the reflectivity σ,
and the angle α(~x, ~xj) from ~x to ~xj .

For small (point-like) particles, with radius a satisfying ka� 1, the scattering is
approximately isotropic and we can approximate the kernel IMie by a constant

IMie

(
α(~x, ~xj); ka, σ

)
≈ σ 4πa3

3
=: η.(2.10)

When2 ka & 1 but σ is small enough so that σka � 1, the scattering kernel is
approximated by the Rayleigh–Gans formula [16, Chapter 7]

IRG

(
α(~x, ~xj); ka, σ

)
= η

3
√

2πJ3/2

[
2kaα(~x, ~xj)

]
2
[
2kaα(~x, ~xj)

]3/2 ,(2.11)

where J3/2(t) =
√

2/π(sin(t) − t cos(t))/t3/2 is the Bessel function of the first kind
and of order 3/2. The expression (2.11) reduces to (2.10) in the limit ka → 0 and
shows that scattering is peaked in the forward direction, at angles α ∼ 1/(ka), when
ka & 1. The forward scattering is also predicted by the Mie scattering kernel IMie,
which should be used for larger σ. This has a complicated expression given in [16,
Chapter 9].

2.2. Scaling. Our analysis of the statistics of the scattered field (2.9) is carried
out in a regime defined by the relations

λ� `� ro � Lx � Lz, λ� dA � ro,(2.12)

2We use throughout the symbol ∼ to denote of the order of, the symbol & to denote larger or at
least of the order of, and the symbol . to denote smaller or at most of the order of.
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between the important length scales in the problem: the wavelength λ, the particle
size a, the mean distance ` between the particles, the radius ro of the laser beam, the
diameter dA of the domain (aperture) A of the camera, the typical offset (cross-range)
Lx of the camera from the axis of the beam, and the typical distance (range) Lz of
the camera along the axis of the beam, measured from the waist (the laser source).
We will address different regimes, where the particle size is smaller than, of the order
of, or larger than the wavelength.

The scaling relations (2.12) are motivated by the application of high energy laser
imaging in a marine atmosphere, where the wavelength λ is of the order of 1µm, and
the particle radius a may be small or large with respect to λ. The mean distance `
between the particles is of the order of 1mm. It is much larger than the wavelength,
so multiple scattering is not too strong and the Born approximation captures approx-
imately the microscopic coherence properties of the speckle pattern. The radius of
the beam ro is in the range of 0.1 − 1m. The diameter dA of the camera is of the
order of hundreds of wavelengths. It is at cross-range Lx of the order of 100m and at
range Lz of the order of 1km.

In this scaling regime, the Rayleigh length LR, which is the distance at which the
beam doubles its radius due to diffraction, is of the order of 50km or even larger and
it satisfies

LR =
kr2
o

2
� Lz.(2.13)

Thus, we may neglect diffraction effects and approximate in (2.5)

Rz ≈ ro for z = O(Lz).(2.14)

Nevertheless, it is possible to extend the results to the regime where Lz ∼ LR and
Rz is a smooth z-dependent function, as defined in (2.5). In fact, the analysis in
Appendix A is carried out in this general case up to (A.13), so that the forthcoming
results can be extended by substituting |RZ |2/ro for ro in the second argument of the
functions Ψ in (3.9) and (3.16), and this holds true provided kr2

o � |X|.
The damping term kd, which models attenuation in the medium, is used in our

analysis to ensure the integrability of the terms in the sum (2.9). We assume hence-
forth that

kdLx � 1,(2.15)

so we can neglect the attenuation over the cross-range offsets from the laser axis to
the cameras. This assumption simplifies the expression of the correlation function of
the intensity of the scattered field, derived in the next section. The results extend to
kdLx & 1, but from the practical point of view the intensity may be too weak to be
detected by such remote cameras.

3. Statistics of the scattered waves. We describe here the statistics of the
scattered wave field us(~x) modeled by (2.9). We begin in section 3.1 with a summary of
basic results for Poisson point processes. Then we derive in section 3.2 the expression
of the covariance function of the intensity |us(~x)|2 measured at the camera, for the
case of small particles. The case of larger particles is analyzed in section 3.3, and the
generalization to mixtures of particles is in section 3.5. We also analyze in section
3.4 the level sets of the covariance function near its peak and show that they can be
approximated by ellipsoids with axes that depend on the axis of the laser beam. This
is used in the imaging algorithm described in section 4.
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3.1. Basic results on Poisson point processes. Recall from section 2.1 that
the locations {~xj}j≥1 of the particles are modeled by a Poisson cloud with homoge-
neous intensity ρ. Here we summarize from [9] some basic results on Poisson processes,
needed to calculate the statistical moments of the scattered wave field.

By Campbell’s theorem [9, section 3.2], for any function f(~x) satisfying the
condition min(|f |, 1) ∈ L1(R3), the characteristic function of the random variable
F =

∑
j f(~xj) is given by

E[eitF ] = exp

[
ρ

∫
R3

d~x
(
eitf(~x) − 1

)]
,(3.1)

where E[·] denotes expectation with respect to the Poisson point process distribution.
Moreover, if the function f is in L1(R3)∩L2(R3), then F =

∑
j f(~xj) is an integrable

and square-integrable random variable with

E[F ] = ρ

∫
R3

d~x f(~x), E[F 2] = ρ

∫
R3

d~x f2(~x).(3.2)

The following lemma allows us to calculate the moments of the scattered wave field.

Lemma 3.1. Let f1, . . . , f4 be functions in L1(R3)∩L2(R3) that integrate to zero∫
R3

d~x fq(~x) = 0, q = 1, . . . , 4,(3.3)

and denote Fq =
∑
j fq(~xj) for q = 1, . . . , 4. We have

E[F1F2] = ρ

∫
R3

d~x f1(~x)f2(~x)(3.4)

and

E[F1F2F3F4] = E[F1F2]E[F3F4] + E[F1F3]E[F2F4] + E[F1F4]E[F2F3]

+ ρ

∫
R3

d~x f1(~x)f2(~x)f3(~x)f4(~x).(3.5)

Proof. The proof follows from the identity

E

[
n∏
q=1

Fq

]
= (−i)n ∂n

∂t1 · · · ∂tn
E

[
n∏
q=1

eitq
∑
j fq(~xj)

] ∣∣∣
t1,...,tn=0

(3.6)

and [9, Corollary 3.1], which states that

E

[
n∏
q=1

eitq
∑
j fq(~xj)

]
= exp

[
ρ

∫
R3

d~x
(
ei

∑n
q=1 tqfq(~x) − 1

)]
.(3.7)

Equation (3.4) is obtained by substituting (3.7) in (3.6), setting n = 2, and using
(3.3). Similarly, (3.5) follows by substituting (3.7) in (3.6) and setting n = 4.

When the functions fq are bounded and compactly supported, as is the case in
the model (2.9), we note that the last term in (3.5) is negligible with respect to
the others if the volume of support of the functions is large compared to 1/ρ = `3.
This condition holds in our scaling regime, and the implication is that the fourth-
order moments satisfy the Gaussian summation rule (Isserlis formula), for zero-mean
Gaussian processes. We use this observation in the next sections and in Appendix B
to calculate the correlation of the intensity of the scattered field.
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3.2. Statistics of the scattered field for small scatterers. If the particles
are small, with radius a � λ, the scattering kernel in (2.9) is approximated by the
constant η defined in (2.10). The next proposition, proved in Appendix A, gives the
mathematical expression of the mean and covariance function of the scattered field.

Proposition 3.2. In the scaling regime defined in section 2.2, the mean scattered
field at point ~x in the aperture of the camera is approximately zero,

E
[
us(~x)

]
≈ 0.(3.8)

Moreover, the covariance function of the scattered field evaluated at points ~x1 = ~X +
~x/2 and ~x2 = ~X − ~x/2 in the aperture of the camera is approximated by

E
[
us(~x1)us(~x2)

]
≈ η2k4ρr2

oe
−2kdZ

32|X|
Ψ

(
kX̂ · x, kro

2|X|
X̂⊥ · x, kz

)
,(3.9)

where us denotes the complex conjugate of us and

Ψ(χ, ξ, ζ) =
1

π

∫ π

0

exp
[
i
(

sinαχ+ cosαζ
)]

exp

(
−ξ

2

2
sin2 α

)
dα.(3.10)

Here we decomposed the vectors ~X = (X, Z) and ~x = (x, z) in the range coordinates
Z and z along the axis of the laser beam, and the two-dimensional vectors X and x
in the cross-range plane, which is orthogonal to the beam. All coordinates are with
respect to the origin that lies on the axis of the beam, at the waist. We also introduced
the unit vector X̂ = X/|X| and the unit vector X̂⊥, which is orthogonal to X̂, and is

defined by the rotation of X̂ by 90 degrees in the cross-range plane, counterclockwise.

There are two observations drawn from this proposition. The first is that the
scattered field at the camera is incoherent, because its mean (3.8) is very small with
respect to its standard deviation that is approximately equal to the square root of the
mean intensity (given by (3.9) with ~x1 = ~x2 = ~X):

E
[
|us( ~X)|2]≈η

2k4ρr2
oe
−2kdZ

32|X|
.(3.11)

The second observation is that the second moment (3.9), which approximates the
covariance of us, has an anisotropic decay that depends on the orientation of the axis
of the laser beam. To estimate the decay of (3.9) away from the peak, which occurs
at ~x1 = ~x2, we consider offsets ~x = ~x1−~x2 aligned with either one of the unit vectors
(X̂, 0) and (X̂⊥, 0) in the cross-range plane, or with the range axis. We have three
cases:

1. If ~x = |x|(X̂, 0), the covariance decays like

Ψ(k|x|, 0, 0) = J0(k|x|) + iH0(k|x|),

where J0 is the Bessel function of the first kind and of order zero, and H0 is
the Struve function of order zero [1, Chapter 12].

2. If ~x = |x|(X̂⊥, 0), the covariance decays like

Ψ

(
0,
kro|x|
2|X|

, 0

)
= I0

[
1

4

(
kro|x|
2|X|

)2
]

exp

[
−1

4

(
kro|x|
2|X|

)2
]
,

where I0 is the modified Bessel function of the first kind and of order zero [1,
Chapter 12].
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Fig. 3.1. From left to right we display functions |J0(t) + iH0(t)|, I0(t2/4)e−t2/4, and |J0(t)| ,
for |t| ≤ 50.

3. If ~x = z(0, 0, 1), the covariance decays like

Ψ(0, 0, kz) = J0(kz).

We plot in Figure 3.1 the functions |J0(t) + iH0(t)|, I0(t2/4)e−t
2/4, and |J0(t)| and

note that they are large when the argument t is order one. Thus, we estimate that
the covariance decays on a scale comparable to the wavelength along the cross-range
direction (X̂, 0) and the range direction (0, 0, 1). The decay in range is faster because
as shown in Figure 3.1, the support of the main peak of |J0(t)| is smaller than that of
|J0(t) + iH0(t)| by a factor of approximately 2π. The decay of the covariance in the

other cross-range direction (X̂⊥, 0) is much slower, on the scale |X|λ/ro � λ.
The covariance function (3.9) cannot be calculated directly, because the camera

does not measure the wave field us(~x) but measures its intensity |us(~x)|2. The fol-
lowing proposition, proved in Appendix B, shows that the covariance of the measured
intensity is approximately the square of the modulus of (3.9).

Proposition 3.3. In the scaling regime described in section 2.2, and for two
points ~x1 = ~X + ~x/2 and ~x2 = ~X − ~x/2 in the aperture of the camera, we have

Cov
(
|us(~x1)|2, |us(~x2)|2

)
≈
∣∣E[us(~x1)us(~x2)

]∣∣2.(3.12)

The covariance of the intensity can be estimated from the speckle pattern captured
by the camera, as explained in section 4.1, and Propositions 3.2 and 3.3 give that we
can use it to extract information about the laser beam. The size of the speckles
is related to the scales of decay of the covariance, called correlation lengths. The
discussion after Proposition 3.2 shows that the correlation lengths l

X
and l

Z
in the

directions of the unit vectors (X̂, 0) and (0, 0, 1), which span the plane containing ~X
and the axis of the laser beam, are

l
X
∼ λ, l

Z
∼ λ, such that l

X
> l

Z
.(3.13)

The correlation length in the direction (X̂⊥, 0) orthogonal to this plane is much larger,

l⊥
X
∼ λ|X|

ro
� λ.(3.14)

The distance |X| from the camera3 to the axis of the laser enters the expression (3.9)
of the covariance in the amplitude factor and the correlation length l⊥

X
. In practice,

3We show later, in Lemma 4.1, that because the diameter dA of the aperture of the camera is
small, the midpoint ~X may be replaced by the center of the camera.
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the estimation should not be based on the amplitude, which depends on the model
and also on unknown parameters like η, ρ, and kdZ. Moreover, l⊥

X
is difficult to

estimate from the speckle pattern captured at a small camera with diameter dA . l⊥
X

.
Thus, we do not estimate |X| directly from the covariance function (3.12).

3.3. Statistics of the scattered field for large scatterers. The results stated
in the previous section extend readily to the case of larger particles of spherical shape.
The only difference in the calculations, which are as in Appendices A and B, is that
the scattering kernel is no longer the constant η but a function rewritten here in the
normalized form

IMie(α; ka, σ) = ηIMie(α; ka, σ).(3.15)

Proposition 3.4. In the scaling regime defined in section 2.2, the mean scattered
field at the camera is approximately zero. Moreover, the covariance of the intensity
at points ~x1 = ~X + ~x/2 and ~x2 = ~X − ~x/2 in the aperture of the camera is given by
the square of the modulus of the covariance of the scattered field, as in (3.12). This
covariance has the mathematical expression

E
[
us(~x1)us(~x2)

]
≈ η2k4ρr2

oe
−2kdZ

32π|X|
ΨMie

(
kX̂ · x, kro

2|X|
X̂⊥ · x, kz; ka, σ

)
,(3.16)

where

ΨMie(χ, ξ, ζ; ka, σ) =

∫ π

0

dα
∣∣IMie

(
α; ka, σ

)∣∣2 exp

(
i
(

sinαχ+ cosαζ
)
− sin2 α

2
ξ2

)
.

(3.17)

The difference between the covariance functions (3.9) and (3.16) is the support of
the kernel in the scattering angle α. While in the case of small particles the kernel is
constant, so that all angles α ∈ (0, π) contribute to the integration in (3.10), for larger
particles only smaller angles α contribute in (3.17), i.e., scattering is in the forward
direction.

To illustrate the effect of forward scattering on the covariance (3.16), suppose that
the particles are large such that ka� 1. Then, the angular opening Θ of the forward
scattering cone is small and we can simplify equations (3.16)–(3.17) by changing the
variable of integration α → αΘ and using the small argument expansions of the
exponent. We obtain

∣∣∣E[us(~x1)us(~x2)
]∣∣∣ ≈ η2k4ρr2

oe
−2kdZΘ

32π|X|

∣∣∣ΨΘ

(
kΘX̂ · x, kroΘ

2

2|X|
X̂⊥ · x, kΘ2z

) ∣∣∣,
(3.18)

where the function

ΨΘ(χ, ξ, ζ) =

∫ π

0

dα
∣∣IMie

(
αΘ; ka, σ

)∣∣2 exp

(
i

(
αχ− α2

2
ζ

)
− α2

2
ξ2

)
(3.19)

peaks at the origin and has support of order one in all arguments. To be more explicit,
consider the Rayleigh–Gans regime, where σ is so small that σka � 1. Then, the
kernel in (3.19) simplifies to

IMie

(
αΘ; ka, σ

)
≈

3
√

2πJ3/2(2kaα)

2(2kaα)3/2
,
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and the angular opening of the cone is Θ ∼ 1/(ka). With this estimate we conclude
from (3.18) that the correlation lengths are

l
X
∼ 1

kΘ
∼ a, l⊥

X
∼ |X|
kroΘ

∼ a|X|
ro

, l
Z
∼ 1

kΘ2
∼ ka2.(3.20)

The smallest correlation length is l
X

. All correlation lengths are much larger than

those defined in (3.13)–(3.14), by the factor ka � 1 in the directions (X̂, 0) and

(X̂⊥, 0) and the even larger factor (ka)2 in the other direction (0, 0, 1). The decay in

the plane defined by the axis of the laser and the vector ~X is more anisotropic, with
l
Z
� l

X
. The largest correlation length is l⊥

X
if ka� |X|/ro and l

Z
if ka� |X|/ro.

In our regime where |X|/ro > 100, we deal with the first case as we do not expect
particles larger than 100µm.

3.4. The level sets of the correlation function. Propositions 3.2–3.4 de-
scribe the dependence of the covariance function of the intensity on the unknown axis
of the laser beam. The amplitude of the covariance function is model-dependent, so
we do not wish to base the imaging on it. We use instead the level sets of the covari-
ance function near its peak, which have a generic dependence on the axis of the laser
beam, as we now explain.

Let us define the correlation function of the intensity at points ~X ± ~x/2,

Corr
(
|us( ~X + ~x/2)|2, |us( ~X − ~x/2)|2

)
=

Cov
(
|us( ~X + ~x/2)|2, |us( ~X − ~x/2)|2

)
E
[
|us( ~X + ~x/2)|2

]
E
[
|us( ~X − ~x/2)|2

]
and use the same decomposition ~X = (X, Z) and ~x = (x, z) of the midpoint and
offset vectors as in Proposition 3.2. The correlation function attains its maximum
value 1 when the two points coincide, and we study its level sets for small offset
vectors ~x, decomposed as

~x = x(X̂, 0) + x⊥(X̂⊥, 0) + z(0, 0, 1),(3.21)

in the orthonormal basis {(X̂, 0), (X̂⊥, 0), (0, 0, 1)}, with two-dimensional unit vectors

X̂ and X̂⊥ defined in Proposition 3.2. If we scale the components of ~x by the
characteristic correlation lengths,

x =
1

k
χ, x⊥ =

2|X|
kro

ξ, z =
1

k
ζ,(3.22)

we conclude from Propositions 3.2–3.4 that

Corr
(
|us( ~X + ~x/2)|2, |us( ~X − ~x/2)|2

)
≈

∣∣∣∣∣
∫ π

0

dαS(α) exp
[
i
(

sinαχ+ cosαζ
)]

× exp

(
− sin2 α

2
ξ2

) ∣∣∣∣∣
2

,(3.23)

where S(α) denotes the scattering kernel, normalized so that
∫ π

0
dαS(α) = 1. This

kernel is nonnegative and proportional to |IMie|2.
Consider a level set SL of the correlation function at value 1− L for 0 < L� 1.

We can approximate it by expanding (3.23) about (χ, ξ, ζ) = (0, 0, 0) and obtain

1− L = Corr
(
|us( ~X + ~x/2)|2, |us( ~X − ~x/2)|2

)
≈ 1− (χ, ξ, ζ)H

χξ
ζ

(3.24)
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for ~x ∈ SL decomposed as in (3.21)–(3.22). Here −2H ∈ R3×3 is the Hessian of the
correlation function at its maximum, with entries defined by

H11 =

∫ π

0

dαS(α) sin2 α−
(∫ π

0

dαS(α) sinα

)2

,(3.25)

H33 =

∫ π

0

dαS(α) cos2 α−
(∫ π

0

dαS(α) cosα

)2

,(3.26)

H13 =

∫ π

0

dαS(α) cosα sinα−
(∫ π

0

dαS(α) cosα

)(∫ π

0

dαS(α) sinα

)
,(3.27)

H22 =

∫ π

0

dαS(α) sin2 α,(3.28)

H12 = H23 = 0.(3.29)

Note that since the correlation function decays away from the peak at (χ, ξ, ζ) =
(0, 0, 0), the matrix H is positive definite.

Treating the approximation in (3.24) as an equality, and recalling the scaling in
(3.21), we obtain that the level set SL is the ellipsoid

x2

(
k2H11

L

)
+ z2

(
k2H33

L

)
+ 2xz

(
k2H13

L

)
+ (x⊥)2

[(
kro
|X|

)2
H22

L

]
= 1,(3.30)

with one principal axis along the unit vector (X̂⊥, 0) and the other principal axes

in the plane containing the midpoint ~X and the axis of the laser beam, spanned by
(X̂, 0) and (0, 0, 1). We distinguish three cases:

1. When the particles are small with respect to the wavelength, so that scattering
is isotropic (i.e., S ≡ 1/π), the ellipsoid is given explicitly by

x2[√
2L/(1− 8/π2)/k

]2 +
z2

(
√

2L/k)2
+

(x⊥)2[√
2L|X|/(kro)

]2 = 1,

and its principal axes are along the basis vectors {(X̂, 0), (X̂⊥, 0), (0, 0, 1)}.
The largest axis is along (X̂⊥, 0), and the smallest axis is along (0, 0, 1).

2. When the particles are large with respect to the wavelength, so that scattering
is peaked forward, S(α) is supported in a cone of small opening angle Θ. For
example, Θ ∼ 1/(ka) � 1 in the Rayleigh–Gans regime, and the coefficients
in (3.25)–(3.29) can be estimated as

H11 ∼ Θ2, H33 ∼ Θ4, H13 ∼ Θ3, H22 ∼ Θ2.

Indeed, if S(α) = S0(α/Θ)/Θ with Θ� 1 and
∫∞

0
dsS0(s) = 1, then

H11 = Θ2

[∫ ∞
0

dsS0(s)s2 −
(∫ ∞

0

dsS0(s)s

)2
]

+ o(Θ2),

H33 =
Θ4

4

[∫ ∞
0

dsS0(s)s4 −
(∫ ∞

0

dsS0(s)s2

)2
]

+ o(Θ4),

H13 =
Θ3

2

[
−
∫ ∞

0

dsS0(s)s3+

(∫ ∞
0

dsS0(s)s2

)(∫ ∞
0

dsS0(s)s

)]
+ o(Θ3),

H22 = Θ2

∫ ∞
0

dsS0(s)s2 + o(Θ2).
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The ellipsoid (3.30) has the smallest principal axis along (X̂, 0). Its length is
larger than in the case of small particles, by a factor of order 1/Θ. The largest

principal axis is in the plane defined by (X̂⊥, 0) and (0, 0, 1). If ka� |X|/ro,
then the largest principal axis is along (X̂⊥, 0). Its length is also much larger
than in the case of the small particles.

3. For particles of intermediate size a/λ ∼ 1, the coefficients H11, H33, H13, H22

are of the same order. Again, we conclude that the ellipsoid (3.30) has the

longest principal axis along (X̂⊥, 0). The other axes are in the plane contain-

ing ~X and the axis of the laser beam, but they are rotated by some angle of
order one with respect to the basis vectors (X̂, 0) and (0, 0, 1).

To summarize, the longest principal axis of the ellipsoid is always along (X̂⊥, 0),
provided that ka � |X|/ro, which we assume from now on. The imaging method is
based on this observation.

3.5. Generalizations. If the particles have different radii aj and reflectivities
σj , we can model the cloud using a probability density function p(a, σ) of the joint
distribution of the radii and reflectivities. Then, the previous results hold true, up to
the following minor modification: The covariance function of the scattered field is of
similar form to (3.16), with

E
[
us(~x1)us(~x2)

]
=
k4ρr2

oe
−2kdZ

32π|X|
Ψ

(
kX̂ · x, kro

2|X|
X̂⊥ · x, kz

)
(3.31)

and function

Ψ(χ, ξ, ζ) =

∫ ∞
0

da

∫ ∞
0

dσ p(a, σ)

(
σ

4πa3

3

)2

ΨMie(χ, ξ, ζ; ka, σ),(3.32)

defined by the average of ΨMie(χ, ξ, ζ; ka, σ) given in (3.17). Here we recalled the
expression (2.10) of the constant η in (3.16).

We will see in the next section that our imaging algorithm is based entirely on
the fact that the decay of the correlation function is anisotropic, with very large
correlation length in the direction (X̂⊥, 0). This strong anisotropy was established in
the previous section for almost all values of ka (provided ka� |X|/ro). In (3.32) we
average over a, so the conclusion extends to the case of mixtures of particles.

For larger particles that are not spherical, the result should be qualitatively the
same. Indeed, the calculation in Appendix A shows that the exponential in (3.17),
evaluated at the arguments in (3.16), is derived independent of the particle size or
shape. The kernel IMie in (3.17) will change for different shapes of particles, but the
relation between the correlation lengths will be similar to that for spherical particles.

Stronger scattering regimes, that go beyond the Born approximation, can be
modeled using the radiative transport equation [4] or its simpler, forward scattering
version [2]. Such models of the intensity are more complicated, but as long as the
transport directions are not mixed too much by multiple scattering, which happens
at distances smaller than the transport mean free path, the result is qualitatively the
same.

In summary, imaging based on the qualitative relation between the correlation
lengths displayed in (3.13)–(3.14) and (3.20), which hold in general settings as de-
scribed above, is robust to uncertainty of the composition of the cloud of particles.

4. Imaging algorithm. We now introduce the algorithm for imaging the axis
of the laser beam. We begin in section 4.1 with the estimation of the covariance of the
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~̂m1

~̂m2
~̂m3

0

~Xb

~X(1) ~̂e1

~̂e2
~̂e3

A23

A13

A12

Fig. 4.1. Geometric setup: ~X(1) is the position of the group of cameras, (~̂e1, ~̂e2, ~̂e3) is the
orthonormal basis associated with the cameras, and A12, A13, A23 are the planar apertures of the

cameras. The beam center is at ~Xb and ( ~̂m1, ~̂m2, ~̂m3) is the beam orthonormal basis, with ~̂m3

aligned with the axis of the beam, shown in the figure as the horizontal line.

intensity measured at a camera. Then we recall in section 4.2 that the level sets of
this covariance are approximate ellipsoids, with axes that depend on the orientation
of the laser. We use this result in section 4.3 to extract partial information about the
axis of the laser from measurements at a group of three cameras centered at ~X(1) and
with mutually orthogonal planar apertures. In section 4.4 we show that it is possible
to image the laser using two such groups of cameras. The algorithm in section 4.4 is
very efficient in the two extreme cases a/λ � 1 and a/λ � 1, but it is less efficient
when a/λ ∼ 1. However, the imaging can be improved if there are three or more
groups of cameras, as described in section 4.5. We summarize the imaging algorithm
in section 4.6 and also explain there how we quantify the accuracy of the results.

4.1. Estimation of the covariance function. We consider a group of three
cameras centered at ~X(1) with mutually orthogonal4 planar apertures A12, A13, A23,
as in Figure 4.1. If we introduce the orthonormal basis {~̂e1, ~̂e2, ~̂e3} with {~̂ej , ~̂eq}
spanning the plane containing Ajq for 1 ≤ j < q ≤ 3, then we can define explicitly
the apertures as the sets

Ajq =
{
~x = ~X(1) + x̃j ~̂ej + x̃q ~̂eq, (x̃j , x̃q) ∈ A

}
, A = [0, dA]2.(4.1)

Let us consider one camera, say, the one with aperture A12, and denote by

I(x̃) =
∣∣us( ~X

(1) + x̃1~̂e1 + x̃2~̂e1)
∣∣2, x̃ = (x̃1, x̃2) ∈ A = [0, dA]2,(4.2)

the measured intensity. The empirical covariance function of this intensity is

C(x̃) =
1

|Ax̃|

∫
Ax̃

dx̃′ Ic(x̃′)Ic(x̃′ + x̃), Ax̃ = A ∩ (A− x̃),(4.3)

4The apertures do not need to be orthogonal, but they should belong to different planes. We
choose orthogonal planes for convenience.
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for x̃ ∈ [−dA, dA]2, where Ic is the centered intensity

Ic(x̃) = I(x̃)− 1

|A|

∫
A

dx̃′I(x̃′).(4.4)

Alternatively, we can calculate the empirical covariance using Fourier transforms,

C(x̃) = FT−1
(∣∣FT(Ic)

∣∣2)(x̃),(4.5)

where FT and FT−1 denote the modified Fourier transform and its inverse

FT(f)(q̃) =

∫
A

dx̃ f(x̃)eiq̃·x̃, FT−1(f̂)(x̃) =
1

(2π)2|A|

∫
A

dq̃ f̂(q̃)e−iq̃·x̃.

In practice, formula (4.5) can be implemented using the fast Fourier transform (FFT).

Note that for any pair of points ~X±~x/2 in A12, the statistical covariance function
and the empirical covariance function are approximately the same,

Cov(|us( ~X + ~x/2)|2, |us( ~X − ~x/2)|2) ≈ C(x̃), x̃ = (~x · ~̂e1, ~x · ~̂e2),(4.6)

provided the area |A| of the camera is large compared to the area of a speckle spot.
The empirical correlation function of the intensity is

C (x̃) =
C(x̃)

C((0, 0))
,(4.7)

and we note that with one camera we can only evaluate the correlation function in
the plane of its aperture. To estimate the correlation function for all ~x ∈ R3, we
need a group of cameras centered at ~X(1), with apertures lying in different planes, as
explained in section 4.3.

4.2. The level sets of the correlation function. In this section we consider
the level sets of the statistical correlation function of the intensity at values close to
one, which can be approximated by ellipsoids as shown in section 3.4. We describe
the axes of this ellipsoid in a general setup, for an arbitrary orientation of the axis of
the laser beam.

It is convenient to introduce a new system of coordinates with orthonormal “beam
basis” { ~̂m1, ~̂m2, ~̂m3}. We call it the beam basis because it is defined relative to

the axis of the laser beam, the line { ~Xb + s ~̂Yb, s ∈ R} along the unit vector ~̂Yb,

parametrized by the arc-length s. The origin of the arc-length is arbitrary, so ~Xb can
be any point on the axis. Note that the beam basis also depends on the center ~X(1)

of the camera, which lies, as the axis of the laser, in the plane spanned by the vectors

~X(1) − ~Xb and ~̂Yb. We define the beam basis by

~̂m3 = ~̂Yb, ~̂m2 =
~̂m3 × ( ~X(1) − ~Xb)∣∣ ~̂m3 × ( ~X(1) − ~Xb)

∣∣ , ~̂m1 = ~̂m2 × ~̂m3,(4.8)

and note that in section 3 we considered the special case ~Xb = (0, 0, 0) and ~̂Yb =

(0, 0, 1), so that ~̂m1 = (X̂(1), 0) and ~̂m2 = (X̂(1),⊥, 0). The basis (4.8) is defined
for an arbitrary orientation of the axis of the beam and origin of coordinates, and it
is unknown in imaging. We only know the basis {~̂e1, ~̂e2, ~̂e3} defined relative to the
group of cameras.
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To write explicitly the correlation function of the intensity at two points ~X± ~x/2
in A12 ∪A13 ∪A23, we decompose the offset vector ~x in the beam basis

~x =

3∑
j=1

xj ~̂mj(4.9)

and scale its components by the characteristic correlation lengths described in
section 3,

x1 =
1

k
χ, x2 =

2|X(1) −Xb|
kro

ξ, x3 =
1

k
ζ.(4.10)

Note that the transverse distance |X| is now |X(1) −Xb|, with

~X(1) =

3∑
j=1

X
(1)
j ~̂mj , ~Xb =

3∑
j=1

Xb,j ~̂mj , X(1) −Xb =

2∑
j=1

(X
(1)
j −Xb,j) ~̂mj .

This comes from the following lemma, which states that the dependence of the sta-
tistical covariance function with respect to the midpoint ~X is so slow that we can
replace ~X by ~X(1) − ~Xb, with negligible error.

Lemma 4.1. Under the scaling assumption dA � ro stated in (2.12), and for any

~x1, ~x2 ∈ A12∪A13∪A23, Propositions 3.2–3.4 hold true with ~x = ~x1− ~x2, ~X replaced
by ~Xc = ~X(1) − ~Xb, X replaced by Xc = X(1) −Xb, and the unit vector X̂ replaced
by X̂c = (X(1) −Xb)/|X(1) −Xb|.

Proof. We need to check that, for any |~x| ≤ |Xc|/(kro), the arguments of the

functions Ψ in the propositions do not change at order one when the midpoint ~X is
replaced by ~Xc, X is replaced by Xc, and X̂ is replaced by X̂c. This follows from
the estimates∣∣kX̂ · x− kX̂c · x

∣∣ ≈ k

|Xc|

∣∣∣x · {(X −Xc)− X̂c

[
X̂c · (X −Xc)

]}∣∣∣
.
dA
ro
� 1

and ∣∣∣∣ kro2|X|
X̂⊥ · x− kro

2|Xc|
X̂⊥c · x

∣∣∣∣ ≈ kro
2|Xc|2

∣∣2(X̂c · x⊥
)[
X̂c · (X −Xc)

]
− x⊥ · (X −Xc)

∣∣ . dA
|Xc|

∼ dA
lx
� 1,

where the superscript ⊥ denotes rotation of the vectors X̂, X̂c, and x by 90 degrees,
in the cross-range plane ( ~̂m1, ~̂m2).

Therefore, the expression of the correlation function of the intensity is still (3.23)
in terms of χ, ξ, and ζ defined by (4.10), and the level set SL of the correlation
function at value 1− L, for 0 < L� 1, is the ellipsoid

x2
1

(
k2H11

L

)
+ x2

3

(
k2H33

L

)
+ 2x1x3

(
k2H13

L

)
+ x2

2

[(
kro

|X(1) −Xb|

)2
H22

L

]
= 1,

(4.11)

in terms of x1, x2, and x3 defined by (4.9). One principal axis of the ellipsoid is along

the unit vector ~̂m2 and the other principal axes are in the plane containing the center
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of the camera and the axis of the laser beam, spanned by ~̂m1 and ~̂m3. As in section
3.4, the main observation is that the ellipsoid (4.11) has the longest principal axis

along ~̂m2.

4.3. Estimation with one group of cameras. We now explain how to use a
group of three cameras centered at ~X(1) to estimate the ellipsoids that approximate
the level sets of the correlation function of the intensity. We can then extract infor-
mation about the axis of the laser beam using the relations between the principal axes
of the ellipsoids and the beam basis described in the previous section.

To determine the correlation function Corr
(
|us( ~X + ~x/2)|2, |us( ~X − ~x/2)|2

)
for

all vectors ~x ∈ R3, we use the three cameras centered at ~X(1) with apertures Ajq

defined in (4.1), for 1 ≤ j < q ≤ 3.
As shown in the previous section, the correlation function as a function of ~x can

be approximated by a Gaussian near its peak at 0. This Gaussian can be represented
by a symmetric and positive definite matrix U ∈ R3×3, with normalized eigenvectors
(~̂uj)j=1,2,3 that are along the principal axes of the ellipsoids, the level sets. The
eigenvalues of U equal the lengths of these axes raised to the power −2.

Let Ujq = ~̂ej ·U~̂eq be the components of U in the known basis {~̂e1, ~̂e2, ~̂e3} and
denote

ΠjqU =

(
Ujj Ujq
Ujq Uqq,

)
, 1 ≤ j < q ≤ 3.(4.12)

Let also C jq(x̃) denote the correlation function (4.7) obtained with the camera with
aperture Ajq. We estimate the matrix (4.12) by the minimizer

Vjq = argmin
V∈R2×2

Ejq(V) subject to Vt = V and V ≥ 0,(4.13)

of the objective function

Ejq(V) =

∫
[−dA,dA]2

dx̃ |C jq(x̃)− G(x̃,V)|21C jq(x̃)>1−L,(4.14)

where the correlation function is fitted by the Gaussian

G(x̃,V) = exp
{

[ln(1− L)]x̃tVx̃
}
,(4.15)

at points in the level sets of value greater than 1 − L. The value L, chosen by the
user, should be small and positive.

In practice, due to measurement errors and imprecise solutions of (4.13), the
minimizers Vjq give different estimates of Ujj for 1 ≤ j < q ≤ 3. Thus, we incorporate
all the results in another optimization problem,

U = argmin
V∈R3×3

∑
1≤j<q≤3

‖ΠjqV −Vjq‖2,(4.16)

where ‖ · ‖ is the Frobenius norm, and estimate the matrix U by the minimizer U.
This is a symmetric matrix with entries

U11 =
V 12

11 + V 13
11

2
, U22 =

V 12
22 + V 23

11

2
, U33 =

V 13
22 + V 23

22

2
,

U12 = U21 = V 12
12 , U13 = U31 = V 13

12 , U23 = U32 = V 23
12 .(4.17)

It has positive trace, equal to the average of the traces of the positive definite matrices
Vjq, so the largest eigenvalue of U is positive. We know from the discussion in
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the previous section that U has at least one small eigenvalue, corresponding to the
eigenvector along ~̂m2. We also know from Weyl’s theorem [13] that the eigenvalues of
U are within the distance ‖U −U‖2 of those of U, where ‖ · ‖2 is the spectral norm.
Thus, U may have a negative eigenvalue, with small absolute value determined by
measurement errors.

The orthonormal eigenvectors (~̂uj)j=1,2,3 of U approximate the principal axes of

the ellipsoid, which are aligned with the eigenvectors (~̂uj)j=1,2,3 of the exact matrix
U. The accuracy of the approximation depends on the sensitivity of the eigenvectors
to measurement errors, which depends in turn on the gap between the eigenvalues.
The more robust eigenvectors correspond to eigenvalues that are well separated from
the rest [13], so we base our imaging on them. The discussion in the previous section
shows that, depending on the size of the particles, we have three cases:

1. For small particles with radius a satisfying ka � 1, the matrix U has two
large eigenvalues of the same order and a much smaller third eigenvalue, by
a factor of (ro/|X(1) − Xb|)2 � 1. Because this third eigenvalue is well

separated from the larger ones, the corresponding eigenvector ~̂u3 is robust to
measurement errors, and we use it to approximate ~̂u3 = ~̂m2.

2. For large particles with radius a satisfying ka � 1, the matrix U has one
large eigenvalue corresponding to the eigenvector ~̂u1 ≈ ~̂m1 and two much
smaller eigenvalues. Here, the more robust eigenvector is ~̂u1, and we use it
to approximate ~̂m1.

3. For particles of intermediate size, the matrix U has three distinct eigenvalues,
with separation that depends on the scattering kernel S. If the gap between
the second and third eigenvalues of the estimated matrix U is small, we use
~̂u1 to approximate ~̂u1. This vector is no longer aligned with ~̂m1, but it lies
in the plane containing the center of the camera and the axis of the laser
beam, spanned by ~̂m1 and ~̂m3. Otherwise, if the third eigenvalue of U is
well separated from the larger ones, we approximate ~̂m2 by ~̂u3.

4.4. Imaging with two groups of cameras. The results of the prev-
ious section show that depending on the cloud of particles, we may have three
scenarios:

Scenario 1: We can estimate the unit vector ~̂m2 normal to the plane containing the
center of the camera and the axis of the laser, using the eigenvector ~̂u3 corresponding
to the smallest eigenvalue of U. This occurs for small particles.

Scenario 2: The eigenvector ~̂u3 is too sensitive to measurement errors, but we
can estimate the vector ~̂m1 using the eigenvector ~̂u1 of U, for the largest eigenvalue.
This occurs for large particles.

Scenario 3: The only robust eigenvector is ~̂u1, but its direction is not close to
that of the vector ~̂m1. This occurs for particles of intermediate size.
In the first two scenarios, we can image the laser beam using two groups of cameras,
as we explain in this section. The last scenario requires more measurements and is
discussed in the next section.

We use henceforth the notation ~X(j) for the centers of the groups of cameras,
with j ≥ 1, and assume that the laser beam axis and any two of these centers do not

lie in the same plane. We also let
(
~̂u

(j)

q

)
q=1,2,3

and
(
Λ

(j)
q

)
q=1,2,3

be the eigenvectors

and eigenvalues of the estimated matrix U(j) with the jth group of cameras. To

distinguish the exact laser beam axis { ~Xb + s ~̂Yb, s ∈ R} from the estimated one, we

index the latter by a star, as in { ~X?
b + s ~̂Y ?

b , s ∈ R}.
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Algorithm 4.2. This algorithm applies to Scenario 1 and uses as inputs ~X(j)

and ~̂u
(j)

3 for j = 1, 2. The output is the estimated laser beam axis { ~X?
b + s ~̂Y ?

b , s ∈ R}
with

~̂Y ?
b =

~̂u
(1)

3 × ~̂u
(2)

3∣∣~̂u(1)

3 × ~̂u
(2)

3

∣∣ , ~X?
b = c1~̂u

(1)

3 + c2~̂u
(2)

3 ,(4.18)

and coefficients

c1 =
~̂u

(1)

3 · ~X(1) −
[
~̂u

(1)

3 · ~̂u
(2)

3

]
~̂u

(2)

3 · ~X(2)

1−
[
~̂u

(1)

3 · ~̂u
(2)

3

]2 ,

c2 =
~̂u

(2)

3 · ~X(2) −
[
~̂u

(1)

3 · ~̂u
(2)

3

]
~̂u

(1)

3 · ~X(1)

1−
[
~̂u

(1)

3 · ~̂u
(2)

3

]2 .(4.19)

In Scenario 1, the vectors ~̂u
(j)

3 approximate the unit vectors normal to the two

planes defined by the axis of the beam and the centers ~X(j) of the two groups of
cameras. These normal vectors are not collinear, because these two planes do not
coincide, so the laser axis must be collinear with their cross-product, as stated in

(4.18). We also have that ~X(j)− ~Xb must be orthogonal to ~̂u
(j)

3 for j = 1, 2 and seek
~Xb in the plane orthogonal to the laser axis. Thus, we represent ~X?

b in (4.18) as a

vector in the span of ~̂u
(1)

3 and ~̂u
(2)

3 and obtain the expression (4.19) of the coefficients
c1 and c2 by solving the linear system of equations

( ~X(j) − ~X?
b ) · ~̂u

(j)

3 = 0, j = 1, 2.

Algorithm 4.3. This algorithm applies to Scenario 2 and uses as inputs ~X(j)

and ~̂u
(j)

1 for j = 1, 2. The output is the estimated laser beam axis { ~X?
b + s ~̂Y ?

b , s ∈ R}
with

~̂Y ?
b =

~̂u
(1)

1 × ~̂u
(2)

1∣∣~̂u(1)

1 × ~̂u
(2)

1

∣∣ , ~X?
b = c1~̂u

(1)

1 + c2~̂u
(2)

1 ,(4.20)

and coefficients

c1 =
~X(2) ·

{
~̂u

(1)

1 −
[
~̂u

(1)

1 · ~̂u
(2)

1

]
~̂u

(2)

1

}
1−

[
~̂u

(1)

1 · ~̂u
(2)

1

]2 , c2 =
~X(1) ·

{
~̂u

(2)

1 −
[
~̂u

(1)

1 · ~̂u
(2)

1

]
~̂u

(1)

1

}
1−

[
~̂u

(1)

1 · ~̂u
(2)

1

]2 .

(4.21)

In Scenario 2, the vectors ~̂u
(j)

1 approximate the unit vectors normal to the axis

of the laser beam, in the planes defined by this axis and the centers ~X(j) of the two
groups of cameras, for j = 1, 2. These vectors are not collinear, because the two
planes do not coincide, so their cross-product defines the orientation of the axis of
the laser, as in (4.20). The expression of ~X?

b in (4.20) states that it is a vector in the

plane orthogonal to the axis of the laser, spanned by ~̂u
(1)

1 and ~̂u
(2)

1 . To determine the
coefficients in (4.21), we use that

~X(j) − ~X?
b ∈ span{~̂u

(j)

1 , ~̂u
(1)

1 × ~̂u
(2)

2 }, j = 1, 2.
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Equivalently,

~X(j) − ~X?
b ⊥ ~̂u

(j)

1 ×
[
~̂u

(1)

1 × ~̂u
(2)

2

]
, j = 1, 2,

and substituting (4.20) in these equations we obtain a linear system for the coefficients
c1 and c2. The solution of this system is (4.21).

4.5. Imaging with three or more groups of cameras. Algorithm 4.2 fails
in Scenario 3, because the matrices U(j) have two very small eigenvalues, and the

eigenvectors ~̂u
(j)

3 are not robust to measurement errors. Thus, imaging must be based

on the leading eigenvectors ~̂u
(j)

1 . Algorithm 4.3 uses these eigenvectors, but its output

is not a good approximation of the axis of the laser, because the vectors ~̂u
(j)

1 are not
orthogonal to this axis. They are rotated by an angle that is unknown and can only
be estimated using knowledge of the scattering properties of the cloud (recall the last
case in section 4.3). We assume no such knowledge, so in Scenario 3 we cannot image
well using two groups of cameras. In this section we show how to improve the results
using more measurements, at Nc ≥ 3 groups of cameras.

The basic idea of the algorithm is that if we had a point ~X? on the axis of the

laser, so that ~X(j) − ~X? is not collinear to ~̂u
(j)

1 , then we could approximate well

the unit vector normal to the plane containing ~X(j) and the axis of the laser, i.e.,
approximate the basis vector

~̂m
(j)
2 ≈

(
~X(j) − ~X?

)
× ~̂u

(j)

1∣∣( ~X(j) − ~X?
)
× ~̂u

(j)

1

∣∣ .
We do not know ~X?; we only have its estimate (4.21) obtained with two groups of
cameras, and this will likely lie off the axis of the laser. However, we can search for
~X?, such that the vectors

~̂w(j) :=

(
~X(j) − ~X?

)
× ~̂u

(j)

1∣∣( ~X(j) − ~X?
)
× ~̂u

(j)

1

∣∣ , j = 1, . . . , Nc ≥ 3,

lie in a two-dimensional space, which is the plane orthogonal to the axis of the laser.

Algorithm 4.4. The inputs are the centers ~X(j) of Nc groups of cameras, the

eigenvectors ~̂u
(j)

1 , for j = 1, . . . , Nc, and the initial guess ~X0 of ~X? calculated using
the second equation in (4.20), with coefficients (4.21). The output is the estimated

laser beam { ~X?
b + s ~̂Y ?

b , s ∈ R}, obtained using the following steps:

Step 1: Search for ~X? in the plane defined by ~X(j) with j = 1, 2, 3. Parametrize
the search point by

~Xt = t1~θ1 + t2~θ2 + ~X0, t = (t1, t2),

where ~θ1 and ~θ2 are the left singular vectors of the 3×2 matrix
(
~X(2)− ~X(1), ~X(3)−

~X(1)
)
. The initial guess corresponds to t = (0, 0).

Step 2: Search for the optimal t? and set ~X? = ~Xt? . The optimal t? is the
minimizer of the objective function

O(t) = log
Σ(3)

Σ(2)
,
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where (Σ(1),Σ(2),Σ(3)) are the singular values of the 3×Nc matrix
(
~̂w

(1)
t , . . . , ~̂w

(Nc)
t

)
,

sorted in decreasing order. The columns of this matrix are the unit vectors

~̂w
(j)
t :=

(
~X(j) − ~Xt

)
× ~̂u

(j)

1∣∣( ~X(j) − ~Xt

)
× ~̂u

(j)

1

∣∣ , j = 1, . . . , Nc.

Step 3: Estimate ~̂Y ?
b as the third left singular vector of

(
~̂w

(1)
t , . . . , ~̂w

(Nc)
t

)
, corre-

sponding to the near zero singular value, per the optimization at Step 2.
Step 4: Estimate X̂?

b using the second equation in (4.18), with coefficients (4.19)

and ~̂u
(j)

3 replaced by ~̂w
(j)
t? and j = 1, 2.

The parametrization at Step 1 of this algorithm reduces the search space to two
dimensions, in the plane defined by the centers of the first three groups of cameras. It
assumes that this plane is not collinear to the axis of the laser, which is generally the
case. In principle, if there are more than three cameras, the search may be done in the
plane defined by any three of them, and the results can be compared for consistency.

Note that by the ordering of the singular values of the matrix
(
~̂w

(1)
t , . . . , ~̂w

(Nc)
t

)
,

we have Σ(3)/Σ(2) ≤ 1, so the objective function O(t) is negative valued. At the
optimal point t = t?, the range of this matrix should be approximately the plane
orthogonal to the axis of the laser. Thus, we expect Σ(1) ∼ Σ(2)� Σ(3) ≈ 0, which
motivates the definition of the objective function.

4.6. The imaging algorithm and quantification of estimation errors. We
begin with the summary of the imaging algorithm.

Algorithm 4.5. The inputs are the centers { ~X(j)}j=1,...,Nc of Nc groups of cam-
eras and the estimated correlation function for each of them, calculated as explained

in section 4.1. The output is the estimated axis of the laser beam { ~X?
b + s ~̂Y ?

b , s ∈ R}
obtained using the following two steps:

Step 1: Estimate the matrices U(j) for j = 1, . . . , Nc, as explained in section 4.3.
Step 2: There are two cases:
1. If the smallest eigenvalue of U(j) is well separated from the others, i.e., if

|Λ(j)
2 − Λ

(j)
3 | > τ |Λ(j)

3 |,(4.22)

with some user-defined threshold τ , use the eigenvector ~̂u
(j)

3 to estimate the

unit vector normal to the plane containing ~X(j) and the axis of the laser for
j = 1, 2. Then estimate this axis using Algorithm 4.2 and stop.

2. Otherwise, use the leading eigenvectors ~̂u
(j)

1 for j = 1, . . . , Nc to image as
follows:

(i) If Nc = 2, estimate the axis of the laser beam using Algorithm 4.3.
(ii) If Nc ≥ 3, estimate the axis of the laser beam using Algorithm 4.4.

It remains to quantify the estimation error. Recall that the true laser axis is the

line { ~Xb + s ~̂Yb, s ∈ R}. We compare it with the estimated axis { ~X?
b + s ~̂Y ?

b , s ∈ R}
using two quantifiers that are independent on the parametrization of these lines, which

is arbitrary. The first quantifier is the angle β between the unit vectors ~̂Yb and ~̂Y ?
b ,

β = arccos
(∣∣ ~̂Yb · ~̂Y ?

b

∣∣),(4.23)
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which gives the error in the estimated orientation of the laser beam. Here we take

absolute values because the same line is defined by both ~̂Yb and − ~̂Yb. The second
quantifier is the distance between the two lines (the true beam axis and the estimated
one):

d = min
s,s′∈R

∣∣ ~Xb + s ~̂Yb − ~X?
b − s′ ~̂Y ?

b

∣∣.(4.24)

The minimizers in this equation are

s =
[− ~̂Yb + ( ~̂Yb · ~̂Y ?

b ) ~̂Y ?
b ] · ( ~X?

b − ~Xb)

1− ( ~̂Yb · ~̂Y ?
b )2

, s′ =
[ ~̂Y ?
b − ( ~̂Yb · ~̂Y ?

b ) ~̂Yb] · ( ~X?
b − ~Xb)

1− ( ~̂Yb · ~̂Y ?
b )2

,

so the distance (4.24) can be computed explicitly.

5. Numerical simulations. In this section we present some simple numeri-
cal simulations in order to illustrate the feasibility of the imaging algorithm, Algo-
rithm 4.5. By simple we mean that the scattered wave field is generated with the
model (2.9) for spherical particles of radius a, using the Rayleigh–Gans approxima-
tion (2.11) of the scattering kernel.

We consider a laser beam with radius ro = 0.5m, at wavelength λ = 1µm, and a
Poisson cloud with intensity ρ = 2.5m−3 to obtain an order of 30,000 particles in the
beam, up to the range of 1000m.

We use up to four groups of cameras, centered at ~X(j) for j = 1, . . . , 4. In the
reference system of coordinates of our computations, with basis denoted by (~̂r1, ~̂r2, ~̂r3),
these locations and the beam axis are

~Xb = (0, 0,−1000), ~̂Yb = (0, 0, 1),

~X(1) = (100, 0, 0), ~X(2) = (100 cos(π/4), 100 sin(π/4),−100),

~X(3) = (100 cos(π/3),−100 sin(π/3), 100),

~X(4) = (100 cos(π/6), 100 sin(π/6),−300),

with units in meters.
For simplicity, we assume the same basis (~̂e1, ~̂e2, ~̂e3) for all four groups of cameras,

obtained by the following rotation of the reference basis:

~̂eq =

1 0 0
0 cosα1 − sinα1

0 sinα1 cosα1

 cosα2 0 sinα2

0 1 0
− sinα2 0 cosα2

cosα3 − sinα3 0
sinα3 cosα3 0

0 0 1

 ~̂rq

for q = 1, 2, 3, where α1 = π/7, α2 = π/9, and α3 = π/5.
We present results for the following ratios of the radius of the particle and the

wavelength: a/λ = 0.1, 0.5, 1, and 2. In the cases a/λ ≤ 0.5 we consider an aperture
with diameter dA = 150λ, and 900 pixels, to obtain a resolution of λ/6. In the other
two cases we have dA = 300λ and the same number of pixels, to obtain a resolution
of λ/3.

We display in Figure 5.1 the speckle pattern of the intensity at the first camera
centered at ~X(1) and the estimated correlation function (4.7) calculated as in (4.5) us-
ing FFT. We note the anisotropy of the decay of the correlation function, as discussed
in section 4.2.
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Fig. 5.1. Top row: The intensity at the first camera centered at ~X(1), in the plane orthogonal

to ~̂e3. Bottom row: The correlation function (4.7). From left to right: a = 0.1λ, a = 0.5λ, a = λ,
and a = 2λ. The axes are pixel coordinates in units of the wavelength λ. The colors indicate the
values, with yellow the largest and dark blue the smallest.

The matrices U(j), for j = 1, . . . , 4, are estimated as described in section 4.3
for the level set parameter L = 0.15. The symmetric matrix V in the optimization
(4.13) is represented by three search parameters: the two entries on the diagonal
and the one off the diagonal. The minimization is solved with the MATLAB routine
fmincon.

We display in the next table the eigenvalues (Λ
(1)
q )1≤q≤3 of U(1) for the four ratios

a/λ. The eigenvalues of the other matrices have a similar behavior.

a/λ Λ
(1)
1 Λ

(1)
2 Λ

(1)
3

0.1 29.49 1.14 −0.10
0.5 11.86 0.26 0.02
1 2.69 0.01 −0.05
2 0.5417 0.004 −0.02

Recall that (Λ
(1)
j )−1/2, j = 1, 2, 3, determine the semiprincipal axes of the ellipsoid

which approximates the level set of the correlation function, at level value 1 − L.
These are proportional to the correlation lengths, and as stated in Propositions 3.2
and 3.4, the correlation lengths increase with the size of the particles. This is why

Λ
(1)
1 is the largest when a = 0.1λ.

The threshold parameter in the test (4.22) of the separation of the eigenvalues is

set to τ = 5. The smallest eigenvalue Λ
(1)
3 is well separated from the others in the

case a/λ = 0.1, so we use Algorithm 4.2 to estimate the laser beam in this case. In
all other cases the estimation is done using Algorithm 4.3 for two groups of cameras
and Algorithm 4.5 for three or four groups of cameras. We do not use Algorithm 4.2

for the case a = 0.5λ, because the gap Λ
(2)
2 − Λ

(2)
3 was smaller for the matrix U(2).



LASER BEAM IMAGING 699

The results obtained with the first two groups of cameras are in the next table,
where we recall the estimation error quantifiers β and d are defined in (4.23) and
(4.24). The angle β is in degrees and the distance d is in meters.

a/λ β d
0.1 3.5o 2.47m
0.5 30.5o 9.27m
1 17.6o 6.12m
2 12.6o 3.94m

We note that the best estimate is for the smallest particles. This is expected from

Scenario 1 discussed in section 4.4, because the eigenvectors ~̂u
(j)

3 are robust to estima-
tion errors and approximate well the unit vectors normal to the planes defined by the
centers of the cameras and the axis of the laser. The estimates for the larger particles
are worse, with the case a = 2λ being the better one, as it is marginally in Scenario 2

discussed in section 4.4, where the leading eigenvectors of ~̂u
(j)

1 , for j = 1, 2, are nearly
orthogonal to the axis of the laser.

The results improve significantly when we use the three first groups of cameras, as
shown in the next table. We display only the results for the larger particles, because
Algorithm 4.5 terminates at Step 1 in the case a = 0.1λ.

a/λ β d
0.5 2.6o 1.84m
1 2.9o 2.42m
2 2.4o 1.72m

The results with all four groups of cameras are qualitatively the same, as shown below.

a/λ β d
0.5 2.4o 1.02m
1 0.9o 0.57m
2 0.9o 2.08m

6. Summary. This paper introduces a novel algorithm for imaging a laser beam
using measurements at CCD cameras that do not lie in the footprint of the beam.
Motivated by the application of detection and characterization of high energy, con-
tinuous wave lasers in maritime atmospheres, we consider the light scattered away
from the axis of the beam by small particles suspended in air (aerosols). We derive
a model of the light intensity at the cameras using the Mie scattering theory for a
Poisson cloud of spherical particles. This model displays the generic dependence of
the speckle pattern of the intensity on the laser beam. By generic we mean that the
conclusions extend to mixtures of particle sizes and shapes and to strong scattering
regimes, as long as the cameras are not farther than a transport mean free path from
the axis of the laser. The imaging algorithm is based on the behavior of the correlation
function of the intensity, in particular on its anisotropic decay on length scales, called
correlation lengths, which depend on the orientation of the axis of the laser. It esti-
mates this correlation function using measurements at groups of three CCD cameras
with a common center and apertures that lie in different planes. Two such groups of
cameras are sufficient for imaging the laser beam in the case of either small or large
particles with respect to the wavelength. For particles of general size, at least three
groups of cameras are needed to obtain an accurate image. The theoretical results
are validated with numerical simulations.
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Appendix A. The covariance function of the scattered field for small
particles. We begin the proof of Proposition 3.2 with the model (2.9) of the scat-
tered field and the approximation (2.10) of the Mie scattering kernel by the constant
η defined in (2.10),

us(~x) ≈ k2η
∑
j

G(~x, ~xj)ub(~xj).(A.1)

Using the expressions (2.5) and (2.8) of the laser beam field ub and the Green’s
function G, and then taking expectations as described in (3.2), we obtain

E
[
us(~x)] ≈ ρk2η

∫ ∞
0

dz′
∫
R2

dx′G(~x, ~x′)ub(~x′)

=
ρk2η

4π

∫ ∞
0

dz′
∫
R2

dx′
r2
o

|~x− ~x′|R2
z′

exp

[
−|x

′|2

R2
z′

+ (ik − kd)(z′ + |~x− ~x′|)
]
.(A.2)

Here we decomposed ~x′ = (x′, z′) with range coordinate z′ > 0 along the axis of the
beam and two-dimensional cross-range vector x′. In our scaling regime kz′ ∼ Lz/λ�
1, and the mean zero result (3.8) follows from the Riemann–Lebesgue lemma, due to
the rapid phase exp(ikz′) in (A.2).

Next we let ~x1 = ~X + ~x/2 and ~x2 = ~X − ~x/2 and calculate the covariance
function

E
[
us(~x1)us(~x2)

]
= η2k4ρ

∫ ∞
0

dz′
∫
R2

dx′G(~x1, ~x
′)G(~x2, ~x′)|ub(~x′)|2

=
η2k4ρ

16π2

∫ ∞
0

dz′
∫
R2

dx′
r4
o

|~x1 − ~x′||~x2 − ~x′||Rz′ |4
exp

(
−2r2

o|x′|2

|Rz′ |4
− 2kdz

′
)

× exp
[
ik
(
|~x1 − ~x′| − |~x2 − ~x′|

)
− kd

(
|~x1 − ~x′|+ |~x2 − ~x′|

)]
,(A.3)

where we used that

Re

(
1

R2
z′

)
=

r2
o

|Rz′ |4
.

We have

k
(
|~x1 − ~x′| − |~x2 − ~x′|

)
= k

(∣∣∣ ~X − ~x′ + ~x

2

∣∣∣− ∣∣∣ ~X − ~x′ − ~x

2

∣∣∣)
= k~x · ( ~X − ~x′)

| ~X − ~x′|
+O

(
k|~x|3

| ~X − ~x′|2

)
,(A.4)

where the residual is negligible if

|~x| � λ1/3L2/3
x ,(A.5)

which we assume. We also have the approximations for the amplitude factors

1

|~x1 − ~x′|
≈ 1

|~x2 − ~x′|
≈ 1

| ~X − ~x′|
≈ 1√

|X|2 + (Z − z′)2
(A.6)

and

kd

(
2z′ + |~x1 − ~x′|+ |~x2 − ~x′|

)
≈ 2kd[z′ +

√
|X|2 + (Z − z′)2] ≈ 2kd(z′ + |Z − z′|),

(A.7)
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by assumption (2.15) and the scaling relations

|x′| ∼ ro � |X| ∼ Lx � Z ∼ Lz.

Substituting (A.4), (A.6), and (A.7) into (A.3) we obtain

E
[
us(~x1)us(~x2)

]
≈ η2k4ρ

16π2

∫ ∞
0

dz′e−2kd(z′+|Z−z′|)
∫
R2

dx′
r4
o[

|X|2 + (Z − z′)2
]
|Rz′ |4

× exp

[
−2r2

o|x′|2

|Rz′ |4
+ ik

(X − x′) · x+ (Z − z′)z√
|X − x′|2 + (Z − z′)2

]
.(A.8)

The integrand in this equation is large for |x′| . ro and we have |X| ∼ Lx, so we
can expand the phase as

k
(X − x′) · x+ (Z − z′)z√
|X − x′|2 + (Z − z′)2

= k
X · x+ (Z − z′)z√
|X|2 + (Z − z′)2

+ kx′ · [X · x+ (Z − z′)z]X − [|X|2 + (Z − z′)2]x

[|X|2 + (Z − z′)2]3/2

+O

(
k
|x′|2|~x|
|X|2

)
.(A.9)

Note that the residual is small if

|~x| � λ(L2
x/r

2
o),(A.10)

which we assume. This allows us to integrate over x′ in (A.8) and we obtain

E
[
us(~x1)us(~x2)

]
≈ η2k4ρr2

o

32π

∫ ∞
0

dz′
e−2kd(z′+|Z−z′|)[
|X|2 + (Z − z′)2

]
× exp

[
ik
X · x+ (Z − z′)z√
|X|2 + (Z − z′)2

− k2|Rz′ |4Q(~x, ~X, z′)

8r2
o

]
dz′(A.11)

with

Q(~x, ~X, z′) =
∣∣∣ [X · x+ (Z − z′)z]X − [|X|2 + (Z − z′)2]x

[|X|2 + (Z − z′)2]3/2

∣∣∣2
=
−(x ·X)2|X|2 + z2(Z − z′)2|X|2 + |x|2[|X|2 + (Z − z′)2]2

[|X|2 + (Z − z′)2]3

− 2(x ·X)[x ·X + (Z − z′)z](Z − z′)2

[|X|2 + (Z − z′)2]3
.

Now let us change variables

z′ = Z − |X|ζ, ζ ∈
(
−∞, Z

|X|

)
,(A.12)

and use that Z/|X| � 1 to extend the ζ interval to the real line. Equation (A.11)
becomes

E
[
us(~x1)us(~x2)

]
≈ η2k4ρr2

oe
−2kdZ

32π|X|

∫ ∞
−∞

e−2kd|X|(|ζ|−ζ)

1 + ζ2

× exp

(
ik
X̂ · x+ ζz√

1 + ζ2
−
k2|R

Z−|X|ζ |4Q̃(~x, X̂, ζ)

8|X|2r2
o

)
dζ,(A.13)
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where X̂ = X/|X| and

Q̃(~x, X̂, ζ) =
−(x · X̂)2(1 + 2ζ2) + |x|2(1 + ζ2)2 + z2ζ2 − 2(x · X̂)zζ2

(1 + ζ2)3
.

We can simplify this result further, by noting that since 1/(1 + ζ2) is integrable, only
the terms with |ζ| = O(1) contribute to value of the integral (A.13), and we can
approximate

|R
Z−|X|ζ | ≈ ro, e−2kd|X|(|ζ|−ζ) ≈ 1,

by the scaling assumptions (2.14) and (2.15). Furthermore, |X̂ · x| and |z| should be
at most of order λ; otherwise the integral in (A.13) averages out by the Riemann–
Lebesgue lemma, and in these conditions

k2r2
o

8|X|2
Q̃(~x, X̂, ζ) =

k2r2
o

8|X|2
|X̂⊥ · x|2 + o(1),

using the orthonormal basis {X̂, X̂⊥} in the cross-range plane, so that

E
[
us(~x1)us(~x2)

]
≈ η2k4ρr2

oe
−2kdZ

32π|X|

∫ ∞
−∞

1

1 + ζ2

× exp

(
ik
X̂ · x+ ζz√

1 + ζ2
− k2r2

o|X̂⊥ · x|2

8|X|2(1 + ζ2)

)
dζ.(A.14)

Equations (3.9)–(3.10) follow after one more change of variables,

ζ/
√

1 + ζ2 = cosα.(A.15)

Note that this result shows that the covariance function, as a function of ~x, has the
form of an anisotropic peak centered at 0 with radii of the order of λ in the z- and
X̂-directions and of the order of λ|X|/ro in the X̂⊥-direction. In order to see this
peak, the radius of the camera should be ideally larger than λ|X|/ro. If it is not as
large, then the elongated peak will extend to the boundary of the domain.

Note also that (A.5) and (A.10) are readily fulfilled for |~x| . λ. When the
diameter dA is larger than λ|X|/ro, these conditions are fulfilled for all ~x in the
peak of the covariance function if they hold for all |~x| ≤ λLx/ro, which happens if
(λLx/ro)

3 � λL2
x and λLx/ro � λ(L2

x/r
2
o). This imposes the additional condition

λ2Lx � r3
o.

Appendix B. Proof of the Gaussian summation rule. We prove here that
in our scaling regime the fourth-order moments of the scattered field satisfy approxi-
mately the Gaussian summation rule. This gives the result stated in Proposition 3.3.

Let ~x1 = ~X + ~x/2 and ~x2 = ~X − ~x/2 be two points in the camera, and use (3.5)
to write the second moment of the intensity

E
[
|us(~x1)|2|us(~x2)|2

]
= E

[
|us(~x1)|2

]
E
[
|us(~x2)|2

]
+
∣∣E[us(~x1)us(~x2)

]∣∣2
+
∣∣E[us(~x1)us(~x2)

]∣∣2 +R.(B.1)

Here R is the residual given by the last term in (3.5),
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R = ρη4k8

∫ ∞
0

dz′
∫
R2

dx′|G(~x1, ~x
′)|2|G(~x2, ~x

′)|2|ub(~x′)|4

≈ ρη4k8

(4π)4

∫ ∞
0

dz′
∫
R2

dx′
e−4kd(z′+|Z−z′|)

[|X|2 + (Z − z′)2]2
r8
o

|Rz′ |8
exp

(
−4r2

o|x′|2

|Rz′ |4

)
=
ρη4k8r6

o

45π3

∫ ∞
0

dz′
e−4kd(z′+|Z−z′|)

[|X|2 + (Z − z′)2]2|Rz′ |4
,

where we used the same approximation as in (A.7). With the change of variables
(A.12), and using that Z/|X| � 1, we estimate the residual by

R ≈ ρη4k8r2
oe
−4kdZ

45π3|X|3

∫ ∞
−∞

1

(1 + ζ2)2
dζ =

ρη4k8r2
oe
−4kdZ

211π2|X|3
.

Let us compare R with the first two terms in (B.1), which are of the same order,
estimated from (3.11),

∣∣E[us(~x1)us(~x2)
]∣∣2 ∼ E

[
|us(~x1)|2

]
E
[
|us(~x2)|2

]
≈
(
η2k4ρr2

oe
−2kdZ

32|X|

)2

.

We obtain that

R
E
[
|us(~x1)|2

]
E
[
|us(~x2)|2

] ≈ 1

2π2ρr2
o|X|

� 1,(B.2)

because in our scaling

ρr2
o|X| =

r2
o|X|
`3

� 1.(B.3)

Therefore, the residual is negligible in (B.1) and the covariance is given by

Cov
(
|us(~x1)|2, |us(~x2)|2

)
≈
∣∣E[us(~x1)us(~x2)

]∣∣2 +
∣∣E[us(~x1)us(~x2)

]∣∣2.(B.4)

It remains to show that the last term in (B.4) is small. We have from the model
(2.9) and equation (3.2) that

E
[
us(~x1)us(~x2)

]
= η2k4ρ

∫ ∞
0

dz′
∫
R2

dx′G(~x1, ~x
′)G(~x2, ~x

′)|ub(~x′)|2

=
η2k4ρ

16π2

∫ ZP

0

dz′
∫
R2

dx′
r4
o

|~x1 − ~x′||~x2 − ~x′||Rz′ |4
exp

[
−2r2

o|x′|2

|Rz′ |4
+ 2(ik − kd)z′

]

× exp
[
ik
(
|~x1 − ~x′|+ |~x2 − ~x′|

)
− kd

(
|~x1 − ~x′|+ |~x2 − ~x′|

)]
.

(B.5)

This expression contains very large phases: 2kz′ � 1 and k
(
|~x1−~x′|+ |~x2−~x′|

)
� 1,

so the result is small after integration, by the Riemann–Lebesgue lemma. The result
stated in Proposition 3.3 follows.
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