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Matched-Filter and Correlation-Based Imaging for Fast Moving Objects Using a
Sparse Network of Receivers∗
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Abstract. In this paper we consider the problem of imaging a fast moving small object. The imaging system
consists of a powerful emitter and several passive receivers located on the ground. Our aim is to
compare the well-known matched-filter imaging method with correlation-based imaging. Imaging
with correlations has the advantage of not requiring any knowledge about the probing pulse and
the emitter position, both assumed known with high accuracy in the case of matched-filter imaging.
But correlation-based imaging requires recording fully resolved signals without down-ramping while
matched-filer imaging does not. To account for the fast moving target’s velocity, Doppler compensa-
tion is necessary for both imaging methods. Our resolution analysis, from first principles, shows that
with the two methods we have similar resolution in the cross-range direction, for both the location
and the velocity of the moving target. In the range direction, matched-filter imaging has better res-
olution mainly because it benefits from the signal bandwidth, which is not true for correlation-based
imaging that relies on travel time differences. We also analyze the role of the number of receivers
and show that a small number of them sparsely distributed provides an image with resolution close
to the one obtained with a dense array of comparable overall size.
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1. Introduction. The study of imaging fast moving objects is motivated by the need to
detect, track, and image small energetic debris (1–10 cm) revolving around the earth at a low
orbit (200 km–2000 km) [18]. This is of interest because of the large amount of debris which
substantially increases the risk of satellite damage from collisions [16, 12]. There are roughly
700,000 pieces of debris of size larger than 1 cm in low earth orbit (LEO) and there is concern
that future collisions may have a chain reaction effect that would lead to an unacceptably
risky environment [22].

In this paper, we model the small fast moving debris as a pointlike reflector moving with
constant velocity, VT . Debris are not necessarily in stable orbit but their motion follows
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Newton’s law and therefore we seek to reconstruct the six unknowns that characterize their
trajectories: the three components of the position and of the velocity. The imaging data are
the scattered signals from a train of incident pulses emitted by a powerful transmitter located
on the ground. The receivers are also assumed to be located on the ground and span an area of
diameter a, which defines the physical aperture of the imaging system. In synthetic aperture
radar (SAR), a single airborne transmit/receive element is moving and its trajectory defines
the synthetically created aperture of the imaging system [7, 8]. Analogously, the trajectory of
the moving target defines an inverse synthetic aperture (ISAR) of length Ttot|VT | with Ttot the
total recording time during the data gathering process. Other important parameters of the
imaging system are the central frequency, fo, and the bandwidth, B, which are determined
by the emitter. We consider here a system operating at high frequency with a relatively large
bandwidth, such as the X-Band (8–12 GHz) or the S-Band (2–4 GHz) regimes.

In this context, we study the well-established matched-filter imaging method [5, 19] and
compare its performance with a correlation-based imaging method. Correlation-based imaging
for fast moving objects has been considered in [2] where it was shown that two well-separated
airborne pairs of receivers are sufficient for determining the target’s location and velocity. We
adopt here a simpler configuration with the receivers located on the ground. Since the speed
of the airborne platforms is always small compared to the one of the object to be imaged, our
analysis can be easily extended to moving airborne receivers. Recent developments on passive
radar systems can be found in the special issue [1].

In matched-filter imaging the recorded signals are Doppler compensated as in [5, 17,
19] and synchronized with travel time delays so as to maximize the correlation with the
emitted pulse, which is assumed known. The synchronization requires knowledge of the emitter
location with high accuracy. Correlation-based imaging relies on cross correlations of signals
between pairs of receivers. The signals are also Doppler compensated and synchronized,
and must be recorded without down-ramping [1]. However, in this case the synchronization
does not require knowledge of the emitter location since only time differences matter. For
correlation-based imaging we do not need to know the pulse profile or the emission times but
we need to record the whole train of scattered pulses. In this paper we assume a sufficiently
high sampling rate so that the real-valued scattered signal can be recorded as in [2, 1].

Correlation-based imaging has been shown to be more robust to medium fluctuations such
as atmospheric lensing [13] and aberrations [15]. This would be true for receivers that are
not located on the ground but are flying above the turbulent atmosphere. Indeed, considering
airborne receivers transforms the passive correlation-based problem to a virtual source array
imaging problem that has been studied for stationary receiver arrays in [9, 10, 11]. The key idea
is that passive correlation-based imaging becomes equivalent to having a virtual active array at
the location of the passive receivers. By moving the receivers above the turbulent atmosphere,
the atmospheric fluctuation effects on imaging are minimized and imaging resolution is as if
we were in a homogeneous, fluctuation-free medium.

Correlation-based imaging is passive because it can be carried out using opportunistic,
unknown emitters. In the imaging setting considered in this paper, opportunistic sources
could be global navigation satellite systems (GNSS). This has been considered in [14] and
it is shown that the main challenge in this case is the low signal-to-noise ratio because the
scattered signal received at a terrestrial receiver is very weak. The approach proposed in [14]
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relies on matched filtering and careful signal processing that exploits the Doppler shift of the
reflected signal by the fast moving object.

We present in this paper a rigorous resolution analysis for both the matched-filter and
the correlation-based imaging methods. We study the corresponding point spread functions
and show that the two methods have similar resolution in cross range. Cross range is the
coordinate that is orthogonal to the direction of the receivers/scatterer that defines the range.
Note that it is the final resolution estimates that are comparable, while the computations
for image formation in each case are quite different. The cross-range resolution estimate is
λoHT /a with HT being the altitude of the moving target and λo being the central wavelength.
This is the well-known Rayleigh resolution formula. In the direction of the target’s velocity,
the ISAR aperture plays a role when it is big enough and the resolution estimate becomes
λo(HTa ∧

HT
2|VT |Ttot

) for the matched filter, the wedge symbol, ∧, means the minimum between the
two quantities. In the range direction we see the biggest difference between the two methods:
matched-filter resolution is co

2B and relies on the bandwidth, while for the correlation-based

imaging we obtain λo
H2
T
a2 . In correlation-based imaging range resolution does not depend on the

bandwidth because the corresponding imaging function relies only on arrival-time differences.
The resolution estimates for the velocity are given by the corresponding ones for the location
divided by the recording time Ttot. This is not true for the velocity estimate along the range
direction provided by the matched filter for which we obtain the extremely precise estimate
λo

2Ttot
.

Our resolution estimates suggest that the moving object can be localized with very high
accuracy, of the order of the wavelength of the imaging system. The estimated resolutions
for the X-band and the S-band surveillance systems are given in Tables 4 and 5, respectively.
Our analytical resolution estimates are validated with detailed numerical simulations. More-
over, our numerical results suggest that around 10 receivers are enough so as to achieve the
theoretical resolution estimates with an aperture diameter of about 400 kilometers. This em-
pirical rule of the order of 10 receivers is furthermore proven to be correct theoretically when
considering a regular grid of receivers, both for the matched-filter and the correlation-based
imaging method.

The resolution analysis carried out in this paper concerns the case of a point reflector and,
consequently, it characterizes the behavior of the point spread function of the two imaging
methods analyzed. This is a basic step towards imaging extended objects but does not account
for many effects that could play an important role for general scatterers. Indeed, under
the assumption of the single scattering (Born) approximation, it is possible to predict the
image of an extended object by convolution of the object’s reflectivity with the point spread
function derived in this paper. However, the reflectivity function of an extended object may
be complicated in the sense that it may depend strongly on the illumination and observation
angles, as well as on the frequency. Therefore, it would be interesting to adapt the imaging
methodology and study the resolution that can be obtained for directional and frequency
dependent reflectivities of extended objects.

This paper is organized as follows. We begin with the data model and the problem setup
in section 2. The two imaging methods are presented in section 3 and the resolution analysis
is carried out in section 4. In section 5 we present numerical simulations that verify our
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Figure 1. Schematic of the imaging system’s geometry. The receivers R1, R2, . . . , RN are located on the
ground covering a domain of diameter a. The object to be imaged is moving with speed VT at height HT .

theoretical resolution estimates. We also investigate the role that the number of receivers
play in image resolution. Our results suggest that a small number of receivers of the order of
10 are sufficient so as to observe the theoretical resolution estimates. The theoretical analysis
of this surprising result is considered in section 6. We end with our conclusions in section 7.

2. Data model. We introduce in this section the configuration of our imaging system and
the model we use for the recorded data set.

2.1. Problem setup. We assume that a transmitter antenna is located on the ground at
location XE . The probing pulse emitted by the transmitter is

(2.1) f(t) = F (Bt)e−iωot + F (Bt)eiωot = 2F (Bt) cos(ωot),

where the bandwidth B is smaller than the central frequency ωo, and the baseband pulse F
is real valued and compactly supported.

There is a network of distributed receivers on the ground, at positions XR, R = 1, . . . , N .
The network covers a region with diameter a. We consider the following two situations: a
regular grid of receiver locations or a random grid. In the first case, the receiver locations are
the abscissas of a quadrature integral approximation of the surface density function p(x/a). In
the second case, the receiver locations are random, independently and identically distributed
with the surface density function p(x/a)/a2 (with p such that

∫
p(x)dx = 1). A schematic of

the system’s geometry is shown in Figure 1.
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The target to be imaged is taken to be pointlike and moving with constant velocity VT
along the trajectory XT (t) = YT +VT t, t ∈ (−Ttot/2, Ttot/2). The extension of the resolution
analysis that we present to a trajectory (XT (t),VT (t)), t ∈ (−Ttot/2, Ttot/2), that can be
determined by a flow given the initial position and velocity, is straightforward.

With no loss of generality, we consider a reference frame such that (1) the origin is on the
ground and given by the orthogonal projection of the target position YT onto the ground and
(2) the target position YT is along the third axis of the reference frame. In other words, the
ground is horizontal and the position YT of the target at time 0 is vertical and of the form
YT = (0, 0, HT ), where HT is the altitude of the target (see Figure 1). By denoting mX = X

|X|
and P⊥X = Id −mX

tmX , we have, for any space vector, X = (X1, X2, X3): X3 = mYT ·X,
and X⊥ = (X1, X2, 0) = P⊥YTX. Let us also denote 〈., .〉⊥ as the bilinear form associated
with P⊥YT .

2.2. The direct and scattered waves. Let us assume that the transmitter at XE emits
a short pulse f(t) whose compact support is in (0,∞). The total field u(t,x) is the solution
of the wave equation

(2.2)
1

c2(t,x)
∂2u

∂t2
−∆u = f(t)δ(x−XE),

where the velocity model consists of a uniform background and a localized perturbation %T
centered at XT (t),

1
c2(t,x)

=
1
c2
o

(
1 + %T

(
x−XT (t)

))
.

The scalar wave equation that we consider here is used quite often instead of the full Maxwell’s
equations as a model for radar applications since it captures the main features of the scattering
problem [6]. The scattered field, u(1)(t,x), is defined as the difference between the total field
u(t,x), solution of (2.2), and the incident field u(0)(t,x) which is the solution of the wave
equation (2.2) in the absence of the target (%T = 0),

(2.3)
1
c2
o

∂2u(0)

∂t2
−∆u(0) = f(t)δ(x−XE).

The incident field has the form

(2.4) u(0)(t,x) =
∫ t

0
dτf(τ)G(t− τ,x,XE),

where G(t,X,Y ) denotes the Green’s function, that is the response recorded at point X
when a Dirac pulse is sent from point Y at time zero. In a homogeneous medium, the Green’s
function is given by

(2.5) G(t,X,Y ) =
1

4π |X − Y |
δ

(
t− |X − Y |

co

)
.
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Using this expression in (2.4) we obtain

(2.6) u(0)(t,x) =
1

4π |x−XE |
f

(
t− |x−XE |

co

)
.

From (2.2) and (2.3) we deduce that the scattered field u(1)(t,x) = u(t,x) − u(0)(t,x) is a
solution of

1
c2
o

∂2u(1)

∂t2
−∆u(1) = − 1

c2
o

%T (x−XT (t))
∂2(u(0) + u(1))

∂t2
(t,x),

so that

u(1)(t,x) = − 1
c2
o

∫ t

0
dτ

∫
dyG(t− τ,x,y)%T (y −XT (τ))

∂2

∂τ2 (u(0) + u(1))(τ,y).

In the Born approximation, we can neglect u(1) on the right-hand side, so that

u(1)(t,x) = − 1
c2
o

∫ t

0
dτ

∫
dyG(t− τ,x,y)%T (y −XT (τ))

∂2

∂τ2u
(0)(τ,y).

In the pointlike approximation for the scatterer, we find that u(1) is given by

u(1)(t,x) = − ρ
c2
o

∫ t

0
dτG(t− τ,x,XT (τ))

∂2

∂τ2u
(0)(τ,y) |y=XT (τ),

where ρ =
∫
%T (x)dx is the reflectivity of the target. Substituting the expression for u(0) and

integrating by parts twice, we obtain

u(1)(t,x) = − ρ
c2
o

∫ t

0
dτ

∫ τ

0
dτ ′f ′′(τ ′)G(τ − τ ′,XT (τ),XE)G(t− τ,x,XT (τ)).

Therefore the scattered field recorded by the receiver at x = XR has the form

us,R(t) = − ρ
c2
o

∫ t

0
dτ

1
4π|XT (τ)−XE |

f ′′
(
τ − |XT (τ)−XE |

co

)
× 1

4π|XR −XT (τ)|
δ

(
t− τ − |XR −XT (τ)|

co

)
.

If we introduce

Φ(τ ; t) = t− τ − |YT −XR + τVT |
co

,

then we have

δ [Φ(τ ; t)] =
δ[τ − τ(t)]
|∂τΦ(τ(t); t)|

,

with τ(t) the unique zero of τ → Φ(τ ; t) in (0, t). Denoting

(2.7) D(t) = YT −XR + tVT ,
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we write

Φ(τ ; t) = t− τ − |YT −XR + τVT |
co

= t− τ − |YT −XR + tVT − (t− τ)VT |
co

= t− τ − |D(t)− (t− τ)VT |
co

.

The unique zero of τ → Φ(τ ; t) in (0, t), can be found as the root of the quadratic equation

(t− τ)2
(

1− |VT |
2

c2
o

)
+ 2(t− τ)

VT
co
· D(t)
co
− |D(t)|2

c2
o

= 0.

We find that τ(t) is given by

(2.8) τ(t) = t− |D(t)|
co
(
1−

∣∣VT
co

∣∣2)
√1−

∣∣∣∣VTco
∣∣∣∣2 +

(
VT
co
· D(t)
|D(t)|

)2

− VT
co
· D(t)
|D(t)|

 .
We also have

|∂τΦ(τ(t); t)| =
∣∣∣∣1 +

VT
co
· D(τ(t))
|D(τ(t))|

∣∣∣∣ .
Substituting into the expression for us,R(t) we obtain

(2.9) us,R(t) = −
ρf ′′
(
τ(t)− |XT (τ(t))−XE |

co

)
(4π)2c2

o|XT (τ(t))−XE ||XR −XT (τ(t))|
∣∣∣1 + VT

co
· D(τ(t))
|D(τ(t))|

∣∣∣ .
This is the Born approximation for the scattered field. The forward model that we use to
compute the data is based on us,R(t) given by (2.9) since it is only the scattered field that is
used in imaging.

2.3. Doppler factors. To construct an imaging function it is important to identify the
Doppler factors that affect the measurements. Here we assume that the transmitter at XE

emits the pulse f(· − s) around time s. We want to consider the structure of the received
signal at time t+s for t in a small time window with width ∆T . We denote by HT the typical
altitude of the target.

Assuming |VT | � co, |VT |∆T � HT , and |VT |2∆T 2 � λoHT , we can expand the distances
and neglect the quadratic terms in |VT |/co to obtain

|XT (s+ t)−XE | ≈ |XT (s)−XE |+ tVT ·
XT (s)−XE

|XT (s)−XE |
,

|XT (s+ t)−XR| ≈ |XT (s)−XR|+ tVT ·
XT (s)−XR

|XT (s)−XR|
.
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As the target position is XT (s) = YT + sVT , and as ‖f ′′′‖∞ ∼ ω3
o‖F‖W∞,3 ∼ ωo‖f

′′‖∞,
we can approximate (2.9) as follows:

(2.10) us,R(s+ t) = −
ρf ′′
(
s+ γs(XT (s),VT ,XR)t− ts(XT (s),VT ,XR)

)
(4πco|XT (s)|)2 + o

(
ρ‖f ′′‖
4πH2

T

)
with

(2.11) γs(X,V ,XR) = 1− V
co
·
(
X −XE

|X −XE |
+
X −XR

|X −XR|

)
and

(2.12) ts(X,V ,XR) =
|X −XE |

co
+
|X −XR|

co
γs(X,V ,XR).

From (2.10), we see that the scattered signal recorded at XR is essentially a pulse received at
the sum of travel times from the transmitter to the target and from the target to the receiver,
up to some modification due to the Doppler effect which is characterized by the Doppler factor
γs. We note that γs is very close to one because the target velocity, while large, is still much
smaller than the velocity of light co.

As we will see next, the expression (2.10) of the scattered signal is the key element used
to design our imaging function.

3. Imaging methods. In this section we describe two imaging methods, the matched-filter
one, which is the standard imaging method for this problem and a correlation-based imaging
approach. Let us first describe the data gathering process to gain some insight on how an
imaging function should process the available data.

During the observation time window (−Ttot/2, Ttot/2) the transmitter emits a large num-
ber NE = [Ttot/∆TE ] of pulses f(t−Sj) around times Sj = j∆TE , j = −NE/2, . . . , NE/2−1.
The N receivers record the scattered signals us,R(Sj + t), R = 1, . . . , N , during a time interval
that is long enough to capture the scattered signals, but smaller than ∆TE . This is the input
data set that we use to image the moving target. Note that we consider here a transmitter
that emits a large number of short pulses f(t−Sj) whose support is of the order of 1/B with
B being the bandwidth. This is different than the chirped pulses which are usually used in
radar for achieving a good signal-to-noise ratio. In terms of resolution, however, the results
are the same whether a train of chirped pulses or a train of short pulses is used.

Specifically, we consider the regime in which

1/B � 2HT /co � ∆TE � Ttot

with 1/B the pulse duration, 2HT /co the round trip time from the ground to the target, ∆TE
the time spacing between two pulses, and Ttot the total duration.

We also assume that
λo � |VT |Ttot ∼ a ∼ |XE | � HT ,

where HT is the typical altitude of the target.
The specific assumptions under which our resolution analysis is carried out are summarized

in Hypothesis 1 (section 4.1) for the matched-filter and in Hypothesis 2 (section 4.2) for the
correlation-based imaging function.
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We can see from (2.10) that the received signals have the form of pulses, time delayed and
scaled by specific Doppler factors. A matched filter or a correlation-based imaging function
must compensate for these Doppler factors, as in [17, 19] or [20, 21]. Since the Doppler factors
depend on the receiver and target positions, they can be estimated locally and that is why
we will first introduce a small-aperture imaging function and then form an imaging function
from a sum of such terms.

3.1. The matched-filter imaging function. The idea behind the matched-filter imaging
function is that we want to match the received signal with the emitted pulse. The matching
process involves the assumed initial position and speed of the object (Y ,V ), and this matching
can be shown to be maximal at the true position (YT ,VT ). The matching process takes into
account the Doppler compensation factor γs(X,V ,XR),

IMF(Y ,V ) =
1
NE

NE∑
j=1

IMF
j (Y + V Sj ,V ),

(3.1)

IMF
j (X,V ) =

1
N

N∑
R=1

∫
f

(
γs(X,V ,XR)

(
t− |X −XR|

co

)
− |X −XE |

co

)
us,R(Sj + t)dt.

(3.2)

This imaging function requires knowledge of the transmitter and receiver positions XE and
XR. We also need to know the pulse profile f . In practice, if one wants to image a region
around some point YT , then the jth scattered signal needs only to be recorded during a short
time around 2|YT −XE |/co. The pulse profile could be different from one pulse emission to
another one, meaning that f may depend on j, but in that case, it is necessary to know all
the emitted pulses. An equivalent version of matched filter can be obtained with the following
change of variable t→ |X −XR|/co + (t+ |X −XE |/co)/γs(X,V ,XR),

IMF
j (X,V ) =

1
N

N∑
R=1

∫
f(t)us,R

(
Sj +

|X −XR|
co

+
t+ |X−XE |

co

γs(X,V ,XR)

)
dt.(3.3)

3.2. The correlation-based imaging function. The correlation-based imaging function
cross correlates the scattered signals recorded by pairs of receivers and migrates them with
the appropriate Doppler compensation factors,

ICC(Y ,V ) =
1
NE

NE∑
j=1

ICC
j (Y + V Sj ,V ),(3.4)

ICC
j (X,V ) =

1
N2

N∑
R,R′=1

∫
us,R

(
Sj +

|X −XR|
co

+
t+ |X−XE |

co

γs(X,V ,XR)

)

× us,R′

(
Sj +

|X −XR′ |
co

+
t+ |X−XE |

co

γs(X,V ,XR′)

)
dt.(3.5)
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For the correlation-based imaging function, it is not necessary to know the pulse profile f
which could be different from one emission to another one. It is not necessary either to
know the emission times with accuracy but we need to record the whole train of scattered
signals. This is because the correlation-based imaging function is formed by migrating the
cross correlations of the scattered signals over all receiver pairs R−R′ as can be seen in (3.4)–
(3.5). Therefore the whole train of the scattered signals is needed to form the ICC image.
Moreover correlation-based imaging has been shown to be robust to medium fluctuations when
in a suitable imaging configuration [9, 11, 10].

The correlation-based imaging function does not depend on the transmitter position XE ,
as can be seen by the change of variable t→ t− |X −XE |/co:

ICC
j (X,V ) =

1
N2

N∑
R,R′=1

∫
us,R

(
Sj +

|X −XR|
co

+
t

γs(X,V ,XR)

)

× us,R′

(
Sj +

|X −XR′ |
co

+
t

γs(X,V ,XR′)

)
dt.(3.6)

Depending on our knowledge regarding the pulse train and the receiving system’s mem-
ory/computation capacity we may consider other correlation-based imaging functions. We
refer to Appendix A for some different choices of correlation-based imaging functions.

Remark 1. We do not use in this paper the analytic signal convention which is typically
used in radar. We consider instead a real compactly supported signal in time as in (2.1) and
keep both positive and negative frequencies. We find that following this convention, used in
geophysics and elsewhere, simplifies the presentation. If instead one uses the analytic signal,
the time domain signal is complex and therefore the cross-correlation should be defined with
one of the two signals being complex conjugated. The resolution estimates, however, are the
same independently of the convention used.

4. Resolution analysis. In this section we derive the resolution properties of both the
matched-filter and the correlation-based imaging functions. To determine the important scales
for our imaging problem we first recall the typical values for the different parameters appearing
in the imaging setup.

Parameter regime for the resolution analysis. We want to image the location and velocity of
a fast moving object, such as a satellite or a piece of debris, that moves at a low orbit around
the earth. A typical value for the height of the orbit is HT = 5 · 105 m and the speed for such
objects is VT = 7 ·103 m/s. The source that we use for imaging is located on the ground and is
emitting a train of pulses f with relatively large bandwidth B = 0.6 · 109 Hz at a high central
frequency fo = 10 · 109 Hz (X-band). We assume that the scattered field can be recorded
at a large number of receivers over an area on the ground of diameter a = 1.7 · 105 m. The
time duration of the recordings is of order Ttot = 11 s. Let us also recall the speed of light
co = 3 108 m/s. These values are given here as a specific case and it is easy to check that the
hypotheses we made so far are satisfied with this set of values. In the following, the theoretical
assumptions are always made explicit and are not tied to this particular set of parameters.
The orders of magnitude are only mentioned here to motivate our ordering hypotheses, and
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Table 1
Typical values of the parameters for our imaging configuration.

VT 7 · 103 m/s
HT 5 · 105 m
a 1.7 · 105 m
B 0.6 · 109 Hz
fo 10 · 109 Hz
co 3 · 108 m/s
Ttot 11 s

to show that such hypotheses are indeed reasonable. The values of the parameters are also
summarized in Table 1.

4.1. The matched-filter imaging function. We use the expression (2.10) of the scattered
field and the following elementary formula,

f(αt+ β) =
1

2πα

∫
R
f̂
(ω
α

)
exp

(
−i
(
t+

β

α

)
ω

)
dω for α > 0 and β ∈ R

with f̂ denoting the Fourier transform defined as

f̂(ω) =
∫

R
f(t) exp(iωt)dt,

to write the partial imaging function (3.2) in the Fourier domain as

IMF
j (X,V ) =

k2
oρ

(4π|XT |)2
1

2πN

N∑
R=1

∫
R
dωf̂

( ω

γs(X,V ,XR)

)
f̂

(
ω

γs(XT ,VT ,XR)

)

× exp
(
i
ω

co

(
|XT −XE |

γs(XT ,VT ,XR)
− |X −XE |
γs(X,V ,XR)

+ |XT −XR| − |X −XR|
))

.

Using that ωo
B
|VT |
co

= o(1), we can approximate f̂( ω
γs(X,V ,XR)) by f̂(ω) in the expression above.

Moreover, assuming that ωoHT
co

|VT |2
c1o
� 1, then 1

γs
needs only to be expanded up to first order

inside the exponential and this leads to

IMF
j (X,V ) ≈ k2

oρ

(4π|XT |)2
1

2πN

N∑
R=1

∫
R
dω|f̂(ω)|2

× exp
(
i
ω

co

(
|XT −XE |+ |XT −XR| − |X −XE | − |X −XR|

)

× exp
(
i
ω

co
|XT −XE |

VT
co
·
(
XT −XR

|XT −XR|
+
XT −XE

|XT −XE |

))

× exp
(
−i ω
co
|X −XE |

V

co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

))
.
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If the number of receivers is large enough, we can replace 1
N

∑N
R=1 by 1

a2

∫
R2 dxRp(xR/a) in

the expression for IMF
j (X,V ). This effectively means that the data depend on 4 variables:

the slow time Sj , the fast time t, and the surface of receivers xR. We assume further that
2πB < ωo and that the baseband pulse is symmetric and essentially supported in [−2π, 2π]
so that we can write

|f̂(ω)|2 =
1
B2

∣∣∣∣F̂ (ω − ωoB

)∣∣∣∣2 +
1
B2

∣∣∣∣F̂ (ω + ωo
B

)∣∣∣∣2 ,
and using a change of variables by recentering and rescaling ω such that ω = ωo + Bω̃, ω̃
being dimensionless, we get

|f̂(ωo +Bω̃)|2 =
1
B2 |F̂ (ω̃)|2.

Consequently, the expression for IMF
j (X,V ) becomes

IMF
j (X,V ) =

k2
oρ

32π3|XT |2Ba2

∫
R2
dxRp

(xR
a

)∫
R
dω̃|F̂ (ω̃)|2

× exp
(
i
ωo +Bω̃

co

(
|XT −XE |+ |XT −XR| − |X −XE | − |X −XR|

)
× exp

(
i
ωo +Bω̃

co
|XT −XE |

VT
co
·
(
XT −XR

|XT −XR|
+
XT −XE

|XT −XE |

))
× exp

(
−iωo +Bω̃

co
|X −XE |

V

co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

))
with XR = (xR, 0) and XT = XT (Sj) = YT + VTSj .

In the expression of IMF
j (X,V ) above we write only the first term corresponding to

F̂ (ω−ωoB ). The second term is the complex conjugate of the first one and it does not bring
any new information so it is omitted. We will follow this convention throughout the rest
of the paper and omit systematically the second complex conjugate term from the imaging
functions’ expressions. Remark that the term which is at twice the carrier frequency (2ωo)
vanishes when the bandwidth of F̂ is smaller than ωo as is the case here.

We note that the partial imaging function, IMF
j (X,V ), tries to match the measured sum of

travel times |XT −XE |+|XT −XR| by the candidate one |X−XE |+|X−XR| corresponding
to the target starting from point X in the search domain at time 0 and traveling with speed
V .

Our first main result is the following expression that determines the resolution of the
matched-filter imaging function:

∣∣∣IMF(X,V )
∣∣∣ =

k2
oρ

32π3H2
TBTtot

∣∣∣∣ ∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 1

a2

∫
R2
dxRp

(xR
a

)
× exp

(
i(ΦIMF + εIMF)(Y − YT ,V − VT ,XR,XE , s)

)∣∣∣∣,
(4.1)

D
ow

nl
oa

de
d 

04
/1

8/
18

 to
 1

29
.1

04
.7

2.
15

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMAGING FAST MOVING OBJECTS WITH SPARSE NETWORKS 2177

where the phase ΦIMF is given by

ΦIMF(Y − YT ,V − VT ,XR, s)

=
ωo + ω̃B

co

 s

HT
〈V − VT ,XR +XE〉⊥︸ ︷︷ ︸

(VT )⊥resolution

− 2
H2
T

〈sVT ,XR +XE〉⊥

 (Y − YT )3︸ ︷︷ ︸
Y3 mixed aperture effect

+ s (V − VT )3︸ ︷︷ ︸
V3 mixed aperture effect


+

1
HT
〈Y − YT ,XR +XE〉⊥︸ ︷︷ ︸
Y⊥ physical aperture effect

− 2s (V − VT )3︸ ︷︷ ︸
V3 ISAR effect

− 2s
HT
〈Y − YT ,VT 〉⊥︸ ︷︷ ︸
Y2 ISAR effect

−2s2

HT
〈V − VT ,VT 〉⊥︸ ︷︷ ︸
V2 ISAR effect

− 2
ω̃B

co
(Y − YT )3︸ ︷︷ ︸

Y3 bandwidth effect

 .

(4.2)

The derivation is presented in detail in Appendix B.2 and holds under the following hypotheses,
which are actually verified for the typical values of the parameters shown in Table 1, as
discussed below.

Hypothesis 1 (matched filter). Our resolution analysis for the matched filter imaging func-
tion is valid under the following assumptions:

• a+Ttot|VT |
HT

= o(1); for the values of Table 1 we have a+Ttot|VT |
HT

≈ 0.5.

• |VT |co
� (a+Ttot|VT |

HT
)2, which is true since 2.3 · 10−5 � 2.4 · 10−1.

• H2
T

co(a+Ttot|VT |)Ttot
� 1, indeed we have 3.1 · 10−4 � 1.

• λo
HT
� 16(a+Ttot|VT |

HT
)4, which is verified as 6.2 · 10−8 � 9.1 · 10−1.

• Finally we assume that co
2B <

4λoH2
T

(a+Ttot|VT |)2 , which is verified since 25 cm < 50 cm.

Under the above hypothesis we have εIMF = o(ΦIMF). Our analysis is valid in the vicinity
of the true target location and velocity, that is, for |XT −X| <

4λoH2
T

(a+Ttot|VT |)2 (∼ 50 cm) and

for |VT − V | <
λoH2

T
Ttot(a+Ttot|VT |)2 (∼ 1.1 10−2 m/s).

From (4.1), assuming B ≤ ωo, VT⊥YT , and XR⊥YT , we can assume that our frame is
such that e3 = YT

|YT | , e2 = VT
|VT | , and set e1 to be such that (e1, e2, e3) is a direct orthonormal
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Table 2
Resolution estimates for the matched-filter imaging function.

Y1
λoHT
a

9 cm

Y2 λo

(
HT
a
∧ HT

2|VT |Ttot

)
9 cm ∧ 9.7 cm = 9 cm

Y3
co
2B
∧ λo

H2
T

2|VT |Ttota
25 cm ∧ 29 cm = 25 cm

V1
λoHT
aTtot

8.2 · 10−3 m/s

V2
λo
Ttot

(
HT
a
∧ HT

2|VT |Ttot

)
8.2 · 10−3 m/s ∧ 8.9 · 10−3 m/s = 8.2 · 10−3 m/s

V3
λo

2Ttot
1.4 · 10−3 m/s

basis of R3. Consequently, we obtain the resolution estimates summarized in Table 2. We
note an ISAR influence in the resolution of Y2 and V2 seen as the dependence of the resolution
on |VT |Ttot, coming solely from the fact that the reflector is moving. We also note that
the resolution in Y1 and V1 (and part of the resolution in Y2 and V2) depends only on the
physical aperture covered by the receivers, that is, the parameter a. As for Y3, the resolution
obtained stems mainly from the fact that our signal has a substantial bandwidth together with
a mixed ISAR/physical aperture effect. We call the mixed ISAR/physical aperture effect the
terms of the type λo

H2
T

2|VT |Ttota
, where both the physical aperture, a, and the ISAR aperture,

|VT |Ttot, appear. They are indicated in the the phase ΦIMF definition (4.2) by the term “mixed
aperture effect.” We see that a small bandwidth will lead to Y3 recovered only by the mixed
ISAR/physical aperture effect, while a large bandwidth would lead to a sharp point spread
function in (YT )3 determined by the term co/(2B).

Remark 2. If we relax our assumptions VT⊥YT and XR⊥YT , then we would obtain the
corresponding ISAR and physical aperture terms in Y3 and V3 as well.

Remark 3. In (4.1), the Doppler compensation appears only in the term εIMF . This is
because in the matched-filter (MF) imaging function we have accounted for the Doppler effect
by dividing by the factor γs(X,V ,XR) as can be seen in (3.3). This is adequate compensation
since it cancels the corresponding factor appearing in (2.10) for X and V in the vicinity of
the true values XT (s) and VT . Therefore Doppler effects are mitigated and do not appear to
play any role in the resolution of the imaging function. We should note however that without
accounting and correcting for the Doppler effects the image would have been biased and not
focused at the correct target location. The same is true for the correlation-based imaging
function.
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4.2. The correlation-based imaging function. We use the expression (2.10) of the scat-
tered field and write the partial imaging function (3.5) in the Fourier domain

ICC
j (X,V ) =

k4
oρ

2

(4π|XT |)4
1

2πN2

N∑
R,R′=1

∫
R
dωf̂

( ωγs(X,V ,XR)
γs(XT ,VT ,XR)

)
f̂

(
ωγs(X,V ,XR′)
γs(XT ,VT ,XR′)

)

× exp
(
i
ω

co

(
(|X −XR| − |XT −XR|)γs(X,V ,XR)

+ |X −XE | − |XT −XE |
γs(X,V ,XR)
γs(XT ,VT ,XR)

))

× exp
(
− i ω

co

(
(|X −XR′ | − |XT −XR′ |)γs(X,V ,XR′)

+ |X −XE | − |XT −XE |
γs(X,V ,XR′)
γs(XT ,VT ,XR′)

))

with XT defined as before by XT = XT (Sj) = YT + VTSj . It is immediate to see that
ICC
j (X,V ) reduces to

ICC
j (X,V ) =

k4
oρ

2

(4π|XT |)4
1

2πN2

N∑
R,R′=1

∫
R
dωf̂

( ωγs(X,V ,XR)
γs(XT ,VT ,XR)

)
f̂

(
ωγs(X,V ,XR′)
γs(XT ,VT ,XR′)

)

× exp
(
i
ω

co

(
|X −XR| − |XT −XR|

)
γs(X,V ,XR)

)

× exp
(
−i ω
co

(
|X −XR′ | − |XT −XR′ |

)
γs(X,V ,XR′)

)

× exp
(
i
ω

co
|XT −XE |

(
γs(X,V ,XR′)
γs(XT ,VT ,XR′)

− γs(X,V ,XR)
γs(XT ,VT ,XR)

))
.

Our second main result is the following expression which determines the resolution of the
correlation-based imaging function,

ICC(X,V ) =
k4
oρ

2

(4π|XT |)42πBa4Ttot

∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2

×
∣∣∣∣∫

R2
dxRp

(xR
a

)
exp (i(ψICC + εICC)(Y − YT ,V − VT ,XR, s, ω̃))

∣∣∣∣2 ,

(4.3)
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Table 3
Resolution estimates for the correlation-based imaging function.

Y⊥
λoHT
a

9.2 cm

Y3 λo

(
H2
T

a2 ∧
2H2

T

a|VT |Ttot

)
27 cm ∧ 1.2m = 27 cm

V⊥
λoHT
aTtot

8.2 · 10−3 m/s

V3
λo
Ttot

(
H2
T

a2 ∧
2H2

T

a|VT |Ttot

)
2.5 · 10−2m/s ∧ 1.1 · 10−1 m/s = 2.5 · 10−2 m/s

where the phase ψICC is defined by

ψICC(Y − YT ,V − VT ,XR, s, ω̃)

=
ωo +Bω̃

co

 1
HT

〈Y − YT ,−XR〉⊥︸ ︷︷ ︸
YT physical aperture effect

− 1
2H2

T

(Y − YT )3︸ ︷︷ ︸
Y3 physical aperture effect

|XR|2⊥ +
s

HT
〈V − VT ,−XR〉⊥︸ ︷︷ ︸
VT ISAR effect

+
s

2H2
T

(Y − YT )3︸ ︷︷ ︸
Y3 mixed aperture effect

〈VT ,XR〉⊥

+
s2

2H2
T

(V − VT )3︸ ︷︷ ︸
V3 mixed effect

〈VT ,XR〉⊥ +
s

2H2
T

(V − VT )3︸ ︷︷ ︸
V3 mixed effect

|XR|2⊥

 .

(4.4)

The details of the derivation are given in Appendix B.3. As for the MF, we call the “physical
aperture effect” the terms where the physical aperture a appears, the “ISAR effect” the terms
where the synthetic ISAR aperture due to the movement of the object |VT |Ttot appears, and
“mixed ISAR/physical aperture effect” the terms where the product |VT |Ttota of the physical
aperture and the ISAR aperture appears. This expression is obtained under the following
hypotheses, which are verified for the typical values of the parameters shown in Table 1, as
discussed below.

Hypothesis 2 (correlation-based imaging). Our resolution analysis for the correlation-based
imaging function is valid under the following assumptions:

• a+Ttot|VT |
HT

= o(1), this is the same as for the MF imaging.

• |VT |co
� a+Ttot|VT |

HT
, which is true since 2.3 · 10−5 � 0.5.

Under the above assumptions, we get εICC(Y − YT ,V − VT ,XR, s, ω̃) =
o(ψICC(Y −YT ,V −VT ,XR, s, ω̃)). Similarly to the previous section, our analysis is valid in
the vicinity of the true target location and velocity, that is, for |XT −X| < 2λo( HT

a+Ttot|VT |)
2

(∼ 40 cm) and for |VT − V | <
λoH2

T
(a+|VT |Ttot)2Ttot

(∼ 1.1 · 10−2 m/s). Our resolution estimates
are summarized in Table 3.
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As for the MF imaging function, the Doppler compensation does not play any role in our
resolution estimates because |VT |co

is very small. Note also that the direction of VT does not
appear in the resolution estimates as those terms always cancel out at first order due to the
antisymmetric roles played byXR andXR′ . Because of this antisymmetry, the terms in (Y )3

B
co

also cancel out. Similar cancellation effects occur for (V )3, which explains the difference in the
resolution estimates for this coordinate between the MF and the correlation-based imaging
function.

We note that in this case the ISAR aperture created by the moving scatterer plays a
role only in the range coordinate that is parallel to the direction from the scatterer to the
receivers/emitter. The cross-range resolution in position and velocity is similar to the one of
the MF imaging function. Only the range resolution in velocity is reduced compared to the
one provided by the MF imaging function.

Remark 4. The correlation-based imaging method cannot exploit the available bandwidth
since it relies on travel time differences. This is an important difference between MF and
correlation-based imaging which does not really penalize the correlation-based methodology
except for the resolution in V3.

5. Numerical results.

5.1. Parameter regime for the numerical simulations. In the numerical simulations,
the target to be imaged is located at the reference slow time s = 0 at YT = (0, 0, HT )
and it moves with constant speed VT = (0, VT , 0). The target motion therefore defines a
synthetic aperture AT = VTTtot over the duration Ttot of the data gather. We have verified
the theoretical resolution estimates for both the matched field IMF(Y ,V ), defined by (3.1),
and the correlation-based imaging function ICC(Y ,V ), defined by (3.4), using different values
for HT , VT , Ttot, and the aperture a covered by the receivers. Our numerical simulations are
carried out in the X-band regime. The results shown in this section correspond to the following
(realistic) values: The altitude of the moving target is HT = 500 km. This height corresponds
to an LEO, which includes objects orbiting at an altitude between 160 km and 2,000 km. It is
well known that the altitude of an orbiting object is related to its speed by the second Kepler
law. At the altitude of HT = 200 km the speed for maintaining a stable orbit is 7.79 km/s and
it decreases as the altitude of the orbit increases. In our numerical setup with HT = 500 km
the velocity for a stable orbit is VT = 7,610 km/s. The total duration of the recordings is
Ttot = 22.5 s which allows for a target synthetic aperture of AT = 171 km.

The data for the scattered field are computed by a discretization of the theoretical expres-
sion (2.9). The probing pulse is (we consider that the Gaussian and, consequently, the pulse,
is zero for t ≥ 3/B and t ≤ −3/B)

f(t) = cos(2πfot) exp
(
−B

2t2

2

)
,

with the central frequency fo = 9.6 GHz and the bandwidth B = 622 MHz. This gives the
central wavelength λo = 3 cm. The bandwidth is 6% of the central frequency and these values
for fo and B correspond to the operating Gotcha radar system [4]. The pulse repetition rate
is ∆s = 0.015 s. The probing pulses are emitted from a transmitter on the ground, at position
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Figure 2. Receiver distribution in a square with side a = 400 km. The blue triangles denote the receiver
locations and the labels correspond to each receiver’s number, an integer from 1 to 12. The units are in km.

Table 4
MF resolution estimates.

X-band S-band

Y1
λoHT
a

3.75 cm 18.75 cm

Y2 λo

(
HT
a
∧ HT

2VTTtot

)
3.75 cm ∧ 4.4 cm = 3.75 cm 18.75 cm

Y3
co
2B
∧ λo

H2
T

2VTTtota
23 cm ∧ 5.5 cm = 5.5 cm 27.5 cm

V1
λoHT
aTtot

0.17 cm/s 0.85 cm/s

V2
λo
Ttot

(
HT
a
∧ HT

2VTTtot

)
0.17 cm/s ∧ 0.19 cm/s = 0.17 cm/s 0.85 cm/s

V3
λo

2Ttot
0.07 cm/s 0.35 cm/s

XE = (5, 5, 0) m. We have simulated data for the scattered field for 12 receivers, distributed
in a square with side a = 400 km as illustrated in Figure 2.

5.2. Resolution estimates for the numerical simulation setup. In Tables 4 and 5 we have
evaluated the resolution estimates corresponding to the parameters used in our numerical
simulations. We observe that for our numerical setup the two imaging functions provide
similar resolution except for V3, the velocity in the vertical direction, in which case the results
obtained by the MF imaging function are better. These conclusions are more general and do
not apply only to the selected values of parameters. Similar results have been obtained for a
range of realistic parameters for a ∈ [100, 400] km and Ttot ∈ [10, 30] s. The central frequency,
fo, will affect the results in an obvious way since all resolution estimates are proportional to the
wavelength λo. The bandwidth B appears only in the resolution estimate for Y3. However, we
should not forget that these expressions have been obtained under the assumption of relatively
large bandwidth assuming co

2B <
4λoH2

T
(a+TtotVT )2 and 2πB ≤ ωo.

Our numerical simulations are in the X-band regime. The currently planned Space Surveil-
lance System [12] is in the S-band regime, with a central frequency of 2 GHz, which gives a
15 cm wavelength. The resolution limits in this section can be converted to the S-band sys-
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Table 5
Correlation-based imaging resolution estimates.

X-band S-band

Y⊥
λoHT
a

3.75 cm 18.75 cm

Y3 λo

(
H2
T

a2 ∧
2H2

T

aVTTtot

)
4.7 cm ∧ 22 cm = 4.7 cm 23.5 cm

V⊥
λoHT
aTtot

0.17 cm/s 0.85 cm/s

V3
λo
Ttot

(
H2
T

a2 ∧
2H2

T

aVTTtot

)
0.2 cm/s ∧ 1 cm/s = 0.2 cm/s 1 cm/s

Figure 3. Cross section of the image in the plane (Y1, Y2): IMF(Y ,V ) is shown on the left and ICC(Y ,V )
on the right. The origin corresponds to the true values, which are Y1 = 0 and Y2 = 0. The abscissa is for Y1

and the ordinate for Y2. The units are in m.

Figure 4. Cross section of the image in the plane (Y1, Y3): IMF(Y ,V ) is shown on the left and ICC(Y ,V )
on the right. The origin corresponds to the true values, which are Y1 = 0 and Y3 = HT . The abscissa is for Y1

and the ordinate for Y3. The units are in m.

tem by changing the 3 cm wavelength to 15 cm and the bandwidth from 622 MHz to around
125 MHz. In Tables 4 and 5 we summarize the resolution estimates for both X-band and
S-band systems.

5.3. Imaging results with twelve receivers. Let us focus now on the imaging results
obtained using the 12 receiver configuration shown in Figure 2. To reduce computational
cost and memory requirements instead of computing the six-dimensional imaging functions,
we have computed two-dimensional images by fixing four of the six unknowns to their true
values. Figures 3 to 5 concern the location variable, Y , while Figures 6 to 8 concern the
velocity, V , of the moving target.
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Figure 5. Cross section of the image in the plane (Y2, Y3): IMF(Y ,V ) is shown on the left and ICC(Y ,V )
on the right. The origin corresponds to the true values, which are Y2 = 0 and Y3 = HT . The abscissa is for Y2

and the ordinate for Y3. The units are in m.

Figure 6. Cross section of the image in the plane (V1, V2): IMF(Y ,V ) is shown on the left and ICC(Y ,V )
on the right. The origin corresponds to the true values, which are V1 = 0 and V2 = VT . The abscissa is for V1

and the ordinate for V2. The units are in m/s. The results on the top row are for Ttot = 22.5 s while we have
considered Ttot = 11.25 s for the images in the bottom row.

The MF and the correlation-based images in the plane (Y1, Y2) are shown in Figure 3.
Given the estimates of Tables 1 and 2 we expect a resolution of the order of λoHT /a for
both Y1 and Y2 which equals 3.75 cm. This is consistent with the results of Figure 3. The
resolution appears to be slightly better for the correlation-based imaging function. We believe
that this is due to the small number of receivers used and the fact that the MF image is
obtained by adding N images each corresponding to a single receiver, while for the cross-
correlation (CC) imaging function we add N2 images each corresponding to a receiver couple
(R,R′). The numerical simulations suggest that the CC imaging function converges faster
to the theoretical resolution estimates, which are obtained for a dense network of receivers.
This is also visible in the images of Figure 4 where we observe that the MF image shown on
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Figure 7. Cross section of the image in the plane (V1, V3): IMF(Y ,V ) is shown on the left and ICC(Y ,V )
on the right. The origin corresponds to the true values, which are V1 = 0 and V3 = 0. The abscissa is for V1

and the ordinate for V3. The units are in m/s.

Figure 8. Cross section of the image in the plane (V2, V3): IMF(Y ,V ) is shown on the left and ICC(Y ,V )
on the right. The origin corresponds to the true values, which are V2 = VT and V3 = 0. The abscissa is for V1

and the ordinate for V2. The units are in m/s.

the left has persistent side lobes while the corresponding CC image shown on the right has
a resolution similar to MF but without any visible side lobes. We note that our theoretical
resolution analysis gives estimates that concern the main peak of the imaging function and
does not provide information about the side lobes.

The resolution in the Y3 direction is given by λo
H2
T

2VTTtota
for the MF imaging function and

by λo
H2
T
a2 for the CC which equals 5.5 cm and 4.7 cm, respectively. This is consistent with the

results of Figures 4 and 5, where Y3 is the ordinate. Again we observe that the quality of the
CC image is better with no observable side lobes in the imaging window.

The imaging results in the plane (V1, V2) are illustrated in Figure 6. The size of the focal
spot is in agreement with the theoretical resolution estimates given by λoHT

aTtot
which equals

0.17 cm/s for both V1 and V2 (for Ttot = 22.5 s). This is a remarkably precise estimate
recalling that the velocity of the moving target is large, 7610 m/s. As suggested by the
theory, resolution in the target’s velocity is inversely proportional to the duration of the data
gather Ttot. This is nicely illustrated by the images in the bottom row of Figure 6 where we
observe a doubling in the size of the focal spot by reducing Ttot from 22.5 s to 11.25 s.

As can be observed in the images shown in Figures 7 and 8 the results for the variable
V3 are better for the MF imaging function. The resolution estimates are λo

2Ttot
for IMF(Y ,V )

and λo
Ttot

H2
T
a2 for ICC(Y ,V ). This equals 0.07 cm/s and 0.2 cm/s, respectively. Although the
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Figure 9. Cross section of the image IMF(Y ,V ) in the plane (Y1, Y2) obtained using 4, 6, 9, and 12
receivers, respectively. The origin corresponds to the true values, which are Y1 = 0 and Y2 = 0. The abscissa
is for Y1 and the ordinate for Y2. The units are in m.

resolution of 0.2 cm/s provided by ICC(Y ,V ) is similar to the one obtained for the variables
V1 and V2, the quality of the ICC(Y ,V ) image is not as good in the direction V3 as seen by a
vertical large side lobe in the images. Other than this, the results obtained by the correlation-
based imaging function are very good, which suggests that correlation-based imaging can be
used for effective imaging of fast moving targets.

As already mentioned, the correlation-based imaging function does not require either
knowledge of the pulse or of the location of the source, which is an advantage. On the other
hand, ICC(Y ,V ) is computationally more intensive than IMF(Y ,V ) since the cost of the
imaging function is quadratic in the number of receivers instead of linear. A rather surprising
result is that we do not need a dense network of receivers in order to obtain good resolution.
This is true for both imaging functions although our numerical simulations suggest that the
side lobes decrease faster for correlation-based imaging. We show in the next section some
results obtained with a limited number of receivers.

5.4. Imaging results for a sparse receiver network. Our data are the same as before, that
is, we have computed the scattered field for the 12 receiver configuration shown in Figure 2.
We want to use part of these data corresponding to subsets of receivers with cardinality 4, 6,
9, and 12.

For each number of receivers used we selected the receiver set so that they span the whole
square aperture (see Figure 2) as best as possible given our initial set of 12 receivers. We
made the following choices: when using 4 receivers we selected the receivers with labels 5, 8,
10, and 11. Let us denote the receiver set S4 = {5, 8, 10, 11}. Then we increased the number
of receivers to 6 by adding receivers 7 and 12, so that S6 = {5, 7, 8, 10, 11, 12}. In the case of
9 receivers we took S9 = {2, 4, 5, 7, 8, 9, 10, 11, 12} and S12 is the set containing all available
receivers.

The images shown in Figures 9 and 10 are the IMF(Y ,V ) and ICC(Y ,V ) images in
the plane (Y1, Y2) obtained using the receiver sets S4, S6, S9, and S12 from left to right,
respectively. The image obtained using the receiver set S4 is not good and has important side
lobes for both the MF and the correlation-based imaging functions. However, the quality of
both IMF(Y ,V ) and ICC(Y ,V ) images increases rapidly with the number of receivers and
very good results are obtained using just 9 receivers. For all considered configurations, we
observed a faster side lobe decrease as the number of receivers increases in the case of the
correlation-based images compared to the MF images. We also observe that the resolution
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Figure 10. Cross section of the image ICC(Y ,V ) in the plane (Y1, Y2) obtained using 4, 6, 9, and 12
receivers, respectively. The origin corresponds to the true values, which are Y1 = 0 and Y2 = 0. The abscissa
is for Y1 and the ordinate for Y2. The units are in m.
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Figure 11. Cross section of the images in the direction Y1 obtained using 4, 6, 9, and 12 receivers,
respectively. On the left we plot the MF IMF(Y ,V ) and on the right the correlation-based imaging function
ICC(Y ,V ). The origin corresponds to the true value, which is Y1 = 0. The abscissa is for Y1 (the units are in
m) and the ordinate is normalized by its max.

Figure 12. Cross section of the image IMF(Y ,V ) in the plane (Y1, Y3) obtained using 4, 6, 9, and 12
receivers, respectively. The origin corresponds to the true values, which are Y1 = 0 and Y3 = HT . The abscissa
is for Y1 and the ordinate for Y3. The units are in m.

of the images is stable and does not vary significantly with the number of receivers used. It
is mainly the side lobes that are affected by the number of receivers used. This is better
illustrated in Figure 11 where we plot the IMF(Y ,V ) and ICC(Y ,V ) images as a function
of Y1 obtained using 4, 6, 9, and 12 receivers. On the left we plot the results for the MF and
on the right for the correlation-based imaging.

We presented here results only for the location variables in the planes (Y1, Y2) and (Y1, Y3)
(shown in Figures 12 and 13). However, similar results (not shown here) are obtained for the
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Figure 13. Cross section of the image ICC(Y ,V ) in the plane (Y1, Y3) obtained using 4, 6, 9, and 12
receivers, respectively. The origin corresponds to the true values, which are Y1 = 0 and Y3 = HT . The abscissa
is for Y1 and the ordinate for Y3. The units are in m.

a

a

Receivers

Figure 14. Schematic representation of a regular square grid of receivers.

velocity unknowns. A theoretical analysis that helps explain these rather surprising findings
is considered in the next section.

6. Theoretical analysis of the required number of receivers. The numerical simulation
results are surprising because they suggest that only a small number of receivers (around 10) is
sufficient to observe the point spread function of the two imaging methods. In this section, we
will analyze theoretically the role that the number of receivers plays on the imaging function.
We will show that, for a regular grid of receivers, indeed, around 10 receivers are enough to
observe a point spread function that is similar to the one that would have been obtained using
a very large number of receivers. This is our third main result of the paper.

By regular grid we mean a regular mesh for a square of size a such that the covering is
optimal for ‖.‖∞. In this case, the asymptotic density of receivers p is the uniform distribution
on the square as illustrated in Figure 14.

Considering the summation formula in the imaging methods, it is natural to think about
the required number of receivers so as to approximate well an integral by a discretized sum.
Consequently, the strategy followed here consists in deriving approximation bounds on the
differences between the mean of the partial imaging functions ĨMF

N or ĨCC
N , defined below, and

the asymptotic imaging functions IMF or ICC.
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Let us introduce the following notation for the MF imaging function at each receiver XR,

IMF
j (X,V ,XR) =

∫
f(t)us,R

(
Sj +

|X −XR|
co

+
t+ |X−XE |

co

γs(X,V ,XR)

)
dt,

IMF(Y ,V ,XR) =
1
NE

NE∑
j=1

Ij(X(Sj),V ,XR).

Recall that X and XT still depend on the slow time. With calculations similar to the ones
carried out in section 4, by passing to the Fourier domain and doing some approximations we
get

IMF
j (X,V ,XR) =

k2
oρ

32π3|XT (Sj)|2

∫
R
dω̃|F̂ (ω̃)|2

× exp
(
i
ω

co

(
|XT −XE |+ |XT −XR| − |X(Sj)−XE | − |X −XR|

+ |XT −XE |+ |XT −XE |
VT
co
·
(
XT −XR

|XT −XR|
+
XT −XE

|XT −XE |

)
− |X −XE |

V

co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

))
.

Assuming that the number of slow times NE is big enough, we can approximate IMF by its
asymptotic version,

ĨMF(Y ,V ,XR) =
∫ Ttot/2

−Ttot/2
ds

k2
oρ

32π3|XT (s)|2Ttot

∫
R
dω̃|F̂ (ω̃)|2

× exp
(
i
ω

co

(
|XT −XE |+ |XT −XR| − |X(s)−XE | − |X −XR|

+ |XT −XE |+ |XT −XE |
VT
co
·
(
XT −XR

|XT −XR|
+
XT −XE

|XT −XE |

)
− |X −XE |

V

co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

))
,

and in the Fourier domain, we obtain using the same calculations as for (4.1),

ĨMF(Y ,V ,XR)

= C

∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 exp

(
i(ΦIMF + εIMF)(Y − YT ,V − VT ,XR, s, ω)

)
.

(6.1)

Now we want to show that

ĨMF
N (Y ,V ) =

1
N

N∑
R=1

ĨMF(Y ,V ,XR)
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has indeed a shape similar to its asymptotic version IMF(Y ,V ) =
∫
dx
a2 p(xa )ĨMF(Y ,V ,x),

at least for Y ,V close to the true target location, in a vicinity that is of the order of the
resolution. Note that by Fubini’s theorem this definition of IMF coincides with the one in
(3.1).

Following the same reasoning, we define the correlation-based imaging function, corre-
sponding to a couple of receivers located at XR1 , XR2 ,

ICC
j (X,V ,XR1 ,XR2) =

∫
us,R1

(
Sj +

|X −XR1 |
co

+
t+ |X−XE |

co

γs(X,V ,XR1)

)

× us,R2

(
Sj +

|X −XR2 |
co

+
t+ |X−XE |

co

γs(X,V ,XR2)

)
dt,

ICC(Y ,V ,XR1 ,XR2) =
1
NE

NE∑
j=1

ICC
j (X(Sj),V ,XR1 ,XR2).

When NE is big, ICC can be approximated by

ĨCC(X,V ,XR1 ,XR2)

= C

∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 exp (i(ΨIMF + εIMF)(Y − YT ,V − VT ,XR1 , s, ω))

× exp (−i(ΨIMF + εIMF)(Y − YT ,V − VT ,XR2 , s, ω)) .

We also define the average quantity

ĨCC
N (Y ,V ) =

1
N2

N∑
R1=1

N∑
R2=1

ĨCC(Y ,V ,XR1 ,XR2),

which is to converge to ICC(Y ,V ) as N →∞.
We next study in which sense the discrete versions ĨMF

N and ĨCC
N are good approximations

of their continuous analogues IMF and ICC.

6.1. MF resolution for a regular grid of receivers. We will assume in the following that
we have a square grid of receivers, each side containing M receivers (hence N = M2). However,
the results can be easily adapted to any bounded regular configuration of receivers.

The key idea is to notice that both ĨMF
N and IMF admit their maximum at the true target

location and velocity (YT ,VT ), and that for a number of receivers sufficiently small, we can
bound |ĨMF

N (Y ,V )−IMF(Y ,V )| by an envelope function for (Y ,V ) in the resolution set (see
definition below).

Definition 6.1 (resolution set). Given a six-dimensional vector r = (r1, . . . , r6) of positive
coordinates called hereafter the reference width vector, we define the resolution set RYT ,VT ,q,r
as (

YT
VT

)
+ q
(
[−r1, r1]× · · · × [−r6, r6]

)
,

where × stands for the Cartesian product of intervals.
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IMAGING FAST MOVING OBJECTS WITH SPARSE NETWORKS 2191

The width vector r will be equal in each dimension to the corresponding resolution esti-
mates of the imaging method under investigation. For the MF, we have

(6.2)

r1 =
λoHT

a
,

r2 = λo

(
HT

a
∧ HT

2|VT |⊥Ttot

)
,

r3 =
co
2B
∧ λo

H2
T

2|VT |⊥Ttota
,

r4 =
λoHT

aTtot
,

r5 =
λo
Ttot

(
HT

a
∧ HT

2|VT |⊥Ttot

)
,

r6 =
λo

2Ttot
.

In other words, the resolution set is a subspace of R6 centered at (YT ,VT ), and for which
the width in each dimension corresponds to a fixed proportion q of the resolution in this
dimension. As we focus mainly on two-dimensional images, allowing only 2 coordinates of the
(Y ,V ) vector to vary, we need to introduce the notion of a two-dimensional partial image
which we call a 2-sliced image.

Definition 6.2 (2-sliced resolution set). Given the reference width vector r = (r1, . . . , r6) of
positive coordinates, we define the 2-sliced resolution set Rj,kYT ,VT ,q,r as

(
YT
VT

)
+ q[−rj , rj ]ej + q[−rk, rk]ek

with (ei)i=1,...,6 the canonical base of R6.

Let us denote CR the square centered at XR and of size a√
N

(recall M =
√
N). The

difference between the discrete and the continuous MF imaging function can be written as

IMF(Y ,V )− ĨMF
N (Y ,V )

=
1
a2

N∑
R=1

∫
CR
dx
(
ĨMF(Y ,V ,x)− ĨMF(Y ,V ,XR)

)
=

1
a2

N∑
R=1

∫
CR
dx∇XR

ĨMF(Y ,V ,XR) · (x−XR)

+
1
2

∫ 1

0
dt (x−XR) · ∇2

XR
ĨMF(Y ,V , (1− t)XR + tx) · (x−XR).

The first integral ∫
CR
dx∇XR

ĨMF(Y ,V ,XR) · (x−XR) = 0

because of symmetry since XR is the center of each square CR. Thus, expressing
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∇2
XR

ĨMF(Y ,V ,XR) as an integral, and computing upper bounds inside this integral, we
have ultimately that for (Y ,V ) ∈ Rk,lYT ,VT ,q,r with q = O(1), (the calculation details are
presented in Appendix C.1),

(6.3)
∣∣∣IMF(Y ,V )− ĨMF

N (Y ,V )
∣∣∣

≤ ‖IMF‖∞

(
H1
p (Y ,V )
√
N

∧
(
H2
p (Y ,V )

2N
+

1
2N

o(1)
(
H2
p (Y ,V ) +H1

p (Y ,V
)))

with the envelope functions H1
p (Y ,V ) and H2

p (Y ,V ) defined by

H1
p (Y ,V )

(def)
= 2

|(Y − YT )3|
r3

+ 2
1
p∗ p

√
|(Y − YT )1|p

rp1
+
|(Y − YT )2|p

rp2

+ 2
|(V − VT )3|

r6
+ 2

1
p∗ p

√
|(V − VT )1|p

rp4
+
|(V − VT )2|p

rp5

(6.4)

for p <∞ and

H1
∞(Y ,V )

(def)
= 2

|(Y − YT )3|
r3

+ 2
(
|(Y − YT )1|

r1
∧ |(Y − YT )2|

r2

)
+ 2
|(V − VT )3|

r6
+ 2

(
|(V − VT )1|

r4
∧ |(V − VT )2|

r5

)(6.5)

for p =∞, and

H2
p (Y ,V )

(def)
=
(
H1
p (Y ,V )

)2
.(6.6)

Here p and p∗ are such that 1
p + 1

p∗ = 1. Futhermore o(1) here means a small quantity with

respect to 1 according to Hypothesis 1 (section 4.1), (Y ,V ) ∈ Rk,lYT ,VT ,q,r, and q = O(1). A
simple corollary could be stated in the following terms.

Theorem 6.3. For any 2-sliced resolution Rj,kYT ,VT ,q,r, we have∣∣IMF(Y ,V )− ĨMF
N (Y ,V )

∣∣
‖IMF‖∞

≤
√

16q2

N
∧ 8q2

N

for all (Y ,V ) ∈ Rj,kYT ,VT ,q,r.

This result is a direct consequence of inequality (6.3) with p∗ = ∞ and p = 1. Note
that better bounds can be obtained in some specific cases, for instance, with R1,2

YT ,VT ,q,r
or

R4,5
YT ,VT ,q,r

, we would have a bound in
√

4
N q ∧

2q2
N . Depending on the 2-sliced resolution

considered and the particular values of the the ratios aTtotr5
HT

, ar1
HT

, aTtot|VT |⊥r3
H2
T

, aT 2
tot|VT |⊥r6
H2
T

,
tighter bounds could be obtained.

To give a specific example, let us consider the (Y1, Y2) slice and N = 4. Assuming
IMF(Y ,V ) = o(‖IMF‖∞) for (Y ,V ) ∈ ∂R1,2

YT ,VT ,q,r
, we can apply the previous bound
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Figure 15. Schematic illustration of the envelope functions.

(
√

4
N q ∧

2q2
N ) for q = 1 and obtain ĨMF

N (Y ,V ) = ‖IMF‖∞(1
2 + o(1)) for (Y ,V ) ∈ ∂R1,2

YT ,VT ,q,r
.

Achieving the same result on the resolution set R3,6
YT ,VT ,q,r

(the worst case) would require
N = 16.

In Figure 15 we illustrate with a schematic how the envelope functions can be used to
qualitatively explain the good imaging results obtained with a limited number of receivers in
our numerical simulations. The blue curve would be the continuous imaging function obtained
with an infinite number of receivers while the green curve would correspond to the discrete
imaging function obtained with a limited number of receivers. The red dashed curves denote
the envelope functions which are our bounds on the error, that is the difference between the
continuous and the discrete imaging functions. Both functions admit their maximum at the
correct target location. The error between them is zero at this location and remains a small
fraction of the maximal value for points inside the resolution set.

6.2. Correlation-based imaging resolution for a regular grid of receivers. Here we follow
the same steps as for the MF. We also use the resolution set and 2-sliced resolution set
definitions but with a different reference width vector, r, defined by the resolution estimates
of the correlation-based imaging function

(6.7)

r1 =
λoHT

a
,

r2 =
λoHT

a
,

r3 = λo

(
H2
T

a2 ∧
2H2

T

a|VT |⊥Ttot

)
,

r4 =
λoHT

aTtot
,

r5 =
λoHT

aTtot
,

r6 =
λo
Ttot

(
H2
T

a2 ∧
2H2

T

a|VT |⊥Ttot

)
.
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Mutatis mutandis, we obtain the following results (see Appendix C.2 for calculation details),

∣∣ICC(Y ,V )− ĨCC
N (Y ,V )

∣∣ ≤ 2‖IMF‖∞

(
G1
p(Y ,V )
√
N

∧
G2
p(Y ,V )

2N
+

1
2N

o(1)G2
p(Y ,V )

)(6.8)

with

G1
p(Y ,V )

(def)
= 2

(
4
|(Y − YT )3|

r3
+ 2

1
p∗ p

√
|(Y − YT )1|p

rp1
+
|(Y − YT )2|p

rp2
4
|(V − VT )3|

r6

+ 2
1
p∗ p

√
|(V − VT )1|p

rp4
+
|(V − VT )2|p

rp5

)

for p <∞, and

G1
∞(Y ,V )

(def)
= 2

(
4
|(Y − YT )3|

r3
+ 2

(
|(Y − YT )1|

r1
∧ |(Y − YT )2|

r2

)
4
|(V − VT )3|

r6

+ 2
(
|(V − VT )1|p

r4
∧ |(V − VT )2|

r5

))
for p =∞, and

G2
p(Y ,V )

(def)
= 4

|(V − VT )3|
r6

+ 4
|(Y − YT )3|

r3
+G1

p(Y ,V )2

for p, p∗ such that 1
p + 1

p∗ = 1 and p, p∗ ∈ [1,∞]. Here also o(1) means a small quantity

with respect to 1 according to Hypothesis 2 (section 4.2), (Y ,V ) ∈ Rk,lYT ,VT ,q,r, and q = O(1).
Thus, we have the following theorem.

Theorem 6.4. For any 2-sliced resolution Rj,kYT ,VT ,q,r, we have

∣∣ICC(Y ,V )− ĨCC
N (Y ,V )

∣∣
‖ICC‖∞

≤
√

256
N

q ∧ 128q2 + 2q
N

for all (Y ,V ) ∈ Rj,kYT ,VT ,q,r.

This bound seems really pessimistic compared to the results obtained in the simulations.
However, this large number is only due to the vertical direction that concerns the Y3 and
V3 estimation. For the MF, we could retrieve the third coordinate of the position using the
bandwidth while the bandwidth is not helping us in the CC case. Also, for the MF we were
able to retrieve the third coordinate of the speed by the ISAR effect, that is, the synthetic
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aperture created by the moving object, while in CC the ISAR effects cancel out, and only terms
involving XR remain. Thus we have a factor 8 because of the two mixed effects that appear
in the range direction. However, if we consider partial images R1,2

YT ,VT ,q,r
and R4,5

YT ,VT ,q,r
, we

will obtain a bound of
√

16
N q ∧

8q2
N which is tighter.

The derived upper bounds suggest that more receivers could be required for correlation-
based imaging compared to MF. For example, to achieve the same precision in the horizontal
components (Y1, Y2, V1, V2), then the CC image would require 4 times more receivers than the
MF. However, we should not forget that these are just upper bounds and therefore they should
not be mistaken for necessary conditions. Moreover, our numerical simulations indicate that
correlation-based imaging converges more rapidly than MF to the asymptotic point spread
function since the side lobes decrease faster as the number of receivers increases.

Remark 5. As shown in section 4, the resolution for both imaging methods depends on
the carrier frequency but our analysis shows that a small number of receivers is needed to
obtain the theoretical imaging results established in the limit of a continuous distribution of
receivers. The error bound between the continuous and the discrete function is obtained in an
area that is proportional to the resolution q×[−rj , rj ] with rj the resolution estimate in variable
j = 1, . . . , 6. Because the area depends on the resolution a fixed number of receivers is needed
independent of the carrier frequency. If however the area is fixed and is not proportional to
the resolution, more receivers will be needed as the carrier frequency increases.

7. Conclusions. In this paper we consider methods for imaging a fast moving object
orbiting the earth and analyze their resolutions. Our imaging system consists of a passive
network of receivers and one powerful emitter located on the ground. We carry out a detailed
resolution analysis from first principles for two imaging methods: the well-established MF
and a correlation-based imaging method. For simplicity we assume that the receivers are
also located on the ground. It would be more interesting for the correlation-based imaging
method to have high-flying airborne receivers. Since, however, the speed of the receivers is
low, and much lower than that of a satellite in LEO, we expect our theory to generalize to
this case. Airborne receivers are of interest because they can fly above the turbulent atmo-
sphere, in which case we expect the correlation-based imaging method to be robust relative
to atmospheric turbulence effects. Robustness of correlation-based imaging to propagation
medium fluctuations was shown in [9, 10, 11] for stationary receiver arrays. We also expect
correlation-based imaging to be robust to additive measurement noise since we cross-correlate
signals recorded at different receivers. For both imaging methods, we obtain nearly opti-
mal resolution results that are of the order of the wavelength, which is 3 cm for the X-band
surveillance system. Our analysis shows that even for a fast moving object such as a low-orbit
satellite (VT ∼ 7000 m/s), the Doppler correction does not affect the resolution but needs
to be taken into consideration in the imaging functions. We also show that a sparse config-
uration of about 10 uniformly distributed receivers over an area of diameter 400 kilometers
is sufficient so as to have a point spread function with a similar shape (same maximum lo-
cated at the same point and same decreasing width, which means same resolution) to the one
obtained with a dense set of receivers. Extensive numerical simulations clearly support and
confirm the theory developed in this paper. Our resolution analysis can be used for assessing
the performance of MF and correlation-based imaging in the case of well-separated pointlike
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scatterers. For extended objects and/or nearby reflectors a careful analysis of the side lobes
of the point spread function presented here should be carried out.

Appendix A. Other imaging functions for CC. If the pulse emission profile remains the
same throughout the experiment, one could also think about cross correlating and migrating
signals corresponding to different pairs of receivers and different pulses. This would require
sending the signals to a base station and then cross correlating at a later time the NNE

recordings (us,R(Sj + t))t, j = 1, . . . , NE , R = 1, . . . , N . This is indeed possible if we know
the relative emission times, ∆TE , and the emitter location, XE , by considering the following
imaging function,

ĨCC(Y ,V ) =
1
N2
E

NE∑
j,j′=1

ĨCC
j,j′ (Y + V Sj ,Y + V Sj′ ,V ),(A.1)

ĨCC
j,j′ (X,X ′,V ) =

1
N2

N∑
R,R′=1

∫
us,R

(
Sj +

|X −XR|
co

+
t+ |X−XE |

co

γs(X,V ,XR)

)

× us,R′

(
Sj′ +

|X ′ −XR′ |
co

+
t+ |X′−XE |

co

γs(X ′,V ,XR′)

)
dt.(A.2)

In the same setting, we can consider another imaging function,

ÎCC(Y ,V ) =
1
N2
E

NE∑
j,j′=1

ÎCC
j,j′ (Y + V Sj ,Y + V Sj′ ,V ),(A.3)

ÎCC
j,j′ (X,X ′,V ) =

1
N

N∑
R=1

∫
us,R

(
Sj +

|X −XR|
co

+
t+ |X−XE |

co

γs(X,V ,XR)

)

× us,R

(
Sj′ +

|X ′ −XR|
co

+
t+ |X′−XE |

co

γs(X ′,V ,XR)

)
dt.(A.4)

In this case processing can be carried out by each receiver, and then the images are stacked,

ÎCC(Y ,V ) =
1
N

N∑
R=1

ÎCC
R (Y ,V ),(A.5)

ÎCC
R (Y ,V ) =

1
N2
E

NE∑
j,j′=1

ÎCC
j,j′,R(Y + V Sj ,Y + V Sj′ ,V ),(A.6)

ÎCC
j,j′,R(X,X ′,V ) =

∫
us,R

(
Sj +

|X −XR|
co

+
t+ |X−XE |

co

γs(X,V ,XR)

)

× us,R

(
Sj′ +

|X ′ −XR|
co

+
t+ |X′−XE |

co

γs(X ′,V ,XR)

)
dt.(A.7)
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This latter imaging functional cross correlates the scattered signals recorded at each receiver
separately and corresponding to different emission times. Therefore, less communication
with the base station is required since each receiver can store and process the NE signals
(us,R(Sj+t))t, j = 1, . . . , NE , that it records. The individual receiver contributions ÎCC

R (Y ,V )
should be send to the base station where the averaging over all receivers as in (A.5) would be
performed.

Appendix B. Resolution analysis.

B.1. Preliminary considerations. In general we have the following Taylor expansion,

|X + δ| = |X|+mX · δ +
1
2
tδ

P⊥X
|X|2

δ − 1
2
tδ

P⊥X
|X|3

δ(mX · δ) +O

(
|δ|4

|X|3

)
.

Thus, especially with X = YT , we get,

|YT + δ| = |YT |+ (δ)3 +
1
2
|δ⊥|2

|YT |

(
1− (δ)3

|YT |

)
+O

(
|δ|4

|YT |3

)
.

We also have the Taylor expansion,

mX+δ = mX + P⊥X
δ

|X|
− 1

2|X|2
(
mX

(
tδP⊥Xδ

)
+ 2(mX · δ)P⊥Xδ

)
+O

(
|δ|3

|X|3

)
,

which for X = YT reduces to

mYT+δ = mYT +
δ⊥
|YT |

− 1
2|YT |2

(
mYT |δ|

2
⊥ + 2(δ)3δ⊥

)
+O

(
|δ|3

|YT |3

)
.

B.2. Matched filter case. For the matched filter resolution analysis, we want to use these
expansions for the difference |XT −XE | + |XT −XR| − |X −XE | − |X −XR|. Expand-
ing first with respect to |X −XT |, and then with respect to XR and XE , and using that
|XT −X|+ |XR|+ |XE |+ Ttot|VT | � |XT |, we get

|XT −XE |+ |XT −XR| − |X −XE | − |X −XR|

= (X −XT ) · (−mXT−XR
−mXT−XE

) +O

(
|X −XT |2

HT

)
= (X −XT ) ·

(
−2mYT +

P⊥YT
|YT |

(XR +XE − 2SjVT )

+
1

2|YT |2
(
mYT |SjVT −XR|2⊥ + 2(SjVT −XR)3(SjVT −XR)⊥

+mYT |SjVT −XE |2⊥ + 2(SjVT −XE)3(SjVT −XE)⊥
)

+O

(
|SjVT |3 + |XR|3 + |XE |3

H3
T

))
+O

(
|X −XT |2

HT

)
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= −2(X −XT )3 +
1
HT
〈X −XT ,XR +XE − 2SjVT 〉⊥

+
1

2H2
T

(X −XT )3
(
2|SjVT |2⊥ − 2〈SjVT ,XR +XE〉⊥ + |XR|2⊥ + |XE |2⊥

)
+

1
H2
T

〈X −XT , (SjVT −XE)3(SjVT −XE) + (SjVT −XR)3(SjVT −XR)〉⊥

+O

(
(a+ Ttot|VT |)3

H3
T

|X −XT |+
|X −XT |2

HT

)
,

where in the second equality, we have also differentiated some terms with respect to SjVT .
Moreover,

|XT −XE |VT ·
XT −XE

|XT −XE |
− |X −XE |V ·

X −XE

|X −XE |

= VT · (XT −XE)− V · (X −XE)

= (VT − V ) · (XT −XE) + V · (XT −X)

= (VT − V ) · (XT −XE) + VT · (XT −X) +O(|XT −X||VT − V |)

= HT (VT − V )3 + VT · (XT −X) +O(|XT −X||VT − V |+ (a+ Ttot|VT |)|VT − V |).

We also have

|XT −XE |VT ·
XT −XR

|XT −XR|
− |X −XE |V ·

X −XR

|X −XR|

= |XT −XE |(VT − V ) ·mTR +mTE · (XT −X)VT ·mTR

+ |XT −XE |tVT
P⊥TR

|XT −XR|
(XT −X) +O

(
|XT −X|2||VT |

HT

)
= HT (VT − V )3 + VT · (XT −X)

+O

(
|XT −X|2||VT |

HT
+
a+ Ttot|VT |

HT
|VT ||XT −X|

+ |VT − V |(a+ Ttot|VT |)
|XT −X|+ a+ Ttot|VT |

HT

)
.

To neglect the O() expressions in the phase terms we need
• for the first expansion, that ωo

co

(a+Ttot|VT |)3
H3
T

|X −XT | = o(1) and ωo|XT−X|2
HT co

= o(1);

• for the second expansion that ωo
c2o

(a+Ttot|VT |)|VT −V | = o(1) and ωo|XT−X||VT−V |
c2o

=
o(1);
• for the third expansion that ωo

c2o

a+Ttot|VT |
HT

(HT |VT − V | + |VT ||XT −X|) = o(1), that
ωo|XT−X|2||VT |

HT c2o
= o(1), and ωo

c2o
|VT − V |(a+ Ttot|VT |) |XT−X|+a+Ttot|VT |

HT
= o(1).D
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More precisely, let us assume that

a+ Ttot|VT |
HT

= o(1),
VT
co
�
(
a+ Ttot|VT |

HT

)2

,

H2
T

co(a+ Ttot|VT |)Ttot
� 1,

λo
HT
� 16

(
a+ Ttot|VT |

HT

)4

,

and

|XT −X| <
4λoH2

T

(a+ Ttot|VT |)2 , |VT − V | <
λoH

2
T

Ttot(a+ Ttot|VT |)2 ,
co
2B

<
4λoH2

T

(a+ Ttot|VT |)2 .

Then it follows that ωo
co
|XT − X|(a+Ttot|VT |

HT
)3 < o(1) and ωo

c2o
(a + Ttot|VT |)|VT − V | ≤

H2
T

co(a+Ttot|VT |)Ttot
= o(1). Moreover, ωo|XT−X|2

coHT
� 1, and the other requirement are also satis-

fied. Consequently, all the expressions in O() can be neglected in the phase terms. Moreover,
our assumptions also imply that

|VT − V | �
c2
o

HTB
and |XT −X| �

c2
o

|VT |B
.

Or, equivalently, |VT−V ||VT | and |XT−X|
HT

� c2o
|VT |BHT (∼4.3%). This allows us to keep only

the travel time terms in the centered bandwidth integral.
The condition co

2B <
4λoH2

T
(a+Ttot|VT |)2 is only needed so as to have a consistent and simple

reasoning. We can remove this assumption using higher order expansions. For a general B,

we would need to assume that |XT −X| < λo
4λoH

p
T

(a+Ttot|VT |)p with p >
log( ωo

8Bλo
)

log( HT
a+Ttot|VT |

)
, this means

doing p-order expansions of travel times. Under these assumptions we obtain

IMF
j (X,V )

∼ k2
oρ

32π3H2
TBa

2

∫
R2
dxRp

(xR
a

)
× exp

(
i
ωo
co

(
− 2(X −XT )3 +

1
HT
〈X −XT ,XR +XE − 2SjVT 〉⊥

+
1

2H2
T

(X −XT )3(2|SjVT |2⊥ − 2〈SjVT ,XR +XE〉⊥ + |XR|2⊥ + |XE |2⊥)

+
1
H2
T

〈X −XT , (SjVT −XE)3(SjVT −XE) + (SjVT −XR)3(SjVT −XR)〉⊥
))

×
[ ∫

R
|F̂ (ω̃)|2 exp

(
i
B

co
ω̃
(
− 2(X −XT )3 +

1
HT
〈X −XT ,XR +XE − 2SjVT 〉⊥

+
1

2H2
T

(X −XT )3(2|SjVT |2⊥ − 2〈SjVT ,XR +XE〉⊥ + |XR|2⊥ + |XE |2⊥)

+
1
H2
T

〈X −XT , (SjVT −XE)3(SjVT −XE) + (SjVT −XR)3(SjVT −XR)〉⊥
))
dω̃
]

× exp
(
i
2ωo
c2
o

(
HT (VT − V )3 + VT · (XT −X)

))
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with XR = (xR, 0). Consequently, summing up over slow time, we get

IMF(X,V )

=
k2
oρ

32π3H2
TBNE

NE∑
j=1

∫
R
dω̃|F̂ (ω̃)|2 1

a2

∫
R2
dxRp

(
xR
a

)
× exp

(
i
ωo +Bω̃

co

(
− 2(X −XT )3 +

1
HT
〈X −XT ,XR +XE − 2SjVT 〉⊥

+
1

2H2
T

(X −XT )3(2|SjVT |2⊥ − 2〈SjVT ,XR +XE〉⊥ + |XR|2 + |XE |2⊥)

+
1
H2
T

〈X −XT , (SjVT −XE)3(SjVT −XE) + (SjVT −XR)3(SjVT −XR)〉⊥
))

× exp
(
i
2ωo
c2
o

(
HT (VT − V )3 + VT · (XT −X)

))
,

which becomes

IMF(X,V )

=
k2
oρ

32π3H2
TBNE

NE∑
j=1

∫
R
dω̃|F̂ (ω̃)|2 1

a2

∫
R2
dxRp

(xR
a

)
× exp

(
i
ωo + ω̃B

co

(−2Sj
HT
〈V − VT ,XR +XE〉⊥

− 2
H2
T

〈SjVT ,XR +XE〉⊥((Y − YT )3 + Sj(V − VT )3)

+
−1
H2
T

〈Y − YT + Sj(VT − V ), (XE +XR)3(VT ) + (VT )3(XE +XR)〉⊥

+ Sj(VT − V )3
|XR|2 + |XE |2⊥

H2
T

+
Sj
H2
T

〈V − VT , (XE)3(XE) + (XR)3(XR)〉⊥
))

× exp
(
i
ωo + ω̃B

co

( 1
HT
〈Y − YT ,XR +XE〉⊥

+
1
H2
T

〈Y − YT , (XE)3(XE) + (XR)3(XR)〉⊥

+ (YT − Y )3
|XR|2 + |XE |2⊥

H2
T

))
× exp

(
i
ωo + ω̃B

co

(
− 2Sj(V − VT )3 +

−2Sj
HT
〈Y − YT ,VT 〉⊥ +

−2S2
j

HT
〈V − VT ,VT 〉⊥

+
S2
j |VT |2⊥(Y − YT )3 + S3

j |VT |2⊥(V − VT )3

H2
T

+
2
H2
T

〈Y − YT + Sj(V − VT ), (SjVT )3(SjVT )〉⊥ + Sj
VT
co
· (VT − V )

))
× exp

(
− 2i

ω̃B

co
(Y − YT )3

)
× exp

(
i
ωo
co

(
− 2(Y − YT )3 +

HT

co
(VT − V )3 +

VT
co
· (YT − Y )

))
.
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Some comments on the terms in the last equality:
• The first exponential contains cross terms with dependence in XR and Sj and ω̃.
• The second exponential contains terms with dependence only in XR and ω̃.
• The third exponential contains terms with dependence only in Sj and ω̃.
• The fourth exponential contains terms with dependence only in ω̃.
• The sixth exponential contains terms independent from all the summation integrations

indices. Therefore, it can be taken out of the summations and has no effect on the
modulus of the imaging function.

Taking the modulus of this expression, and approximating 1
NE

∑NE
j=1 by 1

Ttot

∫ Ttot/2
−Ttot/2

ds, we
obtain∣∣∣IMF(X,V )

∣∣∣
=

k2
oρ

32π3H2
TBTtot

∣∣∣ ∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 1

a2

∫
R2
dxRp

(xR
a

)
× exp

(
i
ωo + ω̃B

co

( s

HT
〈V − VT ,XR +XE〉⊥

− 2
H2
T

〈sVT ,XR +XE〉⊥((Y − YT )3 + s(V − VT )3)

+
−1
H2
T

〈Y − YT + s(VT − V ), (XE +XR)3(VT ) + (VT )3(XE +XR)〉⊥

+ s(VT − V )3
|XR|2 + |XE |2⊥

H2
T

+
s

H2
T

〈V − VT , (XE)3(XE) + (XR)3(XR)〉⊥
))

× exp
(
i
ωo + ω̃B

co

( 1
HT
〈Y − YT ,XR +XE〉⊥

+
1
H2
T

〈Y − YT , (XE)3(XE) + (XR)3(XR)〉⊥

+ (YT − Y )3
|XR|2 + |XE |2⊥

H2
T

))
× exp

(
i
ωo + ω̃B

co

(
− 2s(V − VT )3 +

−2s
HT
〈Y − YT ,VT 〉⊥ +

−2s2

HT
〈V − VT ,VT 〉⊥

+
s2|VT |2⊥(Y − YT )3 + s3|VT |2⊥(V − VT )3

H2
T

+
2
H2
T

〈Y − YT + s(V − VT ), (sVT )3(sVT )〉⊥ + s
VT
co
· (VT − V )

))
× exp

(
− 2i

ω̃B

co
(Y − YT )3

)∣∣∣.
We can show that∣∣∣IMF(X,V )

∣∣∣ =
k2
oρ

32π3H2
TBTtot

∣∣∣∣ ∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 1

a2

∫
R2
dxRp

(xR
a

)
× exp (i(ΦIMF + εIMF)(Y − YT ,V − VT ,XR, s, ω̃))

∣∣∣∣,
(B.1)
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with the phases defined as

ΦIMF(Y − YT ,V − VT ,XR, s, ω̃)

=
ωo + ω̃B

co

 s

HT
〈V − VT ,XR +XE〉⊥︸ ︷︷ ︸

(VT )⊥resolution

+
1
HT
〈Y − YT ,XR +XE〉⊥︸ ︷︷ ︸
Y⊥ physical aperture effect

− 2
H2
T

〈sVT ,XR +XE〉⊥

 (Y − YT )3︸ ︷︷ ︸
Y3 mixed aperture effect

+ s (V − VT )3︸ ︷︷ ︸
V3 mixed aperture effect


− 2s (V − VT )3︸ ︷︷ ︸

V3 ISAR effect

+
−2s
HT
〈Y − YT ,VT 〉⊥︸ ︷︷ ︸
Y2 ISAR effect

+
−2s2

HT
〈V − VT ,VT 〉⊥︸ ︷︷ ︸
V2 ISAR effect

− 2
ω̃B

co
(Y − YT )3︸ ︷︷ ︸

Y3 bandwidth effect

 ,

and

εIMF(Y − YT ,V − VT ,XR, s, ω̃)

=
ωo + ω̃B

co

− 1
H2
T

〈Y − YT + s(VT − V ), (XE +XR)3(VT ) + (VT )3(XE +XR)〉⊥

+ s(VT − V )3
|XR|2 + |XE |2⊥

H2
T

+
s

H2
T

〈V − VT , (XE)3(XE) + (XR)3(XR)〉⊥

+
1
H2
T

〈Y − YT , (XE)3(XE) + (XR)3(XR)〉⊥ + (YT − Y )3
|XR|2 + |XE |2⊥

H2
T

+
s2|VT |2⊥(Y − YT )3 + s3|VT |2⊥(V − VT )3

H2
T

+
2
H2
T

〈Y − YT + s(V − VT ), (sVT )3(sVT )〉⊥

+ s
VT
co
· (VT − V )︸ ︷︷ ︸

stems from the Doppler compensation

 .

Furthermore, under our assumptions we have εIMF = o(ΦIMF).

B.3. Correlation-based imaging function. If the number of receivers is large enough,
then we can approximate the partial imaging function by its continuum approximation in
space and replace 1

N2

∑N
R,R′=1 by 1

a2

∫
R2×R2 dxRdxR′p(xR/a)p(xR′/a). Then we find
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ICC
j (X,V )

=
k4
oρ

2

(4π|XT |)42πBa4

∫
R2
dxRp

(xR
a

)∫
R2
dxR′p

(xR′
a

)
× exp

(
i
ωo
co

(|X −XR| − |X −XR′ | − |XT −XR|+ |XT −XR′ |)
)

×
[∫

R
|F̂ (ω̃)|2 exp

(
i
B

co
ω̃ (|X −XR| − |X −XR′ | − |XT −XR|+ |XT −XR′ |)

)
dω̃

]
× exp

(
i
ωo
co

(|XT −XR| − |X −XR|)
V

co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

))
× exp

(
−iωo

co
(|XT −XR′ | − |X −XR′ |)

V

co
·
(
X −XR′

|X −XR′ |
+
X −XE

|X −XE |

))
× exp

(
i
ωo
co
|XT −XE |

V

co
·
(
X −XR

|X −XR|
− X −XR′

|X −XR′ |

))
× exp

(
−iωo

co
|XT −XE |

VT
co
·
(
XT −XR

|XT −XR|
− XT −XR′

|XT −XR′ |

))
with XR = (xR, 0). Forcing VT = VT + V − VT we have

ICC
j (X,V )

=
k4
oρ

2

(4π|XT |)42πBa4

∫
R2
dxRp

(xR
a

)∫
R2
dxR′p

(xR′
a

)
× exp

(
i
ωo
co

(|X −XR| − |X −XR′ | − |XT −XR|+ |XT −XR′ |)
)

×
[∫

R
|F̂ (ω̃)|2 exp

(
i
B

co
ω̃ (|X −XR| − |X −XR′ | − |XT −XR|+ |XT −XR′ |)

)
dω̃

]
× exp

(
i
ωo
co

(|XT −XR| − |X −XR|)
V − VT
co

·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

))
× exp

(
i
ωo
co

(|XT −XR| − |X −XR|)
VT
co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

))
× exp

(
−iωo

co
(|XT −XR′ | − |X −XR′ |)

V − VT
co

·
(
X −XR′

|X −XR′ |
+
X −XE

|X −XE |

))
× exp

(
−iωo

co
(|XT −XR′ | − |X −XR′ |)

VT
co
·
(
X −XR′

|X −XR′ |
+
X −XE

|X −XE |

))
× exp

(
i
ωo
co
|XT −XE |

V − VT
co

·
(
X −XR

|X −XR|
− X −XR′

|X −XR′ |

))
× exp

(
−iωo

co
|XT −XE |

VT
co
·
(
XT −XR

|XT −XR|
− XT −XR′

|XT −XR′ |
− X −XR

|X −XR|
+
X −XR′

|X −XR′ |

))
.

If we assume that ωo
c2o
|XT−X|×|VT−V | = o(1) (which is proven to be true under assumptions

stated further), we have
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ICC
j (X,V )

=
k4
oρ

2

(4π|XT |)42πBa4

∫
R2
dxRp

(xR
a

)∫
R2
dxR′p

(xR′
a

)
× exp

(
i
ωo
co

(|X −XR| − |X −XR′ | − |XT −XR|+ |XT −XR′ |)
)

×
[∫

R
|F̂ (ω̃)|2 exp

(
i
B

co
ω̃ (|X −XR| − |X −XR′ | − |XT −XR|+ |XT −XR′ |)

)
dω̃

]
× exp

(
i
ωo
co

(|XT −XR| − |X −XR|)
VT
co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

))
× exp

(
−iωo

co
(|XT −XR′ | − |X −XR′ |)

VT
co
·
(
X −XR′

|X −XR′ |
+
X −XE

|X −XE |

))
× exp

(
i
ωo
co
|XT −XE |

V − VT
co

·
(
X −XR

|X −XR|
− X −XR′

|X −XR′ |

))
× exp

(
−iωo

co
|XT −XE |

VT
co
·
(
XT −XR

|XT −XR|
− XT −XR′

|XT −XR′ |
− X −XR

|X −XR|
+
X −XR′

|X −XR′ |

))
up to +cc. Note that this formula shows that the imaging function tries basically to match
the measured differences of travel times |XT −XR| − |XT −XR′ | with the candidate ones
|X −XR| − |X −XR′ |.

We want now to expand the differences |X−XR|− |X−XR′ |− |XT −XR|+ |XT −XR′ |.
Using

mX+δ = mX + P⊥X
δ

|X|
− 1

2|X|

(
mX

tδ
P⊥X
|X|

δ + 2(mX · δ)
P⊥X
|X|

δ

)
+O

(
|δ|3

|X|3

)
,

and expanding first with respect to |X −XT |, and then with respect to XR and XE (using
that |XT −X| + |XR| + |XR′ | + |XE | + Ttot|VT | � |YT |), and knowing that XR, XR′⊥YT
we have

|X −XR| − |X −XR′ | − |XT −XR|+ |XT −XR′ |

= (X −XT ) ·
(
mXT−XR

−mXT−XR′

)
+O

(
|X −XT |2

)
= (X −XT ) ·

(
P⊥YT
|YT |

(XR′ −XR)− mYT

2H2
T

(
|SjVT −XR|2⊥ − |SjVT −XR′ |2⊥

)
− 1
H2
T

(
(SjVT −XR)3(SjVT −XR)⊥ − (SjVT −XR′)3(SjVT −XR′)⊥

)

+O

(
|X −XT |2

HT
+

(a+ |VT |Ttot)3

H3
T

|X −XT |
)

=
1
HT
〈X −XT ,XR′ −XR〉⊥ −

1
2H2

T

(X −XT )3
(
Sj〈VT ,XR′ −XR〉⊥ + |XR|2⊥ − |XR′ |2⊥

)
+

Sj
H2
T

(VT )3〈X −XT ,XR′ −XR〉⊥ −
1
H2
T

〈X −XT ,−(XR′)3XR′ + (XR)3XR〉⊥

+O

(
|X −XT |2

HT
+

(a+ |VT |Ttot)3

H3
T

|X −XT |
)
.
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For the fourth term in the expression of ICC
j (X,V ) we have

|XT −XE |
V − VT
co

·
(
X −XR

|X −XR|
− X −XR′

|X −XR′ |

)

=
HT

co

[
1
HT
〈V − VT ,XR′ −XR〉⊥ −

1
2H2

T

(V − VT )3

(
Sj〈VT ,XR′ −XR〉⊥

+ |XR|2⊥ − |XR′ |2⊥
)

+
Sj
H2
T

(VT )3(XR −XR′)⊥

]

− 1
H2
T

〈X −XT ,−(XR′)3XR′ + (XR)3XR〉⊥

+ (SjVT −XE)3
1

coHT
〈V − VT ,XR′ −XR〉⊥.

For the second term in the expression of ICC
j (X,V ) we have

(|XT −XR| − |X −XR|)
VT
co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

)

= [(XT −X) ·mXT−XR
]
VT
co
· (mX−XR

+mX−XE
) +O

(
|VT |
coHT

|XT −X|2
)
,

and the same stands, replacing R by R′.
Consequently, neglecting the O(), and using the calculation of mXT−XR

− mXT−XR′

already done previously and the fact that in a second order tensor space, we have

(u+ a,v + a′)− (u+ b,v + b′) = (a− b,v) + (u,a′ − b′) + (a,a′)− (b, b′),

and applying this with a = mXT−XR
−mYT , b = mXT−XR′ −mYT , a′ = mXT−XR

+
mXT−XE

−2mYT , b′ = mXT−XR′+mXT−XE
−2mYT , a′−b′ = a−b = mXT−XR

−mXT−XR′

and u = mYT and v = 2mYT , and using this algebraic formula with the bilinear form
m1,m2 ∈ (R3)2 → (XT −X) ·m1

VT
co
·m2 we ultimately get

(|XT −XR| − |X −XR|)
VT
co
·
(
X −XR

|X −XR|
+
X −XE

|X −XE |

)

− (|XT −XR′ | − |X −XR′ |)
VT
co
·
(
X −XR′

|X −XR′ |
+
X −XE

|X −XE |

)

= (XT −X) · [mXT−XR
]
VT
co
· (mXT−XR

+mXT−XE
)− (XT −X)

· [mXT−XR′ ]
VT
co
· (mXT−XR′ +mXT−XE

)
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= 2
[

1
HT
〈X −XT ,XR′ −XR〉⊥

− 1
2H2

T

(X −XT )3
(
Sj〈VT ,XR′ −XR〉⊥ + |XR|2⊥ − |XR′ |2⊥

)
− 1
H2
T

〈X −XT ,−(XR′)3XR′ + (XR)3XR〉⊥
]

(VT )3

co

+ (XT −X)3
1
co

[
1
HT
〈VT ,XR′ −XR〉⊥

− 1
2H2

T

(VT )3
(
Sj〈VT ,XR′ −XR〉⊥ + |XR|2⊥ − |XR′ |2⊥

)
− 1
H2
T

〈VT ,+(XR′)3XR′ − (XR)3XR〉⊥
]

+ 2
1

coH2
T

〈X −XT ,XR〉⊥〈VT ,XR〉⊥ − 2
1

coH2
T

〈X −XT ,XR′〉⊥〈VT ,XR′〉⊥

+O

(
(a+ |VT |Ttot)2

H2
T

|VT |
co
|X −XT |

)
.

For the last term in the expression of ICC
j (X,V ),

|XT −XE |
VT
co
·
(
XT −XR

|XT −XR|
− XT −XR′

|XT −XR′ |
− X −XR

|X −XR|
+
X −XR′

|X −XR′ |

)
= |XT −XE |

VT
co
·

[
P⊥XT−XR′

|XT −XR′ |
−

P⊥XT−XR

|XT −XR|

]
· (X −XT ) +O

(
|X −XT |2

HT

)
.

A second order expansion of
P⊥XT−XR′
|XT−XR′ |

−
P⊥XT−XR
|XT−XR| would be rather horrible. However, let us

just mention the terms up to order |X −XT |VT (a+Ttot|VT |)
coHT

(as we assumed that |VT |co
� a

HT
;

we will see thereafter that indeed, we do not need to do more calculations),

|XT −XE |
VT
co
·
(
XT −XR

|XT −XR|
− XT −XR′

|XT −XR′ |
− X −XR

|X −XR|
+
X −XR′

|X −XR′ |

)
= −HT

co

(
〈VT ,XR −XR′〉⊥(X −XT )3 + 〈XR −XR′ ,X −XT 〉⊥(VT )3

+ 〈X −XT ,VT 〉⊥(XR −XR′)3
)

+O

(
|X −XT |2 + |X −XT |

VT (a+ Ttot|VT |)2

coH2
T

)
.

Now let us assume that

a+ Ttot|VT |
HT

= o(1),
VT
co
�
(
a+ Ttot|VT |

HT

)2

,

H2
T

co(a+ Ttot|VT |)Ttot
� 1,

λo
HT
� 16

(
a+ Ttot|VT |

HT

)4

,
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and

|XT −X| <
4λoH2

T

(a+ Ttot|VT |)2 , |VT − V | <
λoH

2
T

Ttot(a+ Ttot|VT |)2 .

Then, under these assumptions, the O() terms will be negligible in the expansions above. We
can see in all the expansions that XR and XR′ play an antisymmetric role in the sense that
each time there is a term with XR in the phase, the opposite term is present with XR′ .

Consequently,

ICC
j (X,V )

=
k4
oρ

2

(4π|XT |)42πBa4

[ ∫
R
dω̃|F̂ (ω̃)|2

∣∣∣ ∫
R2
dxRp

(xR
a

)
× exp

(
i
ωo +Bω̃

co

( 1
HT
〈X −XT ,−XR〉⊥ −

1
2H2

T

(X −XT )3(Sj〈VT ,−XR〉⊥ + |XR|2⊥)

+
Sj
H2
T

(VT )3〈X −XT ,XR〉⊥ −
1
H2
T

〈X −XT , (XR)3XR〉⊥
))

× exp
(
i
ωo
co

(
2
[ 1
HT
〈X −XT ,−XR〉⊥ −

1
2H2

T

(X −XT )3(Sj〈VT ,−XR〉⊥ + |XR|2⊥)

− 1
H2
T

〈X −XT , (XR)3XR〉⊥
](VT )3

co

+ (XT −X)3
1
co

[ 1
HT
〈VT ,XR′ −XR〉⊥ −

1
2H2

T

(VT )3(Sj〈VT ,−XR〉⊥ + |XR|2⊥)

− 1
H2
T

〈VT ,−(XR)3XR〉⊥
]

+ 2
1

coH2
T

〈VT ,XR〉⊥〈VT ,XR〉⊥
))

× exp
(
i
ωo
co

(HT

co

[ 1
HT
〈V − VT ,−XR〉⊥ −

1
2H2

T

(V − VT )3(Sj〈VT ,−XR〉⊥ + |XR|2⊥)

+
Sj
H2
T

(VT )3(XR)⊥
]
− 1
H2
T

〈X −XT , (XR)3XR〉⊥

+ (SjVT −XE)3
1

coHT
〈V − VT ,−XR〉⊥

))
× exp

(
i
ωo
co

(−HT

co

(
〈VT ,XR〉⊥(X −XT )3 + 〈XR,X −XT 〉⊥(VT )3

+ 〈X −XT ,VT 〉⊥(XR −XR′)3
)

+ O
(
|X −XT |

VT (a+ Ttot|VT |)2

coH2
T

)))∣∣∣2],
and replacing XT (Sj) by YT + SjVT and X(Sj) by Y + SjV (done only in the travel time
difference because we can see that all the other remaining terms would be negligible due to
VT
co

small), we get
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ICC
j (X,V )

=
k4
oρ

2

(4π|XT |)42πBa4

[∫
R
dω̃|F̂ (ω̃)|2

∣∣∣ ∫
R2
dxRp

(xR
a

)
× exp

(
i
ωo +Bω̃

co

( 1
HT
〈Y − YT ,−XR〉⊥ −

1
2H2

T

(Y − YT )3|XR|2⊥

− 1
H2
T

〈Y − YT , (XR)3XR〉⊥
))

× exp
(
i
ωo +Bω̃

co

( Sj
HT
〈V − VT ,−XR〉⊥

))
× exp

(
i
ωo +Bω̃

co

( Sj
2H2

T

(Y − YT )3〈VT ,XR〉⊥ +
S2
j

2H2
T

(V − VT )3〈VT ,XR〉⊥

+
Sj

2H2
T

(V − VT )3|XR|2⊥ +
Sj
H2
T

(VT )3〈Y − YT ,XR〉⊥ +
S2
j

H2
T

(VT )3〈V − VT ,XR〉⊥
))

× exp
(
i
ωo
co

(
2
[ 1
HT
〈X −XT ,−XR〉⊥ −

1
2H2

T

(X −XT )3(Sj〈VT ,−XR〉⊥ + |XR|2⊥
)

− 1
H2
T

〈X −XT , (XR)3XR〉⊥
](VT )3

co

+ (XT −X)3
1
co

[ 1
HT
〈VT ,−XR〉⊥ −

1
2H2

T

(VT )3(Sj〈VT ,−XR〉⊥ + |XR|2⊥)

− 1
H2
T

〈VT ,−(XR)3XR〉⊥
]

+ 2
1

coH2
T

〈X −XT ,XR〉⊥〈VT ,XR〉⊥
))

× exp
(
i
ωo
co

(HT

co

[ 1
HT
〈V − VT ,−XR〉⊥ −

1
2H2

T

(V − VT )3(Sj〈VT ,−XR〉⊥ + |XR|2⊥
)

+
Sj
H2
T

(VT )3(XR)⊥
]
− 1
H2
T

〈X −XT , (XR)3XR〉⊥

+ (SjVT −XE)3
1

coHT
〈V − VT ,−XR〉⊥

))
× exp

(
i
ωo
co

(−HT

co

(
〈VT ,XR〉⊥(X −XT )3 + 〈XR,X −XT 〉⊥(VT )3

+ 〈X −XT ,VT 〉⊥(XR)3
)

+ O(|X −XT |
VT (a+ Ttot|VT |)2

coH2
T

)))∣∣∣2].
As usual, summing the partial imaging functions over j can be handled by replacing Sj

by s, and 1
NE

∑NE
j=1 by 1

Ttot

∫ Ttot/2
−Ttot/2

ds:
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ICC(X,V )

=
k4
oρ

2

(4π|XT |)42πBa4Ttot

∫ Ttot/2

−Ttot/2
ds

[∫
R
dω̃|F̂ (ω̃)|2

∣∣∣ ∫
R2
dxRp

(xR
a

)
× exp

(
i
ωo +Bω̃

co

( 1
HT
〈Y − YT ,−XR〉⊥ −

1
2H2

T

(Y − YT )3|XR|2⊥

− 1
H2
T

〈Y − YT , (XR)3XR〉⊥
)

× exp
(
i
ωo +Bω̃

co

( s

HT
〈V − VT ,−XR〉⊥

))
× exp

(
i
ωo +Bω̃

co

(
2

s

2H2
T

(Y − YT )3〈VT ,XR〉⊥ +
s2

2H2
T

(V − VT )3〈VT ,XR〉⊥

+
s

2H2
T

(V − VT )3|XR|2⊥ +
s

H2
T

(VT )3〈Y − YT ,XR〉⊥ +
s2

H2
T

(VT )3〈V − VT ,XR〉⊥
))

× exp
(
i
ωo
co

(
2
[ 1
HT
〈X −XT ,−XR〉⊥ −

1
2H2

T

(X −XT )3(s〈VT ,−XR〉⊥ + |XR|2⊥)

− 1
H2
T

〈X −XT , (XR)3XR〉⊥
](VT )3

co

+ (XT −X)3
1
co

[ 1
HT
〈VT ,−XR〉⊥ −

1
2H2

T

(VT )3(s〈VT ,−XR〉⊥ + |XR|2⊥)

− 1
H2
T

〈VT ,−(XR)3XR〉⊥
]

+ 2
1

coH2
T

〈X −XT ,XR〉⊥〈VT ,XR〉⊥
))

× exp
(
i
ωo
co

(HT

co

[ 1
HT
〈V − VT ,−XR〉⊥ −

1
2H2

T

(V − VT )3(s〈VT ,−XR〉⊥ + |XR|2⊥)

+
s

H2
T

(VT )3(XR)⊥
]
− 1
H2
T

〈X −XT , (XR)3XR〉⊥

+ (sVT −XE)3
1

coHT
〈V − VT ,−XR〉⊥

))
× exp

(
i
ωo
co

(
−HT

co

(
〈VT ,XR〉⊥(X −XT )3 + 〈XR,X −XT 〉⊥(VT )3

+ 〈X −XT ,VT 〉⊥(XR −XR′)3) + O(|X −XT |
VT (a+ Ttot|VT |)2

coH2
T

)))∣∣∣∣∣
2]
.

Ultimately, the result can be expressed in the following form,

ICC(X,V ) =
k4
oρ

2

(4π|XT |)42πBa4Ttot

∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2∣∣∣∣ ∫

R2
dxRp

(xR
a

)
exp (i(ψICC + εICC)(Y − YT ,V − VT ,XR, s, ω̃))

∣∣∣∣2
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with the phase terms defined by

ψICC(Y − YT ,V − VT ,XR, s, ω̃)

=
ωo +Bω̃

co

 1
HT

〈Y − YT ,−XR〉⊥︸ ︷︷ ︸
YT physical aperture effect

− 1
2H2

T

(Y − YT )3︸ ︷︷ ︸
Y3 physical apperture effect

|XR|2⊥

+
s

HT
〈V − VT ,−XR〉⊥︸ ︷︷ ︸
VT ISAR effect

+
s

2H2
T

(V − VT )3︸ ︷︷ ︸
V3 mixed effect

|XR|2⊥

+
s

2H2
T

(Y − YT )3︸ ︷︷ ︸
Y3 mixed apperture effect

〈VT ,XR〉⊥ +
s2

2H2
T

(V − VT )3︸ ︷︷ ︸
V3 mixed effect

〈VT ,XR〉⊥


and

εICC(Y − YT ,V − VT ,XR, s, ω̃)

=
ωo +Bω̃

co

(
− 1
H2
T

〈Y − YT , (XR)3XR〉⊥ +
s

H2
T

(VT )3〈Y − YT ,XR〉⊥

+
s2

H2
T

(VT )3〈V − VT ,XR〉⊥ −
1
H2
T

〈Y − YT , (XR)3XR〉⊥

− s

H2
T

〈V − VT , (XR)3XR〉⊥
)

+
ωo
co

(
2
[

1
HT
〈X −XT ,−XR〉⊥ −

1
2H2

T

(X −XT )3
(
s〈VT ,−XR〉⊥ + |XR|2⊥

)
− 1
H2
T

〈X −XT , (XR)3XR〉⊥
]

(VT )3

co

+
(XT −X)3

co

[
1
HT
〈VT ,−XR〉⊥ −

(VT )3

2H2
T

(
s〈VT ,−XR〉⊥ + |XR|2⊥

)
− 1
H2
T

〈VT ,−(XR)3XR〉⊥
]

+ 2
1

coH2
T

〈X −XT ,XR〉⊥〈VT ,XR〉⊥
)

+
ωo
co

(
HT

co

[
1
HT
〈V − VT ,−XR〉⊥ −

1
2H2

T

(V − VT )3
(
s〈VT ,−XR〉⊥ + |XR|2⊥

)
+

s

H2
T

(VT )3(XR)⊥

]
− 1
H2
T

〈X −XT , (XR)3XR〉⊥

+ (sVT −XE)3
1

coHT
〈V − VT ,−XR〉⊥

)
+
ωo
co

(
−HT

co

(
〈VT ,XR〉⊥(X −XT )3 + 〈XR,X −XT 〉⊥(VT )3 + 〈X −XT ,VT 〉⊥(XR)3

)
.
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Note that under the above assumptions, we have εICC(Y − YT ,V − VT ,XR, s, ω̃) =
o(ψICC(Y − YT ,V − VT ,XR, s, ω̃)).

Appendix C. Bounds calculations.

C.1. MF case. To ease notation we will denote φ(Y ,V ,XR) = (ΦIMF + εIMF)(Y −
YT ,V − VT ,XR, s, ω̃). Indeed, for Y ,V ∈ RYT ,VT ,q,r, we can show that (under certain
assumptions allowing us to change the order of

∫
and ∇XR

),

∇XR
ĨMF(Y ,V ,XR) = C

∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 exp

(
iφ(Y ,V ,XR)

)
× i∇XR

φ(Y ,V ,XR)

∇2
XR

ĨMF(Y ,V ,XR) = C

∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 exp

(
iφ(Y ,V ,XR)

)
×
(
i∇2
XR

φ(Y ,V ,XR)−∇XR
φt∇XR

φ(Y ,V ,XR)
)
.

As we have (x−XR)3 = 0 (but all the results can be also proven under the weaker condition
(x−XR)3 = o(‖x−XR‖)) then,

∇XR
φ(Y ,V ,XR) · (x−XR) =

ωo +Bω̃

co

(
s

HT
(V − VT )⊥ −

2s(VT )⊥
H2
T

((Y − YT )3

+ s(V − VT )3) +
(Y − YT )⊥

HT

)
· (x−XR)

+ o(‖∇φ‖‖XR − x‖).

The above term will be shown to be negligible in the following for ‖XR − x‖ ≤ a√
N

and

(Y ,V ) ∈ Rk,lYT ,VT ,q,r. Actually, assuming (Y ,V ) ∈ Rk,lYT ,VT ,q,r (for q = O(1)), only the
dominant terms of ∇φ (the one related to a differentiation of the underbraced terms in (4.1))
will appear in the differentiation. For the Hessian of φ, we have

t(x−XR)∇2
XR

φ(Y ,V ,XR)(x−XR) =
ωo +Bω̃

coH2
T

(
s(V − VT )3 + (Y − YT )3

)
‖XR − x‖22.

If we further assume that ‖XR − x‖ ≤ a√
N

, we have (using a Hölder inequality with p, p∗ ∈
[1,∞] and 1

p + 1
p∗ = 1 and using the fact that x−XR lives in a two dimensional space [3]),

|∇XR
φ(Y ,V ,XR) · (x−XR)|

≤ ωo +Bω̃

co

a√
N

2
1
p∗

(
Ttot

HT
‖V − VT ‖⊥,p +

‖Y − YT ‖⊥,p
HT

+
2Ttot‖VT ‖⊥,∞2

1
p

H2
T

(|(Y − YT )3|+ Ttot|(V − VT )3|)
)

≤ 1√
N

(H1
p (Y ,V ) + o(1)H1

p (Y ,V ).

(C.1)
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Here o(1) means a small quantity with respect to 1 according to Hypothesis 1 (section 4.1),
(Y ,V ) ∈ Rk,lYT ,VT ,q,r, and q = O(1) with

H1
p (Y ,V )

(def)
= 2

|(Y − YT )3|
r3

+ 2
1
p∗ p

√
|(Y − YT )1|p

rp1
+
|(Y − YT )2|p

rp2

+ 2
|(V − VT )3|

r6
+ 2

1
p∗ p

√
|(V − VT )1|p

rp4
+
|(V − VT )2|p

rp5

for p <∞ and

H1
∞(Y ,V )

(def)
= 2

|(Y − YT )3|
r3

+ 2
(
|(Y − YT )1|

r1
∧ |(Y − YT )2|

r2

)
+ 2
|(V − VT )3|

r6
+ 2

(
|(V − VT )1|

r4
∧ |(V − VT )2|

r5

)(C.2)

for p =∞.
Note that H1

p (Y ,V ) is a distance between (Y ,V ) and (YT ,VT ) and, therefore, for any
δ > 0, H1

p (YT + δ∆Y ,VT + δ∆V ) = δH1
p (YT + ∆Y ,VT + ∆V ),∣∣∣t(x−XR)

(
i∇2
XR

φ(Y ,V ,XR)−∇XR
φ t∇XR

φ(Y ,V ,XR)
)

(x−XR)
∣∣∣

≤ 1
N

(
|(V − VT )3|

r6

a

HT
+
|(Y − YT )3|

r3

a

HT
+H1

p (Y ,V )2 + o
(
H1
p (Y ,V )2))

≤ 1
N

(
H2
p (Y ,V ) + o(1)

(
H2
p (Y ,V ) +H1

p (Y ,V )
))(C.3)

with
H2
p (Y ,V )

(def)
= H1

p (Y ,V )2.

As ‖IMF‖∞ = IMF(YT ,VT ) = C
∫
ds
∫

R dω̃|F̂ (ω̃)|2, we ultimately have

∣∣IMF(Y ,V )− ĨMF
N (Y ,V )

∣∣ ≤ ‖IMF‖∞
2N

(
H2
p (Y ,V ) + o(1)

(
H2
p (Y ,V ) +H1

p (Y ,V )
))
.

However, the same reasoning could be made without using the barycenter trick (that is, having
only a first order Taylor expansion to bound). In this case, we would obtain,

∣∣IMF(Y ,V )− ĨMF
N (Y ,V )

∣∣ ≤ ‖IMF‖∞√
N

H1
p (Y ,V ).

Consequently, we have∣∣IMF(Y ,V )− ĨMF
N (Y ,V )

∣∣
≤ ‖IMF‖∞

(
H1
p (Y ,V )
√
N

∧
H2
p (Y ,V )

2N
+

1
2N

o(1)
(
H2
p (Y ,V ) +H1

p (Y ,V )
))

.
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C.2. CC case. To ease notation we will denote ψ(Y ,V ,XR) = (ΨIMF + εIMF)(Y −
YT ,V − VT ,XR, s, ω̃);

ICC(Y ,V )− ĨCC
N (Y ,V )

=
1
a4

N∑
R1=1

N∑
R2=1

∫
CR1

dx1

∫
CR1

dx2Ĩ
CC(Y ,V ,x1,x2)− ĨCC(Y ,V ,XR1 ,XR2)

=
1
a4

N∑
R1=1

N∑
R2=1

∫
CR1

dx1

∫
CR1

dx2∇XR1 ,XR2
ĨCC(Y ,V ,XR1 ,XR2) ·

(
x1 −XR1

x2 −XR2

)

+
∫ 1

0
dt t
(
x1 −XR1

x2 −XR2

)
∇2
XR1 ,XR2

ĨCC(Y ,V , (1− t)XR1

+ tx1, (1− t)XR2 + tx2)
(
x1 −XR1

x2 −XR2

)
.

Denote δx =
(
δx1
δx2

)
∈ R6 , δx1, δx2 ∈ R3 an arbitrary vector. Essentially, δxm would stand

for xm −XRm (m = 1, 2). We thus have

∇XR1 ,XR2
ĨCC(Y ,V ,XR1 ,XR2) · δx

= C

∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 exp

(
i
(
ψ(Y ,V ,XR1)− ψ(Y ,V ,XR2)

) )
× iωo +Bω̃

co
(∇XR

ψ(Y ,V ,XR1) · δx1 −∇XR
ψ(Y ,V ,XR2) · δx2)

and

tδx∇2
XR1 ,XR2

ĨCC(Y ,V ,XR1 ,XR2)δx

= C

∫ Ttot/2

−Ttot/2
ds

∫
R
dω̃|F̂ (ω̃)|2 exp

(
i
(
ψ(Y ,V ,XR1)− ψ(Y ,V ,XR2)

) )
(
i
(
tδx1∇2

XR
ψ(Y ,V ,XR1)δx1 − tδx2∇2

XR
ψ(Y ,V ,XR2)δx2

)
−
(
∇XR

ψ(Y ,V ,XR1) · δx1 −∇XR
ψ(Y ,V ,XR2) · δx2

)2 )
.

Let (Y ,V ) ∈ Rk,lYT ,VT ,q,r, then only the curly bracket terms in (4.4) will matter for the
first order derivative (the other terms being negligible). Thus,

∇XR
ψ(Y ,V ,XRm) · δxm

=
ωo +Bω̃

co

(
− 1
HT

(Y − YT )⊥ −
1
H2
T

XRm(Y − YT )3 −
s

HT
(V − VT )⊥

+
s

2H2
T

(VT )⊥(Y − YT )3 +
s2

2H2
T

(VT )⊥(V − VT )3 +
s

H2
T

(XRm)⊥(V − VT )3

)
· δxm
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and

|∇XR
ψ(Y ,V ,XRm) · δxm|

≤
(

1
HTλoa

‖(Y − YT )⊥‖p‖δxm‖p∗ + 2
‖δxm‖p∗

a
2p
(∣∣∣∣(V − VT )3

r6

∣∣∣∣+
∣∣∣∣(Y − YT )3

r3

∣∣∣∣)
+

s

HTλo
‖(V − VT )⊥‖p‖δxm‖p∗

)
(1 + o(1)).

As we have (x−XR)3 = 0 (but all the results can be also proven under the weaker condition
(x−XR)3 = o(‖x−XR‖)) and that δx1 and δx2 are located in a square of radius a√

N
, then

∣∣tδxm∇2
XR

ψ(Y ,V ,XRm)δxm
∣∣ ≤ 2

N

(
|(V − VT )3|

r6
+
|(Y − YT )3|

r3

)
and ∣∣∣∇XR

ψ(Y ,V ,XRm) · δxm
∣∣∣ ≤ 1√

N

G1
p(Y ,V )

2
.

Hence ∣∣∣ i(tδx1∇2
XR

ψ(Y ,V ,XR1)δx1 − tδx2∇2
XR

ψ(Y ,V ,XR2)δx2
)

−
(
∇XR

ψ(Y ,V ,XR1) · δx1 −∇XR
ψ(Y ,V ,XR2) · δx2

)2 ∣∣∣
≤ 1
N
G2
p(Y ,V )

with

G1
p(Y ,V )

(def)
= 2

(
4
|(Y − YT )3|

r3
+ 2

1
p∗ p

√
|(Y − YT )1|p

rp1
+
|(Y − YT )2|p

rp2

+ 4
|(V − VT )3|

r6
+ 2

1
p∗ p

√
|(V − VT )1|p

rp4
+
|(V − VT )2|p

rp5

)
,

and

G2
p(Y ,V )

(def)
= 4

|(V − VT )3|
r6

+ 4
|(Y − YT )3|

r3
+G1

p(Y ,V )2

for p <∞ and

G1
∞(Y ,V )

(def)
= 2

(
4
|(Y − YT )3|

r3
+ 2

(
|(Y − YT )1|

r1
∧ |(Y − YT )2|

r2

)
4
|(V − VT )3|

r6
+ 2

(
|(V − VT )1|p

r4
∧ |(V − VT )2|

r5

))
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for p =∞. Consequently, all things put together, we get∣∣ICC(Y ,V )− ĨCC
N (Y ,V )

∣∣ ≤ 2‖IMF‖∞

(
G1
p(Y ,V )
√
N

∧
G2
p(Y ,V )

2N
+

1
2N

o(1)
(
G2
p(Y ,V )

))
.

Indeed the reader could show by the same calculus that a first order expansion for approxi-
mation would have led to the bound ‖IMF‖∞

G1
p(Y ,V )√
N

. Here also o(1) means a small quantity

with respect to 1 according to Hypothesis 2 (section 4.2), (Y ,V ) ∈ Rk,lYT ,VT ,q,r, and q = O(1).

Acknowledgment. Work carried out while the first and fourth authors were visiting the
Mathematics Department at Stanford University.

REFERENCES

[1] Special Issue on Passive Radar (Part I), IEEE Aerospace and Electronic Systems Magazine, 27 (October,
2012).

[2] L. Borcea, J. Garnier, G. Papanicolaou, K. Solna, and C. Tsogka, Resolution analysis of passive
synthetic aperture imaging of fast moving objects, SIAM J. Imaging Sci., 28 (2017), pp. 665–710.
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