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Emergence of long-range phase coherence in nonlocal fluids of light
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The emergence of long-range phase coherence among random nonlinear waves is a fascinating effect that
characterizes fundamental phenomena such as the condensation of nonlinear waves and the related manifestation
of superfluidity of certain turbulent flows. Here we report a previously unrecognized phenomenon of spontaneous
emergence of long-range phase coherence among incoherent waves interacting through a nonlocal nonlinearity.
The theory reveals that the establishment of long-range phase coherence constitutes a generic property of
a conservative (Hamiltonian) system of highly nonlocal random waves that evolve in the strongly nonlinear
regime. Aside from phase coherence, the field exhibits intensity fluctuations whose coherence length is shown
to increase in a dramatic way during the evolution of the system. The analysis can be transposed to the temporal
domain, revealing the emergence of temporal phase coherence among incoherent waves propagating in nonlinear
materials featured by a noninstantaneous nonlinear response.
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I. INTRODUCTION

Understanding the mechanisms responsible for self-
organization processes in conservative and reversible Hamil-
tonian wave systems is an arduous problem that generated
significant interest. Contrary to dissipative systems, a con-
servative Hamiltonian system cannot evolve towards a fully
ordered state, because such an evolution would imply a loss
of statistical information for the system that would violate
its formal reversibility. However, despite formal reversibility,
a nonintegrable Hamiltonian wave system is expected to
exhibit an irreversible evolution toward an equilibrium state,
as a result of an irreversible process of diffusion in phase
space [1]. In this regard, an important achievement was
accomplished when Zakharov and collaborators reported in
Ref. [2] numerical simulations of the focusing nonintegrable
nonlinear Schrödinger equation (NLSE). This study revealed
that the Hamiltonian system evolves, as a general rule, towards
an ordered state characterized by a “big soliton” in the midst of
small-scale turbulent fluctuations. In this “soliton turbulence”
scenario, the solitary wave plays the role of a “statistical
attractor” for the Hamiltonian system, while the small-scale
fluctuations store the information necessary for time reversal
[3–7].

The phenomenon of condensation of classical waves in the
defocusing regime of the NLSE is another important example
of self-organization process that occurs in Hamiltonian wave
systems [7–13], which can be viewed as a classical analog
of the quantum Bose-Einstein condensation process [14–20].
From a broader perspective, condensation-like phenomena
have been the subject of a great interest in optical systems
[21–27]. It is important to note that, at variance with the
“soliton turbulence” scenario, the process of wave conden-
sation is known to be characterized by the emergence of
long-range order and phase coherence, in the sense that the

correlation function of the wave amplitude does not decay
to zero at infinity [17]. This property of long-range phase
coherence is fundamental, for instance, for the manifestation
of superfluidity or the generation of Bogoliubov sound waves
in optical wave systems [17,28]. This area of research has
been mainly developed in dissipative cavity systems in the
past [28–32], and it is now attracting a growing interest
in conservative free propagation in nonlinear optical bulk
materials [33–37].

Our aim in this article is to report a phenomenon of
spontaneous emergence of long-range phase coherence in
a system of conservative random waves. The nonlinear
mechanism underlying the formation of phase coherence
relies on the property of nonlocality. A nonlocal wave
interaction means that the response of the nonlinearity at
a particular point is not determined solely by the intensity
at that point, but also depends on the wave intensity in
its vicinity. Nonlocality thus constitutes a generic property
of a large number of nonlinear wave systems [6,38–64]. A
wave turbulence approach of the problem revealed that the
evolution of random waves in the highly nonlocal regime
can be described in detail by a long-range Vlasov formalism
[21,67–69]. This unveiled an interesting analogy between
nonlocal turbulent flows and collective dynamical behaviors
inherent to systems of particles with long-range interactions,
such as gravitational systems (e.g., formation of galaxies) or
two-dimensional (2D) geophysical fluid flows (e.g., Jupiter
red spot) [70]. However, this Vlasov-like kinetic approach did
not reveal the underlying critical coherent phase effects that
characterize nonlocal incoherent waves.

In this article, we show that the emergence of long-range
phase coherence constitutes a robust and generic property
of a highly nonlocal random wave system that evolves
in the strongly nonlinear regime. In particular, long-range
phase coherence is shown to emerge irrespective of the
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dimensionality of the system or the sign of the nonlinearity,
which can be either focusing or defocusing. In addition, the
analysis of the coherence properties of intensity fluctuations
reveals that the coherence length can increase in a dramatic
way during the propagation of the waves. This work then
reports a previously unrecognized fundamental mechanism
of spontaneous formation of long-range phase coherence in a
conservative (Hamiltonian) system of random waves, a feature
which is at the root of several fascinating phenomena in
the emergent key area of the quantum fluids of light, such
as the supersonic to superfluid transition and the associated
nucleation of quantized vortices in the wake of an obstacle
[28,33,37].

II. NUMERICAL SIMULATIONS

A. NLSE model

The nonlocal nonlinear Schrödinger equation (NLSE) is
known as a universal model describing the evolution of waves
in the presence of nonlocal nonlinearities. In the context of
optics, the NLSE models the transverse spatial evolution
of an optical beam that propagates in a material featured
by a nonlocal nonlinear response [48–57,59], e.g., thermal
media [36,37,41–47], or nematic liquid crystals [6,38–40].
From a broader perspective, nonlocal nonlinearities are found
in several physical systems, such as dipolar Bose-Einstein
condensates [60], roton excitations in superfluids [61], atomic
vapors [62,63], or plasmas [64]. The evolution of the field
can be modeled by the following generic form of the NLSE
equation:

i∂zψ = −α

2
∇2ψ + γψ

∫
U (|r − r ′|)|ψ |2(r ′,z) d r ′, (1)

where the dynamics occurs in the two-dimensional transverse
plane r = (x,y) and the propagation length z plays the role
of time. The diffraction parameter is α = 1/β0, where β0

denotes the wave vector of the laser beam, while σ is the
spatial extension of the nonlocal response function U (r),
i.e., the range of nonlocal interaction. In the following we
will focus the presentation into the defocusing regime γ > 0,
while the focusing case (γ < 0) will be discussed later. In
addition to the total “power” of the field, N = ∫ |ψ |2(r,z)d r ,
we note that the NLSE (1) conserves the Hamiltonian,
H = E + U , which has a linear contribution E(z) =
α
2

∫ |∇ψ |2(r,z) d r , and a nonlinear contribution, U(z) =
γ

2

∫∫ |ψ |2(r,z) U (|r − r ′|) |ψ |2(r ′,z) d r d r ′. It proves con-
venient to introduce an effective nonlinear length
L0 = 1/(γ I0), where the intensity reads I0 = N /L2, L

being the spatial size of the numerical window. In this way, the
“healing length” � = √

αL0 provides the characteristic spatial
scale for which linear and nonlinear effects are of the same
order of magnitude (E ∼ U). Note in this respect that � = λc is
equivalent to L0 = Ld , where Ld = λ2

c/α is the characteristic
propagation length associated to linear diffraction effects,
λc being the transverse correlation length of the wave. We
anticipate that phase coherence will be shown to emerge in
the strongly nonlinear regime L0 � Ld (or λc � �).

In the numerical simulations we use periodic boundary
conditions in r space, with a numerical spatial window

much larger than the nonlocal range L � σ . To avoid
numerical artifacts, we consider the illustrative example
of a rapidly decaying Gaussian-shaped response function
U (r) = (2πσ 2)−1 exp[−r2/(2σ 2)], with r = |r|. However, we
stress the important fact that the phenomenon of spontaneous
emergence of long-range phase coherence is general and does
not depend on the specific form of the response function;
we will see that it even takes place in the temporal domain
for a response function that is constrained by the causality
condition (see Sec. V B). Also notice that, although we focus
the presentation of the emergence of phase coherence in two
spatial dimensions, this effect can also occur in one dimension
(or in three dimensions), as will be discussed later.

In the simulations, the initial random wave ψ0(r) refers to an
incoherent speckle beam whose envelope profile is localized in
space |ψ0|2(r) ∼ exp(−r2/�2). The incoherent beam is char-
acterized by a Gaussian spectrum |ψ̃0|2(k) ∼ exp ( − k2/δ2

k )
with random spectral phases, so that the initial correlation
length is λc � 2π/δk , and the typical size of the speckles is
much smaller than both the beam size (λc � �) and the non-
local range (λc � σ ). We consider a small numerical grid size
so as to properly resolve all the fluctuations of the incoherent
wave during its propagation. For each individual realization of
the initial random function ψ0(r), the coherence properties of
the wave evolve during the propagation in a deterministic fash-
ion, as described by the solution ψ(r,z) of the deterministic
NLSE (1).

Before discussing the numerical results, let us briefly
comment on the particular example of a thermal nonlinearity
[36,37,41–46]. A thermal nonlinearity originates in the diffu-
sion of heat in the nonlinear medium, which is in principle
an isotropic process, so that the corresponding nonlinear
response should also be isotropic, i.e., the function U should
depend on the longitudinal variable z. We note in this respect
that the smallest longitudinal z-scale variation of the field
ψ(r,z) is given by the nonlinear length L0, since we deal
with the strongly nonlinear regime L0 � Ld (or equivalently
λc � �). Assuming that λc � σ � L0, the three-dimensional
convolution involved in the nonlinear term of the generalized
NLSE is important in the transverse direction, since the
intensity |ψ |2(r,z) exhibits small fluctuations in r at the scale
σ (λc � σ ). However, the convolution is not important in the
longitudinal direction, since the field ψ(r,z) does not vary in
z at the scale σ � L0. Accordingly, the convolution in the
longitudinal z direction can be neglected, so that one recovers
the effective two-dimensional convolution in the NLSE given
in Eq. (1). We also note that the effective nonlocal range σ

strongly depends on the boundary conditions imposed by the
nonlinear sample to solve the three-dimensional heat equation.
In this way, despite the fact that the nonlinear response
function is in principle “infinite range” [44,45], the boundary
conditions introduce an effective finite range for the response
function [65]. It is important to note that the effective 2D
response function in the NLSE has been widely considered
to study nonlocal dynamical effects [41,50–52,55–57], and
that this model proved successful to capture details of various
experiments realized in thermal nonlinear media, see, e.g.,
Refs. [36,37,42,43,47,68].
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FIG. 1. Numerical simulation of the NLSE starting from an initial
random wave with linear and nonlinear effects of the same order
(U0 � E0, or λc � �). Spatial distribution of the intensity |ψ |2(r)
(a), and corresponding (modulo 2π ) phase φ(r) (b), at z = 30L0: No
long-range phase coherence emerges in the system. Parameters are
U0/E0 � 0.85, L = 1200�, σ = 100�, width of the initial incoherent
beam � � 120�.

B. Emergence of phase coherence

We have performed numerical simulations of the NLSE
(1) in order to get physical insight into the emergence
of phase coherence. We compare the propagation regime
where linear and nonlinear effects are of the same order at
z = 0, i.e., λc ∼ � (U0 ∼ E0), with the strongly nonlinear
propagation regime, λc � � (U0 � E0). The simulations
reported in Figs. 1 and 2 reveal that, in marked contrast
to the weakly nonlinear regime where the system exhibits
a random phase dynamics (Fig. 1), the strongly nonlinear
interaction is responsible for the spontaneous emergence of
a well-structured spatial phase distribution, as remarkably
illustrated in Fig. 2. Phase coherence is characterized by almost

FIG. 2. Numerical simulation of the NLSE starting from an initial
random wave in the strongly nonlinear regime, U0/E0 � 1 (or λc �
�). Spatial distribution of the intensity |ψ |2(r) (first column) and
the (modulo 2π ) phase φ(r) (second column) at z = 0 (a–b), z =
4L0 (c–d), z = 30L0 (e–f). At variance with Fig. 1, in the strongly
nonlinear regime long-range phase coherence emerges in the system.
Parameters areU0/E0 � 480 (or λc � 66�), L = 1200�, σ = 100�,
width of the initial incoherent beam � � 120�.

FIG. 3. Numerical simulation of the NLSE showing the effective
potential V (r) (first line), and unwrapped spatial phase φ(r) of the
random field ψ(r,z) (second line), at z = 30L0 for (a) and (c) and
z = 55L0 for (b) and (d). These plots correspond to the simulation
reported in Fig. 2 in the strongly nonlinear regime (U0 � E0): The
emergence of phase coherence is mediated by the long-range effective
potential, V (r).

radially symmetric spatial oscillations of the phase profile,
whose typical period decreases with the radial coordinate
(distance from the beam center, r), as well as the propagation
length (z). It is important to note in Fig. 2 that phase coherence
is established over the whole surface of the beam; the analysis
will reveal that phase coherence emerges over the large
length scale σ � λc. In contrast to such a long-range phase
coherence, the speckle beam exhibits pronounced intensity
fluctuations (left column in Fig. 2), which are characterized by
an expansion of the correlation length during the propagation,
a feature that will be described in detail by the theory [see
Eq. (19)]. In this way, the intensity of the beam resembles
a “speckle beam.” However, at variance with a conventional
speckle, here the fluctuations of the beam are phase-correlated
to each other by the underlying long-range phase coherence.
We underline the important fact that the formation of phase
coherence is clearly apparent for each individual realization
of the initial random wave ψ0(r), i.e., for each simulation of
the NLSE; the emergence of phase coherence does not require
an averaging over the realizations of the random function
ψ0(r).

We finally note that very similar results as those reported
in Figs. 1–3 have been obtained with a thermal response
function of the form U (r) = K0(r/σ )/(2πσ ), where K0(x) is
the modified Bessel function of second kind (see, for instance,
Ref. [68]).

III. HYDRODYNAMIC FORMULATION

A. Fluid-like description

To explain the numerical observations, we follow the
usual procedure based on the Madelung transformation and

063818-3



A. FUSARO et al. PHYSICAL REVIEW A 95, 063818 (2017)

decompose the wave amplitude as ψ(r,z) = √
ρ(r,z)

exp (iφ(r,z)), so that the NLSE (1) takes the form

∂zρ + α∇ · (ρ∇φ) = 0, (2)

∂zφ + α

2
(∇φ)2 + V = α

2
√

ρ
∇2√ρ, (3)

where we have introduced the effective potential

V (r,z) = γ

∫
U (|r − r ′|)|ψ |2(r ′,z) d r ′. (4)

The last term in (3) refers to the analog of the Bohm quantum
potential [66]. In the strongly nonlinear regime considered
here λc � �, the potential V (r) in (3) dominates the linear
diffraction effects described by the quantum potential and the
term (∇φ)2. On the other hand, the intensity ρ(r) is simply
advected by the transport equation (2), and its feedback to the
phase dynamics remains negligible compared to V and (∇φ)2

in the regime λc � �. The fact that the quantum potential
term can be neglected with respect to the term (∇φ)2 is clearly
apparent in the numerical simulations shown in Fig. 2: At
variance with the speckle fluctuations of the intensity ρ(r) that
exhibit a slow expansion during the propagation, the phase
φ(r) undergoes very rapid radial oscillations. We will see
theoretical arguments in Sec. IV D to justify that the quantum
potential term can be indeed neglected. Then introducing the
analog of the momentum, u = ∇φ, Eqs. (2) and (3) reduce to

∂zρ + α∇ · (ρ u) = 0, (5)

∂zu + α(u · ∇)u + ∇V = 0. (6)

Note that it is also possible to derive Eqs. (5) and (6) in a formal
way from Eqs. (2) and (3) in the strongly nonlinear regime
(λc � �) by following the well-known WKB expansion
procedure; see Ref. [41] for the application of the method to
the specific example of the nonlocal NLSE considered here.

The type of hydrodynamic Eqs. (5) and (6) are hyperbolic
and are known to exhibit finite “time” shock singularities
in the defocusing regime considered here [71]. This aspect
has been widely studied in different configurations [72–79],
in particular in the presence of nonlocal nonlinearities [41–
43,80,81]. It is worth pointing out that, in thermal media,
the oscillatory ring structure of the dispersive shock induced
by the defocusing effect over Gaussian laser beams have been
reported much earlier (though not explicitly labeled as a shock)
by independent groups [82–84], and interpreted in terms
of ray crossing and spherical aberration of the self-induced
thermal lens [85]. We also note that shock singularities have
been considered in the presence of a structural disorder of
the nonlinear medium [86,87], while perfectly deterministic
(coherent) wave amplitudes have been assumed. At variance
with these previous works, here we deal with the evolution
of an initial incoherent wave [68,88]; the intensity and
momentum in Eqs. (5) and (6) refer to random functions at any
z. In this framework, collective incoherent shock singularities
have been reported in Refs. [68,69] on the basis of singular
solutions of the long-range Vlasov equation. However, as
already commented, this kinetic approach is not appropriate
to study the emergence of phase coherence among the random

waves, whose study constitutes the main purpose of the present
article.

B. Criterion for the emergence of phase coherence

The starting point of our analysis is the simple observation
that, as a result of the convolution involved in the nonlinear
term of the NLSE, the response function U (r) averages out
the fluctuations of the intensity of the random wave ρ(r)
in the long-range interaction regime (σ � λc). This means that
the effective potential (4) can be approximated by V (r,z) �
γ

∫
U (|r − r ′|)〈ρ(r ′,z)〉d r ′, where 〈·〉 denotes an average over

the realizations of the initial random field, ψ(r,0). This merely
explains why the potential V (r) turns out to be a smooth
function over the large scale σ . This property is clearly
visible in the simulations, as remarkably revealed by the
comparison of the intensity fluctuations of ρ(r) in Fig. 2 and
the smoothed profile of the effective potential V (r) reported
in Figs. 3(a)–3(b). On the other hand, the momentum u(r,z)
involved in the second Burgers term of Eq. (6) is a random
function that rapidly fluctuates on the small spatial scale λc.
Accordingly, the driving force ∇V (r) is expected to lead to
the formation of phase coherence over a large surface section
(of the order ∼ σ 2) whenever this force dominates the second
Burgers term in (6).

In order to qualitatively assess the relative contributions
of the two terms involved in Eq. (6), it proves convenient to
rescale the functions by introducing the parameter ε = 1/σ :
U (r) = ε2U0(R) and ρ(r,z) = L2ε2I0ρ0(R,Z), with R = εr
and Z = εz. The typical widths of ρ0(R,Z) and U0(R) are
now of order one with

∫
ρ0(R) d R = 1 and

∫
U0(R) d R =

1, which thus gives ∇V ∼ γN /σ 3. On the other hand, the
Burgers term in (6) is of order α(u · ∇)u ∼ α/λ3

c . This reveals
that, whenever λ3

cγN /(ασ 3) � 1, the force ∇V dominates
the behavior of u in Eq. (6). Furthermore, considering that
ρ ∼ N /σ 2, we see that long-range phase coherence emerges
in the system provided that the criterion λ3

cγρ/(ασ ) � 1 is
satisfied. It proves convenient to rewrite the criterion in term
of the healing length, which is

(ρ/I0)(λc/�)3

σ/�
� 1. (7)

Considering that ρ/I0 � 1 (since L > σ ) and recalling that
λc � � in the strongly nonlinear regime, then the criterion
(7) turns out to be almost systematically satisfied. As a matter
of fact, it is quite difficult and rather artificial to find a regime
in which the criterion is not verified, since it would require a
typical value of nonlocal nonlinearity at least three orders of
magnitude larger than the healing length, σ/� � 103.

It is important to stress that this analysis is general. In
particular, it holds a priori for any form of the response
function U (r), provided it exhibits the highly nonlocal property
(σ � �). The analysis also holds irrespective of the sign of
the nonlinearity, which can be either defocusing or focusing. In
addition, the criterion (7) is valid for any spatial dimension of
the system (a feature that will be discussed later in the temporal
and spatio-temporal domains). This reveals that the emergence
of long-range phase coherence constitutes a generic property
of highly nonlocal wave systems that evolve in the strongly
nonlinear regime.
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IV. COHERENCE PROPERTIES

A. Correlations along the characteristics

We pursue our study through the analysis of the coherence
properties of the random wave. The subsequent analysis is
apparently similar to that reported in Ref. [68] in the framework
of the Vlasov formalism. However, at variance with such a
statistical approach, which is inherently based on an average
over the realizations, here we analyze the fluctuations of
the incoherent field ψ(r,z) for an individual realization of
the initial random functions (ρ0(r),u0(r)). In other terms,
the subsequent analysis does not rely on an averaging over
the realizations of the initial conditions.

We first note that, because of the long-range interaction
σ � λc, the effective potential V (r,z) is an almost radially
symmetric function. According to the criterion (7), the driving
term ∇V (r) = V ′(r)r/r dominates the evolution of the mo-
mentum in (6), so that the momentum turns radially outgoing,
i.e., u = u(r,z)r/r for z large enough to neglect the initial
noisy condition, u0(r). The hydrodynamic Eqs. (5) and (6)
can thus be reduced to the following system:

∂zρ̌ + α∂r (ρ̌u) = 0, (8)

∂zu + αu∂ru + ∂rV = 0, (9)

where ρ̌(r,θ,z) = rρ(r,θ,z), and the effective nonlinear po-
tential is given by V (r,z) = γ

∫
Ũ (r,r ′)〈ρ(r ′,θ,z)〉r ′ dr ′, with

Ũ (r,r ′) = ∫ 2π

0 U (
√

r2 + r ′2 − 2rr ′ cos θ ) dθ . Note that the
mean 〈ρ(r,θ,z)〉 is independent of the polar angle θ , because
it is independent of θ at z = 0 (the initial mean intensity is
radially symmetric) and the system preserves this property
during the propagation.

Despite the random character of the functions
(ρ̌(r,z),u(r,z)), the system (8) and (9) can be solved by
making use of the method of the characteristics. We define the
following quantities w(z) = u(R(z),z), τ (z) = ∂zu(R(z),z),
ξ (z) = ∂ru(R(z),z), �̌(z) = ρ̌(R(z),θ,z) for a fixed and ar-
bitrary value of the polar angle θ . These functions can be
shown to satisfy the following system of ordinary differential
equations:

dR

dz
= αw(z), R(0) = r0, (10)

dw

dz
= τ (z) + αw(z)ξ (z), w(0) = w0, (11)

dτ

dz
= −∂2

zrV (R(z),z) − αξ (z)τ (z), τ (0) = −∂rV0(r0),

(12)

dξ

dz
= −∂2

r V (R(z),z) − αξ 2(z), ξ (0) = ξ0, (13)

d�̌

dz
= −αξ (z)�̌(z), �̌(0) = r0ρ0(r0,θ ). (14)

We recall that, following a procedure similar to that developed
in Ref. [68], the gradient of the momentum and the intensity
exhibit a finite “time” singularity at some propagation length,
say, z∞. In the following we study more specifically the
coherence properties of the intensity fluctuations before the

singularity z < z∞, in the regime where phase coherence
emerges in the system, i.e., the criterion (7) is satisfied.
Accordingly, the equation for the momentum reduces to
∂zu + ∂rV = 0. In order to pursue our study in analytic form,
we neglect the “time” evolution of the potential V (r), which
is justified when the nonlocal range is much larger than the
width of the initial incoherent beam, � � σ . In this way,
u(r,z) = −∂rV (r)z, and defining R̃(r0,s) = R(r0,

√
s) with

r0 = R(r0,z = 0) and s = z2, we obtain from (10)

dR̃

ds
= −α

2
∂rV (R̃), R̃(r0,0) = r0. (15)

We also define �̃(r0,θ,s) = �̌(r0,θ,
√

s), so that (14) reads

d�̃

ds
= α

2
∂2
r V (R̃)�̃, �̃(r0,θ,0) = ρ̌0(r0,θ ), (16)

which can be integrated as

�̃(r0,θ,s) = ρ̌0(r0,θ )
∂rV (r0)

∂rV (R̃(r0,s))
.

Making use of the reversible property of the evolution along the
characteristics [i.e., r0 = R̃(r,s) if and only if R̃(r0, − s) = r],
we can write the evolution of the intensity of the random field
in the form

ρ̌(r,θ,z) = ρ̌0(R̃(r, − z2),θ )
∂rV (R̃(r, − z2))

∂rV (r)
. (17)

This expression shows that the initial intensity fluctuations
ρ0(r), are transported along the characteristics, and they can
be either compressed or expanded depending on their relative
positions in the incoherent beam.

We illustrate the meaning of Eq. (17) by considering the
concrete example of a potential of the form, V (r) = V0/(1 +
νr2). The detailed evolution of the intensity fluctuations
depend on the specific form of the potential, however, the
qualitative description we are going to present is preserved
with any smooth and decaying effective potential, as will
be confirmed by the simulations. Equation (15) can then be
integrated in explicit form, yielding

R̃(r, − z2) = g−1
ν (gν(r) − ναV0z

2), (18)

where gν(r) = log(r) + νr2 + ν2r4/4, and g−1
ν is the inverse

function of gν .

B. Correlations in the center of the incoherent beam

Let us first consider a point in the center of the beam νr2 �
1, so that Eq. (18) readily gives the characteristics, R(z) =
r0 exp(ναV0z

2). According to Eq. (17), the evolution of the
field intensity then reads

ρ(r,θ,z) = ρ0
(
re−ναV0z

2
,θ

)
e−2ναV0z

2
. (19)

This expression remarkably reveals that the correlation radius
increases by the factor exp(ναV0z

2), while the mean intensity
is damped by exp(−2ναV0z

2). We stress the fact that this
dramatic increase of the coherence length is not simply related
to the diffraction of the whole beam, since such a coherence
enhancement occurs in the initial stage of propagation where
the effective potential is assumed constant, V (r) � const.
This unexpected increase of coherence of the beam has been
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FIG. 4. Intensity fluctuations: (a–b) Evolution of the intensity
pattern obtained by simulation of the NLSE (1) in the strongly
nonlinear regime (U0 � E0 or λc � �): z = 0 (a), z = 50L0 (b).
(c–d) Corresponding evolutions of the sizes [ln(δ) vs z] of two
particular speckles (brown- and red-encircled), for six different values
of their intensity levels: The dramatic increase of the coherence length
∼exp(ναV0z

2) is in agreement with the theory [Eq. (19)]; see the
parabolic dot-dashed red lines for z � 50L0. The dashed dark line
shows the corresponding evolution of the width of V (r) – note that
V (r) � const for z � 40L0, so that the coherence enhancement of
intensity fluctuations is not due to the beam expansion. Parameters
are width of the initial incoherent beam � � 80�, U0/E0 � 330,
L = 1500�, σ = 150�.

confirmed by NLSE simulations, as remarkably illustrated in
Fig. 4, where V (r) � const for z � 40. It is important to note
that this good agreement has been obtained for a large variety
of realizations of the initial random function ρ0(r) and for
diverse choices of the speckles that have been analyzed, even
those for which the correlation expansion is not apparent, as
in Fig. 4(d).

C. Parabolic-shaped phase coherence

The analysis that we have developed also provides the
evolution of the phase of the field in the central region of
the incoherent beam, νr2 � 1. As discussed above, the phase
dynamics is driven by the effective potential, u(R(z),z) =
−∂rV (R(z))z. Accordingly, the phase evolves according to

φ(r,z) = φ0(r) + νV0r
2z. (20)

As the beam propagates, the initial random phase φ0(r)
becomes negligible with respect to the second driving term
in (20), which thus shows that phase coherence emerges
very rapidly (for small propagation lengths) in the central
region of the beam. More precisely, Eq. (20) reveals that
the oscillations of the (modulo 2π ) phase increase linearly
during the propagation ∼z, and quadratically with the radial
distance from the beam center ∼r2. To properly verify this
theoretical prediction, we considered a highly nonlocal regime,
in such a way that the effective potential remains almost
constant for relatively large propagation lengths. As illustrated

x (units of Λ)-550 550

φ

0

200
(a)

z (units of L0 )10 38

φ

0

17 (b)

FIG. 5. Properties of phase coherence: Numerical simulations of
the NLSE (1) in the strongly nonlinear regime U0 � E0 (or λc � �).
(a) Unwrapped phase φ(x,y = 0) at z = 15L0 (blue line), z = 45L0

(red line); the spatial phase exhibits a parabolic-shaped profile (dashed
blue and red lines) for large z, in agreement with the theoretical
prediction of Eq. (20). (b) Evolution of the phase with respect to
the propagation length z, for r = 10, 20, 30, 50, 100 in units of �

(from the bottom to the top). The dashed dark line shows the linear
behavior predicted by Eq. (20); note that V (r) � const for z � 25L0.
Parameters are U0/E0 � 220, σ = 200�,� � 80�,L = 1500�.

in Fig. 5, the prediction (20) is well confirmed by NLSE
simulations. Note, however, that, at variance with the effect of
coherence enhancement discussed above through Fig. 4, here
the formation of the parabolic phase profile is very sensitive
to small variations of the effective potential, since φ(r,z) is
directly related to V (r,z). This explains why the prediction
(20) is verified for small propagation lengths, z � 25L0.

D. Correlations in the tail of the incoherent beam

Let us now consider a point beyond the border of the
incoherent beam, such that νr2 � 1 and ν2r4/4 − ναV0z

2 �
1. In this case R(z) = 4

√
r4

0 + 4αV0z2/ν and

ρ(r,θ,z) = ρ0( 4
√

r4 − 4αV0z2/ν,θ )
r2

(r4 − 4αV0z2/ν)1/2
.

(21)

This shows that the intensity fluctuations do not exhibit
significant variations with respect to the initial condition,
R(z) � r0 + αV0z

2/(νr3
0 ) and ρ(r,θ,z) � ρ0(r,θ ).

If we consider a point in the transition region between
the two regimes discussed above, i.e., r = R(z) in the tail of
the beam such that νr2 � 1 and ν2r4/4 − ναV0z

2 = O(1),
we have from Eq. (18), r0 = g−1

ν [log[R(z)] + ν2R(z)4/4 −
ναV0z

2]. If additionally ν2r4/4 − ναV0z
2 < 0, then νr2

0 � 1
and r0 � R(z) exp[ν2R(z)4/4 − ναV0z

2]. This corresponds to
the situation where the starting point r0 of the characteristics
is inside the support of V (r), while the arriving point r =
R(z) is outside such a support. Accordingly, ∂rV [R(z)] �
−2V0/[νR(z)3] and ∂rV (r0) � −2V0νr0, which gives

ρ(r,θ,z) = ρ0
(
re

ν2r4

4 −ναV0z
2
,θ

)
ν2r4e

ν2r4

2 −2ναV0z
2
. (22)

Note that re
ν2r4

4 −ναV0z
2 = O(1), but as a function of r it varies

very rapidly since we are in the regime νr2 � 1. This shows
that in this region, which is localized around r ∼ 4

√
4αV0z2/ν,
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the speckle pattern varies very rapidly in the radial direction.
Notice that this analysis also clarifies the validity domain of
Eq. (6). Indeed, the quantum potential term in (3) can be
neglected when α|∇3ρ|/ρ � |∇V |. Initially this holds true if
α/λ3

c � γρ/σ , which is the condition under which the Burgers
term α(u · ∇)u is smaller than ∇V as expressed above through
the criterion (7). However as the system evolves the condition
becomes stronger. Indeed, when αγρz2/σ 2 � 1, the speckle
pattern undergoes strong variations around r ∼ 4

√
αγρz2σ 2 as

shown by (22). More exactly, the radius of the speckle spots
becomes locally of the order of λc[σ 2/(αγρz2)], so that the
condition of validity of (6) becomes [α/λ3

c][(αγρz2)/σ 2]3 �
γρ/σ when αγρz2/σ 2 � 1. When this condition is violated,
both the Burgers term and the quantum potential term should
be taken into account.

V. CONCLUSION AND PERSPECTIVES

In summary, by considering the NLSE as a representative
model, we have shown that highly nonlocal random waves
operating in the strongly nonlinear regime are characterized
by the spontaneous emergence of long-range phase coherence
over a characteristic length scale determined by the amount
of nonlocality in the system. We recall that, while the phase
of the optical wave exhibits long-range coherence, the beam
exhibits pronounced intensity fluctuations. The analysis of the
evolution of the intensity fluctuations along the characteristics
has revealed that the coherence length can increase in a
dramatic way in the radial direction, following the behavior
∼ exp(ναV0z

2). It is important to emphasize that the formation
of long-range phase coherence constitutes a robust phe-
nomenon: Phase coherence emerges almost “instantaneously”
for very small propagation lengths, and the simulations reveal
that it is preserved in the subsequent evolution even well
beyond the singular shock point.

As anticipated, the emergence of long-range phase co-
herence occurs irrespective of the sign of the nonlinearity.
The main difference with respect to the defocusing regime
discussed above is that in the focusing case the effective
potential is negative V (r,z) < 0, so that the orientation of the
momentum u(r,z) turns radially ingoing toward the center of
the beam. Accordingly, the speckles of the incoherent beam get
compressed during the propagation, with a corresponding re-
duction of the coherence length by a factor ∼ exp(−να|V0|z2).
We finally note that, from a broader perspective, this work
provides another remarkable example where critical coherent
phase effects strongly impact the dynamical behavior of
turbulent optical flows [7,10,11,13,89].

A. Application to multimode optical fibers

The above analysis can be mapped to the problem of linear
propagation of a speckle beam in a multimode optical fiber,
such as a graded index optical fiber with a potential of the
form V (r) = qr2 for r � a, a being the fiber-core radius.
By transposing the previous analysis to this problem, phase
coherence should emerge in the regime where the effect of
the linear potential V (r) dominates diffraction effects, i.e., the
regime λc � κ , where κ = (α/q)1/4 is the size of the fun-
damental Gaussian mode. Preliminary numerical simulations

confirm the expected emergence of phase coherence for large
values of the fiber core, so as to satisfy the requirement that
the size of the speckle beam should be much larger than the
coherence length, a > � � λc. Aside from phase coherence,
the simulations evidence a compression of the speckle beam
toward the axis of the multimode fiber, in a way similar to
the focusing regime discussed here above. Note that such a
bunching of ray paths toward the fiber axis may be analyzed
by a geometric optics approach (i.e., the regime λc � κ),
although this ray approach is inherently unable to describe
the emergence of phase coherence during the propagation
of the beam. We also note that the formation of ring-shaped
caustics in a waveguide potential has been recently interpreted
in relation with the development of dispersive shock waves
and the spontaneous formation of autofocusing Airy waves
[43]. Although this work deals with the propagation of an
initial coherent wave, the analysis may be extended to study
the incoherent wave problem considered here.

B. Temporal and spatio-temporal phase coherence

The analysis that we have developed in the spatial case can
easily be transposed to the time domain, where one typically
studies the temporal dynamics of an incoherent pulse that
propagates in a Kerr material featured by a noninstantaneous
nonlinear response. The optical field is still governed by a one-
dimensional NLSE formally analogous to Eq. (1), in which the
transverse spatial variable is mapped to the time variable, and
the spatial nonlocal response to the noninstantaneous nonlinear
response: r → t,U (r) → R(t),α → β2/2 in the NLSE (1), β2

being the second-order dispersion coefficient of the material.
The spatial and temporal versions of the NLSE are then
equivalent except that, at variance with the spatial response, the
noninstantaneous nonlinear response of the material [R(t)] is
constrained by the causality condition [21,90–93]. In complete
analogy with the spatial case, temporal phase coherence should
emerge in the strongly nonlinear regime in the presence of

t (units of τ
0
)-550 550

|ψ
|2

0

25
(a) 

t (units of τ
0
)-550 550

φ

0

200
(b) 

x5

FIG. 6. Emergence of temporal phase coherence: Simulation
of the one-dimensional temporal version of the NLSE in the
strongly nonlinear regime (tc � τ0), showing the intensity profile
|ψ |2(t,z) at z = 0 (dot-dashed blue line), z = 80L0 (red line) (a),
and corresponding unwrapped phases φ(t,z) at z = 0 (dot-dashed
blue line), z = 25L0 (green line), z = 80L0 (red line) (b). The
dashed-dark line shows a parabolic fit. The initial phase has been
multiplied by a factor ×5 for its visibility. Parameters are τR = 200τ0,
size of the temporal numerical window 2048τ0, � � 120, β2γ > 0,
R(t) = H (t)τ−1

R exp(−t/τR), H (t) being the Heaviside function.
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a highly noninstantaneous nonlinear response, τR � tc � τ0,
where τR is the nonlinear response time, tc the time correlation,
and τ0 = √

L0|β2|/2 the “healing time.” Preliminary simula-
tions realized in this regime confirm that incoherent pulses
propagating in slowly responding nonlinear materials are
characterized by the emergence of phase coherence over a time
scale of the order of the nonlinear response time, as illustrated
in Fig. 6. The experimental observation of the spontaneous
emergence of temporal phase coherence can be envisaged
because of the recent progress made on the fabrication of
photonic crystal fibers filled with liquids displaying highly
noninstantaneous Kerr responses [92,93].

We finally note that the present analysis in which the
emergence of coherence has been studied separately in the
spatial or temporal domains, can easily be generalized to
the spatio-temporal domain. Recalling the fact that that highly
nonlocal nonlinear materials are usually characterized by a
slow response time, the emergence of spatio-temporal phase

coherence should constitute an important general property of
incoherent light propagating in these systems.
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