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The long-standing and controversial Fermi-Pasta-Ulam problem addresses fundamental issues of
statistical physics, and the attempt to resolve the mystery of the recurrences has led to many great
discoveries, such as chaos, integrable systems, and soliton theory. From a general perspective, the
recurrence is commonly considered as a coherent phase-sensitive effect that originates in the property of
integrability of the system. In contrast to this interpretation, we show that convection among a pair of waves
is responsible for a new recurrence phenomenon that takes place for strongly incoherent waves far from
integrability. We explain the incoherent recurrence by developing a nonequilibrium spatiotemporal kinetic
formulation that accounts for the existence of phase correlations among incoherent waves. The theory
reveals that the recurrence originates in a novel form of modulational instability, which shows that strongly
correlated fluctuations are spontaneously created among the random waves. Contrary to conventional
incoherent modulational instabilities, we find that Landau damping can be completely suppressed, which
unexpectedly removes the threshold of the instability. Consequently, the recurrence can take place for
strongly incoherent waves and is thus characterized by a reduction of nonequilibrium entropy that violates
theH theorem of entropy growth. In its long-term evolution, the system enters a secondary turbulent regime
characterized by an irreversible process of relaxation to equilibrium. At variance with the expected
thermalization described by standard Gibbsian statistical mechanics, our thermalization process is not
dictated by the usual constraints of energy and momentum conservation: The inverse temperatures
associated with energy and momentum are zero. This unveils a previously unrecognized scenario of
unconstrained thermalization, which is relevant to a variety of weakly dispersive wave systems. Our work
should stimulate the development of new experiments aimed at observing recurrence behaviors with
random waves. From a broader perspective, the spatiotemporal kinetic formulation we develop here paves
the way to the study of novel forms of global incoherent collective behaviors in wave turbulence, such as
the formation of incoherent breather structures.
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I. INTRODUCTION

Recurrence as discovered by Fermi, Pasta, and Ulam is
the phenomenon of an apparent reversal of thermalization
that occurs in a variety of physical systems [1]. Their
numerical study of the dynamics of an anharmonic chain
of particles with a single sine wave initial condition
shows that energy spreads out from the initially occupied
mode to neighboring modes, apparently approaching the
thermodynamic equilibrium state of energy equipartition.

Surprisingly, this process is subsequently reversed as the
nonlinear dynamics of the chain leads to an energy flow
back to the initially occupied mode. Instead of the expected
irreversible process of thermalization, the system exhibits
recurrent oscillations between a state that is similar to the
initial condition and a seemingly disordered state where
energy is spread out over several modes.
The paradox of the Fermi-Pasta-Ulam recurrence had a

deep impact on the development of nonlinear science [2–6],
in particular, in the context of ergodic theory, soliton theory,
and integrability [7–15]. Aside from the specific model
equation originally considered by Fermi, Pasta, and Ulam
[1], the recurrence effect is a general phenomenon found in
a variety of almost integrable models whose phase space is
strongly segmented by the existence of a large number
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of nearly conserved quantities. As a result, a trajectory
emanating from a Benjamin-Feir modulational instability
can return nearby the original state, while weak non-
integrable terms cause only a slow irreversible thermal-
ization. The recurrence phenomenon has been studied
experimentally in deep water waves [16], magnetic films
[17], and optical systems [18–20]. In recent years, recur-
rence behaviors have attracted an enormous interest for
explaining the formation of extreme wave events (rogue
or freak waves) in oceans and photonic seas [21,22],
in relation to oscillatory breather solutions of integrable
nonlinear Schrödinger equations (NLSE) [23–35]. In these
cases, recurrent oscillatory behaviors emerge from coherent
wave initial conditions, so that one might think that phase
coherence constitutes a prerequisite for the recurrence
phenomenon. There is an intuitive appeal in the idea
that weakly nonlinear random waves should not exhibit
reversible recurrences, but instead a monotonic irreversible
process of thermalization to equilibrium. Such irreversible
processes can be precisely formulated by using the well-
developed wave turbulence theory [36–41], which has been
successfully applied to a huge variety of physical systems
[7–9,11,42–48]. The wave turbulence theory is formally
based on irreversible kinetic equations that describe an
irreversible process of thermalization to equilibrium,
as expressed by the fundamental H theorem of entropy
growth.
In contrast to this common intuitive picture, here, we

present and explain the new phenomenon of recurrence of
incoherent nonlinear waves in optics, fluids, plasmas, and
Bose-Einstein condensates. We show that large convection
among a pair of random waves is responsible for a
recurrence phenomenon that manifests itself in oscillations
similar to the Fermi-Pasta-Ulam recurrence. However, the
recurrence effect occurs under radically different physical
conditions: Firstly, the recurrence that we observe does not
originate in integrability. Secondly, unlike recent studies
dealing with purely coherent wave evolutions [20,26–35],
here, the recurrence emerges from strongly incoherent
random waves. More precisely, the incoherent recurrence
is characterized by a reduction of nonequilibrium entropy
that violates the H theorem of entropy growth far from
integrability.
We explain this phenomenon by showing that convection

leads to the spontaneous emergence of strongly correlated
fluctuations in the turbulent wave system. For this
purpose, we develop a nonequilibrium kinetic theory that
accounts for the existence of phase correlations among
the random waves. Phase correlations are known to play a
role in different cases [7–9,49–58]; in particular, they
lead to the formation of large-scale coherent structures
(solitons or condensates) emerging from a strongly
nonlinear turbulent regime [38–46,59–65]—a coherent
structure being inherently a phase-correlated object. Also
note that stochastic recurrences of random waves have been

predicted recently for water waves governed by Alber’s
equation when nonlinear effects are stronger than linear
dispersive effects [66]. In contrast, here, we consider a
system of weakly interacting random waves, in which
phase correlations are expected to decay, as precisely
described by the wave turbulence theory. At variance with
this usual understanding of wave turbulence, our theory
reveals that strong phase correlations emerge spontane-
ously and grow exponentially by virtue of a novel form of
modulational instability. More precisely, in contrast to the
expected Landau damping that provides a stabilizing effect
against the incoherent modulational instability [46,67–72],
here, we identify a regime in which Landau damping can be
completely suppressed. This has two major consequences.
It first explains why our recurrences can take place in the
weakly nonlinear regime and thus violate the H theorem of
entropy growth. In addition, the suppression of Landau
damping makes possible the emergence of strong phase
correlations even for highly incoherent waves. Our theory
then reveals that the expected natural loss of “phase
information” by irreversible processes is partly offset by
this spontaneous creation of correlated fluctuations. It turns
out that our phase-correlation kinetic theory preserves the
time-reversal symmetry and describes in detail the phe-
nomenon of recurrence in a nonintegrable random wave
system.
In its long-term evolution, the system enters a secondary

turbulent regime that degrades the phase information
stored in phase correlations, which reestablishes temporal
irreversibility in the system. However, at variance with the
expected thermalization and the maximum entropy pro-
cedure underlying Gibbsian statistical mechanics [4,73],
here, the thermalization process is shown to ignore the
usual constraints dictated by energy (Hamiltonian) and
momentum conservation. This establishes a novel scenario
of thermalization relevant to a large variety of systems, e.g.,
optical polarization, magnet systems, waves in nonlinear
periodic lattices, or the resonant three-wave interaction.
This unconstrained thermalization process, as well as the
critical phase-correlation effects underlying the incoherent
recurrences, constitutes remarkable phenomena that can
shed new light on the fundamental origins of irreversibility
in turbulent systems operating far from thermodynamic
equilibrium.

II. RECURRENCES FAR FROM INTEGRABILITY

A. Nonlinear Schrödinger model

We study the role of convection among two incoherent
waves by considering a system of two coupled NLSEs,
which is known as a universal model for the description of
vector phenomena in nonlinear wave systems. This model
describes, for instance, the evolution of the orthogonal
polarization components of a light beam that propagates
in an optical fiber [74]. It also describes coupled light
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and Langmuir waves in plasma [75], deep ocean waves
propagating along two different directions in hydrodynam-
ics [76], systems of coupled electrical oscillators [77], or
the matter wave dynamics of binary mixtures of different
types of Bose-Einstein condensates [78]. The model can be
written in the following form:

i∂tu ¼ −∂xxu − iw∂xuþ ðjuj2 þ κjvj2Þu; ð1Þ

i∂tv ¼ −η∂xxvþ iw∂xvþ ðjvj2 þ κjuj2Þv; ð2Þ

where uðx; tÞ and vðx; tÞ denote the amplitudes of the
interacting waves. For convenience, we write the NLSE
in dimensionless form; that is, we normalize the problem
with respect to the nonlinear time, τ0 ¼ 1=ðγ0NÞ, and the
“healing” length, Λ ¼ ffiffiffiffiffiffiffiffiffi

βuτ0
p

, where γ0 is the nonlinear
coefficient, βu (βv), the dispersion coefficient of u (v), and
N is the total energy of the waves. In these units, κ denotes
the ratio between the cross- and self-interaction coefficients
and η ¼ βv=βu. Note that the equations are written in a
reference frame of average velocity of u and v, so that
the parameter w denotes the amount of convection in
the system. The initial conditions are incoherent waves
modeled by random fields that exhibit fluctuations that
are statistically homogeneous in space. In the numerical
simulations, we consider periodic boundary conditions
over the interval ½0; L�, with L that is much larger than
any characteristic length scale of the problem.
The NLSE conserves three important quantities: the

partial “energies” Nφ ¼ ð1=LÞ R L
0 jφj2dx, with φ ¼ u, v,

and the Hamiltonian, ~H ¼ ~Eþ ~U, which has a linear
contribution

~E ¼ 1

L

Z
L

0

wð ~Pv − ~PuÞ þ j∂xuj2 þ ηj∂xvj2dx; ð3Þ

where ~Pφ ¼ Imðφ∂xφ
�Þ, with φ ¼ u, v, and a nonlinear

contribution

~U ¼ 1

L

Z
L

0

1

2
ðjuj4 þ jvj4Þ þ κjuj2jvj2dx: ð4Þ

Note that the linear contribution to the Hamiltonian that is
due to convection (first term in ~E) is not positive or negative
definite, a feature that will be shown to play a key role in
the process of unconstrained thermalization. Of course, the
total “energy,” N ¼ Nu þ Nv, is preserved as well, and we
haveN ¼ 1within our normalization. Equations (1) and (2)
are integrable for η ¼ κ ¼ 1 (or η ¼ κ ¼ −1), regardless of
the parameter w [15]. In the following, we consider the
nonintegrable case—in particular, we consider the typical
value of κ ¼ 2=3, which corresponds to a realistic exper-
imental configuration in an optical fiber system [74].

B. Inapplicability of the wave turbulence theory

The effect of Fermi-Pasta-Ulam recurrence of purely
coherent waves has been widely studied in the framework
of NLSE models in relation to the Benjamin-Feir modula-
tional instability [16,18–20,72]. As a result of this insta-
bility, the initial coherent waves (usually called “pump
waves”) lead to the amplification of two spectral sidebands
[74]. Once the sidebands reach an amplitude comparable to
the pump amplitudes, the system enters the nonlinear
regime of modulational instability, which is characterized
by a reversible transfer of energy from the sidebands to
the pumps. This leads to the well-known phenomenon of
coherent recurrences mediated by modulational instability
[16,18–20,72]. In the following, we study the existence of
recurrence behaviors by considering initial random waves.
We anticipate that the effect of incoherent recurrence
we present is also related to a modulational instability,
although this instability is of a different nature than the
usual incoherent modulational instability [46,67–72].
We consider a highly incoherent (i.e., weakly nonlinear)

regime where the strong randomness of the waves makes
linear dispersive effects dominant with respect to nonlinear
effects, j ~Ej ≫ ~U at t ¼ 0. The initial incoherent waves have
a Gaussian spectrum [∼ exp½−k2=ð2σ2Þ�] with independent
random spectral phases; i.e., they obey Gaussian statistics
with a correlation length λc ∼ 1=σ. The simulations reveal
the existence of incoherent recurrences that originate in an
instability apparently similar to the modulational instability
of fully coherent waves [74]. Hence, we study the incoher-
ent recurrences as in the coherent case and analyze the
energy transfer among the incoherent pumps ðup; vpÞ and
incoherent sideband components ðus; vsÞ, whose corre-
sponding spectra are centered at the maximum growth rate
of the (coherent) modulational instability, i.e., at k ¼ �w
for w ≫ 1. We thus split the fields as

uðx; tÞ ¼ upðx; tÞ þ usðx; tÞ expð−iwxÞ; ð5Þ

vðx; tÞ ¼ vpðx; tÞ þ vsðx; tÞ expðþiwxÞ; ð6Þ

where w is sufficiently large so that the incoherent pump
and sideband components have no spectral overlap and can
be discerned—we recall that the spectral bandwidth is of
the order σ ∼ 1=λc ∼ 1, while w ≫ 1. The analysis reveals
that the pump and sideband components remain discerned
throughout the evolution.
We report in Fig. 1(a) the evolution of the energy ratio

between a pump and its sideband, NupðtÞ=Nu, where
we remind the reader that Nu ¼ Nup þ Nus ¼ const,

with NupðtÞ ¼ ð1=LÞ R L
0 jupj2dx. For moderate convection

w ∼ 1, we recover the expected result where the recurrences
are inhibited by the incoherence of the waves. In this case,
the system exhibits an irreversible evolution characterized
by a monotonous process of entropy production, which is
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illustrated in Fig. 1(b) (black line). This is consistent with
the H theorem of entropy growth, ∂t

~S ≥ 0, where the
nonequilibrium entropy is defined by ~S ¼ ~Su þ ~Sv, with

~SφðtÞ ¼
Z

log½ ~nφðk; tÞ�dk; ð7Þ

where ~nφðk; tÞ are the spectra of the waves (φ ¼ u, v)
[36,38–40]; see Appendix A.
In contrast to this monotonous behavior, for large

convection w ≫ 1, the energy ratio NupðtÞ=Nu exhibits
recurrences: After some time, the energy in the incoherent
sideband is reversibly transferred back to the incoherent
pump, as illustrated in Fig. 1(a) (red line). This is
characterized by a reduction of nonequilibrium entropy
that violates the H theorem; see Fig. 1(b) (red line). The
wave turbulence theory cannot explain this recurrence
phenomenon, despite the fact that it occurs in the weakly
nonlinear regime.
We confirm that the recurrences take place in the weakly

nonlinear regime by different methods. We first note that in
the simulation reported in Fig. 1, the ratio between non-
linear and linear energies is of the order ~U= ~E ∼ 10−1

throughout the whole evolution (0 < t < 200). In addition,
we analyze separately the contribution to the linear energy
that is due to convection ( ~E1) and the contribution due to
dispersion ( ~E2), with ~E ¼ ~E1 þ ~E2. The analysis reveals
that near the recurrence (i.e., for t≳ 50) the ratio is of the

order ~U=j ~E1;2j ∼ 10−2, which confirms the weakly non-
linear regime of interaction. This weak interaction has also
been confirmed by the fact that Gaussian statistics is
maintained throughout the evolution. This is illustrated
by the analysis of the probability density function (PDF) of
the intensity of the waves, which exhibits the purely
exponential law inherent to Gaussian statistics, as
shown in Fig. 1(c). We also study the evolution of the
kurtosis, which is a parameter that measures the deviation
from Gaussian statistics (Kφ ¼ hjφj4i=ð2hjφj2i2Þ − 1,
with φ ¼ u, v). As illustrated in Fig. 1(d), the kurtosis
remains smaller than a few percent, and thus confirms the
Gaussian statistics of the waves throughout the incoherent
recurrences.
Note the presence of a peak in the kurtosis at t ¼ 50, which

occurs almost at the same time that the time derivative of
the entropy becomes negative, i.e., when the energy in the
sideband component us reaches its maximum. This may be
ascribed to a deviation from Gaussianity of us during its
rapid (exponential) amplification from the pumps ðup; vpÞ,
while for large times, Gaussian statistics is restored by the
dominant role of dispersion with respect to nonlinear effects
[see Fig. 1(d) for t≳ 60]. Note, however, that the peak in the
kurtosis at t ¼ 50 is too small to significantly affect Gaussian
statistics, as confirmed by the corresponding probability
density reported for t ¼ 50 in Fig. 1(c) (blue circles).

C. Discussion on the integrable limit

As already mentioned in the Introduction, the Fermi-
Pasta-Ulam recurrence is usually considered as a phenome-
non that originates in the property of integrability. This
statement should be interpreted in the sense that a non-
integrable system, which is “tangent” to an integrable one,
behaves as integrable, at least for some amount of time, a
property that has been discussed with care in recent works
[10,11]. However, it is also important to note that, despite
common thought, there is no exact result (no theorem) on
the connection between recurrence and integrability.
On the other hand, it is well known that the inverse

scattering transform allows one to study an integrable
system and that it is possible to develop perturbation
methods to analyze almost integrable systems. For mod-
erate times, one can then determine the effects of small
perturbations on the evolution of an exactly solvable
nonlinear evolution equation. It was first done for the
Zakahrov-Shabat inverse scattering transform, that can be
applied to the scalar NLSE [79]. The Kaup-Karpman-
Maslov perturbation scheme was then extended to other
systems, such as the (Manakov) vector NLSE [80,81]. In
our setting, if κ and η are close to one, this approach would
predict that the NLSE [Eqs. (1) and (2)] departs from
integrability after propagation times of the order of
t� ∼ 1=maxðjκ − 1jN; jη − 1j=σ2Þ. In our case, however,
we observe incoherent recurrences even for values of κ far
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FIG. 1. Incoherent recurrences. Evolutions of the (a) power
ratio NupðtÞ=Nu and (b) total entropy ~SðtÞ, for w ¼ 5 (black line),
w ¼ 9 (blue line), and w ¼ 25 (red line) from NLSE simulations:
The recurrences get more pronounced as w increases, which
violates the H theorem of entropy growth (σ ¼ 0.47, η ¼ 1).
(c) Probability density function (PDF) in logarithmic scale of the
intensity juj2 of the wave at t ¼ 50 (blue circles) and t ¼ 60
(dashed red line) corresponding to w ¼ 25 [red lines in (a) and
(b)]: Gaussian statistics is preserved throughout incoherent
recurrences, as confirmed by the evolution of the kurtosis (d).
Note that the dashed dark line in (c) shows the purely exponential
law inherent to Gaussian statistics of the wave amplitudes.
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from one (κ > 5), which means that the system is far from
integrability even for short times.
In addition, by considering the integrable limit

(η ¼ κ ¼ 1), the numerical simulations reveal that the

incoherent recurrences disappear without strong convection
(for w ∼ 1). This evidences the fact that the incoherent
recurrences do not originate in the integrability of the
NLSE [Eqs. (1) and (2)].

(a) (b) (c)

C

FIG. 2. Microscopic vs macroscopic fluctuations. NLSE simulation showing the spatiotemporal evolution of jusj2ðx; tÞ (a) and
corresponding spatial profile of the intensity at t ¼ 35 (b) [see the dashed line in (a)]. Panel (c) shows a zoom on a particular small region
within the blue rectangle in (b): Aside from the microscopic fluctuations with correlation length λc ∼ 1 (c), the waves exhibit
macroscopic fluctuations with the large scale lc ∼ 4πw=κ ≃ 103 (b). The envelope of the macroscopic fluctuations is reported by the
dark bold line in (b), which denotes the spatial profile of the correlator nusðx; t ¼ 35Þ, whose dynamics is coupled to the other correlators
ðnφj

; mμÞ by the phase-correlation kinetic equations; see Eqs. (11) and (12).

FIG. 3. Creation of local phase correlations. (a) Spatiotemporal evolution of the product jupðx; tÞv�sðx; tÞj obtained from NLSE
simulations, showing that phase correlations grow and exhibit a nonhomogeneous statistics. (b),(c) Spatiotemporal evolutions of the
phases of the random waves in local spatial regions of size lc [white rectangles in (a)]: The similarity of the phases of the random waves
up and vs reflects their strong correlations [note that the space-time windows in the phase plots (b),(c) correspond to those in the white
rectangles in (a)]. (d),(e) Evolutions of the normalized phase correlation coefficient ϱuvðtÞ given in Eq. (8) (blue line), and power ratio
NupðtÞ=Nu (red line), in local spatial regions [white rectangles in (a)]. Note that there are no correlations between the initial random
waves, ϱuvðt ¼ 0Þ≃ 0: As a result of the phase-correlation modulational instability [Eq. (16)], the correlation grows up to almost unity,
ϱuv ≃ 1. The dashed dark lines in (d) and (e) show the correlation coefficient ϱuvðtÞ computed over the whole numerical spatial window,
showing that there is no global phase correlation, ϱuvðtÞ≲ 0.1: A complete phase correlation (ϱuv ≃ 1) solely emerges in local spatial
regions of scale lc, which in turn leads to almost complete local recurrences, Nup=Nu ∼ 1 [red lines in (d) and (e)]. Parameters are
σ ¼ 7.5, η ¼ 1, κ ¼ 2=3, w ¼ 25.
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D. Creation of correlated fluctuations

The simulations do not reveal any apparent phase
coherence among the random waves, a feature that is
confirmed by a global analysis of phase correlations. In
order to properly discuss this aspect, we first note that the
random waves exhibit a double structure: Aside from the
microscopic fluctuations with correlation length λc ∼ 1,
the waves exhibit macroscopic fluctuations with a large
length scale lc ∼ 103. The nonhomogeneous nature of the
random waves is illustrated in Fig. 2, which clearly shows
the separation of scales between the microscopic and
macroscopic fluctuations. The important point to note is
that, considering individual local spatial regions of quasi-
homogeneous statistics with typical size lc, we find that
a strong phase correlation emerges among the random
waves. This unexpected result is illustrated in Fig. 3,
which reports the global spatiotemporal evolution of
jupðx; tÞv�sðx; tÞj, as well as the evolutions of the phases
in the local spatial regions defined by the length scale lc;
see the two white rectangles in Fig. 3(a). We can notice a
remarkable similarity among the phases of the random
waves in Figs. 3(b) and 3(c), which reflects the emergence
of a strong correlation among them.
We confirm this fact through the analysis of the

normalized phase correlation coefficient

ϱuvðtÞ ¼
jhupv�siðtÞj

½NupðtÞNvsðtÞ�1=2
: ð8Þ

In order to distinguish the local and global phase correla-
tions, we consider two different spatial averages,
hupv�siðtÞ ¼ ð1=L0Þ

R L0

0 upðx; tÞv�sðx; tÞdx: For the global
analysis, the average is taken over the whole numerical
window, L0 ¼ L, while for the local analysis, L0 ¼ lc
denotes the size of the rectangular regions in Fig. 3(a).
In contrast to the global analysis [dark dashed line in
Figs. 3(d) and 3(e)], in local spatial regions we observe the
emergence of a strong phase correlation with ϱuv ∼ 1 [blue
lines in Figs. 3(d) and 3(e)]. This in turn leads to nearly
complete recurrences of the incoherent waves, as illustrated
in Figs. 3(d) and 3(e) (red lines), which shows that the
energy in the sideband is almost completely transferred
back to the pump wave. This study then reveals that the
incoherent recurrence phenomenon originates in the spon-
taneous creation of strong local correlations among the
random waves.

III. PHASE-CORRELATION KINETIC THEORY

A. Normal correlator and anomalous phase correlator

We explain the incoherent recurrences by developing a
kinetic theory that takes into account nonhomogeneous
phase correlations among the random waves. More spe-
cifically, the derivation of the kinetic equations follows the

general procedure based on the wave turbulence theory:
Considering the weakly nonlinear regime, linear dispersion
effects dominate nonlinear effects and bring the random
waves close to Gaussian statistics, which allows one to
derive a set of closed equations for the second-order
moments of the fields [36,38–40]. However, at variance
with the standard wave turbulence approach that neglects
phase correlations, we introduce anomalous phase corre-
lators that account for phase correlations among copropa-
gating random waves—see Appendix B for a detailed
derivation of the phase-correlation kinetic equations.
Note that anomalous correlators have been introduced to
describe parametrically unstable magnet systems [37], or
coupled NLSE systems [52]. However, the mechanism of
convection induce phase correlations reported here (w ≫ 1)
has not been discussed in these previous works. In
particular, in Ref. [52] a set of equations for the correlations
describing a reversible transfer of coherence among the
waves was derived. However, such a system consists of a
set of ordinary differential equations describing a dynamics
of the waves which is uncoupled in both the spatial and
frequency domains. Accordingly, the system is inherently
unable to describe spatial effects, such as the recurrences
mediated by modulational instablity or the unconstrained
thermalization process we discuss below. We anticipate that
the spatiotemporal kinetic formulation we develop here for
the coupled evolutions of the conventional and anomalous
phase correlators is found in quantitative agreement with
the simulations, without using adjustable parameters.
We define the usual “normal correlators” that denote the

spectra of the waves:

nφj
ðx; k; tÞ ¼

Z
Bφj

ðx; ξ; tÞ expð−ikξÞdξ; ð9Þ

where Bφj
ðx; ξ; tÞ ¼ hφjðxþ ξ=2; tÞφ�

jðx − ξ=2; tÞi are the
autocorrelation functions ðφ ¼ u; v; j ¼ p; sÞ. Note that,
because the waves exhibit fluctuations that are not
homogeneous in space, the spectra depend on the spatial
variable x. In addition, we introduce the spectra associated
with the “anomalous phase correlators” for the pair of
copropagating waves:

mμðx; k; tÞ ¼
Z

Γμðx; ξ; tÞ expð−ikξÞdξ; ð10Þ

with μ¼uv, vu, where Γuvðx; ξ; tÞ ¼ hupðxþ ξ=2; tÞ×
v�sðx − ξ=2; tÞi and Γvuðx; ξ; tÞ ¼ husðx þ ξ=2; tÞ×
v�pðx − ξ=2; tÞi. Performing a multiscale expansion with
the small parameter 1=w ≪ 1, we derive in Appendix B the
following phase-correlation kinetic equations:

ð∂t þ w∂xÞnupðx; k; tÞ ¼ Gn½mμ�; ð11Þ

ið∂t − w∂xÞmvuðx; k; tÞ ¼ Gm½nφj
; mμ�; ð12Þ
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while the evolutions of the sideband spectra are
deduced from those of the pumps [e.g.,
nusðx; k; tÞ ¼ nvpðk; t ¼ 0Þ − nvpðx; k; tÞ]. The functionals

readGn½mμ�¼−2κImfmuvðx;k;tÞ½m0�
uvðx;tÞþm0�

vuðx;tÞ�gand
Gm½nφj

;mμ� ¼ −2mvuðx;k;tÞfð2−κÞ½n0vpðx;tÞ− n0upðx;tÞ�þ
ð1−κ=2ÞðNu−NvÞg−κ½m0

vuðx;tÞþm0
uvðx;tÞ�½nvpðk;t¼0Þ−

2nvpðx;k;tÞ�þð1−ηÞk2mvuðx;k;tÞ, where we define

n0φj
ðx; tÞ ¼ Bφj

ðx; ξ ¼ 0; tÞ; ð13Þ

m0
μðx; tÞ ¼ Γμðx; ξ ¼ 0; tÞ: ð14Þ

Thecorrespondingequations fornvpðx; k; tÞandmuvðx; k; tÞ
can be deduced from Eqs. (11) and (12) through a
simple substitution; see Appendix B. It is important to note
that, in contrast to the wave turbulence formalism (see
Appendix A), the phase-correlation kinetic equations (11)
and (12) are formally reversible in time.

B. Phase-correlation modulational instability

1. Incoherent modulational instability

Here, we show that the linearized phase-correlation
kinetic equations (11) and (12) predict a modulational
instability characterized by an exponential growth of phase
correlations. It is important to discuss this phenomenon
within the general context of the modulational instability of
random waves. The “incoherent modulational instability”
refers to a phenomenon in which a statistical homogeneous
random wave can become unstable with respect to the
growth of weak statistical inhomogeneities, thus leading to
a periodically modulated pattern of the random wave. This
phenomenon is fundamental and has been widely studied in
different contexts [46,67–72,82–86]. At variance with
the (Benjamin-Feir) modulational instability of purely
coherent waves, the incoherent modulational instability
is characterized by a threshold: The instability is sup-
pressed in the weakly nonlinear regime when the incoher-
ence of the waves is increased beyond some critical value.
This property is due to a Landau damping, which has a
stabilizing effect that tends to suppress the modulational
instability [46,67–70,72]. This stabilizing effect is not an
ordinary dissipative damping, but an energy-conserving
effect that created its own share of confusion about 40 years
ago [67]. It is interesting to remark that in the nonlinear
stage of the incoherent modulational instability, the system
can exhibit recurrence behaviors that can be viewed as the
stochastic counterpart of the Fermi-Pasta-Ulam recurrence,
a property discussed in detail in the framework of Alber’s
equation [66]. Note that such recurrences do not occur for
strongly incoherent waves, because in the weakly nonlinear
regime, the modulational instability is suppressed by the
Landau damping—the development of the instability
requires that nonlinear effects are stronger than linear

dispersion effects (i.e., a Benjamin-Feir index, BFI ≥ 1,
in one spatial dimension [71,72]).

2. Suppression of Landau damping

Here, we present a phenomenon of incoherent modula-
tional instability, which is of a different nature than that
discussed above [46,67–72,82–86]. First of all, the modula-
tional instability occurs solely for the phase correlations
mμðx; k; tÞ, so that the two sidebands ðus; vsÞ are stable and
do not grow. Furthermore, we identify a regime in which
Landau damping is completely suppressed, so that the
modulational instability does not exhibit any threshold:
The phase correlations grow efficiently even for strongly
incoherent waves. At variance with the stochastic recur-
rences predicted in Ref. [66], here, the suppression of
Landau damping allows the recurrences to take place in the
weakly nonlinear regime, which leads to a violation of the
H theorem of entropy growth.
We start to analyze Eqs. (11) and (12) by considering the

initial regime of interaction in which phase correlations
are negligible and the energy in the sidebands is much
smaller than in the pumps (nφp

≫ nφs
, nφp

≫ jmμj for small
interaction times, t≲ 20). The linearized equations (11)
and (12) can be solved by the Fourier-Laplace tech-
nique, m̂μðp;k;λÞ¼

R
∞
0 dt

R
dxmμðx;k;tÞexpð−λt− ipxÞ,

which gives the growth rate λ of the phase-correlation
modulational instability:

1 ¼ iκ
2π

Z �
nupðk; t ¼ 0Þ
λ − i ~Δ−ðp; kÞ

−
nvpðk; t ¼ 0Þ
λ − i ~Δþðp; kÞ

�
dk; ð15Þ

where ~Δ�ðp; kÞ ¼ ðη − 1Þk2 � pw − 2Δ, with Δ ¼
ðNu − NvÞð1 − κ=2Þ. As illustrated in Fig. 4(a), Eq. (15)
reveals that the incoherence of the pumps significantly
reduces the growth rate of the phase-correlation instability.
This property is due to a Landau damping effect, which
is known to introduce a threshold in the modulational
instability of random waves [46,67–72]. However, the
unexpected result revealed by Eq. (15) is that such effective
damping is completely suppressed for η ¼ 1, so that a
strong phase correlation emerges in the system regardless
of the amount of pump incoherence. In this case, the phase-
correlation growth rate reads

λ1ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2=4 − ðwp − κ=2Þ2

q
; ð16Þ

where we consider, for simplicity, the case where
the two pump waves have the same initial spectra
[nvpðk; t ¼ 0Þ ¼ nupðk; t ¼ 0Þ].
In this instability, the sideband components ðus; vsÞ

are linearly stable: Their amplifications are delayed by a
significant time [see Fig. 4(b), τd ≃ 13] because their
growths are driven by the phase correlations [mμðx; tÞ]
in the subsequent nonlinear stage of the phase-correlation
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instability. Such a time delay simply results from Eq. (11):
the sideband growths can only start once the nonlinear
product m0

uvðx; tÞm0�
vuðx; tÞ reaches the sidebands’ noise

level.
The phase-correlation instability explains the origin of

the macroscopic nonhomogeneous fluctuations of the
waves observed in the NLSE simulations in Figs. 2 and 3.
This is simply due to the fact that the homogeneous mode
of the instability has zero growth rate, λ1ðp ¼ 0Þ ¼ 0; see
Fig. 4(a). Note that in this way the incoherent recurrences
cannot take place homogeneously in space. More precisely,
the maximum growth rate in Eq. (16) occurs at
pMI ¼ κ=ð2wÞ, so that the large length scale of macro-
scopic (nonhomogeneous) fluctuations of the waves is

lc ≃ 2π=pMI ¼ 4πw=κ: ð17Þ

Note that since the interaction coefficient is typically of
order 1, κ ∼ 1, then lc ∼ w ≫ 1. The separation of scales
between microscopic fluctuations (with correlation length
λc ∼ 1) and macroscopic fluctuations (with lc ∼ 103) is
clearly visible in the NLSE simulations, as discussed in
Figs. 2 and 3.

C. Nonlinear stage of phase-correlation
modulational instability

1. Reduced form of phase-correlation kinetic equations

The incoherent recurrences take place in the nonlinear
stage of the phase-correlation modulational instability, as
discussed above through Figs. 1–3. To describe this
phenomenon, we remark the important fact that for η ¼ 1,
Eqs. (11) and (12) can be simplified by factorizing the

correlators into their spatial and spectral contributions.
Specifically, Eqs. (11) and (12) admit the following exact
solutions:

nφp
ðx; k; tÞ ¼ nφp

ðk; t ¼ 0Þn0φp
ðx; tÞ=Nφ; ð18Þ

for φ ¼ u, v, and

mμðx; k; tÞ ¼ nφp
ðk; t ¼ 0Þm0

μðx; tÞ=Nφ; ð19Þ

for μ ¼ uv, φ ¼ u (or μ ¼ vu, φ ¼ v). Note that this
form of the solutions has a simple meaning, namely,
that the shapes of the (averaged) spectral profiles of the
waves ðuφj

;vφj
Þ are preserved during their evolutions.

Accordingly, Eqs. (11) and (12) recover the simplified
closed form:

ð∂t þ w∂xÞn0upðx; tÞ ¼ G0
n½n0φ; m0

μ�; ð20Þ

ið∂t − w∂xÞm0
vuðx; tÞ ¼ G0

m½n0φ; m0
μ�; ð21Þ

and two similar equations for n0vpðx; tÞ and m0
uvðx; tÞ, while

n0φs
ðx; tÞ ¼ Nφ − n0φp

ðx; tÞ (φ ¼ u, v). The functionals read

G0
n½n0φ; m0

μ� ¼ −2κIm½m0
uvðx; tÞm0�

vuðx; tÞ� and G0
m½n0φ;m0

μ�¼
−m0

vuðxÞfð2ðκ−1Þ½Nv−2n0vpðxÞ�þð2−κÞ½Nu−2n0upðxÞ�g−
κm0

uvðxÞ½Nv−2n0vpðxÞ�. The reduced phase-correlation
kinetic Eqs. (20) and (21) provide an accurate description
of the incoherent recurrences and their spatial nonhomo-
geneous nature, as revealed by a remarkable agreement
between the kinetic equations (20) and (21) and the NLSE.
This is illustrated in Figs. 5(c) and 5(d), which report a
direct comparison of the evolutions of the normal and
anomalous correlators (n0φj

,m0
μ), obtained by simulations of

the NLSE and the kinetic equations (20) and (21). Note that
this good agreement is obtained without using adjustable
parameters.

2. Poincaré-Stokes variables: Relevance and limits

It is interesting to note that the reduced phase-correlation
kinetic equations (20) and (21) can be written in a compact
form by using the Poincaré-Stokes variables. The Stokes
vectors are defined by

U ¼ 2fImðm0
uvÞ;− ~n0up ;Reðm0

uvÞg; ð22Þ

V ¼ 2fImðm0
vuÞ; ~n0vp ;Reðm0

vuÞg; ð23Þ

where ~n0φp
ðx; tÞ ¼ Nφ=2 − n0φp

ðx; tÞ (φ ¼ u, v), and evolve

on the surface of two spheres of radii U2
0 ¼

P
3
i¼1 U

2
i ¼ N2

u

and V2
0 ¼

P
3
i¼1 V

2
i ¼ N2

v. The phase-correlation kinetic
equations (20) and (21) can then be recast in the following
compact form:
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FIG. 4. Phase-correlation modulational instability. (a) Growth
rate of phase-correlation instability Re½λðpÞ� from Eq. (15) for
η ¼ 1 (blue line), η ¼ 1.01, σ ¼ 7.5 (black line), η ¼ 1.1, σ ¼ 2
(red line): Landau damping is suppressed for η ¼ 1, thus leading
to an efficient phase-correlation growth. The length scale of
macroscopic (nonhomogeneous) fluctuations is lc ≃ 2π=pMI;
see Fig. 2 and Eq. (17). (b) Temporal evolution of the energy in
the sideband (us) in the presence of coherent (dashed black line)
and incoherent (solid blue line) pump waves. When the pump
waves ðup; vpÞ are incoherent, the phase correlations are un-
stable, while the sideband components are stable, so that the
growth of us is delayed by a significant time, τd ≃ 13 (solid blue
line). In contrast, when the pump waves are coherent, the
standard modulational instability leads to an instantaneous
growth of the sideband us (dashed black line).
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ð∂t þ w∂xÞU ¼ U × IðU þ VÞ; ð24Þ

ð∂t − w∂xÞV ¼ V × IðV þ UÞ; ð25Þ

with the diagonal matrix I ¼ diagðκ; 2 − κ; κÞ. This
formulation unveils the Hamiltonian structure of the
phase-correlation kinetic equations; see Appendix C. The
Hamiltonian can be split as follows:

H ¼ HU þHV þHint; ð26Þ
where the cross-interaction term is Hint¼−

R
V ·IUdx,

while the self-interaction contributions read: Hj¼EjþUj,
j ¼ U, V, with UU ¼ − 1

2

R
U · IUdx, UV ¼−1

2

R
V ·IVdx,

EU ¼ −wPU, EV ¼ wPV , and Pj ¼
R
Pjdx, j ¼ U;V. In

addition, Eqs. (24) and (25) conserve the momentum,

P ¼
Z

PU þ PVdx; ð27Þ

as well as the “magnetization,”

M ¼ −
1

2

Z
U2 þ V2dx; ð28Þ

as discussed in detail in Appendix C.
The Poincaré-Stokes formalism proved efficient to

describe nonlinear polarization phenomena by considering
essentially coherent optical waves; see, for instance,

Refs. [87–89]. However, it is important to note that, here,
the application of the Poincaré-Stokes formalism exhibits
some important differences with respect to the usual
approaches. (i) The Stokes vector has no physical inter-
pretation in terms of polarization effects, because the
Stokes variables do not refer to a single wave component,
but involve a cross-correlation among different components
[e.g., upðx; tÞ and vsðx; tÞ for U]. (ii) In contrast to usual
approaches, here, the Stokes vector denotes the averaged
envelopes that describe the macroscopic nonhomogeneous
fluctuations of the turbulent waves. (iii) The Stokes
formalism [Eqs. (24) and (25)] is valid only for η ¼ 1
and a specific initial condition of the form Uðx;t¼0Þ¼
ð0;U2;0Þ, Vðx; t ¼ 0Þ ¼ ð0; V2; 0Þ, whereU2ðx;t¼0Þ¼U0

and V2ðx; t ¼ 0Þ ¼ V0 are constant. For general initial
conditions, we deal with eight coupled real equations for
ðnφ; mμÞ, which makes the Stokes parameters irrelevant
to our problem. In spite of these limits, we show that the
Stokes formulation proves convenient to discuss the ther-
malization process presented in the following section.

IV. UNCONSTRAINED THERMALIZATION

A. Secondary turbulent dynamics for the correlators

The simulations of the phase-correlation kinetic equa-
tions (20) and (21) reveal that, for long interaction times,
the system enters a second stage characterized by an
irreversible evolution toward equilibrium, as illustrated in

FIG. 5. Long-term evolution: Secondary turbulent regime and unconstrained thermalization. (a),(b) Simulations of the phase-
correlation kinetic equations (20) and (21) showing the evolutions of the normal correlator n0up (a) and anomalous phase correlator jm0

uvj
(b): After a few incoherent recurrences ðt≳ 80Þ, the correlators enter a secondary turbulent regime. (d),(e) Corresponding evolutions of
the spatial averages of the correlators hn0upiðtÞ (c) and hjm0

uvjiðtÞ (d), obtained from the simulations of the phase-correlation kinetic
equations (20) and (21) (dashed red line) and NLSE (blue line): For large times (t≳ 150), the fields relax to the equilibrium state
predicted by the theory (horizontal black dashed lines); see Eqs. (35) and (36). Parameters are Nu ¼ 0.6, Nv ¼ 0.4, κ ¼ 2=3, w ¼ 54.
Unexpectedly, this equilibrium state is not constrained by Hamiltonian and momentum conservation (see Sec. IV).
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Figs. 5(a) and 5(b) for t≳ 80. In this regime, the averaged
envelopes [n0φj

ðx; tÞ] that describe the nonhomogeneous
fluctuations of the waves themselves undergo strong turbu-
lent fluctuations. This secondary turbulent regime deterio-
rates the phase information stored in the phase correlations
m0

μðx; tÞ, which have been shown to be responsible for the
incoherent recurrences. It turns out that, despite the formal
reversibility of Eqs. (20) and (21), the system exhibits an
irreversible process of relaxation to equilibrium.
We describe this second turbulent stage of the system by

developing a secondary statistical analysis on the equations
that rule the evolution of the correlators ðn0φj

; m0
μÞ. In this

respect, it is important to note that the phase-correlation
kinetic equations (20) and (21) do not exhibit quadratic
dispersion relations; i.e., they do not exhibit second-order
spatial derivatives. This means that the system [Eqs. (20)
and (21)] is weakly dispersive, with purely linear acoustic-
like dispersion relations. In this way, the highly nonlinear
turbulent regime illustrated in Fig. 5 cannot be described by
a weakly nonlinear approach, such as the wave turbulence
theory. The nonlinear character of this secondary turbulent
regime will be confirmed by the probability density
functions of the correlators ðn0φj

; m0
μÞ, which will be shown

to be of different nature than Gaussian statistics. Note that
secondary statistical analysis of a primary mean-field
approximation of the problem has been considered in
magnet systems under parametric excitation [37].

B. Gibbsian statistical mechanics on the correlators

We study the equilibrium properties of the phase-
correlation kinetic equations (20) and (21) by following
a statistical mechanics approach based on the maximization
of the Gibbs entropy, i.e., a functional S½ρ�¼−

R
ρlogðρÞdK

of the PDF ρðKÞ that operates over the whole phase space,
as discussed in Appendix D. For this purpose, it proves
convenient to make use of the phase-correlation kinetic
equations written in terms of the Poincaré-Stokes variables
[Eqs. (24) and (25)], which have been shown to conserve
the Hamiltonian H, the momentum P, and the “magneti-
zation” M. According to standard statistical mechanics
and information theoretic principles, the equilibrium PDF
is obtained by maximizing S½ρ� under the constraints that
the phase-space evolution takes place on the shell that
conserves H, P, and M,

ρ ∼ expð−βH − νP − γMÞ; ð29Þ
where ðβ; ν; γÞ are the inverse temperatures (Lagrangemulti-
pliers) associated to ðH;P;MÞ given in Eqs. (26)–(28)
[4,73].

C. Zero inverse temperatures

In this section, we show that the statistical mechanics
approach of the phase-correlation kinetic equations (20)
and (21) [or Eqs. (24) and (25)] reveals the existence of an

irreversible process of thermalization that is quite general,
in the sense that it is relevant to a large class of weakly
dispersive wave systems, as we discuss below in more
detail (see Sec. VA). Such a thermalization process is
unconstrained in the sense that it is not dictated by the
usual laws of energy and momentum conservation; i.e.,
the equilibrium state is characterized by zero inverse
temperatures:

ν ¼ ∂S=∂P ¼ 0; β ¼ ∂S=∂H ¼ 0: ð30Þ

To avoid confusion, we clarify that this process of uncon-
strained thermalization does not occur for the microscopic
fluctuations of the random waves ðu; vÞ (with correlation
length λc ∼ 1), but for their macroscopic nonhomogeneous
fluctuations (nφj

,mμ) (with correlation length lc ∼ w ≫ 1),
whose dynamics is ruled by the phase-correlation kinetic
equations (20) and (21). As a remarkable result, the
unconstrained thermalization is shown to characterize
the equilibrium properties of the waves ðu; vÞ ruled by the
NLSE [Eqs. (1) and (2)], such as the amount of energy
shared between the pumps and respective sidebands once
equilibrium is reached.
In the following, we discuss two different arguments

that explain the unexpected zero inverse temperatures
[Eq. (30)].

1. First argument: Helix structure

The first argument is based on the idea that the
constraints imposed by the conservation of Hamiltonian
and momentum have no influence on the entropy S. This
stems from the simple observation that any surpluses of H
and P can be stored by “helix” structures that are arbitrarily
small in space.
Consider a small spatial subsystem of the whole system

that extends from x1 to x1 þ Δx. Some arbitrary functions
are assigned to the field ðU2; αU; V2; αVÞ, where αj
simply denote the azimuthal angles in cylindrical coordi-
nates; see Appendix IX B. The angle variables are supposed
to increase with constant rates ∂xαU ¼ a ¼ const,
∂xαV ¼ b ¼ const. This contributes

ΔP ¼ a
Z

x1þΔx

x1

U2dxþ b
Z

x1þΔx

x1

V2dx ð31Þ

to the total momentum and

ΔH ¼ wa
Z

x1þΔx

x1

U2dx − wb
Z

x1þΔx

x1

V2dx ð32Þ

to the Hamiltonian. It is obviously possible to assign any
values a and b to this helix structure, so that ΔH has an
arbitrarily large positive or negative value, while keeping
constant the momentum, ΔP ¼ 0. Alternatively, notice that
ΔP could also have any positive or negative value. We
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stress the idea that this property is fundamentally related
to the fact that, because of the convective nature of the
interaction (w ≠ 0), the sign of the Hamiltonian is unde-
termined and can be either positive or negative. The helix
structure can thus store any positive or negative amount of
H within an arbitrarily small region in space Δx. At the
same time, by virtue of its small size, the formation of such
a helix leads only to a negligible change of the entropy ΔS,
so we can associate it with a zero inverse temperature,
β ¼ ΔS=ΔH ¼ 0. On the other hand, the third conserved
quantity M is virtually unaffected, as it is proportional to
the small Δx but does not contain large values of a or b.
In other words, the system can store any positive or

negative amount of H or P in a helix, but only a negligible
amount ofM. The helix acts as a source or sink from which
the rest of the system can take an arbitrary amount of
Hamiltonian and momentum. This allows the rest of the
system to achieve the state of maximum disorder without
caring for constraints by Hamiltonian or momentum
conservation.
Note that this is similar to a first-order phase transition

with two coexisting phases. One phase is the narrow
helix that absorbs any positive or negative amount of
Hamiltonian and momentum, which is possible because
these quantities are unbounded and not positive (or
negative) definite. The second phase refers to a rapidly
fluctuating field that fills almost the entire system and that
always contains the right amount of energy and momentum
to maximize the entropy, as well as virtually all of M.
In this sense, the entropy is not constrained by H and P,
which means that both β and ν are zero.

2. Second argument: Thermodynamic
equilibrium property

An alternative argument for ν ¼ β ¼ 0 can be obtained
by considering a fundamental thermodynamic equilibrium
property, namely, that an isolated system at equilibrium
should only exhibit a uniform motion of translation (or
rotation) as a whole, while any macroscopic internal motion
is not possible at equilibrium [73]. This property means that
the maximum of entropy cannot afford to waste energy in
macroscopic motion; i.e., turning this energy into the
microscopic degrees of freedom creates more entropy. If
the system has a nonzero total momentum, this constraint is
satisfied with a minimum investment of energy when all
subsystems move with the same velocity. A schematic
illustration of this thermodynamic equilibrium property is
reported in Fig. 6.
We now proceed by following a reasoning similar to that

outlined in Ref. [73]. For this purpose, it proves convenient
to consider the phase-correlation kinetic model written in
terms of the Poincaré-Stokes variables, Eqs. (24) and (25).
First, we can divide the system into two macroscopic
subsystems corresponding to the two waves U and V, with
H ¼ HU þHV þHint; see Eq. (26). It is important to note

that in the second stage of unconstrained thermalization,
the interaction Hamiltonian Hint is averaged out by the
large convection among the two waves (ε ¼ 1=w ≪ 1 is the
small parameter of the problem), so that the contribution
of Hint results much smaller than the self-interaction
contributions, Hint ≪ HU;V [90]. This important property
is confirmed by numerical simulations, as revealed by the
good agreement between the numerics and the theoretical
equilibrium PDF [Eq. (D2)], in which U and V result
uncorrelated with each other.
Because of this weak interaction between U and V,

near equilibrium the additive entropy can be written in
the form S ¼ SU þ SV . Next, we split each Hamiltonian
into the corresponding linear and nonlinear contributions,
Hj ¼ Ej þ Uj, j ¼ U, V (note that the unconstrained
thermalization does not occur in the weakly nonlinear
regime, i.e., a priori jEjj ∼ jUjj, despite the fact that there is
a weak interaction between U and V). Proceeding as in
Ref. [73], the entropy of a subsystem is only a function
of its “internal energy,” Sj ¼ ŜjðHj − EjÞ, j ¼ U, V.
The total entropy as a function of the momentum has a
maximum; then by introducing the Lagrange multiplier ν,
we look for the maximum of F ¼ P

j¼U;VSj − νPj. Then
∂F=∂Pj ¼ 0 gives ν ¼ −β∂Ej=∂Pj [73].
Let us consider this result in the framework of classical

kinetic gas theory. Considering a mixture of two classical
gases of masses Mj, the dispersion relation is quadratic

FIG. 6. Property of equilibrium thermodynamics. Schematic
illustration of the collision of two incoherent waves with two
different velocities. After the collision, the two waves propagate
with the same average velocity, so as to prevent a relative internal
motion among the two waves: An isolated system at equilibrium
can only exhibit a uniform motion of translation as a whole, while
any macroscopic internal motion is not possible at equilibrium
[73]. This equilibrium thermodynamic property is verified for a
system of strongly dispersive (weakly nonlinear) waves, as
described by the wave turbulence theory [46]. However, this
property is not verified for weakly dispersive (strongly nonlinear)
waves ruled by the phase-correlation kinetic equations: A
maximum entropy state is achieved for ν ¼ β ¼ 0; see Eq. (30).
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Ej ¼ P2
j=ð2MjÞ, which gives Pj=Mj ¼ −ν=β: The two

subsystems propagate with the same velocity at equilib-
rium, Pj=Mj, which proves the above property of equi-
librium thermodynamics [73]. It is important to note that
the same equilibrium property holds for a system of weakly
nonlinear waves, in which dispersive linear effects domi-
nate nonlinear effects. More precisely, the wave turbulence
theory explicitly shows that a set of weakly nonlinear wave
packets (with quadratic dispersion relation) relax toward a
thermodynamic equilibrium state, in which all wave pack-
ets propagate with the same average velocity (see pp. 69–70
in Ref. [46]). In contrast to this weakly nonlinear regime,
the macroscopic envelope fluctuations ðnφj

; mμÞ evolve in
the nonlinear regime of interaction, because the corre-
sponding equations for such correlators are weakly
dispersive, as discussed in Sec. IVA. In other terms, the
phase-correlation kinetic equations exhibit a purely linear
dispersion relation: EU ¼ wPU, EV ¼ −wPV ; see Eq. (26).
In this way, ∂F=∂PU ¼ 0 gives ν ¼ −βw, whereas
∂F=∂PV ¼ 0 gives ν ¼ þβw, which thus leads to the
conclusion ν ¼ β ¼ 0. As a consequence, weakly disper-
sive systems like Eqs. [(20) and (21)] [or Eqs. (24) and
(25)] cannot satisfy the above equilibrium property, so that
the maximum entropy state is achieved with ν ¼ β ¼ 0.

D. Equilibrium PDFs for the normal
and anomalous correlators

According to the previous discussion on zero inverse
temperatures, β ¼ ν ¼ 0, the general form of the PDF
Eq. (29) reduces to ρ ∼ expð−γMÞ. Starting from this
reduced density, we compute the marginal PDFs of the
normal and anomalous phase correlators. Specifically,
the PDFs for n0φp

(φ ¼ u, v) are exponential truncated on
½0; Nφ�:

pðn0φp
Þ ¼ γ exp½sγðNφ=2 − n0φp

Þ�
2 sinhðγNφ=2Þ

Πð1 − 2n0φp
=NφÞ; ð33Þ

where s ¼ þ1 for φ ¼ u (s ¼ −1 for φ ¼ v) and ΠðxÞ ¼ 1
if x ∈ ½−1; 1� and 0 otherwise. For Nu ¼ Nv, then γ ¼ 0,
and the PDFs pðn0φp

Þ become uniform over ½0; Nφ�, which
contrasts with Gaussian statistics. On the other hand, the
marginal PDF for the anomalous phase correlator reads

pðjm0
μjÞ ¼

γjm0
μj coshðγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

φ=4 − jm0
μj2

q
Þ

sinhðγNφ=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

φ=4 − jm0
μj2

q Π
�
1 −

4jm0
μj

Nφ

�
;

ð34Þ

for ðμ ¼ uv;φ ¼ uÞ or ðμ ¼ vu;φ ¼ vÞ.
From the PDFs [Eqs. (33) and (34)], we obtain the

averages of the normal and anomalous correlators:

hn0φp
ieq ¼

Nφ

2
þ s
γ
−

sNφ

2 tanhðγNφ=2Þ
; ð35Þ

while

hjm0
μjieq ¼

πNφI1ðγNφ=2Þ
4 sinhðγNφ=2Þ

; ð36Þ

and hReðm0
μÞieq ¼ hImðm0

μÞieq ¼ 0, where I1ðxÞ is the first-
order modified Bessel function of first kind. The expres-
sions of the PDFs of the correlators and the corresponding
averages are found in good agreement with the simulations
of the phase-correlation kinetic equations (20) and (21), as
illustrated in Fig. 7.
We remark that the PDF distributions [Eqs. (33) and

(34)] are of a different nature than Gaussian statistics,
which corroborates the fact that the dynamics ruled by the
phase-correlation kinetic equations cannot be described by
a weakly nonlinear approach, such as the wave turbulence
theory. Let us recall that the above PDF distributions
describe the averaged envelopes of the macroscopic non-
homogeneous spatial fluctuations of the waves uðx; tÞ
and vðx; tÞ, while the underlying microscopic fluctuations
(on the small scale λc) ruled by NLSE [Eqs. (1) and (2)]
still exhibit Gaussian statistics. More precisely, the
phase-correlation kinetic equations (20) and (21) are
derived under the assumption that the correlators
½n0φj

ðx; tÞ; m0
μðx; tÞ� evolve with a macroscopic correlation

length scale, of the order lc ∼ w ≫ 1. During their
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FIG. 7. Unconstrained thermalization: PDFs of the correlators.
Equilibrium PDFs of the normal correlator n0up (a) and anomalous
phase correlator jm0

uvj (b), obtained from simulations of the phase
correlation kinetic equations (20) and (21). A good agreement is
obtained with the theory; see the equilibrium PDFs [Eqs. (33) and
(34)] in red lines. The equilibrium state is not constrained by
Hamiltonian and momentum conservation (Nu ¼ 0.6, Nv ¼ 0.4,
κ ¼ 2=3, w ¼ 54).
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relaxation to equilibrium, the typical correlation lengths of
½n0φj

ðx; tÞ; m0
μðx; tÞ� get smaller and smaller, so that there

exists some time beyond which such correlation lengths are
much smaller thanw, which thus invalidates the assumption
made to derive the phase-correlation kinetic equations. In
computing the PDFs of the correlators ðnφj

; mμÞ numeri-
cally, the simulations are stopped before the envelope
kinetic equations (20) and (21) break down, i.e., for spectral
widths not much larger than 2π=w (typically for t≲ 200).
The PDFs we compute numerically then approach the
corresponding PDFs predicted by our equilibrium theory
within some large, yet finite, time.
A remarkable result revealed by the unconstrained

thermalization of the correlators ðn0φj
; m0

μÞ is that it provides
an analytical expression of the energy shared between the
pumps and respective sidebands at equilibrium. This is
expressed by Eq. (35), which gives the amount of energy
in the pump components, hn0φp

ieq ¼ hjφpðx; tÞj2ieq, with
φ ¼ u, v, while the equilibria for the sidebands hn0φs

ieq are
deduced from energy conservation, Nφ ¼ const. These
analytical expressions of the pump and sideband energies
are found in quantitative agreement with NLSE simulations
without using adjustable parameters, as illustrated in Fig. 5.

V. DISCUSSION

In summary, we show that large convection among
weakly interacting random waves is responsible for a
phenomenon of incoherent recurrence that can occur far
from integrability and that originates in the spontaneous
emergence of strongly correlated fluctuations. We explain
this phenomenon by developing a nonequilibrium kinetic
formulation accounting for spatial nonhomogeneous phase
correlations. The theory reveals that the incoherent recur-
rence is due to a novel form of modulational instability that
occurs solely for the phase correlations mμ, so that the
growths of the usual modulational unstable sidebands are
delayed by a significant time. In contrast to conventional
incoherent modulational instabilities, we identify a regime
in which Landau damping is completely suppressed,
which unexpectedly eliminates the modulational instability
threshold. Owing to this remarkable fact, the incoherent
recurrence can take place for strongly incoherent waves
in the weakly nonlinear regime, which thus leads to a
violation of the H theorem of entropy growth.
After a few incoherent recurrences, the system enters a

secondary turbulent regime for the correlators (nφj
, mμ),

which is characterized by an irreversible evolution to
equilibrium. This thermalization process cannot be des-
cribed by a weakly nonlinear treatment, so we resort to a
Gibbsian statistical mechanics approach on the correlators.
Unexpectedly, the analysis reveals the existence of a
novel scenario of irreversible thermalization, which is not
constrained by energy (Hamiltonian) and momentum

conservation; i.e., the corresponding inverse temperatures
are zero, β ¼ ν ¼ 0. We give two physical arguments
without a rigorous mathematical proof that explain the
nature of the unconstrained thermalization process. The
first one is based on the idea that the presence of narrow
helix-shaped coherent structures can store any amount of the
Hamiltonian andmomentum, so that the constraints imposed
by these conserved quantities have no influence on the
entropy. The second argument is based on thermodynamics
grounds and reveals that the unconstrained thermalization
does not verify an equilibrium property, namely, that an
isolated system at equilibrium should exhibit a uniform
motion of translation as a whole. Both arguments rely on the
fact that the dynamics is dominatedby the convection among
the waves, which introduces an undetermined sign of the
energy (the Hamiltonian is not positive or negative definite).
Our numerical simulations are in good agreement with the
equilibrium PDFs predicted by the unconstrained thermal-
ization process. In this respect, it is interesting to note that the
equilibrium PDFs of the macroscopic fluctuations of the
waves exhibit strong deviations from Gaussianity, which
shows that a bunch of random waves with large intensity
(“incoherent rogue wave”) can even be more probable than
bunches of small intensities (see Fig. 7).

A. Generality of the process of unconstrained
thermalization

Her, we emphasize that the unconstrained thermalization
does not constitute a specific property of the phase-
correlation kinetic equations derived in our paper, but rather
a general property for weakly dispersive wave systems
whose dynamics is dominated by convection. We illustrate
such a generality by considering two important examples.
We first consider the evolution of a nonlinear wave in a

periodic potential, a problem encountered in a variety of
physical disciplines, such as optics, condensed matter
physics, or Bose-Einstein condensates [91–94], in which
the behavior of atoms mimics those of electrons in crystals
or photons in optical gratings. Because of Bragg reflections
around a forbidden frequency band gap, these systems
are generally characterized by a counterpropagating wave
interaction, so that the dynamics is dominated by con-
vection; see Appendix E. The corresponding model has
been widely studied in relation with the generalized
massive Thirring model [91–94]. Note that this model is
also relevant to the description of ocean waves in deep
water for a periodic bottom [95].
Another remarkable example of weakly dispersive wave

system is provided by the resonant three-wave interaction,
which is known to occur in any weakly nonlinear medium
whose lowest-order nonlinearity is quadratic in terms of
the wave amplitudes. For this reason, the three-wave
interaction is encountered in such diverse fields as
plasma physics, hydrodynamics, acoustics, and nonlinear
optics [96].
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Both the Thirring model and the three-wave interaction
model constitute weakly dispersive systems with purely
linear dispersion relations. Accordingly, these systems
exhibit a Hamiltonian structure analogous to that of the
phase-correlation kinetic equations; see Appendix E.
Hence, following the analysis developed in Sec. IV C, both
models exhibit an irreversible process of thermalization
toward an equilibrium which is not constrained by energy
(Hamiltonian) and momentum conservation. We finally
note that, as discussed above through the phase-correlation
kinetic equations, the equilibrium state itself contains
arbitrarily short fluctuations, in a way similar to the
well-known ultraviolet catastrophe inherent to the ensemble
of classical waves [39]. In this respect, the equilibrium is
not, strictly speaking, a physical state. Its physical impor-
tance is its role as a statistical attractor that governs the
thermalization process at physically relevant scales.

B. Degenerate resonances

It is interesting to note that for η ¼ 1, the dispersion
relations of the system [Eqs. (1) and (2)] exhibit degenerate
resonances, a property of fundamental importance to find
additional integral invariants of kinetic equations [97], in
relation to the general problem of integrability [15,98].
It turns out that the wave turbulence kinetic equations
associated with Eqs. (1) and (2) admit “local” invariants
for η ¼ 1 [99]. Contrary to usual integral invariants which
lead to a generalized Rayleigh-Jeans distribution [97], local
invariants are responsible for an anomalous process of
thermalization toward an equilibrium state of a different
nature than the Rayleigh-Jeans spectrum [99]. However,
we stress the fact that, irrespective of the local or integral
nature of the invariants, the wave turbulence theory still
predicts a monotonic process of entropy production.
Therefore, the wave turbulence theory cannot describe the
incoherent recurrences reported here, despite the fact that
they occur in the weakly nonlinear regime. We note
the interesting aspect that fast oscillatory energy transfers
among modes can be described through quasiresonant (or
nonresonant) interactions in the framework of a generalized
version of the wave turbulence kinetic equation (see
Refs. [71,100,101] and Chap. 7 in Ref. [41]). However
such a generalized kinetic approach does not account for the
existence of phase correlations, so that it is inherently unable
to describe the incoherent recurrences we report here.
We also note that the process of “anomalous thermal-

ization” reported in Ref. [99] is of a fundamentally different
nature than the unconstrained thermalization reported in the
present work. Firstly, as discussed above, the anomalous
thermalization results from the conservation of a local
invariant in frequency space, which implies, in particular,
the conservation of the energy and momentum [99]. Then
in contrast to the unconstrained thermalization process, the
anomalous thermalization is constrained by the conserva-
tion of energy and momentum. Secondly, the anomalous

thermalization process is entirely described by the standard
wave turbulence kinetic equations in the weakly nonlinear
regime [99]. This is in contrast to the unconstrained
thermalization that occurs for weakly dispersive wave
systems that evolve in the strongly nonlinear regime, as
revealed by the equilibrium PDFs, which are of a different
nature than Gaussian statistics (see Sec. IV D).

C. Experimental implementations

Spatiotemporal recurrence phenomena have been widely
studied with purely coherent waves in various different
recent experiments in optical fibers [26,27,34] and water
tanks [29,30,34,35]. The present work should stimulate a
novel class of experiments aimed at observing spatiotem-
poral recurrences with incoherent waves.
The phenomenon of incoherent recurrence reported here

should be observable in coupled Bose-Einstein condensates
[78]. One may simply consider a binary mixture of the
same atomic species (same masses) with different internal
degrees of freedom, so that η ¼ 1 in Eqs. (1) and (2), while
the amount of convection among the waves can be
controlled by well-known techniques [102]. We remark
that this type of experiment is relevant to the emergent key
area of quantum turbulence in Bose-Einstein condensates
[103]. Hydrodynamic experiments can also be envisaged in
water tanks, by considering the interaction of deep water
waves propagating in different directions (note that η ¼ 1
in the NLSE model [76]).
We also consider with care the feasibility of an experi-

ment in an optical fiber system. In this respect, the NLSE
[Eqs. (1) and (2)] are known to accurately describe the
propagation of orthogonal polarization components ðu; vÞ
in highly birefringent optical fibers. In this setting, the
cross-phase modulation coefficient is set to κ ¼ 2=3 (which
corresponds to the value used in the simulations) and the
ratio between the dispersion coefficients is usually approxi-
mated to η≃ 1, while the convection among the polariza-
tion components u and v is related to the amount of fiber
birefringence [74]. Our analysis reveals that the numerical
simulations reported in this paper refer to an experiment
that can be implemented with currently available fiber
technology, so that we can reasonably expect in the near
future the observation of the phenomenon of incoherent
recurrence.

D. Toward incoherent breathers

The spatiotemporal character of the kinetic formulation
we develop in this work paves the way to the study of
novel forms of global incoherent collective behaviors in
turbulent systems. In the following, we discuss the impor-
tant example of breathers [27–35,104–109]. In this respect,
we note that, although breather structures have been
shown to emerge from a turbulent state of the system
[104,105,108,109], the breather itself has always been
considered as being inherently a coherent localized entity.
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On the other hand, we show in this work that, by creating
strong phase correlations, convection introduces a large-
scale behavior of the incoherent wave lc ∼ w [see Eq. (17)],
whosemacroscopic envelope evolution is described in detail
by the phase-correlation kinetic theory. Now, one can simply
remark that a coherent breather solution of the phase-
correlation kinetic equations (24) and (25) corresponds to
an incoherent breather state by referring back to the original
NLSE random waves. In other words, the incoherent waves
ðu; vÞ ruled by the NLSE system exhibit a microscopic
incoherent random structure, and a macroscopic envelope
structure, ðUbr;VbrÞ, which corresponds to a coherent
breather solution of the kinetic equations (24) and (25).
Then in contrast to widely studied coherent breathers, our
formulation predicts the existenceof a large-scale incoherent
breather structure, in which it is the incoherent wave as a
whole that exhibits spatiotemporal recurrences.
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APPENDIX A: INAPPLICABILITY OF THE
WAVE TURBULENCE THEORY

The standard mathematical tool to study the dynamics of
weakly nonlinear random waves is based on the wave
turbulence theory [36,38–40]. This kinetic approach relies
on a natural asymptotic closure of the moments equations,
which is induced by the dispersive properties of the waves.
It leads to a kinetic description of the wave interaction that
is formally based on irreversible kinetic equations, a feature
which is expressed by an H theorem of entropy growth.
The wave turbulence theory is essentially based on the
following assumptions: (i) the waves evolve in a regime
of weak nonlinear interaction j ~U= ~Ej ≪ 1, (ii) the waves
exhibit fluctuations that are statistically homogeneous in

space, (iii) there are no correlations among the wave
components ðu; vÞ. In this way, the theory derives a set
of irreversible kinetic equations that govern the
evolutions of the averaged spectra of the fields ~nuðk; tÞ
and ~nvðk; tÞ: h ~uðk1; tÞ ~u�ðk2; tÞi ¼ ~nuðk1; tÞδðk1 − k2Þ,
h~vðk1; tÞ ~v�ðk2; tÞi ¼ ~nvðk1; tÞδðk1 − k2Þ, with ~uðk;tÞ¼
ð1= ffiffiffiffiffiffi

2π
p ÞR uðx;tÞexpð−ikxÞdx, ~vðk;tÞ¼ð1= ffiffiffiffiffiffi

2π
p ÞR vðx;tÞ×

expð−ikxÞdx. Following the wave turbulence procedure,
one obtains the following set of coupled kinetic equations:

∂t ~nuðk; tÞ ¼
κ2

2π

Z Z Z
dk1dk2dk3RuvWuv; ðA1Þ

∂t ~nvðk; tÞ ¼
κ2

2π

Z Z Z
dk1dk2dk3RvuWvu; ðA2Þ

where Ruv ¼ ~nuðk1Þ ~nvðk2Þ ~nvðk3Þ ~nuðkÞ½ ~n−1u ðkÞþ ~n−1v ðk3Þ−
~n−1v ðk2Þ− ~n−1u ðk1Þ�, Wuv ¼ δ(ωuðk1Þ þ ωvðk2Þ − ωvðk3Þ−
ωuðkÞ)δðk1 þ k2 − k3 − kÞ, while Rvu and Wvu are
deduced with the substitutions u ↔ v. The dispersion
relations read ωuðkÞ ¼ k2 þ wk, ωvðkÞ ¼ ηk2 − wk. The
resonant conditions of energy and momentum conservation
are expressed by the Dirac δ functions. Note that the
self-interaction term in the NLSE [Eqs. (1) and (2)] does
not contribute to the kinetic equations, because the con-
servations of energy and momentum are trivially satisfied
in one dimension. Equations (A1) and (A2) conserve the
energies (number of particles) of each component,
Nφ ¼ R

~nφðk; tÞdk, the total momentum, ~P ¼ P
φ
~Pφ,

~Pφ ¼ R
k ~nφðk; tÞdk, and the linear contribution to

the Hamiltonian, ~E ¼ P
φ
~Eφ, ~Eφ ¼ R

ωφðkÞ ~nφðk; tÞdk
(φ ¼ u, v). The irreversible character of Eqs. (A1) and
(A2) is expressed by an H theorem of entropy growth,
d ~S=dt≥ 0, where ~S¼P

φ
~Sφ, and ~SφðtÞ¼

R
log½ ~nφðk;tÞ�dk

is the nonequilibrium entropy of the φth component
(φ ¼ u, v). The thermodynamic equilibrium spectra ~nRJφ ðkÞ
realizing the maximum of entropy ~S½ ~nu; ~nv�, given the
constraints of conservation of ~E, ~P, and ~Nφ, refer to the
well-known Rayleigh-Jeans distribution,

~nRJφ ðkÞ ¼
~T

ωφðkÞ þ ~νk − ~μφ
; φ ¼ u; v; ðA3Þ

where ~T (temperature), ~μu;v (chemical potentials), and ~ν are
the Lagrangian multipliers associated to ~E, ~Nφ, ~P, respec-
tively. Energy equipartition among the modes takes place
in the tails (large k) of the Rayleigh-Jeans distribution,
where ωφðkÞ ~nRJφ ðkÞ≃ ~T. Regardless of the amount of
convection in the system, i.e., irrespective of w, the kinetic
equations (A1) and (A2) then describe an irreversible
thermalization to the Rayleigh-Jeans spectrum, so that the
wave turbulence theory is unable to describe the incoherent
recurrences.
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APPENDIX B: DERIVATION OF THE
PHASE-CORRELATION KINETIC EQUATIONS

[EQS. (11) AND (12)]

1. General form of the kinetic equations

The starting point consists of splitting each wave, uðx; tÞ
and vðx; tÞ, into a pump component and the corresponding
sideband modulational instability spectral component:

uðx; tÞ ¼ ~upðx − wt; tÞ þ ~usðxþ wt; tÞ expð−iwxÞ; ðB1Þ

vðx; tÞ ¼ ~vpðxþ wt; tÞ þ ~vsðx − wt; tÞ expðþiwxÞ; ðB2Þ

with the assumption that w ≫ σ, where σ is the typical
spectral bandwidth of the waves ~uj and ~vj (j ¼ p, s). The
coherence length of a field, λc ∼ 2π=σ, is typically smaller
than one within our normalization. The shifts �w∂x in
Eqs. (B1) and (B2) are chosen so as to cancel the transport
terms in the four-wave model equations. Substituting these
Ansätze into the NLSE, and keeping the resonant terms,
we obtain:

i∂t ~up ¼ Fp½ ~uj; ~vj� þ κ ~vsðxÞð ~us ~v�pÞðxþ 2wtÞ − ∂xx ~up;

ðB3Þ
i∂t ~us ¼ F s½ ~uj; ~vj� þ κ ~vpðxÞð ~up ~v�sÞðx − 2wtÞ − ∂xx ~us;

ðB4Þ
with (j ¼ p, s), and where the functionals readFp½ ~uj; ~vj� ¼
½j ~upj2þ2ðj ~usj2Þðxþ2wtÞ þ κðj ~vpj2Þðxþ2wtÞ þ κj ~vsj2� ~up,
and F s½ ~uj; ~vj� ¼ ½j ~usj2 þ 2ðj ~upj2Þðx − 2wtÞ þ κj ~vpj2þ
κðj ~vsj2Þðx − 2wtÞ� ~us. The equations for ð ~vp; ~vsÞ can be
derived from those for ð ~up; ~usÞ with the substitutions
~uj ↔ ~vj (j ¼ p, s), w → −w, ∂xx ~uj → η∂xx ~vj (j ¼ p, s).
Note that, contrary to the usual four-wave interaction
equations, we retain here second-order dispersion effects
[last terms in Eqs. (B3) and (B4)], which appear to play a
fundamental role in the emergence of phase correlations
among the random waves. Specifically, the phase-
correlation modulational instability reveals that the char-
acteristic length scale of nonhomogeneous statistics of the
random waves is determined by the amount of convection
in the system, lc ∼ w [see Eq. (17)]. The existence of
incoherent recurrences requires the presence of a large
convection, w ≫ 1. Then the microscopic scale fluctua-
tions of the random waves that are characterized by the
coherence length, λc ∼ 1, are much smaller than the macro-
scopic scale variations of the nonhomogeneous statistics,
i.e., λc ≪ w. In this way, large convection is responsible for
an effective averaging of the microscopic scale fluctuations.
We derive an ensemble of closed equations for the

evolutions of the correlation functions that describe
the dynamics of the macroscopic scale fluctuations of the
random waves. Under the assumption that the interaction

takes place in the weakly nonlinear regime, we follow the
general procedure of the wave turbulence theory to achieve
a closure of the infinite hierarchy of moments equations.
However, at variance with the standard wave turbulence
theory, here, we take into account the existence of phase-
correlation effects among the two pairs of copropagating
random wave components, as well as the nonhomogeneous
statistics of the macroscopic spatial fluctuations. We
denote upðx; tÞ ¼ ~upðx − wt; tÞ; usðx; tÞ ¼ ~usðxþ wt; tÞ;
vpðx; tÞ ¼ ~vpðxþ wt; tÞ; vsðx; tÞ ¼ ~vsðx − wt; tÞ. The cor-
relation functions are defined as follows: Bφj

ðx; ξ; tÞ ¼
hujðxþ ξ=2; tÞu�jðx − ξ=2; tÞi, for φ ¼ u, v (j ¼ p, s), and
Γuvðx; ξ; tÞ ¼ hupðxþ ξ=2; tÞv�sðx − ξ=2; tÞi, Γvuðx; ξ; tÞ ¼
husðxþ ξ=2; tÞv�pðx − ξ=2; tÞi. Recalling that the large
length scale of macroscopic fluctuations associated to
the nonhomogeneous statistics is lc ∼ w ≫ 1, we consider
a multiscale expansion with the small parameter ε ¼ 1=w:

Bφj
ðx; ξ; tÞ ¼ Bð0Þ

φj ðεx; ξ; tÞ; φ ¼ u or φ ¼ vðj ¼ p; sÞ;
Γφðx; ξ; tÞ ¼ Γð0Þ

φ ðεx; ξ; tÞ; φ ¼ uv or φ ¼ vu:

In this way, we havew∂xBφj
ðx; ξ; tÞ ¼ ∂XB

ð0Þ
φj ðX; ξ; tÞ, with

X ¼ εx (φ¼ u;v;j¼p, s). We also have Bφj
ðx�ξ=2;0;tÞ−

Bφj
ðx∓ξ=2;0;tÞ≃�εξ∂XB

ð0Þ
φj ðX;0;tÞ, so that these terms

result to be negligible with respect to terms of the form
w∂xBφj

ðx; ξ; tÞ. In this regime, second-order dispersion
effects (second-order spatial derivatives in the NLSE) are
negligible for the autocorrelation functions, ∂2

xξBφj
ðx; ξÞ ¼

ε∂2
XξB

ð0Þ
φj ðX; ξ; tÞ, while dispersion effects do affect the

evolutions of the phase-correlation functions with terms of

the form ∂2
ξΓ

ð0Þ
uv ðX; ξ; tÞ. Collecting terms of the order ε0,

we obtain the following system of closed equations
governing the evolutions of the correlation functions:

ið∂t þ w∂xÞBupðx; ξÞ ¼ Bup ½Γμ�; ðB5Þ

ið∂t − w∂xÞBusðx; ξÞ ¼ Bus ½Γμ�; ðB6Þ

ið∂tþw∂xÞΓuvðx;ξÞ¼Buv½Bφj
;Γμ�−δ∂2

ξΓuvðx;ξÞ; ðB7Þ
where δ ¼ 1 − η and the functionals read Bup ½Γμ� ¼
−κΓuvðx;ξÞ½Γ�

uvðx;0ÞþΓ�
vuðx;0Þ�þ κΓ�

uvðx;−ξÞ½Γuvðx;0Þþ
Γvuðx;0Þ�, Bus ½Γμ� ¼ −κΓvuðx; ξÞ½Γ�

uvðx; 0Þ þ Γ�
vuðx; 0Þ�þ

κΓ�
vuðx;−ξÞ½Γuvðx; 0Þ þ Γvuðx; 0Þ�, and Buv½Bφj

;Γμ� ¼
Γuvðx; ξÞfκ½Bvpðx;0Þ−Bupðx;0Þ þBvsðx;0Þ−Busðx;0Þ�þ
2½Bupðx;0Þ−Bvsðx;0ÞþBusðx;0Þ−Bvpðx;0Þ�gþκ½Bvsðx;ξÞ−
Bupðx;ξÞ�½Γuvðx;0Þ þ Γvuðx;0Þ�. The corresponding equa-
tions for Bvjðx; ξ; tÞ (j ¼ p, s) and Γvuðx; ξ; tÞ can be
deduced with the substitutions: ~uj ↔ ~vj (j ¼ p, s),
w → −w, Γuvðx; ξ; tÞ → Γ�

vuðx;−ξ; tÞ, δ → −δ.
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2. Invariant correlation functions

Equations (B5)–(B7) reveal the existence of conserved
correlationfunctions:ð∂tþw∂xÞ½Bupðx;ξ;tÞþBvsðx;ξ;tÞ�¼0

and ð∂t − w∂xÞ½Bvpðx; ξ; tÞ þ Busðx; ξ; tÞ� ¼ 0. Let us ana-
lyze these invariant correlation functions in the problem
under consideration here, in which only the two incoherent
pump waves are initially injected in the system; i.e.,
jφpðx; t ¼ 0Þj ≫ jφsðx; t ¼ 0Þj, with φ ¼ u, v. Moreover,
the incoherent pump waves exhibit fluctuations that are
statistically homogeneous in space, so that we have two
conserved functions,QuðξÞ andQvðξÞ, which are determined
by the initial condition

QuðξÞ ¼ Bupðξ; t ¼ 0Þ ¼ Bupðx; ξ; tÞ þ Bvsðx; ξ; tÞ; ðB8Þ

QvðξÞ ¼ Bvpðξ; t ¼ 0Þ ¼ Bvpðx; ξ; tÞ þ Busðx; ξ; tÞ: ðB9Þ

Note that these invariants donot dependon the spatial variable
x, because of the assumption of homogeneous statistics
of the initial pump waves. Owing to the invariants [Eqs. (B8)
and (B9)], the general equations for the correlation functions
Eqs. (B5)–(B7) reduce to a set of four closed equations. These
can be reformulated by considering the evolutions of the local
spectra of the fields by taking the Wigner-like transform, as
defined through Eqs. (9) and (10). In this way, we obtain the
phase-correlation kinetic equations (11) and (12) for the
evolutions of nupðx; k; tÞ and mvuðx; k; tÞ, where Nφ ¼
Qφðξ ¼ 0Þ (with φ ¼ u, v) denote the conserved “energies”
of thewavesuandv.Note that thecorrespondingequationsfor
nvpðx; k; tÞ and muvðx; k; tÞ can be deduced from Eqs. (11)
and (12) through the substitution nup ↔ nvp , w → −w,
mvuðx; ξ; tÞ ↔ m�

uvðx; ξ; tÞ, ð1 − ηÞ → −ð1 − ηÞ.

3. Formal reversibility

Note that, contrary to the usual wave turbulence for-
malism discussed in Appendix A [36,39,40], the system
Eqs. (11) and (12) is reversible in time; i.e., the equations
are invariant under the transformation

t→−t; w→−w; k→−k; nφ → nφ; mμ →m�
μ:

ðB10Þ

This transformation is inherited from the well-known
time invariance of the NLSE [Eqs. (1) and (2)]: t → −t,
w → −w, u → u�, v → v�.

APPENDIX C: HAMILTONIAN STRUCTURE
OF THE PHASE-CORRELATION

KINETIC EQUATIONS

1. Spherical coordinates

The Hamiltonian of Eqs. (20) and (21) can be unveiled
by using the Poincaré-Stokes representation reported in
Eqs. (24) and (25). We consider the Poisson bracket:

fF;Gg ¼
X
ijk

Z
dx0δðx − x0ÞεijkQ½F;G�; ðC1Þ

where Q½F;G�¼Ui½δF=ðδUjÞ�½δG=ðδUkÞ�þVi½δF=ðδVjÞ�
½δG=ðδVkÞ�, and ½δF=ðδUjÞ�¼½∂F=ð∂UjÞ�−½d=ðdxÞ�
½∂F=ð∂U0

jÞ�, with εijk the antisymmetric tensor. Here and
below, the prime denotes the spatial partial derivative;
e.g., U0

i ¼ ∂xUi. In particular, we have fUiðxÞ;
Ujðx0Þg¼εijkUkδðx−x0Þ;fViðxÞ;Vjðx0Þg¼εijkVkδðx−x0Þ.
Equations (25) and (26) can then be written as
∂tU ¼ fU;Hg, ∂tV ¼ fV;Hg, with the Hamiltonian
H ¼ HU þHV þHint, explicitly given in Eq. (27).
Making use of U · U0 ¼ 0, V · V0 ¼ 0, we have
U0 ¼ fU; PUg, V0 ¼ fV; PVg, where the momenta read

PU ¼ U2

U2
0 − U2

2

ðU3U0
1 −U1U0

3Þ; ðC2Þ

PV ¼ V2

V2
0 − V2

2

ðV3V 0
1 − V1V 0

3Þ; ðC3Þ

and the conserved total momentum is P ¼ R
PU þ PVdx.

2. Cylindrical coordinates

It proves convenient to rewrite the Hamiltonian in
cylindrical coordinates. The canonical cylindrical coordi-
nates ðU2; αU; V2; αVÞ are defined by

U ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
0 −U2

2

q
sinðαUÞ; U2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

0 −U2
2

q
cosðαUÞ

i
; ðC4Þ

V ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
0 − V2

2

q
sinðαVÞ; V2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0 − V2

2

q
cosðαVÞ

i
: ðC5Þ

In these coordinates, the corresponding canonical equations
read:

ð∂t þ w∂xÞαU ¼ ∂Hs=∂U2; ðC6Þ

ð∂t þ w∂xÞU2 ¼ −∂Hs=∂αU; ðC7Þ

ð∂t − w∂xÞαV ¼ ∂Hs=∂V2; ðC8Þ

ð∂t − w∂xÞV2 ¼ −∂Hs=∂αV; ðC9Þ

where Hs ¼ − 1
2
ðU þ VÞ · IðU þ VÞ ¼ −κ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

0 − U2
2

p
×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
0 − V2

2

p
cosðαU − αVÞ þ U2V2� − ð1 − κÞðU2 þ V2Þ2−

κ
2
ðU2

0 þ V2
0Þ. These equations are equivalent to Eqs. (24)

and (25). The advantage of these canonical cylindrical
coordinates with respect to the spherical Stokes parameters
is that the momentum contribution to the Hamiltonian
takes a much simpler form. Using the fact that PU ¼ U2α

0
U

and PV ¼ V2α
0
V , the Hamiltonian has the form H ¼R

ĤðU2; V2; αU; αV; α0U; α
0
VÞdx, with
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ĤðU2; V2; αU; αV; α0U; α
0
VÞ

¼ wðV2α
0
V −U2α

0
UÞ

− κ
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
0 −U2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0 − V2

2

q
cosðαU − αVÞ þ U2V2

i

− ð1 − κÞðU2 þ V2Þ2 −
κ

2
ðU2

0 þ V2
0Þ; ðC10Þ

the momentum reads P ¼ R
P̂ðU2; V2; αU;αV; α0U; α

0
VÞdx,

with

P̂ðU2; V2;αU; αV; α0U; α
0
VÞ ¼ U2α

0
U þ V2α

0
V; ðC11Þ

and the magnetization reads M ¼ R
M̂ðU2; V2; αU; αV;

α0U; α
0
VÞdx, with

M̂ðU2; V2; αU; αV;α0U; α
0
VÞ ¼ −

1

2
ðU2 þ V2Þ: ðC12Þ

APPENDIX D: DERIVATION OF THE
PROBABILITY DENSITIES [EQS. (30)–(35)]

1. General expression

We begin by introducing a finite-dimensional approxi-
mation of the partial differential equation (C6)–(C9)
through a spatial discretization of the variable x,
which gives a finite-dimensional system governing the
evolution of ðKjÞnj¼1, where K ¼ ðU2; V2; αU; αV; α0U; α

0
VÞ

is an element of the phase space. The equilibrium density ρ
maximizes the Gibbs entropy functional, SG½ρ�¼
−
R
ρ½ðKjÞnj¼1�logfρ½ðKjÞnj¼1�gdK1…dKn, under the con-

straints dictated by the three conserved quantities, the
Hamiltonian H [Eq. (C10)], the momentum P
[Eq. (C11)], and the magnetization M [Eq. (C12)]. Follo-
wing the standard procedure based on the Lagrangian
multipliers, the equilibrium PDF reads ρ½ðKjÞnj¼1�∼
expf−βH½ðKjÞnj¼1�−νP½ðKjÞnj¼1�−γM½ðKjÞnj¼1�g. In the
long-term evolution, the waves Uðx; tÞ and Vðx; tÞ exhibit
fluctuations that are statistically homogeneous in space, with
a correlation length that decreases during the evolution. In
this way, the large convection among the waves (w ≫ 1)
leads to an effective averaging of the spatial correlations of
thewaves, so that the state of maximum entropy ρ½ðKjÞnj¼1�∼
exp½−βPn

j¼1ĤðKjÞ−ν
P

n
j¼1P̂ðKjÞ−γ

P
n
j¼1M̂ðKjÞ�, with

Ĥ, P̂, and M̂ given by Eqs. (C10)–(C12), results to be the
product of the elementary densities

Q
n
j¼1 ρðKjÞ, with

ρðKÞ ∼ exp½−βĤðKÞ − νP̂ðKÞ − γM̂ðKÞ�; ðD1Þ

where K stands for Kj to simplify the notations.

2. Reduced form of the equilibrium density

According to Eq. (31), we have ν ¼ β ¼ 0, and we
now look for the equilibrium PDF distribution ρðQÞ, by

considering solely the constraint imposed by the conser-
vation of M. The vector Q ¼ ðU;VÞ is an element of the
phase space that refers to the product of the two spheres of
radii U0 and V0. We refer back to the original variables so
as to derive the equilibrium PDF in terms of the correlators
ðn0φj

; m0
μÞ. Accordingly, the vectors ½ ~n0φp

;Reðm0
μÞ; Imðm0

μÞ�
evolve on the surface of two spheres of radii Nφ=2, with
ðφ ¼ u; μ ¼ uvÞ or ðφ ¼ v; μ ¼ vuÞ. We represent these
vectors in spherical coordinates: ~n0φp

¼ ðNφ=2Þ cos θφ
(φ ¼ u, v); Reðm0

μÞ ¼ ðNφ=2Þ sin θφ cos δφ, Imðm0
μÞ¼

ðNφ=2Þsinθφsinδφ, with ðφ¼u;μ¼uvÞ or ðφ¼v;μ¼vuÞ.
We look for the stationary distribution of the state vector
ðθu; δu; θv; δvÞ by maximizing the entropy under the con-
straint imposed by the conservation of the magnetization
M, which can be written as L−1R L

0 ½ ~n0upðx;tÞ− ~n0vpðx;tÞ�dx¼
ðNv−NuÞ=2. Following the usual procedure based on the
method of the Lagrange multipliers, we obtain the PDF of
the equilibrium distribution:

ρðθu; δu; θv; δvÞ ¼ Z−1 exp

�
γ

�
Nu

2
cos θu −

Nv

2
cos θv

��
;

ðD2Þ
where the multiplier γ, associated to the conservation ofM,
is the unique solution of

−
2

γ
þ Nu

2

1

tanhðγNu=2Þ
þ Nv

2

1

tanhðγNv=2Þ
¼ Nv − Nu

2
;

and Z is given by

Z ¼ 64π2

NuNvγ
2
sinh

�
γNu

2

�
sinh

�
γNv

2

�
:

The PDF Eq. (D2) shows, in particular, that ½ ~n0up ;Reðm0
uvÞ;

Imðm0
uvÞ� and ½ ~n0vp ;Reðm0

vuÞ; Imðm0
vuÞ� are independent.

The marginal PDFs for the normal correlator pðn0φj
Þ and

anomalous correlator pðjm0
μjÞ given in Eqs. (34) and (35)

have been computed from the general expression of the
PDF Eq. (D2).

APPENDIX E: HAMILTONIAN STRUCTURE
OF THE THIRRING AND THREE-WAVE

INTERACTION MODELS

In order to illustrate the generality of the process of
unconstrained thermalization, here, we show that the phase-
correlation kinetic equations (24) and (25) [or Eqs. (20)
and (21)] exhibit a Hamiltonian structure analogous to that
of the Thirring model and the three-wave interaction model.
The generalized massive Thirring model can be recast in
the following dimensionless form [91,92,94,95]:

i∂tuþ i∂xu ¼ −δv − ðjuj2 þ 2jvj2Þu; ðE1Þ

i∂tv − i∂xv ¼ −δu − ðjvj2 þ 2juj2Þv; ðE2Þ
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where u and v denote the forward and backward wave
amplitudes, while δ is the linear coupling coefficient of
the structure. These equations conserve the total energy
N ¼ R juj2 þ jvj2dx, the Hamiltonian H ¼ R

Pv − Pu−
1
2
ðjuj4 þ jvj4Þ − 2juj2jvj2 − κðuv� þ vu�Þdx, and the

momentum P ¼ R
Pv þ Pudx, with Pφ ¼ Imðφ∂xφ

�Þ,
φ ¼ u, v. On the other hand, the equations for the three-
wave interaction can be written in the form [96]

i∂tu1 þ iw1∂xu1 ¼ −u3u�2; ðE3Þ

i∂tu2 þ iw2∂xu2 ¼ −u3u�1; ðE4Þ

i∂tu3 ¼ −u1u2; ðE5Þ

where wj denote the velocity differences between the
daughter waves u1;2 and the pumpwave u3. These equations
conserve the Manley-Rowe invariants for the energies
N1 ¼

R ju1j2 þ ju3j2dx, N2 ¼
R ju2j2 þ ju3j2dx, the

Hamiltonian H ¼ R
−w1P1 − w2P2 − u1u2u�3 − u�1u

�
2u3dx,

and the total momentum P ¼ R
P1 þ P2 þ P3dx, with

Pj ¼ Imðuj∂xu�jÞ. Note that the signs of the velocities (wj)
of the three waves can be changed by simply writing the
equations in different inertial references frames.
It becomes apparent from the expressions of the con-

served quantities that the generalized massive Thirring
model and the resonant three-wave interaction model
exhibit a Hamiltonian structure analogous to that of the
phase-correlation kinetic equations [see the relation
between the Hamiltonian and the momenta in Eq. (27)].
Then, following the same reasoning as that developed in
Sec. IV C, one arrives at the conclusion that the
Hamiltonian and the momentum do not constrain the
maximization of the Gibbs entropy at equilibrium.
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