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1. Introduction

In order to build a proper artificial electric sense, it 
is essential to understand how it works in biology. 
In this regard, the study of active electrolocation in 
weakly electric fish is crucial. Indeed, from an electric 
potential of about 1 mV oscillating at about 1–10 kHz, 
weakly electric fish are able to recognize an object in 
their surroundings (for a review, see [37] and references 
therein). Hence, they are undoubtly a source of great 
inspiration for neuro-ethology, underwater robotics, 
signal processing, as well as applied mathematics.

Several species of fish share this remarkable sense. 
They are classified in various families, all belonging to 
two different orders: Gymnotiforms in South America, 
and Mormyriforms in Africa. Moreover, according to 
the time representation of their electric organ discharges 
(EODs), they are also divided into two types: wave-type 
species (such as Apteronotus albifrons) and pulse-type 
species (e.g. Gnathonemus petersii). Known for several 
centuries, the electrogenesis and electroreception abili-
ties of the wider set of species called electric fish have 
been studied extensively [25]. In 1958, Lissmann and 
Machin showed that for the weakly electric fish, this 
ability is used for electrolocation instead of hurting prey 
[32]. Furthermore, they gave the physical principles on 
which relies this electric sense: using cylinders in the 
water tanks of their Gymnarchus niloticus, they showed 
that these objects disturb the  self-emitted electric field 

like an electric dipole. The electroreceptors allow the fish 
to distinguish such a  difference, which in turn is a clue 
for electrolocation. However, one important question 
remains: how to estimate the location of the object from 
the measurement of this difference?

Experimental,  modelling and numerical 
approaches have been carried since this discovery by 
Lissman and Machin. From behavioral studies, we now 
know that these fish are able to estimate the distance 
[48], recognize the shape [47], and the electric capaci-
tance and conductivity [46] of an object in their sur-
rounding. In these studies, a fish is placed in front of 
two doors, each one hiding a different object. The fish 
is then trained to choose one of the two objects, in a 
reward/punish setup. More theoretically, the electric 
dipole formula has been investigated in more details. 
Indeed, Bacher in 1983 [13] argued that the electric 
dipole formula given by Lissmann and Machin did 
not explain the phase shift observed when the elec-
tric permittivity of the object differs from the electric 
permit tivity of the water, although this phase difference 
is measured accurately by some species such as in the 
Eigenmannia genus [41]. Then, in 1996 Rasnow [39] 
solved this issue by considering a complex-valued con-
ductivity; he also extended the range of shapes on which 
the dipolar approx imation can be applied. From the 
numerical simulation point of view, various works have 
been carried since the 70’s, for example finite differ-
ences schemes in 1975 by  Heiligenberg [26] and finite 
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elements in 1980 by Hoshimiya et al [27]. In the latter, a 
simplified geometry of fish was used: it was represented 
as an ellipse, divided into two areas (the low conductive 
and thin skin, and the body). Their aim was to optimize 
the non-uniform values of the skin’s conductivity, and 
by optimizing it according to experimentally meas-
ured field, they conclude that the tail region is more 
conductive than the head region. These models were 
then improved, as can be seen in [12, 33, 36]. Finally, in 
the 1990s Chris Assad considered a boundary element 
method to solve this numerical simulation issue [10]. 
His model took into account the highly resistive and 
thin skin, as well as the time dependence of the EOD. 
He compared his model to several in vivo experiments 
involving different species of fish [40].

Those advances in the field of neuro-ethology 
inspired researchers in robotics to develop underwater 
probes and sensors in order to effectively navigate with 
the help of this electric sense. Mainly two teams gather 
the most research about this stimulating subject: one 
in Nantes lead by Frédéric Boyer [16], and another in 
 Chicago lead by Malcolm Maciver [34]. Just to mention 
a few of their studies, they face important challenges such 
as target location [30, 43], shape recognition [14, 29], 
autonomous (or reactive) navigation [18], or docking 
[17]. We leave the interested reader to these articles and 
the references therein for a more complete review of this 
area. Let us mention however that for these works, there 
is a need for more quantitative assessments of the electric 
sense: how precisely an object disturbs the electric field, 
and how to compute back its location and shape.

Mathematically speaking, this is called an inverse 
problem, as opposed to a forward problem. The latter 
would be to compute the electric field surrounding the 
fish, knowing everything about the object (position, 
shape, material). On the contrary, the inverse problem 
here is to recover as much information as possible about 
the object from the knowledge of the electric field at 
the surface of the fish’s skin. Given the low frequen-
cies of emission (see section 2.1), this problem lies in 
the domain of electrical impedance tomography (EIT). 
EIT is a non-invasive imaging technique in which an 
image of the conductivity or permittivity of a medium 
is inferred from surface electrode measurements. It is 
studied as a non-invasive imaging technique, in par-
ticular for medical imaging, non-destructive testing, 
or geophysical probing (see reviews in [15, 22]). In the 
mathematical literature it is also known as Calderón’s 
problem from Calderón’s pioneer contribution [21]. 
This type of problem is ill-posed, in the sense that exist-
ence, uniqueness, or continuity of the solution is not 
guaranteed [45]. The resolution of the inverse problem 
is often formulated as a minimization problem, which 
consists in minimizing the error between the measured 
data and the synthetic data obtained by solving numer-
ically the forward problem with a candidate object. It 
requires careful discretization and regularization and 
sometimes numerically intensive calculations, however, 
it is known to be sensitive to noise and to have poor 
spatial resolution [15, 19].

Since 2010, our team has been working on the 
mathematical modelling of active electrolocation. 
Indeed, having heard about that the electric fish are 
able to solve—in some way—the Calderón’s problem 
raised our curiousity. In other words, the problem of 
recovering the object from what the fish can feel is a 
very difficult problem, thus making it even more fasci-
nating as the fish seem to perform better than the most 
recent medical EIT devices which typically consist 
of a few tens of electrodes only. Hence, we wanted to 
have equations governing the electric field surround-
ing the fish (i.e. a model of the forward problem), so 
that we could imagine original solutions of the inverse 
problem. Our inspiration largely took its source in the 
aformentioned works, and relevent references will be 
done throughout the text. The aim of this article is to 
summarize our works on target location estimation 
[1] and shape identification [3], as well as making con-
nections between our theoretical studies and what it is 
intended to model. We will show that it is possible to 
extract some information about the object in a quite 
robust and straightforward manner, even with less than 
one hundred electrodes. We wanted to make accessible 
some mathematical concepts that could be useful to 
researchers in biology and robotics, in order to engage 
further discussion and collaboration.

The outline of this paper is as follows. In section 2, 
we derive the equations governing the electric field 
emitted by the fish and show numerical simulations. 
In section 3, we explain the localization (section 3.2) 
and shape recognition (section 3.3) algorithms, which 
both rely on a formula called dipolar approximation 
(section 3.1).

2. Forward problem

Let us consider the model depicted in figure 1. The 
body of the fish is modelled as a domain ⊂Ω Rd, where 

{ }∈d 2, 3 . For the sake of clarity, we plot the results for 
d  =  2 in this paper. This mathematical model is of course 
extremely simplified compared to the complexity of a 
fish revealed by biology, but our objective is to extract 
the few ingredients that are sufficient to explain the fish 
electric sense, as was done for example in the numerical 
simulations of Hoshimiya et al [27].

The goal is to recover the object D, another set of Rd 
which is away from Ω. The localization is explained in 
section 3.2 whereas the shape identification is shown 
in section 3.3.

In this section, we focus on the so-called forward 
problem: what are the equations governing the trans-
dermal electric current ( ) ν− ⋅E E0  at the surface of the 
fish ∂ Ω (sections 2.1 and 2.2), and how can we compute 
it numerically (section 2.3)? The results presented here 
can be found with more mathematical details in [1].

2.1. Quasi-static approximation
In this section we show that, given the low frequency of 
the electric field, it can be derived as a complex-valued 
electric potential.

Bioinspir. Biomim. 12 (2017) 025002
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From this point, let us precise that we will work in 
the frequency domain, so that time derivatives will be 
simplified by Fourier transform. It has an impact of 
what we are modelling exactly, i.e. from now on we can 
only discuss about wave-type species such as Apter-
onotus albifrons. For example, after discretization, we 
would have a discrete set of frequencies (the fundamen-
tal and its harmonics), see for example [24, figure 12.3] 
for such a transform in Eigenmannia virescens. These 
frequencies are known to remain centred on a specific 
frequency unless their dominance status changes, or the 
temperature or pH of the water varies [23].

Having this in mind, let us start with the Maxwell 
system:

ρ
ε

∇ ⋅ =E , (2.1)

∇ ⋅ =B 0, (2.2)

ω∇ × = −E Bi , (2.3)

( )µ ωε∇ × = + +B j j Ei ,i s (2.4)

where ε (resp. μ) is the electric permittivity (resp. 
the magnetic susceptibility) of the medium and ω is 
the frequency. The sources are ρ (density of electric 
charges) and js (density of electric current). Whereas 
the former are null, the latter needs to be considered 
carefully. Indeed, the current density comes from the 
electric organ of the fish. It is usually a long filament at 
the posterior part of the body [37]. In any case, it can 
be modelled as a distribution contained in the body: 

( ) ⊂ Ωjsupp s . Finally, the electrical current ji in (2.4) is 
the one induced by Ohm’s law,

σ=j E,i (2.5)

where σ is the conductivity of the medium.
The electro-quasistatic (EQS) approximation 

states that, if the wavelength λ is large compared 
to the typical length of the problem L, then E can be 
considered as irrotationnal, i.e. the right-hand side of 
(2.3) is neglected [28]. In other words, if λ� L, then 
∇ × ≈E 0. In nature emission frequencies are always 

below 10 kHz [38], which means that λ is always larger 
than  10 km, which is much larger than L if we consider 
it as the typical size of the fish; indeeed, the electroloca-
tion range is known to be one body-length at maximum 
[37]. Hence, the EQS approximation is very well suited 
in our case and thus we can write ∇ × =E 0 instead 
of (2.3). Then, it follows that there exists a frequency-
dependent, complex-valued potential u such that

= ∇E u. (2.6)

Taking the divergence of (2.4), we finally obtain

( ( ) )ω∇ ⋅ ∇ =k u f , (2.7)

where we have defined = −∇ ⋅ jf s as the source coming 
from the electric organ, and ( )ω σ εω= +k i  as the 
complex-valued conductivity; this complex-valued 
conductivity is the same idea that was used by Rasnow 
in [39].

To conclude, the equation (2.7) is the one govern-
ing the transdermal electric current. If we note U the 
potential associated to the background electric field 
( = ∇E U0 ), the transdermal electric current stated in 
figure 1 is translated into

( ) ν
ν ν

− ⋅ =
∂
∂

−
∂
∂

E E
u U

.0 (2.8)

where ν is the outward normal unit vector of ∂Ω and ∂ν 
is the normal derivative.

2.2. Boundary conditions
Now that we have the partial differential equations 
governing the electric field, given in (2.7), let us focus 
on the boundary conditions. They strongly depend on 
the distribution of the conductivity, ( )ωk , which can be 
modelled as piecewise constant: kw in the water, kD in 
the object, kb in the body of the fish, and ks in the skin. 
Note that since the water, the body, and the skin are not 
dielectric materials, we have

I I I( ) ( ) ( )= = =k k k 0,w b s

where I  stands for the imaginary part.
Hence, two boundary conditions appear to matter: at 
the surface of the object ∂D and over the skin ∂ Ω.

Figure 1. Problem considered here: knowing the electric current ( ) ν− ⋅E E0  at the surface of the skin ∂ Ω, how can we determine 
the target D?

Bioinspir. Biomim. 12 (2017) 025002
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 (1) The boundary conditions at the surface of 
the object can be addressed easily. Indeed, the 
piecewise constant conductivity imposes the 
following jump relations for ∈ ∂x D [4]

( ) ( )=− +x xu u , (2.9)

( ) ( ) ( )
ν

ω
ν

∂
∂

=
∂
∂

+ −x xk
u

k
u

.Dw (2.10)

The notation ±x  means the inner/outer limit 
at the boundary of ∂D. More precisely, for a 
function w defined on Rd, one has

( ) ( )
→

ν= ± ∈ ∂±x x xw w h Dlim , ,
h 0

 (2.11)

where ν is the outward normal unit vector of 
∂D.

 (2) The boundary conditions over the skin are a bit 
more complicated (see figure 2). This is due to 
the fact that, compared to the water which has 
a conductivity of the order of   ⋅ −0.01 S m 1 [35], 
the skin is very resistive (   ⋅− −10 S m4 1 [20]) and 
the body is very conductive (   ⋅ −1 S m 1) [42]. In 
other words, one has

� �k k k .s w b (2.12)

Futhermore, the skin is very thin: if we denote 
its thickness by δ, we have [49]

 δ µ≈ � L100 m ,

where L was defined as the body length in 
section 2.1. In [1] we have shown in the case 
d  =  2 that, when /δ �L 1 and / �k k 1s w  , but 

/( )δk Lkw s  is of order one (or smaller), we have 
the following effective relation for ∈ ∂ Ωx :

( ) ( ) ( )ξ
ν

− =
∂
∂

+ − +x x xu u
u

, (2.13)

where /ξ δ= k kw s is called the effective 
thickness in Assad’s work [10]. Indeed, 
equation (2.13) is exactly the same as the one 
used in his model. On the other side the limit 

/ �k k 1b w  gives

( )
ν

∂
∂

=−x
u

0. (2.14)

  To get a well-posed problem, we should add 

the far field condition ( ) ( )= | | −x xu O d1  
as →| | ∞x , if the problem is formulated 
in an open medium, or any prescribed 
condition corresponding to the experimental 
configuration.

2.3. Numerical simulations
Taken altogether, we have to solve a system composed 
by the partial differential equation (2.7) with boundary 
conditions (2.9), (2.10), (2.13) and (2.14). Hence, u is 
solution of the following system

( ( ) )ω∇ ⋅ ∇ =k u f , (2.15)

( ) ( )= ∈ ∂− +x x xu u D, (2.16)

ν
ω
ν

∂
∂

=
∂
∂

∈ ∂+ −x x xk
u

k
u

D,Dw ( ) ( ) ( ) (2.17)

( ) ( ) ( )ξ
ν

− =
∂
∂

∈ ∂ Ω+ − +x x x xu u
u

, (2.18)

( )
ν

∂
∂

= ∈ ∂ Ω−x x
u

0, , (2.19)

where k(ω) is equal to kb in the body of the fish Ω, 
kD(ω) in the object D, and kw elsewhere (water). The 
background solution U is given by

( ˜( ) )ω∇ ⋅ ∇ =k U f , (2.20)

( ) ( ) ( )ξ
ν

− =
∂
∂

∈ ∂ Ω+ − +x x x xU U
U

, 
(2.21)

( )
ν

∂
∂

= ∈ ∂ Ω−x x
U

0, (2.22)

where ˜( )ωk  is equal to kb in the body of the fish Ω, and kw 
outside, i.e. in the water.

Using layer potential representations for the solu-
tions of the systems (2.15)–(2.19) and (2.20)–(2.22), we 
have developed a MATLAB script for their numer ical 
approximations1, using boundary element methods like 
in Assad’s thesis [10]. In figure 3, we have plotted the solu-
tions u and U when d  =  2, the body Ω is an ellipse, the 
object D is a disk, and the source f is a dipole.

3. Inverse problem

In the previous section, we have derived the 
equations governing the transdermal electric current 
at the surface of the skin, and we have shown results 
of numerical simulations. In this section, we show the 
two main results of our studies: how to localize the 

object D based on the knowledge of −
ν ν

∂
∂

∂
∂

u U  (section 

3.2), and how to recognize its shape when the fish has 
already memorized several objects (section 3.3). These 

Figure 2. Boundary conditions over the skin.

1 This script is now part of the package SIES (shape 
identification in electro-sensing), which can be found at 
https://github.com/ens2013/SIES/.

Bioinspir. Biomim. 12 (2017) 025002
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methods are based on a dipolar approximation of the 
solution u, which is explained in section 3.1.

3.1. Dipolar approximation
The dipolar approximation states that if D is small 
enough, the difference u  −  U can be expressed as 
the electric potential coming from an electric dipole 
centered in D. In this section we only present this result 
numerically, in order to make things more intuitive. For 
a complete proof of the formula in this context, see [1]; 
for a more detailed review of the dipolar approximation 
in general, see the book [5].

Let us get back to the example in section 2.3. In 
 figure 4, we have plotted the difference u  −  U. Quali-
tatively, we can see that this electric potential looks like 
the one emitted by an electric dipole coming from D.

Quantitatively, we have shown in [1] that, if D is 
small enough and sufficiently away from Ω, then the 
fish feels a distorsion that is similar to the one produced 
by a dipole pD. More precisely, we have

ν ν
∂
∂

−
∂
∂

≈ ⋅ ∇ − ∈ ∂ Ωx x p x z x
u U

G , ,D( ) ( ) ( ) (3.1)

where z is the center of mass of D and G is the 
Green function for the Laplacian in Rd (for instance 

( ) ( )/( )π= | |x xG log 2  in dimension d  =  2 or =xG( )
π− | |x1 4/( ) in dimension d  =  3). The vector pD is called 

the equivalent dipole, and it is given by

( ( ) ) ( )ω≈ ∇p zk D UMM , ,D D (3.2)

where ( ( ) )ωk DMM ,D  is a ×d d  complex-valued 
matrix that depends only on the shape D of the 
object and its complex conductivity ( )ωkD , called the  
first-order polarization tensor [5]. This matrix maps 
the illuminating electric field ( )∇ zU  to the equivalent 
dipole pD. When the conductivity ( )ωkD  is real, in other 
words when ( ( ))ω =I k 0D  and thus ω does not play 
any role anymore, one can find an ellipse or ellipsoid 
E such that

ω =k D kMM MM, , .D D E( ( ) ) ( ) (3.3)
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Figure 3. Numerical simulations for the background electric potential U—system (2.20)–(2.22), upper image—and for the 
perturbed electric potential u—system (2.15)–(2.19), lower image.
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This means that the equivalent dipole would always 
be the same as the equivalent dipole of this ellipse or 
ellipsoid E . This latter is then called the equivalent 
ellipse [5]. Note, however, that when ( )ωkD  is frequency-
dependent, the information that can be extracted 
is much richer. For single-frequency data, it is only 
possible to identify a few characteristics of the object. 
When multi-frequency data are available, it is possible 
to get a lot of information about the object from the 
frequency dependence of the observed first-order 
polarization tensors. The need for multi-frequency 
data that we exhibit is in agreement with the complex 
emission patterns (pulse and wave) by fish.

3.2. Localization
In this section, we show that the multi-frequency aspect 
of the measurements are sufficient to localize an object 
with precision. For the sake of simplicity we focus our 

attention on the example that gave figures 3 and 4 in 
dimension d  =  2. Indeed, the particular case of D being 
a disk is easier since we have [5]

( ( ) ) ( )
( )

ω
ω
ω

= | |
−
+

k D D
k

k
MM II,

1

2 1
,D

D

D
2 (3.4)

where | |D  denotes the volume of D and II2 is the identity 
matrix2. Hence, equation (3.1) becomes

ν
ω

ν
ω

ω
ω

∂
∂

−
∂
∂

=| |
−
+

∇ ⋅ ∇ −x x z x z
u U

D
k

k
U G, ,

1

2 1
,D

D
( ) ( ) ( )

( )
( ) ( )

 (3.5)

which is equivalent to Lissman–Machin [32] or 
Rasnow [39] formulas, showing that (3.1) is a 
generalization of these latters. Hence, from (3.5) we 
can easily extract ( ) ( )∇ ⋅ ∇ −z x zU G . The reason why 

Figure 4. The difference between u and U, taken from figure 3.

Figure 5. From the example shown in figures 3 and 4, plot of the imaging functional presented in [1].

2 In R3, we have a similar formula, i.e. ( ( ) )ωk DMM ,D  is 
proportional to identity [5, p 83].

Bioinspir. Biomim. 12 (2017) 025002
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we can recover the location z of D is that the function 
( ) ( )∇ ⋅ ∇ −�z z x zU G  is one-to-one. Therefore, 

it is possible to build an imaging functional from the 
measured data, i.e. a function ( )� Iz zs s  that has a 
strong peak at =z zs  (see figure 5).

3.3. Shape recognition
Once the object D is located (i.e. we know z), we would 
like to extract ( ( ) )ωk DMM ,D  from the measurements. 
Indeed, we know that this polarization tensor contains 
all the necessary information about the shape of D 
[7]. More precisely, the function ( ( ) )ω ω� k DMM ,D  
uniquely determines D in some class of domains. 
However, it is not straighfoward to determine D from 

( ( ) )ωk DMM ,D . In other words, the shape recognition 
problem has been reduced to a simpler, however still 
difficult, inverse problem: determine the shape of 
the object from the observed first-order polarization 
tensors.

To solve this inverse problem we got inspired by 
the behavioral studies (for example [48]) described 
in the introduction. Indeed, instead of trying to 
 compute a shape from the measurements, we wanted 
to use classification and machine learning techniques. 
For example, let us suppose that the fish has already 
encountered several shapes Dl, = … Ll 1, ,  (such as the 
shapes plotted in figure 6), and that it knows all the 
polarization tensors ( ( ) )ωk DMM ,D j ll , where ωj are the 
different frequencies emitted by the electric organ.

It is not possible to extract ( ( ) )ωk DMM ,D  from one 

single measure of −
ν ν

∂
∂

∂
∂

u U ; instead, we use the fact that 

the fish actively swim around their prey when hunting, 
leading to particular swimming patterns called  probing 
motor acts [44]. Extracting ( ( ) )ωk DMM ,D j  from (3.1) 
measured for several fish’s positions is then a simple 
linear system [3]. Hence, D can be identified from the 
measured M(kD(ωj),D) as

Figure 6. A dictionary of shapes, used to identify the object D. The distance units here are arbitrary. Note that these shapes are often 
encountered in experimental studies [47] showing that the fish are able to recognize shapes.

Figure 7. Performance of classification with respect to measurement noise. Each point represents the probability of correct 
detection, infered after 105 realisations of the same experiment, consisting of the fish swimming around the object on a circular 
trajectory. The first-order polarization tensors ( ( ) )ωk DMM ,D  were extracted for 10 frequencies (from 1 kHz to 10 kHz). Then these 
tensors were compared to the dictionary presented in figure 6. On the x-axis, the strength of the measurement noise is indicated, 

in percentage of ∥ ∥−
ν ν

∂
∂

∂
∂

u U . Measurement noise was modeled as a white Gaussian random process for each point, with standard 

deviation as what we call the strength. Reproduced with permission from [3], copyright 2014 National Academy of Sciences.
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∥ ( ( ) ) ( ( ) )∥∑ ω ω= −D k D k DMM MMarg min , , .
D j

D j D j l
l

l

 (3.6)

In figure 7, one can see the performance of this 
technique in terms of robustness against measurement 
noise. Note that the number 64 of electrodes is not very 
large in the numerical simulations, but 10 frequencies 
and 20 different positions of the fish around the object 
are exploited: the different positions allow for good 
extraction of the polarization tensors, and the different 
frequencies allow for good classification of the object 
given the estimated polarization tensors. That is how 
robustness is achieved, and this remark may be of 
interest for the design of EIT devices.

4. Conclusion and perspectives

In this short review, we aimed at summarizing our 
main results on the mathematical modelling of active 
electrolocation. After deriving the partial differential 
equations and their boundary conditions, we have shown 
numerical simulations of the forward problem. Then, 
based on the dipolar approximation, we have detailed 
our localization algorithm and our shape recognition 
process. These latters are made possible thanks to multi-
frequency measurements. Moreover, shape recognition 
additionally needs movement of the fish.

Note that our model is an extremely simplified ver-
sion of what actually happens in real life; our aim was to 
extract the relevant features of the problem in order to 
be able to make a generalization for other topics, such as 
medical imaging or robotics. More realistic simulations 
and algorithms of target location active electro-sensing 
can be found for example in [11, 12, 31]. Shape iden-
tification remains an open challenge, although some 
algorithms begin to emerge in the robotic community 
[14, 29].

Since the publication of our two algorithms, sev-
eral directions of research have been taken. First, we 
have extended the shape recognition algorithm to the 
time-domain formulation of the problem [9], and to 
the echolocation problem (as observed in dolphins 
and bats for example) [8]. Then, we have used wavelets 
methods in order to improve the accuracy of recog-
nition [6]. And finally, we have raised the question of 
tracking a moving object [2].
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