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a b s t r a c t

Considering the nonlinear Schrödinger (NLS) equation as a representative model, we report a unified
presentation of different forms of incoherent shock waves that emerge in the long-range interaction
regime of a turbulent optical wave system. These incoherent singularities can develop either in the
temporal domain through a highly noninstantaneous nonlinear response, or in the spatial domain through
a highly nonlocal nonlinearity. In the temporal domain, genuine dispersive shock waves (DSW) develop
in the spectral dynamics of the randomwaves, despite the fact that the causality condition inherent to the
response function breaks the Hamiltonian structure of the NLS equation. Such spectral incoherent DSWs
are described in detail by a family of singular integro-differential kinetic equations, e.g. Benjamin–Ono
equation, which are derived from a nonequilibrium kinetic formulation based on the weak Langmuir
turbulence equation. In the spatial domain, the system is shown to exhibit a large scale global collective
behavior, so that it is the fluctuating field as a whole that develops a singularity, which is inherently
an incoherent object made of random waves. Despite the Hamiltonian structure of the NLS equation,
the regularization of such a collective incoherent shock does not require the formation of a DSW —
the regularization is shown to occur by means of a different process of coherence degradation at the
shock point. We show that the collective incoherent shock is responsible for an original mechanism
of spontaneous nucleation of a phase-space hole in the spectrogram dynamics. The robustness of such
a phase-space hole is interpreted in the light of incoherent dark soliton states, whose different exact
solutions are derived in the framework of the long-range Vlasov formalism.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Shock waves have been thoroughly investigated during the last
century inmany different branches of physics [1]. The well-known
phenomenon of viscous shock wave in a dissipative compressible
fluid (gas) is characterized by a steep jump in gas velocity, density,
and temperature across which dissipation of energy due to parti-
cle collisions regularizes the shock singularity. On the other hand,
in conservative systems a different regularization occurs that en-
tails the formation, owing to dispersion, of rapidly oscillating non-
stationary structures, so-called undular bores or dispersive shock
waves (DSWs). Their theoretical study was pioneered in plasma
physics [2,3] and water waves [4], and was readily followed by
lab observations [5,6]. Seminal contributions arose afterward in
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the context of the celebrated integrable Korteweg–De Vries (KdV)
equation, both in terms of construction of non-stationary DSWs [7]
based onWhithammodulation theory [8] and a formulation of the
weak dispersion limit based on inverse scattering [9]. However, it
became soon clear that DSWphenomena constitute a universal sig-
nature of singular nonlinearwave behavior inHamiltonianmodels,
regardless of the property of integrability [10,11]. Such behavior
has generated continued interest among diverse areas of physics,
ranging from the interpretation of natural phenomena such as at-
mospheric gravity waves [12], oceanic internal waves[13], or tidal
bores [14], to lab experiments in Bose–Einstein condensates [15],
unitary Fermi gases [16], nonlinear optics (temporal [17], and spa-
tial [18] phenomena, as well as a diversity of optical settings [19]),
quantum liquids [20], nonlinear chains or granular materials [21],
viscous fluids [22], and electron beams [23]. Also notice that the
role of structural disorder of the medium on the properties of DSWs
has been investigated in the context of optical waves [24,25].

These previous studies on DSWs have been essentially reported
for coherent, i.e., deterministic, wave envelopes. When studying,
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vice versa, a system of fully random nonlinear waves (a speckle
beam in the language of optics), the usual dynamics of DSW for-
mation is challenged, yet the formation of incoherent shocks be-
comes possible through different mechanisms, as we have shown
in two recent works [26,27]. In this respect, it is important to re-
mind that an accurate statistical description of a system of ran-
domwaves has been developed in the weakly nonlinear regime by
the so-called wave turbulence theory, which has been successfully
applied to a huge variety of physical systems [28–35]. However,
such an approach is known to break down for strong nonlinearities,
when the turbulent systemcan be heavily affected by nonlinear ex-
citations, such as shockwaves, vortices, (quasi-)solitons, collapsing
wavepackets, or roguewaves [30–32,35–42]. In this general frame-
work, we recently explored how shock wave singular behaviors
can spontaneously emerge within two particular types of turbu-
lent systems which are frequently encountered in the context of
optical waves.

(i) On the one hand, we considered the temporal dynamics of a
random wave that propagates in a defocusing nonlinear medium
characterized by a temporal noninstantaneous nonlinear response
(i.e., temporal nonlocality). In this case, at variance with the deter-
ministic case where breaking occurs in time domain [17], the field
retains a random structure in time, while exhibiting a wave break-
ing process (‘‘gradient catastrophe’’) in frequency which leads to
incoherent DSWs in the Fourier spectral dynamics [26,43]. On the
basis of a weakly nonlinear wave turbulence approach, the spec-
tral dynamics of the incoherent wave can be described in the
framework of a nonequilibriumkinetic equationwhose structure is
formally analogous to that considered to studyweak Langmuir tur-
bulence (WLT) in plasmas [34,35]. Note that this formalism proved
efficient in describing different optical phenomena [35], such as
the formation of spectral incoherent solitons [44,45] through su-
percontinuumgeneration [46]. In Ref. [26]we showed that spectral
incoherent DSWs can be described in detail by a family of sin-
gular integro-differential kinetic equations (SID-KE), which were
derived from the WLT kinetic equation in the limit of a long-
range nonlinear interaction, i.e., a highly noninstantaneous re-
sponse of the nonlinearity. This approach revealed interesting links
with the 3D vorticity equation in incompressible fluids [47], or
the integrable Benjamin–Ono (BO) equation [48] originally derived
in hydrodynamics for stratified fluids and recently investigated
in the semi-classical limit to study coherent wave breaking pro-
cesses [49].

(ii) On the other hand, we considered the (transverse) spatial
dynamics of a random wave that propagates in a nonlinear
medium characterized by a highly nonlocal nonlinear response,
i.e., spatial long-range interaction. A wave turbulence approach
of the problem revealed that this regime is described in detail
by a nonequilibrium long-range Vlasov formalism [50]. Note
that this kinetic formulation differs from the traditional Vlasov
equation describing random waves in hydrodynamics [37,40,41],
in plasmas [51], or in optics, such as e.g., incoherent modulational
instabilities [35,52], or incoherent solitons [52–54], while its
structure is formally analogous to that describing systems of
particles with long-range, e.g., gravitational, interactions [55,56].
In a recent work [27], we reported both theoretically and
experimentally, a characteristic transition in the turbulent system:
By strengthening the nonlocal character of the nonlinear response,
the system evolves from a fully turbulent regime featuring a sea of
coherent small-scale dispersive shock-waves (‘shocklets’) toward
the unexpected emergence of a giant collective incoherent shock
wave. The originality of this latter phenomenon of collective shock
stems from the fact that, as a result of the underlying long-range
interaction, the system exhibits a global collective behavior, in the
sense that it is the random wave as a whole which leads to the
formation of a shock wave: The shock singularity is inherently an
incoherent object itself made of random waves. As a consequence
of this collective behavior, the regularization of the incoherent
shock does not require the formation of a DSW structure — the
regularization occurs by means of a mechanism of coherence
degradation that occurs at the shock front [27].

Considering the nonlinear Schrödinger (NLS) equation as
a representative model, we provide in this article a unified
presentation of these two different forms of incoherent shock
singularities that develop in the long range interaction regime
of the turbulent system. In Section 2 we give a brief overview
on spectral incoherent DSWs, in particular by underlying the
essential properties which distinguish them from the collective
incoherent shock waves discussed in Section 3. In this respect, we
remark that both cases challenge the usual scheme underlying the
DSW formation in Hamiltonian systems, since (i) in the temporal
case, genuine oscillatory DSW structures are formed (though
in Fourier space), in spite of the fact that the model equation
is non-Hamiltonian due to the causality constraint, whereas
(ii) the usual deterministic DSW regularization is ‘inhibited’ in
the spatial case, in spite of the Hamiltonian structure of the
spatial NLS equation. An other remarkable difference is that
the development of collective incoherent shocks requires, as
usual, a strong nonlinear interaction, whereas spectral incoherent
DSWs are generated in the weakly nonlinear turbulent regime. In
Section 3 we provide further physical insight into the nature of the
collective incoherent shock wave recently observed in Ref. [27]. At
variance with [27], we consider here the dynamics of a random
nonlinear wave characterized by a hole in its envelope profile.
Despite the underlying Hamiltonian structure of the system, such a
hole perturbation usually exhibits a damping during the evolution,
so that the system irreversibly relaxes toward an unperturbed
homogeneous state as a result of an effective Landau-damping
effect. However, in the strong nonlinear regime, we show that the
systemexhibits an incoherent shock singularity for themomentum
and a collapse singularity for the intensity envelope of the random
wave. The numerical simulations reveal that the regularization
of such a double shock-collapse singularity is responsible, after
a complex transient process, for the nucleation of a peculiar
spectrogram hole in phase-space. This phase-space hole collective
structure proves extremely robust in the system evolution, a
property which we interpret in the light of incoherent dark soliton
solutions that we derive from the long-range Vlasov equation. The
analysis reveals that such incoherent dark soliton states cannot be
clearly identified through the usual intensity analysis in real space,
while their very nature appears to be ‘hidden’ in the phase-space
representation.

2. Temporal domain: Spectral incoherent DSWs

2.1. Temporal nonlocal NLS equation

In this section we provide a brief overview on the nature of
spectral incoherent DSWs which develop in the spectral dynamics
of a random wave that evolves in a noninstantaneous nonlinear
environment. The starting point is the temporal version of the NLS
equation accounting for a delayed nonlinear response:

i∂zψ = −s∂ttψ + ψ


R(t − t ′) |ψ |

2(t ′) dt ′. (1)

As usual in optics, the propagation distance z plays the role of
an evolution ‘time’ variable, while the time (t) plays the role of
the spatial variable [57]. The response function R(t) is constrained
by the causality condition, R(t) = 0 for t < 0, and the typical
width of R(t) denotes the nonlinear response time, τR. The problem
has been normalized with respect to the ‘healing time’ τ0 =
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√
|β2|Lnl/2, where β2 is the (second-order) dispersion coefficient

[s = sign(β2)], Lnl = 1/(γ ρ) the nonlinear length, γ the nonlinear
coefficient, and ρ the average wave intensity. We remind that
the ‘healing time’, τ0, denotes the typical time scale for which
linear and nonlinear effects are of the same order in the limit of
an instantaneous nonlinearity, e.g., the typical size of a soliton
or the modulational instability period. The dimensional variables
can be recovered through the substitution ψ → ψ

√
ρ, t →

tτ0, z → zLnl. According to this normalization, ρ = N /T =

T−1
 T
0 |ψ |

2dt = 1, where T is the temporal numerical window.
To integrate numerically the NLS equation (1), we make use of
periodic boundary conditions in t space.

The causality condition of R(t) breaks the translational
invariance and the ‘time’ (z) reversibility of the NLS equation,
so that Eq. (1) is not Hamiltonian, and solely conserves the total
‘power’ of the field, N =


|ψ |

2(t, z)dt . In the following we
consider the weakly nonlinear regime of interaction, in which the
rapid fluctuations of the random wave make linear dispersive
effects dominant with respect to nonlinear effects: Ld ≪ Lnl (or
equivalently tc ≪ τ0), Ld = 2t2c /|β2| being the dispersion length
and tc the correlation time of the random field ψ(z, t).

According to linear response theory, the causality condition
imposes restrictions on the Fourier transform of the response
function, R(t), whose real and imaginary parts are related by
the Kramers–Krönig relations. The imaginary part is an odd
function, it is known to play the role of nonlinear spectral gain,
g(ω) = ℑ[


∞

0 R(t)e−iωtdt], which is responsible for an energy
transfer from high- to small-frequency components of the random
wave [35]. The typical width of g(ω) denotes the natural spectral
scale of the problem,∆ωg ∼ τ−1

R .

2.2. Weak Langmuir turbulence kinetic equation

The dynamics of random waves ruled by the NLS equation
(1) is inherently stochastic, so that physical insight into the un-
derlying deterministic behavior of DSWs is obtained by means
of a statistical averaging over the realizations. The wave turbu-
lence theory is known to provide a statistical description of the
random wave system in the weakly nonlinear regime of inter-
action, Ld ≪ Lnl. In this regime, the fluctuations of the ran-
dom wave exhibit a (quasi-)Gaussian statistics, so that one can
achieve a closure of the infinite hierarchy of moment equations
for the random wave system [28–31,33]. In the present case, we
assume that the random wave exhibits a homogeneous statis-
tics, so that the correspondingwave spectrum results δ-correlated,
ψ̃(ω +Ω/2, z) ψ̃∗(ω −Ω/2, z)


= nω(z) δ(Ω), where ψ̃(ω, z)

=


+∞

−∞
ψ(t, z) exp(−iωt)dt . It can be shown that, as a conse-

quence of the causality condition inherent to the temporal re-
sponse function R(t), the dynamics of the averaged spectrum is
governed by the following WLT integro-differential kinetic equa-
tion [44,35,34,58]:

∂znω(z) =
1
π
nω(z)


g(ω − ω′) nω′(z) dω′. (2)

This equation conserves two important quantities, the total power,
N =

1
2π


nω(z) dω, and the ‘nonequilibrium’ entropy, S =

1
2π


log

nω(z)


dω, this latter property being consistent with the

fact that Eq. (2) is reversible in ‘time’ (z). Also note that WLT equa-
tion (2) does not account for dispersion effects (parameter s), al-
though the role of dispersion in its derivation is essential in order
to verify the weakly nonlinear criterion, Ld/Lnl ≪ 1. On the other
hand, nonlinear dispersive effects, such as a frequency dependence
of the nonlinear Kerr coefficient (γ becomes a function γ (ω)) or
self-steepening effects, have been shown to substantially modify
the WLT equation (2), see Refs. [43,58].
2.3. Reduction to singular integro-differential kinetic equations

It has been shown that, if the initial spectral width of the
randomwave, say∆ω, is of the same order as the width of the gain
spectrum,∆ω ∼ ∆ωg , then the system self-organizes into spectral
incoherent solitons [35], i.e., a spectrally localized traveling wave
solution of Eq. (2) that travels with a constant velocity in frequency
space. Note that, because of the homogeneous statistics of the
random wave, such incoherent soliton states cannot be identified
in the spatio-temporal domain, but solely in frequency space [44].
On the other hand, in the regime where ∆ω ≫ ∆ωg , the spectral
dynamics of the randomwave develops singularities. In this ‘long-
range regime’, the behavior of the tail of the gain spectrum g(ω)
plays a key role in the spectral dynamics. In this respect, it is
important to note that, because of the causality condition of R(t),
the function g(ω) always decays algebraically at infinity, e.g., ∼

1/ω3 for a damped harmonic oscillator response, or ∼ 1/ω for
an exponential response function. Such a slow decay introduces
singularities into the convolution operator of WLT equation (2),
Mω =


g(ω − u)nu(z) du, which in turn leads to divergent

integrals. Such singularities can be addressed accurately by
introducing the Hilbert operator, H f (ω) = π−1P


+∞

−∞

f (ω−u)
u du,

where P denotes the Cauchy principal value. It was shown in the
Supplemental material of Ref. [26] that the convolution operator
can be written in the following form without any approximations:

Mω = −
π R̄(0)
τR

Hnω +
π R̄(1)(0)
τ 2R

∂ωnω +
π R̄(2)(0)

2τ 3R
H∂2ωnω

+
1
τ 4R


∞

0


∂3ωnω+

u
τR

+ ∂3ωnω−
u
τR


G0(u)du, (3)

where we have defined for u > 0: G0(u) = −
1
2


∞

u


g0
v +

R̄(0)
v

−

R̄(2)(0)
v3


(v−u)2dv. Here, R̄(t) is a smooth function defined by R(t) =

τ−1
R R̄(t/τR)H(t), R̄(n)(0) is the nth derivative at t = 0,H(t) is the
Heaviside step function and g0

v = ℑ


∞

0 R̄(s) exp(−ivs)ds

. The

derivation of Eq. (3) was reported in detail in the Supplemental
material of Ref. [26].

2.3.1. Spectral collapse singularity
Considering the ‘long-range’ regime τR ≫ 1 (τR ≫ τ0 in di-

mensional units), the expression of the convolution operator in (3)
reveals that the spectral dynamics of the random wave changes in
a dramatic way depending on the behavior of the response func-
tion near the origin, t = 0. The first term in Eq. (3) can only play a
role provided that the response function is discontinuous at t = 0
(R̄(0) ≠ 0). This property is encounteredwith the familiar example
of the exponential response function, R(t) = H(t) exp(−t/τR)/τR.
In this case the dominant term of the SID-KE takes the form,
∂znω(z) = −

1
τR
nωHnω . This equation was considered as a 1D

model of the vorticity formulation of the 3D Euler equation of
incompressible fluid flows [47]. On the basis of the analytical so-
lution of this equation [47], we showed that the spectral dynam-
ics of the random wave exhibits a collapse singularity, while the
corresponding spectral peak is shifted toward the low-frequency
components with a constant velocity in frequency space. Note that
such a spectral collapse singularity is regularized by the nonlinear
dispersive term (i.e., third-term) in Eq. (3). This remarkable effect
of spectral collapse predicted by the leading order term in (3) has
been confirmed by the numerical simulations of the NLS equation
(1) with stochastic initial conditions. It is also interesting to note
that this spectral collapse singularity can be interpreted in analogy
with a process condensation, in the sense that the spectrum of the
random wave tends to concentrate near by a particular frequency.
However, contrarily to the conventional NLS condensation process
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that results from the natural thermalization toward the thermody-
namic Rayleigh–Jeans equilibrium state [33,59], here the effect of
‘condensation’ occurs in 1D and very far from thermal equilibrium.
We refer the interested reader to Ref. [26] and its Supplemental for
more details on this spectral collapse singular behavior.

2.3.2. Spectral incoherent DSWs
The first term in the expansion of the convolution operator in

(3) becomes irrelevant whenever the response function is contin-
uous at t = 0. This occurs for instance for a damped harmonic
response function, which is known to model the stimulated Ra-
man scattering in optical fiber systems [57], R(t) = H(t) 1+η

2

ητR

sin(ηt/τR) exp(−t/τR). In this case R̄(0)(0) = 0, so that plugging
(3) into (2), one obtains the SID-KE:

∂znω =
1 + η2

τ 2R


nω∂ωnω −

1
τR

nωH∂2ωnω

. (4)

The leading-order Burgers term in (4) leads to a self-steepening of
the low-frequency front of the spectrum, whose gradient catastro-
phe is eventually arrested by the second nonlinear dispersive term
involving the Hilbert operator. In this way, the spectral dynamics
of the randomwave leads to the formation of a DSWundular struc-
ture, see Fig. 1 in Ref. [26]. Note however that the rapid oscillatory
spectral wave train induced by the shock cannot be interpreted in
this case as a genuine ‘soliton train’. Indeed, contrary to the dynam-
ics ruled by integrable models where the solitons quickly stabilize
as they emerge [24,49], here the spectral peaks continue to exhibit
an adiabatic growth and temporal narrowing even over long-term
evolution after the spectral gradient catastrophe [26]. In order to
illustrate a ‘solitonic DSW’ in the framework of integrable reduced
models, we will now consider a slightly modified configuration of
the system.

2.3.3. Benjamin–Ono kinetic equation
We consider here the regime in which the random wave

evolves in the presence of a significant background spectral noise,
nω(z) = n0 + ñω(z). Indeed, this regime is interesting because
the corresponding SID-KE recovers the integrable BOequation [26].
Considering amulti-scale expansion with ñω(z) ∼ n0/τR in Eq. (4),
one obtains:

τ 2R ∂z ñω − (1 + η2)n0∂ωñω

= (1 + η2)

ñω∂ωñω −

1
τR

n0H∂
2
ωñω


. (5)

The second term on the lhs can be removed by means of a change
of Galilean reference frame in frequency space, so that Eq. (5)
recovers the integrable BO equation, which provides here the
deterministic description of the spectral dynamics of incoherent
shocks. We illustrate incoherent DSWs starting either from a
‘bright’ or a ‘dark’ initial condition superimposed on the spectral
backgroundnoise. For a bright initial condition (positive initial data
vanishing at infinity) the random wave develops an incoherent
‘solitonic DSW’, where the singularity is eventually regularized by
the formation of (incoherent) BO solitons [49]. Fig. 1 reports a
typical spectral evolution of the random wave, in which the NLS
simulation is compared to those of the WLT kinetic equation (2)
and the reduced BO equation (5).

On the other hand, we report in Fig. 2 the evolution of an initial
dark perturbation (spectral hole) on a continuous background: The
spectral evolution is characterized by an expansion (rarefaction)
wave on the leading edge and a gradient catastrophe on the trailing
edge, which is regularized by an expanding dispersive wave train.
We remark that in all cases analyzed in the weakly nonlinear
regime, we always obtained a quantitative agreement between
the simulations of the stochastic NLS equation (1), WLT equation
(2) and corresponding reduced SID-KEs (4)–(5), without using
adjustable parameters. Note that the initial random waves in the
NLS equation (1) have been generated by considering a Gaussian
spectrum with δ-correlated spectral phases (see [26] for more
details on the simulations).

3. Spatial domain: Collective incoherent shock waves

3.1. Spatial nonlocal NLS equation

In this section we consider the spatial counterpart of the
temporal NLS equation considered above. In the context of optics,
such an NLS equation models the transverse spatial evolution
of an optical beam that propagates in a material featured by a
nonlocal nonlinear response, e.g., thermal media [18], nematic
liquid crystals [60,36], or glasses [61,62]. In this framework, the
impact of nonlocality on the dynamics of nonlocal nonlinearwaves
has been investigated in different settings [63,64]. From a broader
perspective, nonlocal nonlinearities are found in several physical
systems, among which we may quote dipolar Bose–Einstein
condensates [65], roton excitations in superfluids [66], atomic
vapors [67], or plasmas [51]. The evolution of the field can be
modeled by the following generic form of the defocusing NLS
equation:

i∂zψ = −
1
2
∂xxψ + ψ


U(x − x′) |ψ |

2(x′, z) dx′, (6)

whereU(x) is the nonlocal response function, whose typical width,
say σ , denotes the nonlocal range of the interaction. In a way sim-
ilar to the temporal case Eq. (1), we normalized the problem with
respect to the healing length Λ =

√
αLnl, where α is the diffrac-

tion coefficient, Lnl = 1/(γ ρ) the nonlinear length, γ the non-
linear coefficient, and ρ the wave intensity. For definiteness, we
remind that the dimensional variables can be recovered through
the substitution ψ → ψ

√
ρ, x → xΛ, z → zLnl (ρ = N /L =

L−1
 L
0 |ψ |

2dx = 1, where L is the spatial numerical window).
Note the presence of the factor (1/2) in front of the linear disper-
sion term in (6) which will prove convenient for the subsequent
analysis. With this normalization, the nonlocal range (σ ) and the
correlation length (λc) are in units of Λ. In addition to the total
‘power’ of the field, N =


|ψ |

2dx, we remind that the NLS equa-
tion (6) conserves the Hamiltonian,H = E +U, which has a linear
contribution E(z) =

1
2


|∂xψ |

2(x, z) dx, and a nonlinear contri-
bution, U(z) =

1
2

 
|ψ |

2(x, z)U(x − x′) |ψ |
2(x′, z) dx dx′. In the

numerical simulations we consider periodic boundary conditions
in x space and assume the response function U(x) Gaussian-
shaped, of the form U(x) = (2πσ 2)−1/2 exp[−x2/(2σ 2)].

3.2. Local vs nonlocal regimes

At variance with spectral incoherent shocks discussed above
in Section 2, the development of incoherent shock singularities
considered in this section requires a strongly nonlinear regime, as
it is usual for conventional coherent shock waves [1]. Note that
the requirement of a strong nonlinear interaction will become
apparent below in the framework of the Vlasov approach. In
the recent work [27], we considered the formation of incoherent
shocks starting froman initially localized randomwave that decays
to zero over a length scale of the same order as the nonlocal
nonlinear range, σ . Here, we consider an initial random wave that
exhibits fluctuations that are homogeneous in space, except for the
presence of a dip in its spatial envelope profile of the intensity,
whose width is of the same order as the nonlocal nonlinear range,
σ . The presence of such a hole in the intensity envelope will be
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Fig. 1. Spectral incoherent DSWs in the ‘solitonic’ regime: Numerical simulation of the NLS equation (1) (with a damped harmonic oscillator response for R(t)), in the
presence of a spectral background noise: The stochastic spectrum |ψ̃ |

2(ω, z) develops a DSW at z ≃ 2 × 105(τR = 5, s = 1, η = 1): z = 2 × 105 (a), z = 3 × 105 (b),
z = 7 × 105 (c). NLS result (gray) is compared with WLT kinetic equation (2) (green), and the reduced BO kinetic equation (5) (dashed-red). The initial condition is in solid
black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Spectral incoherent DSWs in the ‘non-solitonic’ regime: The shock is regularized by the formation of an expanding wave train (same as in Fig. 1, except that the
DSW is generated from a dark-like input). Numerical simulation of the NLS equation (1) with a damped harmonic oscillator response: The stochastic spectrum |ψ̃ |

2(ω, z)
develops a DSW at z ≃ 5000(τR = 2, s = 1, η = 1): z = 6 × 103 (a), z = 2 × 104 (b), z = 3 × 104 (c). NLS simulations (gray) are compared with WLT kinetic equation
(2) (green), and BO kinetic equation (5) (dashed-red). The initial condition is in solid black. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
shown to change in a deep way the nature of the incoherent
shock as well as the corresponding long-term regularization of the
singularity.

In the following we thus consider an initial random wave,
ψ0(x) = ψ(x, z = 0), in the strong nonlinear regime, U0 ≫ E0,
where U0 and E0 refer to the initial values of the energies at z = 0.
Note that this condition is analogous to λ0c ≫ 1 (λ0c ≫ Λ in
dimensional units), where λ0c is the initial coherence length of the
random wave, ψ0(x). In this regime, we now compare the case
of a quasi-local (short-range) interaction, σ ∼ 1, with a highly
nonlocal (long-range) interaction, σ ≫ 1 (we remind that σ is in
units of Λ). For σ ∼ 1, the random field leads to the formation of
several coherent DSWs. In spite of the complexity of this dynamics,
at a qualitative level it can be interpreted by remarking that since
λ0c ≫ 1, every individual fluctuation evolves independently of
each other, and thus develops its own DSW, as illustrated in
the zoom of Fig. 3(b). As a result, in this quasi-local turbulent
regime the incoherent wave develops singularities which are in
essence small-scale coherent DSWs. Note that these ‘dispersive
shocklets’ can be regarded as the conservative counterpart of
viscous shocklets considered in high speed turbulent flows [68]. It
is interesting to remark that, although this shocklets regime occurs
in the presence of dispersion (ω(k) = k2/2 from the linearized NLS
equation), it exhibits some interesting connections with a long-
standing challenging issue of weakly dispersive acoustic-like wave
turbulence [69], a feature commented in Ref. [27].
This physical picture changes in a dramatic way in the highly
nonlocal (long-range) regime, σ ≫ 1. This is illustrated in
Fig. 3(c)–(d), which shows the evolution of the field starting from
the same initial condition (ψ0(x)) as in the quasi-local regime.
The main difference is that in the highly nonlocal regime the
fluctuations of the incoherent wave exhibit a global collective
behavior, which is responsible for the formation of a large-scale
incoherent shock wave of a fundamental different nature, since it
is now the incoherent wave as a whole which develops a shock.
The analysis developed below will reveal that the momentum of
the randomwave exhibits a gradient catastrophe shock singularity
toward the dark notch center (x = 0), which is characterized by
a dramatic degradation of the coherence of the random wave at
the shock point (see the zoom in Fig. 3(d)). In order to analyze
the properties of this incoherent shock, it proves convenient to
study the evolution of the spectrogram (i.e., local spectrum of the
random wave) in the general framework of the long-range Vlasov
formalism.

3.3. Long-range Vlasov equation

The long-range Vlasov equation can be derived within the
general framework of the wave turbulence theory [29–31,33].
In this respect, it is important to note that, in the long-range
regime of interaction, resonant four-wave interactions underlying



G. Xu et al. / Physica D 333 (2016) 310–322 315
Fig. 3. Spatial incoherent shock waves: Local (left column) vs nonlocal (right column) regimes. Numerical simulations of the NLS equation (6) starting from the same initial
condition, |ψ |

2(x, z = 0) (dashed red lines): (a) In the quasi-local regime σ = 2, each individual fluctuation of the random wave develops a coherent DSW, as illustrated in
the zoom (b), which reports a zoom of |ψ |

2(x, z = 20) (blue line). (c) In the highly nonlocal regime σ = 200, the analysis reveals that the randomwave as a whole develops
a collective incoherent shock nearby the initial hole at x = 0, see the zoom in (d) which reports |ψ |

2(x, z = 350) (blue line). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
the NLS equation (6) are described by a wave turbulence collision
term which can be shown to be of higher order with respect
to the transport Vlasov terms (see Ref. [27] for more details).
It remarkably turns out that the collisionless long-range Vlasov
equation provides an accurate description of the highly nonlocal
regime of the random wave. More specifically, the long-range
Vlasov equation governs the evolution of the averaged local
spectrum of the wave [50,35]:

∂znk(x, z)+ ∂kΩk(x, z) ∂xnk(x, z)− ∂xΩk(x, z) ∂knk(x, z) = 0, (7)

where nk(x, z) denotes the ‘local’ spectrum in the sense that
it depends on the spatial position, x. It is defined as the
Wigner-like transform of the correlation function, nk(x, z) =
B(x, ξ , z) exp(−ikξ) dξ with B(x, ξ , z) = ⟨ψ(x+ ξ/2, z) ψ∗(x−

ξ/2, z)⟩ and ⟨·⟩ denotes an average over the realizations [35]. The
generalized dispersion relation in (7) isΩk(x, z) = ω(k)+ V (x, z),
where V (x, z) =

1
2π


U(x − x′)N(x′, z) dx′ is the effective poten-

tial, N(x, z) =

nk(x, z)dk is the envelope intensity, and ω(k) =

k2/2 (with our normalization, N = (2π)−1

N(x, z)dx = L).

Note that a detailed comparative analysis of NLS and Vlasov
simulations revealed a quantitative agreement in the long-
range regime [70], even in the strong nonlinear regime of
interaction [27]. Although to our knowledge there is no rigorous
proof of this remarkable fact, it can be interpreted on the basis
of statistical arguments similar to those discussed in Ref. [71], in
which it was shown that, owing to a highly nonlocal response,
the statistics of the random wave turns out to be Gaussian. Then
contrarily to a conventional Vlasov equation, whose validity is
constrained by the assumptions of (i) weakly nonlinear interaction
and (ii) quasi-homogeneous statistics, the long-range Vlasov
equation provides an ‘exact’ statistical description of the random
wave in the highly nonlocal regime [50]. Note that this property
is corroborated by the fact that the Vlasov equation considered
here is formally analogous to that considered to study long-
range interacting systems [55,56], where it has been proven that
in the limit of an infinite number of particles the dynamics of
mean-field Hamiltonian systems is governed by a long-range
Vlasov formalism (although the terminology ‘long-range’ used
in [55,56] refers to genuine divergent spatial integrals of the
nonlocal response function, while we consider here Gaussian or
exponential-shaped response functions typically encountered in
nonlinear optics).

3.4. Spectrogram hole formation

To gain physical insight into the incoherent shock singularity,
we report here numerical simulations of both the NLS (6) and
Vlasov (7) equations. Fig. 4 illustrates the evolution of the
spectrograms in a relatively weak nonlinear regime of interaction,
E0/U0 ≃ 2.5. We note in Fig. 4 that the initial line hole in
the spectrogram is twisted during the propagation, a feature that
can be intuitively interpreted on the basis of the particle analogy
provided by the Vlasov formalism. We remind that the random
wave is modeled by an ensemble of particles with the energy
Ωk(x, z) =

1
2k

2
+ V (x, z), so that the dynamics of a single particle

is determined by the collective nonlinear potential induced by
all other particles, V (x, z). Because of the relatively large value
of E0/U0, the random wave ‘contains’ particles whose velocity
v(k) = ∂kω(k) = k is large enough to be only marginally affected
by the nonlinear potential dip, V (x). In this way the counter-
streaming flows of particles with positive velocity (v(k) > 0 for
k > 0) and negative velocity (v(k) < 0 for k < 0), lead to
a twist of the line hole in phase space. This in turn leads to a
homogenization process during the evolution, so that the intensity
envelope relaxes during the propagation toward a homogeneous
state, N(x, z) → N0 for large z. This effective damping of the
initial hole perturbation in the intensity envelope is illustrated in
Fig. 4(g)–(h).We remind that this irreversible process of relaxation
occurs in a conservative Hamiltonian system. It is in fact analogous
to the celebrated phenomenon of Landau damping [72], which
results from a phase mixing homogenization process that occurs
in phase space.

Let us note that, contrary to what has been reported in
previous studies of incoherent dark solitons in slowly responding
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Fig. 4. Evolution of the spectrograms obtained by numerical simulations of the NLS
equation (6) (left column: panels (a) to (c)) and Vlasov equation (7) (right column:
panels (d) to (f)), in the weakly nonlinear regime, E0/U0 ≃ 2.5 (σ = 200). The
initial line hole is twisted during the propagation, which leads to an irreversible
evolution of the randomwave toward the homogeneous state, as illustrated by the
intensity profiles in NLS (plots of |ψ |

2(x, z), gray) and Vlasov (plots ofN(x, z)/(2π),
dashed red) for z = 0 (g), z = 1200 (h).

Fig. 5. Evolution of the spectrograms obtained by numerical simulations of the
NLS equation (6) (left column) and Vlasov equation (7) (right column), in the
strongly nonlinear interaction regime, E0/U0 ≃ 0.024 (σ = 200). The random
wave exhibits a sudden spectral broadening nearby the initial line hole at x =

0, which takes place toward k > 0 (k < 0) for particles moving toward
increasing (decreasing) values of x, subsequently leading to a shock singularity for
the momentum of the opposing currents (see the evolution of K(x, z) in Fig. 6).
photorefractive materials [73,74], here we verified that the
introduction of a π-phase shift at the dark notch center (x =

0) does not play any role in the subsequent dynamics. This is
consistent with the long-range Vlasov formalism (7), which does
not keep trace of phase information effects.

The situation illustrated through Fig. 4 changes in a substantial
way when the propagation of the random wave enters a strongly
nonlinear regime of interaction, E0/U0 ≪ 1. In this case the
random wave essentially ‘contains’ low energetic particles, whose
slow motion is thus deeply affected by the nonlinear potential.
This leads to a completely different spectrogram dynamics, as
illustrated in Fig. 5. By falling into the corresponding opposite
fronts of the potential dip, the counter-propagating particles result
to be strongly accelerated. This means that the random wave
exhibits a sudden spectral broadening, which takes place toward
k > 0 (k < 0) for particles moving toward increasing (decreasing)
values of x, subsequently leading to a shock singularity for the
momentum of the opposing currents (see Fig. 6). As a result of
their nonlinear interaction, the strong accumulation of particles
in the potential dip in turn modifies the self-induced potential,
V (x, z), which thus becomes flatter and subsequently double-well-
shaped, as illustrated in Fig. 7 for z . 600. The counter-streaming
particles then get trapped within the two distinct channels in
the spectrogram, whose dynamics is still coupled by the long-
range potential, which thus leads to a complex oscillatory spatio-
temporal dynamics, see Fig. 7 for z & 600. As a remarkable and
unexpected result, this complex dynamics eventually leads to the
spontaneous nucleation of a deep hole in the spectrogram. The
term ‘nucleation’ is inspired by the fact that, once generated, the
spectrogram hole proves extremely robust and is thus preserved
for arbitrarily long propagation distances in z up to random shifts
in the x direction, as illustrated in Figs. 7–8.

In the following we first show that the first mechanism leading
to the generation of the spectrogram hole is a shock singularity,
next we show that the robustness of such a phase space hole can
be interpreted in the light of an incoherent dark soliton solution.

3.5. Incoherent shock singularity

The previous numerical analysis revealed that the formation
of the spectrogram hole in phase-space (x, k) takes place into the
strong nonlinear regime of interaction, which is characterized by
a very narrow spectral dynamics. Accordingly, the spectrogram
dynamics can be described by means of singular solutions of the
Vlasov equation [27], nk(x, z) = N(x, z) δ


k − K(x, z)


, which

leads to the following hydrodynamic-like model governing the
evolutions of the intensity envelope, N(x, z), and momentum,
K(x, z):

∂zN + ∂x(NK) = 0, (8)
∂zK + K∂xK + ∂xV = 0, (9)

where we remind that the self-consistent potential reads, V (x, z)
=

1
2π


U(x − y)N(y, z)dy. Let us note that the ‘hydrody-

namic’ model equations (8)–(9) recover the one-dimensional
shallow-water equations under the substitution V (r, z) →

N(r, z)/(2π) [1]. We will see in the following that the existence
of a long-range interaction mediated by the convolution with the
nonlocal potential, U(x), changes the dynamics in a substantial
fashion.

Starting from K(x, z = 0) = 0, the ‘spectrogram’ K(x, z)
is initially driven by the last nonlinear term in (9), while the
Burgers-like (second) term of (9) subsequently leads to the
gradient catastrophe of K(x, z) toward the point x = 0 — the
particles with a positive (negative) velocity accumulate nearby
x = 0− (x = 0+). The finite ‘time’ (distance, z) shock singularity
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Fig. 6. Incoherent shock singularity: Evolutions of N(x, z) (1st row) and K(x, z) (2nd row) obtained by simulations of NLSE (6) (gray), Vlasov equation (7) (blue),
‘hydrodynamic’ model (8)–(9) (dashed red), z = 10, 100, 200, 300, 380, from left to right (σ = 200). The momenta are evaluated as follows: for NLSE, KNLS(x, z) =
2π
N ℑ(ψ∗∂xψ), for the Vlasov equation, KVlas(x, z) =

1
N


knkdk. The comparison between NLS, Vlasov and ‘hydrodynamic’ model simulations has been performed without

using adjustable parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
of K(x, z) is responsible for a collapse singularity of the intensity
envelope N(x = 0, z), see Fig. 6. These singular behaviors can
be described theoretically by solving Eqs. (8)–(9) by the method
of the characteristics [75]. We define w(z) = K(X(z), z), τ (z) =

∂zK

X(z), z


, ξ(z) = ∂xK


X(z), z


, and φ(z) = N


X(z), z


, which

can be shown to satisfy

Ẋ(z) = w(z), X(0) = x0, (10)
ẇ(z) = τ(z)+ w(z)ξ(z), w(0) = 0, (11)

τ̇ (z) = −∂2zxV (X(z), z)− ξ(z)τ (z), τ (0) = −∂xV (x0, 0) (12)

ξ̇ (z) = −∂2x V (X(z), z)− ξ 2(z), ξ(0) = 0, (13)

φ̇(z) = −ξ(z)φ(z), φ(0) = N(x0, 0), (14)

where the dots denote the ‘temporal’ derivatives, Ẋ(z) = ∂zX(z).
Note that Eq. (14) is obtained by writing (8) along the character-
istic, X(z). Observing that V (x, z) and its spatial derivatives are
uniformly bounded, it can be shown that ξ(z) and φ(z) exhibit a
finite time blow-up singularity. More specifically, we can consider
the singular behaviors along the characteristic, X(z) = 0, with
w(z) = 0, τ (z) = 0:

– Ifσ is larger than the typical width of the initial hole in N(x, 0),
then we can approximate ∂2x V (0, z) ≃ −∂2x U(0) N , with N =
1
2π


N0 − N(x, 0)dx. Accordingly, the equations for ξ and φ

satisfy ξ̇ = −k20 − ξ 2, φ̇ = −ξφ, with k20 = −∂2x U(0) N > 0,
which gives the solutions:

N(0, z) =
N(0, 0)
cos(k0z)

, ∂xK(0, z) = −k0 tan(k0z). (15)

This shows that the intensity envelope and the gradient of the
momentum both exhibit a blow up as 1/(z − z∞) with z∞ =

π/(2k0).
– If σ is of the same order as the width of the dip N0 − N(x, 0),

we remark that we always have c− ≤ ∂2x V (0, z) ≤ c+, where
c± = Nm± with m+ = max


∂2x U(x)


and m− = min


∂2x U(x)


.

Therefore ξ̇ ≤ −c− − ξ 2, so that whenever ξ(z) reaches
−

√
−c−, then ξ(z) also blows up in finite ‘time’ as−1/(z−z∞).
Remarking that φ(z) = N(0, 0) exp

−
 z
0 ξ(s)ds


from (14),

we obtain the singular behaviors of ξ(z) and φ(z) just before
z = z∞:

N(0, z) ≃
1

z∞ − z
, ∂xK(0, z) ≃

−1
z∞ − z

. (16)

It is important to note that the singular behaviors expressed
by (16) are regularized by the NLS and Vlasov models. Indeed,
the distribution nk(x, z) evolves in a two-dimensional phase-space
(x, k) and can thus become ‘multi-valued’ beyond the shock point,
as illustrated in Fig. 5(j) or in Fig. 7 for z & 300. However,
as discussed below in the concluding section, the derivation of
reduced equations describing the regularization of the double
shock-collapse singularity constitutes a difficult issue related to
the long-standing problem of achieving a closure of the infinite
hierarchy of equations that govern the evolutions of k-moments
in transport-like kinetic equations [76]. We note in this respect
that the wave turbulence theory establishes a closure in the
weakly nonlinear regime [29–31,33], while the closure considered
here concerns the opposite strongly nonlinear regime. Also note
that in the context of self-gravitating systems, a weak diffusive
effect has been introduced in a heuristic way to regularize the
wave breaking shock singularity described by the inviscid Burgers
equation, thus leading to the so-called ‘adhesion model’ [77],
although so far no rigorous theory has been developed to justify
such phenomenological approach [56].

We finally note that, at variance with shallow-water equations,
which are hyperbolic equations and thus do not exhibit collapse
singularities, here the collapse singularity of the intensity envelope
in Eqs. (8)–(9) originates into the long-range nature of the
interaction expressed by the convolution between the nonlocal
potential, U(x), and the intensity, N(x, z).

3.6. Robustness of the spectrogram hole: Incoherent dark soliton
states

The robustness of the spectrogram hole revealed by the
numerical simulations in Figs. 7–8 can be interpreted in terms of
incoherent dark soliton states. In the following we first consider
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Fig. 7. Phase-space hole formation: Simulation of the long-range Vlasov equation (7) showing the evolution of the systemwell beyond the shock singularity. After a complex
transient, a robust hole in the phase-space spectrogram is generated (E0/U0 ≃ 0.018, σ = 200). The rows show the evolutions during the propagation in z of the phase-
space spectrogram nk(x, z) (3rd and 6th rows), and the corresponding evolutions of the intensity N(x, z) =


nk(x, z)dk (1st and 4th rows), and self-consistent potential

V (x, z) =
1
2π


U(x − x′)N(x′, z)dx′ (2nd and 5th rows).
a usual procedure used to derive non-homogeneous stationary
solutions of Vlasov-like equations. This allows us to obtain a
dark soliton state that exhibits an appropriate intensity profile
of the random wave in real space. However this soliton solution
is characterized by an underlying divergence of the spectrogram
along some specific contour in phase-space, a feature which
prevents us to connect the hole with a homogeneous background
in phase-space.We circumvent this problembyderiving a different
solution which is characterized by a stationary hole within a
spectrogram that is otherwise approximately constant in phase-
space.

3.7. Dark soliton solution without phase-space background

To derive an analytical dark soliton solution we remind an
important observation originally pointed out in Ref. [78], namely
that a stationary solution of Vlasov-like equations can be expressed
as an arbitrary function of the energy per particle,Ωk(x) =

1
2k

2
+

V (x). Dark soliton states in the defocusing regime can be described
as a consequence of a self-consistent self-trapping of the particles
which results from their own induced self-consistent potential,
in complete analogy with bright soliton states in the focusing
regime [79,50] (also see Ref. [73] for dark incoherent optical
solitons, and [80] for a review on the formation and dynamics of
electrons and ion phase-space vortices in collisionless plasmas). In
the defocusing case, the particles can be trapped by an effective
potential provided that the corresponding (averaged) intensity
exhibits a dip in its spatial profile, as illustrated in Fig. 9(b). In this
case, it proves convenient to shift the energy by V0 = N0/(2π)
by defining, h =

1
2k

2
+ V (x) − V0. Now the idea of the method

is to argue that the ‘particles’ that constitute the dark soliton are
trapped by the self-consistent potential, V (x) − V0 ≤ 0, provided
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that their energy is negative, h ≤ 0, see Fig. 9. This determines a
specific interval of momenta for the trapped particles, −kc ≤ k ≤

kc , where kc =
√

−2(V − V0). The spectrogram of the stationary
solution thus reads nst

k (x) = ηst
 1
2k

2
+ V (x) − V0


, while the

corresponding intensity profile is N(x) =


+kc
−kc

nst
k (x) dk. By means

of a change of variable, this integral can be expressed in the form
of a Fredholm equation

N =

 0

V−V0

ηst(h)
√
(h − V + V0)/2

dh. (17)

With U(x) = (2πσ 2)−1/2 exp[−x2/(2σ 2)], this equation admits
the following analytical solution:

N(x) = N0

1 − d exp(−x2/(2σ 2

N))


(18)

ηst(h) =

 N0

π
√

−2h
− Qα (−h)

1
α−

1
2


H(−h), (19)

Qα =
Γ (1 + α−1) (2π)

1
α−

1
2

Γ (1/2 + α−1) α
1
2α N

1
α−1
0 d

1
α−1

(20)

α =
1

1 + σ 2/σ 2
N

(21)

where N0 = 2π/(1 −
√
2πdσN/L),Γ (x) is the Gamma function

and the effective potential is V (x) = V0

1 − d

√
α exp(−αx2/

(2σ 2
N))

. The solution is characterized by a contour in the spectro-

gram defined by the lines:

kc(x) = ±


−2(V (x)− V0), (22)

as illustrated in Fig. 9. It is important to note that along this con-
tour (22) the solution nst

k (x) exhibits a divergence in phase-space,
while the solution is not defined for |k| ≥ kc(x). Note however
that the solution (19) is self-consistent, in the sense that it verifies

+kc
−kc

nst
k (x)dk = N(x). Also note that in the limit σ → 0, i.e.,α = 1,

the dark soliton solution recovers the form of the solution obtained
in the limit of a local interaction, U(x) → δ(x) [79].

3.8. Dark soliton solution with homogeneous phase-space back-
ground

The dark soliton solution of the Vlasov equation given through
Eqs. (18)–(21) exhibits a major drawback: The divergence of the
solution along the contour kc(x) in phase-space [Eq. (22)] prevents
the connection of the hole with a homogeneous background of the
spectrogram in phase-space. Then despite the fact that the spatial
intensity profile of the solution exhibits the usual appropriate dark
soliton shape (see Fig. 9(b)), the underlying spectrogram does not
exhibit a homogeneous background and thus strongly differs from
the phase-space holes states typically obtained from simulations
of the Vlasov equation, see Fig. 7.

In this section we derive a dark soliton solution characterized
by a spectrogram hole with a homogeneous background in phase-
space, with constant amplitude n0. We thus consider a solution
of the form: nk(x, z) = n0 − ñk(x, z). By substitution into the
defocusing Vlasov equation (7), one readily sees that ñk(x, z)
verifies the following focusing version of the Vlasov equation:

∂z ñk + k∂xñk + ∂xṼ∂kñk = 0, (23)

where Ṽ (x, z) =
1
2π


U(x−y)Ñ(y, z)dy, with Ñ(x, z) =


ñk(x)dk.

Hence, in the defocusing regime, the spectrogram hole ñk(x, z)
results to be governed by an effective focusing Vlasov equation.
Now, in the focusing regime, the particles ñst

k (x) that constitute
the soliton are trapped by the self-consistent potential, −Ṽ (x),
Fig. 8. Phase-space hole formation: Evolution of the spectrogram obtained by
simulation of the NLS equation (6) showing the formation of a hole in the phase-
space well beyond the shock singularity (E0/U0 ≃ 0.024, σ = 200). Note
that, contrary to deterministic Vlasov simulations, NLS simulations are inherently
stochastic and fluctuations may lead to a shift in the spatial position of the phase-
space hole.

provided that their energy is negative, h̃ =
1
2k

2
− Ṽ (x) ≤ 0.

Proceeding as in the previous section, we can exhibit the following
stationary solution with background

ηst−bg(h̃) = n0 − η̃st(h̃), (24)

where η̃st(h̃) has compact support in k and is rapidly decaying in x:

Ñ(x) =

√
2πÑ

σN
exp


−

x2

2σ 2
N


, (25)
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Fig. 9. Dark soliton solution without phase-space background [Eqs. (18)–(21)]: (a) Plot of the dark soliton solution of the Vlasov equation, nst
k (x), given by Eq. (19) for

σ = 200, σN = 100 and nst
k=0(x = 0) = 0. Note that the solution diverges on the contour given by kc(x) in Eq. (22) and it is not defined for |k| > kc(x). (b) Corresponding

plots of the intensity profile N(x) (blue line), nonlocal potential U(x) (red line), and self-consistent trapping potential V (x)−V0 (dark line), given by the dark soliton solution
(σ = 200, σN = 100). A dark soliton forms when the randomwave induces an effective self-consistent self-trapping potential Ṽ (x) = V (x)− V0 < 0 owing to a defocusing
nonlinearity (for visibility reasons, U(x) has been multiplied by a factor 800, V (x)− V0 by a factor 14). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
η̃st(h̃) = Q̃α (−h̃)
1
α−

1
2 H(−h̃), (26)

Q̃α =
Γ

1 +

1
α


(2π)

1
2α

Γ
 1
2 +

1
α

 (σ 2
+ σ 2

N)
1
2α

σN
Ñ 1− 1

α , (27)

where the parameter α is still given by Eq. (21). The correspond-
ing self-consistent potential reads Ṽ (x) =


Ñ

√
α/(

√
2πσN)


exp(−αx2/(2σ 2

N)). The compact support in k of solution ñst
k (x) orig-

inates in the condition of particle trapping underlying the dark soli-
ton state. More precisely, considering that

√
2πÑ /σN = N0d, then

V (x) − V0 = −Ṽ (x), so that the particle trapping condition is the
same as that considered above for the solution (18)–(21), namely

h = h̃ ≤ 0, or |k| ≤ kc(x) =


2Ṽ (x). There is however a funda-

mental difference which distinguishes the two soliton solutions:
In contrast to the previous solution Eqs. (18)–(21), here the spectro-
gram hole (24) is connected to a homogeneous constant phase-space
background of amplitude n0.

The dark soliton solution is characterized by two free param-
eters, the spatial width σN and the mass Ñ . However, this solu-
tion is acceptable only if ñst

k (x) ≤ n0 for all (k, x), that is to say,
provided ñst

k=0(x = 0) ≤ n0. In this respect, it is interesting to
note that nst−bg

k (x) can vanish at the center of the spectrogram,
k = x = 0, which gives a deep hole in phase-space since then
nk=0(x = 0, z) = 0. In this case the free parameters σN and Ñ get
linked. The dark soliton solution then takes the form

nst−bg
k (x) = n0


1 −


exp


−
αx2

2σ 2
N


−

π

αn2
0

Γ 2

1 +

1
α


Γ 2
 1
2 +

1
α

k2 1
α−

1
2


. (28)

The width of the hole in x is σN and the width in k is αn0/
√
π since

Γ 2(1+ 1
α )

Γ 2( 12 +
1
α )

∼
1
α
for small α.

Note that, owing to the Galilean invariance of the Vlasov
equation, the above dark soliton solution can be extended to a
solution traveling with some ‘velocity’ w through the change of
reference frame: ξ = x + wz, ζ = z. The non-zero velocity
solution reads, nst−bg

k (ξ) = n0 − ñst
k (ξ), where ñst

k (ξ) = Q̃α

Ṽ (ξ)−

1
2 (k + w)2

 1
α−

1
2 has a compact support in phase-space defined by

−


2Ṽ (ξ) − w ≤ k ≤


2Ṽ (ξ) − w. This solution shows that

the phase-space hole can move in real space by acquiring some
momentum, k0 = −w, a property that can explain the shift in the
position of the hole observed in NLS simulations in the presence of
fluctuations, as illustrated in Fig. 8.

In the strongly nonlinear regime, the background spectrogram
is rather narrow in k, with width ∆k < 1, and its amplitude is
proportional to 1/∆k. Therefore we must have α ∼ ∆k2, that is
to say, σN ∼ σ∆k, to ensure that the width of the hole in k is
of order ∆k and therefore fits into the background profile. This
shows that thewidth in x of the phase-space hole is smaller than σ .
Preliminary numerical simulations of the Vlasov equation confirm
this important property of the dark soliton solution, at least for
values of∆k large enough to generate holes within some relatively
homogeneous phase-space background.

Finally note that the intensity profile of the dark soliton solution
(28) can bewritten in the form,N(x) = N0


1−d exp(−x2/(2σ 2

N))

,

with d ≃ n2
0Γ

2( 12 +
1
α
)
√
α/

2πΓ 2(1+

1
α
)

, i.e., d ∼ α3/2 for small

α. We remark the interesting point that, despite that nst−bg
k (x)

vanishes at the dark notch center, the resulting greyness of the
dark soliton, d, rapidly decreases with the amount of nonlocality,
as illustrated in Fig. 10(d) that reports d vs σ/σN . This reveals that,
in spite of their robustness, the existence of deep holes in phase-
space can hardly be identified through the analysis of the intensity
profile in the usual real space.

4. Conclusion

4.1. Summary of the main results

On the basis of the NLS model equation, we have reported a
unified presentation of different forms of incoherent shock waves
in the presence of a long-range interaction, which can take place
either in the temporal domain through a highly noninstantaneous
nonlinearity, or in the spatial domain through a highly nonlocal
nonlinearity. In the temporal domain, the system develops DSWs
in the spectral dynamics of the random wave, despite the non-
Hamiltonian structure of the NLS equation and the weakly
nonlinear turbulent regime of interaction. These singularities are
described in detail by a family of SID-KE, such as the integrable
BO equation, which thus leads either to ‘solitonic’ or ‘non-solitonic’
spectral incoherent DSWs. In the spatial domain, the randomwave
exhibits a large scale global collective incoherent shock singularity
that results from the long-range nature of the interaction. In
spite of the Hamiltonian structure of the NLS model, the shock
singularity is not characterized by the formation of a DSW. The
regularization of the singularity takes place through a different
process of coherence degradation that occurs near by the shock
point. After a long transient characterized by a complex dynamics,
the system is shown to nucleate a spectrogram hole in phase-
space, which proves extremely robust and is thus preserved for
arbitrarily long interaction times. We have interpreted such a
robustness by deriving an analytical dark soliton solution of the
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Fig. 10. Dark soliton solution with homogeneous phase-space background [Eqs. (24)–(27)]: (a) Plot of ñst
k (x) given by Eq. (26): The solution is defined for |k| ≤ kc(x), where

kc(x) =


2Ṽ (x). (b) Plot of nst−bg

k (x) given by Eq. (28),which evidences the presence of a homogeneous constant background in phase-space, n0 (note that n
st−bg
k=0 (x = 0) = 0).

(c) Corresponding plots of the intensity dark soliton profile, N(x) = N0 − Ñ(x) (blue line), Ñ(x) (green line), Ṽ (x) (black line). (d) Dependence of the soliton greyness, d, with
σ/σN , see the text: The greyness rapidly decreases with the amount of nonlocality, which makes incoherent dark solitons difficult to identify through their intensity profile
N(x), despite the fact that the spectrogram vanishes at the dark-notch center, nst−bg

k=0 (x = 0) = 0, see panel (b) (σ = 200, σN = 100, the spatial and spectral windows are
L = 3840, K = 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
long-range Vlasov equation, which is characterized by a stationary
hole within a spectrogram that is otherwise constant in phase-
space. The analysis reveals that the dark-soliton states are in some
sense ‘hidden’ in the phase-space representation, in the sense
that, despite the fact that the spectrogram vanishes at the dark
notch center, nk=0(x = 0, z) = 0, they manifest themselves by
means of a slight depletion in the intensity envelope of the random
wave. Such a reduced greyness of incoherent dark soliton states
makes their experimental observation extremely difficult, since an
accuratemeasurement of the optical phase-space spectrogram still
constitutes a delicate problem (see, e.g., [27]).

4.2. Regularization and closure issues

It would be important to develop a proper theoretical
description of the mechanism underlying the regularization of the
collective shock-collapse singularity discussed in the framework
of a spatial long-range interaction. The derivation of reduced
equations describing the regularization of the singularities is a
difficult task which is related to a long-standing mathematical
problem, namely achieving a closure of the infinite hierarchy of
equations that govern the evolutions of k-moments in transport
kinetic equations [76]. To comment on this problem, we remind
that the ‘hydrodynamic model’ (8)–(9) accurately describes the
dynamics up to the shock point, and thus breaks down beyond the
finite ‘time’ singularities (16). It is important to note that thismodel
refers to the lowest-order nonlinear closure of the hierarchy of k-
moments equations for the long-range Vlasov equation. Then the
natural way to go beyond this model would require a closure of
the hierarchy at a higher order. In this respect, we note that in
addition to the momentum p(x, z) = ⟨k⟩ (x, z), one can define
higher-order k-moments as: mq(x, z) = N(x, z) ⟨(k − p)q⟩, where
the average denotes ⟨·⟩ (x, t) = N−1


· nk(x, t)dk. From the long-

range Vlasov equation, one obtains without approximations the
following infinite hierarchy of moments equations:

∂zN + ∂x(N p) = 0, (29)
∂zp + p∂xp + ∂xV = −
1
N
∂xm2, (30)

∂zmq + ∂x(pmq + mq+1)

= q
mq−1

N
∂xm2 − mq∂xp


, q ≥ 2. (31)

The possibility of achieving a closure of the hierarchy (29)–(31)
has been addressed in [27] through numerical simulations of the
Vlasov equation. The study revealed that higher-order k-moments
suddenly become all of the same order of magnitude nearby the
shock singularity (16), which prevents an appropriate closure
of the infinite hierarchy and thus a reduced description of the
dynamics beyond the incoherent shock point. This indicates that
a different approach should be developed to properly understand
the mechanism of regularization of the double shock-collapse
singularity (16) described by the hydrodynamic model (8)–(9).
Work is in progress to address this issue.
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