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Abstract. We consider a passive synthetic aperture imaging problem. A single

moving receiver antenna records random signals generated by one or several distant

noise sources and backscattered by one or several reflectors. The sources emit noise

signals modeled by stationary random processes. The reflectors can be imaged by

summing the autocorrelation functions of the received signals computed over successive

time windows, corrected for Doppler factors and migrated by appropriate travel times.

In particular the Doppler effect plays an important role and it can be used for resolution

enhancement. When the noise source positions are not known, the reflector can be

localized with an accuracy proportional to the reciprocal of the noise bandwidth, even

when only a very small number of sources are available. When the noise source

positions are known, the reflector can be localized with a cross range resolution

proportional to the carrier wavelength and inversely proportional to the length of

the receiver trajectory (i.e., the synthetic aperture), and with a range resolution

proportional to the reciprocal of the bandwidth, even with only one noise source.

PACS numbers: 78A46, 35Q60
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1. Introduction

We consider a passive synthetic aperture radar imaging problem. This kind of problems

is motivated on the one hand by the growth of illumination sources of opportunity, such

as broadcasting stations, mobile phone or wifi base stations, and on the other hand by the

availability of low-cost receivers, that can be stationary [15, 16, 9] or moving [2, 9, 17, 27].

Moreover the numerical processing in synthetic aperture radar is nowadays achievable

and may even be accelerated by using GPU computing [5]. In this paper we consider

the situation in which a single moving receiver antenna with very broadband capacities

records the signal generated by one or several distant noise sources and backscattered

by one or several reflectors (see Figure 1). A noise source is a point-like source that

emits an unknown signal, modeled as a stationary random process, its position may be

known or unknown and we will address both cases. When there is one opportunistic

source emitting repeatedly the same pulse, it has been shown that correlation-based

techniques could be used to image reflectors [23, 24, 26, 27]. When there are many

noise sources and the illumination is diversified enough, that is to say, when the noise

sources are dense enough and are distributed in an extended region, it was shown in

[13] that the reflectors can be imaged by migrating the autocorrelation functions of

the received signals over successive time windows. The imaging method proposed in

[13] follows the principle of seismic interferometry, in which a passive receiver array is

used to perform travel-time tomography and reflector imaging using only ambient noise

illumination [3, 10, 20, 25, 11, 12, 14].

In [13] the analysis was carried out under the stop-go approximation, which

means that the velocity of the receiver antenna is small enough so that the receiver

antenna can be assumed to be stationary during each time window. Under the stop-

go approximation, it is shown in [13] that the reflectors can be imaged only if the

illumination is rich and diversified. However, it is known that the stop-go approximation

does not hold when the velocity of the antenna is too large and/or when the relevant

time intervals are too long. As discussed for instance in [22] in the context of active

synthetic aperture radar, in which the antenna is both the source and the receiver, there

are two main effects that have to be taken into account. First the antenna may have

moved during the relevant time interval, which is the round trip from the antenna to

the target in the context of active synthetic aperture radar. Second the Doppler effect

induces a frequency shift in the measured signals. This frequency shift must be included

in the definition of the matched filter imaging function.

In this paper, we revisit the passive synthetic aperture radar imaging problem by

taking into account and exploiting two original and important features:

- the number of sources can be very limited in practice. Indeed the case of extended

noise sources corresponds to the underwater acoustics problem, in which there is a sheet

of point-like noise sources just below the sea surface [21, 18, 19]. In radar the typical

situation is the use of one or several noise or opportunistic sources [9]. This means

that we should be able to address the case with only one point-like noise source and
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(a) (b)

Figure 1. Passive sensor array imaging set up. In picture (a) the geometric set

up with one source is plotted: xs is the source position, zr is the reflector position,

(X(t))t∈[0,T ] is the receiver antenna trajectory. In picture (b) the geometric set up

with several (here three) sources is plotted.

then extend the result to multiple sources but in limited number, which is a situation

complementary to the continuum approximation for the source distribution considered

in [13].

- the Doppler effect cannot be neglected when the width of the time windows used to

compute the autocorrelations becomes large. Indeed we will see that this time duration

is the relevant one that determines the influence of the Doppler effect in the passive

configuration, instead of the time for a round trip from the receiver antenna to the target

in the active configuration. The choice of a small or large time window depends on the

user. A priori the choice of a small time window could be thought to be appropriate as

it could allow to avoid Doppler effects and to use the stop-go approximation as in [13].

However, the Doppler effect can in fact be useful in passive imaging, as already noticed

in [23, 24, 26, 27], and it can be exploited by an appropriate imaging function in order

to address the case of a limited number of sources. This is the main result of this paper.

The paper is organized as follows: In Section 2 we introduce the imaging function

and summarize the main results. In Section 3 we carry out the high-frequency analysis

of the imaging function and give its resolution properties when there is a single point-

like noise source with unknown position. In Section 4 we extend the result to multiple

unknown sources. Finally we introduce and study another imaging function that requires

the knowledge of the source position in Section 5. Section 6 is devoted to numerical

simulations that illustrate the main results of the paper.

2. Passive synthetic aperture imaging

2.1. Passive synthetic aperture imaging set up

In this paper we consider a two-dimensional situation. In this section we assume that

there is a point-like noise source at xs, a single moving receiver antenna with the known

trajectory (X(t))t∈[0,T ], and a point-like reflector at zr (see Figure 1(a)). The reflector
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is modeled by a local change of the speed of propagation of the form

1

c2(x)
=

1

c2
0

(1 + σr1Ωr(x− zr)), (1)

where Ωr is a small domain with volume l2r and σr is the reflectivity of the reflector.

The receiver antenna records

Us(t) = us(t,X(t)) for t ∈ [0, T ], (2)

where us(t,x) is the wave field generated by the noise source at xs:

1

c2(x)

∂2us
∂t2
−∆xus = ns(t)δ(x− xs), (3)

with the speed of propagation of the form (1). The source term ns(t) is the signal

emitted by the noise source and we model it as a realization of a real-valued random

process with mean zero and covariance of the form

〈ns(t)ns(t′)〉 = F (t− t′). (4)

Here 〈·〉 stands for statistical average with respect to the distribution of the noise

source. For simplicity we consider that the process ns has Gaussian statistics, whose

distribution is characterized by the correlation function F (t− t′), which is a function of

t− t′ only, which means that the process is stationary. The Fourier transform F̂ (ω) of

the correlation function F (t) is a nonnegative, even, real-valued function proportional

to the power spectral density of the noise sources:

F̂ (ω) =

∫
R
F (t)eiωtdt. (5)

The central frequency of the correlation function is denoted by ω0 and its bandwidth is

B. The correlation function has the form:

F (t) = FB(t)e−iω0t + cc, F̂ (ω) = F̂B(ω − ω0) + F̂B(−ω − ω0),

where FB has bandwidth B and F̂B(ω) ≥ 0 and cc stands for complexe conjugate.

In a typical radar configuration with a flying platform, c0 = 3 108m.s−1, ω0 ∼
2π 109–1010rad.s−1, B ∼ 2π 107–108rad.s−1, the typical propagation distance L is of the

order of 10km. The velocity V of the receiver antenna is of the order of 200m.s−1 [6, 9].

In [13], the stop-go approximation was made. The receiver was supposed to be at the

stationary position xj during the time interval [Tj, Tj+∆T ] for theN successive positions

xj, j = 1, . . . , N , and it was supposed to record the signals {us(t,xj) , t ∈ [Tj, Tj +∆T ]}
during these successive and disjoint time intervals. Then the Passive Synthetic Aperture

(psa) imaging function was proposed:

Ipsa(zS) =
N∑
j=1

C∆T,q(2T (xj, z
S)), (6)

C∆T,j(τ) =
1

∆T

∫ ∆T

0

us(Tj + t,xj)us(Tj + t+ τ,xj)dt, (7)
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where T (x, z) is the travel time:

T (x, z) =
|x− z|
c0

. (8)

The introduction of the imaging function (6) in [13] was motivated by the relationship

between the autocorrelation of the noise signal recorded by the receiver and the Green’s

function from this receiver to itself [10]. This Green’s function has a peak at time equal

to twice the travel time from the receiver to the reflector that corresponds to a wave

backscattered by the reflector. That is why the autocorrelation C∆T,j(τ) of the recorded

noise signal is evaluated in (6) at twice the travel time from the receiver position to

the search point, in order to capture this peak, and these migrated autocorrelations are

summed over the successive time windows. However the analysis carried out in [13] was

based on the stop-go approximation (which allows to neglect the Doppler effect) and on

an extended source distribution model.

The analysis in [13] shows that the imaging function (6) fails when the spatial

distribution of the noise sources is limited. However, when a relatively large time

window is used, then the Doppler effect cannot be neglected anymore and it can in fact

play a beneficial role to localize the reflector. That is our motivation to introduce the

Doppler Passive Synthetic Aperture (dpsa) imaging function as a sum of migrated and

Doppler-corrected autocorrelation functions of the recorded signal (2) over successive

time windows. It has the form:

Idpsa(zS) =
N∑
j=1

Idpsa,j(z
S), (9)

Idpsa,j(z
S) =

1

∆T

∫ ∞
−∞

Π
( t

∆T

)
Us

(
Tj +

t

1 + β(Tj, zS)

)
× Us

(
Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)

)
dt, (10)

where β(t, z) is the Doppler factor:

β(t, z) =
Ẋ(t)

c0

· X(t)− z

|X(t)− z|
, (11)

Ẋ(t) is the velocity of the receiver antenna at time t, Π(s) is a normalized time-window

function, we may think at Π(s) = 1[−1/2,1/2](s) or Π(s) = exp(−s2/2) for instance,

∆T = T/N is the width of the time window, and Tj = (j − 1/2)∆T , j = 1, . . . , N

is the center of jth recording time window. Note that the recording time intervals

are here assumed to be consecutive (if Π(s) = 1[−1/2,1/2](s)) or even overlapping (if

Π(s) = exp(−s2/2)) so as to exploit the whole data set generated by the noise sources.

The choice of ∆T is explained below in Eq. (12). The forms of the Doppler factors come

from the analysis of the direct and reflected signals carried out in the following.

Note that we do not need to know anything about the source to compute the imaging

function. Up to the Doppler factors β, the imaging function (9) is similar to the imaging

function (6) proposed in [13]. In fact, if Π(s) = 1[0,1](s) and the displacement of X(t)
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is neglected over the time interval [Tj, Tj + ∆T ] so that β(Tj, z
S) = 0, then the two

imaging functions (6) and (9) coincide.

The use of Doppler effect in passive synthetic aperture imaging is not new. The

authors in the series of papers [23, 24, 26, 27] have developed an approach in which the

windowed signal obtained from one receiver is correlated with the scaled and translated

version of the received signal in another window from another receiver (or the same

one). Only the scattered components of the signals are used and the method requires

the opportunistic source to emit the same pulse repeatedly. Here we develop an approach

which addresses the case when the noise source emits a stationary random signal.

Moreover, we manipulate the total field, that is, the superposition of the scattered

field and the direct field, as these components cannot be separated when dealing with

stationary random noise sources.

2.2. Summary of the main results

We choose a time window ∆T such that

max
(L
c0

,
c0

ω0V

)
� ∆T �

√
ω0L

c0

c0

ω0V
. (12)

As we will see below, this means that:

- the time window is longer than the typical travel time L/c0,

- Doppler effects are strong on the time scale of the order of ∆T ,

- Doppler effects can be quantitatively captured by expanding the phase terms to first

order in V/c0.

Note that we should therefore take ∆T ∼ 10−3–10−2s with the numbers cited above.

We will also make use of the assumption that BL/c0 � 1 (i.e., the typical travel time is

larger than the pulse width) and L� V∆T (i.e., the receiver displacement during one

time window is smaller than the range) which is clearly justified in all practical settings.

For instance, in our setting, L/c0 is of the order of 10−4s and 1/B is of the order of

10−8s, V∆T is of the order of 1m and L is of the order of 10km.

We also assume that the bandwidth B of the noise sources is such that
1

∆T
� B � ω0. (13)

This condition is readily fulfilled in radar configurations.

Finally we also assume a geometric condition, which is that the receiver antenna

trajectory is between the source position(s) and the reflector position(s). The exact

assumption is the receiver antenna trajectory intersects the segment(s) joining the source

position(s) and the reflector position(s). This is the so-called daylight illumination

condition that is introduced in particular in [10] in the context of passive imaging with

stationary receiver arrays.

Under these circumstances, the imaging function (9) can localize the reflector to

the vicinity of the line that goes through zr and is orthogonal to the vector zr − xs
when there is a single source at xs whose position is unknown. The thickness of this
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line (defining the ‘range’ resolution) is of the order of c0/B. When there are several

well-separated independent noise sources with unknown positions, the reflector can be

localized at the intersection of these lines, with a resolution of the order of c0/B. The

Doppler effect plays a crucial role in this result. It is the Doppler correction in the

imaging function that, together with the travel-time migration, gives the localization of

the reflector.

When there is a point-like noise source with known position, an alternative imaging

function can be used as described in Section 5, that provides a localization of the reflector

with a resolution that is equivalent to the one obtained with standard, active synthetic

aperture imaging (i.e., when the moving antenna is both a transmitter and a receiver

and it emits a train of short pulses with central frequency ω0 and bandwidth B). In this

case, the cross-range resolution is given by the Rayleigh resolution formula λ0L/a, where

λ0 is the central wavelength of the noise sources, a is the length of the trajectory of the

receiver antenna (during the recording time window [0, T ]), and L is the propagation

distance from the receiver antenna to the reflector to be imaged. The range resolution

is again given by c0/B, where B is the noise source bandwidth.

3. Analysis of the imaging function

3.1. The recorded signals

We denote by Ĝ the time-harmonic Green’s function for the wave equation with the

speed of propagation of the form (1). It is the solution to

ω2

c2(x)
Ĝ(ω,x,y) + ∆xĜ(ω,x,y) = −δ(x− y), (14)

with Sommerfeld radiation condition. The Green’s function satisfies the Lippmann-

Schwinger equation,

Ĝ(ω,x,y) = Ĝ0(ω,x,y) +
ω2

c2
0

σr

∫
Ωr

Ĝ0(ω,x, z)Ĝ(ω,z,y)dz, (15)

where Ĝ0 is the Green’s function of the background medium, that is, in the absence of

reflector:

ω2

c2
0

Ĝ0(ω,x,y) + ∆xĜ0(ω,x,y) = −δ(x− y). (16)

Since we assume that the reflector is weak, we can use the Born (or single-scattering)

approximation for the Green’s function:

Ĝ(ω,x,y) = Ĝ0(ω,x,y) +
ω2

c2
0

σr

∫
Ωr

Ĝ0(ω,x, z)Ĝ0(ω, z,y)dz. (17)

If, moreover, the reflector has small support (smaller than the typical wavelength), then

we get the point-like approximation:

Ĝ(ω,x,y) = Ĝ0(ω,x,y) +
ω2

c2
0

σrl
2
r Ĝ0(ω,x, zr)Ĝ0(ω,zr,y) . (18)
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We will use this model for the data. Note that, in a two-dimensional open medium, Ĝ0

is the homogeneous Green’s function given by

Ĝ0(ω,x,y) =
i

4
H

(1)
0

( ω
c0

|y − x|
)
, (19)

where H
(1)
0 is the zeroth order Hankel function of the first kind. Using the asymptotic

form of the Hankel function [1, formula 9.2.3], we see that the high-frequency behavior

of the homogeneous Green’s function is related to the travel time |x− y|/c0:

Ĝ0(ω,x,y) '
√
c0√

8πω|x− y|
exp

(
iω
|x− y|
c0

+ i
π

4

)
. (20)

We can write the recorded signal in terms of the homogeneous Green’s function as

Us(Tj + t) = Udir
sj (t) + U sca

sj (t), (21)

Udir
sj (t)=

1

2π

∫
R
n̂s(ω)Ĝ0(ω,X(Tj + t),xs)e

−iω(Tj+t)dω, (22)

U sca
sj (t) =

1

2π

∫
R

ω2σrl
2
r

c2
0

n̂s(ω)Ĝ0(ω,X(Tj + t), zr)Ĝ0(ω,zr,xs)e
−iω(Tj+t)dω. (23)

Remark. If instead of a noise source ns(t) at xs we consider an impulsive source

emitting the signal fs(t − Tj), then, by using the high-frequency asymptotic form of

the homogeneous Green’s function and the expansion X(Tj + t) 'X(Tj) + Ẋ(Tj)t, we

can give approximate expressions for the Fourier transforms of the direct and scattered

components of the recorded signal:

Ûdir
sj (ω) =

√
c0√

(1− β(Tj,xs))8πω|X(Tj)− xs|
f̂s

( ω

1− β(Tj,xs)

)
× exp

(
i

ω

(1− β(Tj,xs))c0

[|X(Tj)− xs|] + i
π

4

)
, (24)

Û sca
sj (ω) =

σrl
2
rω

(1− β(Tj, zr))28πc0

√
|X(Tj)− zr||zr − xs|

f̂s

( ω

1− β(Tj, zr)

)
× exp

(
i

ω

(1− β(Tj, zr))c0

[|X(Tj)− zr|+ |zr − xs|] + i
π

2

)
. (25)

This allows us to see that each component has a specific Doppler factor. Indeed the

direct wave that reaches the receiver comes from xs, hence the Doppler factor β(Tj,xs),

while the scattered wave comes from zr, hence the Doppler factor β(Tj, zr). The leading-

order corrections due to the Doppler effects appear in the phases of Eqs. (24-25) and are

of the form ωβL/c0, for some typical travel time L/c0. Therefore the Doppler effects for

an impulsive source (and only for an impulsive source) can be neglected if ω0
L
c0
V
c0
� 1,

where ω0 is the carrier frequency of the emitted pulse, L/c0 is the typical travel time,

and V is the velocity of the receiver (V/c0 is the typical amplitude of the Doppler factor

β). However Eqs. (24-25) will not be used in the following sections and we will see

at the end of Subsection 3.3 that the condition ω0
L
c0
V
c0
� 1 is actually not a sufficient

condition to neglect Doppler effects in the case of noise sources.
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3.2. The imaging function

The partial imaging function (10) is given by

Idpsa,j(z
S) =

1

∆T

∫ ∞
−∞

Π
( t

∆T

)
Udir
sj

( t

1 + β(Tj, zS)

)
U sca
sj

(t+ 2T (X(Tj), z
S)

1− β(Tj, zS)

)
dt. (26)

There should be three other contributions, namely a term with products Udir
sj (·)Udir

sj (·),
a term with products U sca

sj (·)Udir
sj (·), and a term with product U sca

sj (·)Udir
sj (·). However

these contributions vanish because they involve the correlation of two pieces of signals

emitted by the source for time lags much larger than the coherence time 1/B. We give

a detailed proof for the contribution related to Udir
sj (·)Udir

sj (·) in Appendix A.

Proposition 3.1 Under Assumptions (12-13), the partial imaging function (10) has

the form

Idpsa,j(z
S) =

1

29/2π3/2

σrl
2
r√

|X(Tj)− zr||zr − xs||X(Tj)− xs|

×
√
iω0√
c0

exp
(
i
ω0

c0

(|X(Tj)− zr|+ |zr − xs| − |X(Tj)− xs| − 2|zS −X(Tj)|)
)

× FB
(
− 1

c0

(|X(Tj)− zr|+ |zr − xs| − |X(Tj)− xs| − 2|zS −X(Tj)|)
)

× Π̂
(
ω0∆T (β(Tj, zr)− β(Tj,xs)− 2β(Tj, z

S))
)

× exp
(
i
ω0

c0

|X(Tj)− zS|(β(Tj, zr)− β(Tj, z
S))
)

+ cc. (27)

By inspection of the argument of Π̂ in Eq. (27), which is of the order of ω0∆Tβ while β

is of the order of V/c0, we can see that the Doppler effects are important by Assumption

(12): ω0∆TV/c0 � 1. Furthermore, if one uses the imaging function (6) instead of (9),

then one obtains the same expression as (27), but without the term −2β(Tj, z
S) in the

argument of Π̂ and without the term −β(Tj, z
S) in the argument of the last exponential.

Since ω0∆Tβ � 1 the term in Π̂ (that decays very rapidly if Π is smooth) vanishes and

the imaging function (6) completely fails.

Proof. Using the expressions (22-23) of the direct and scattered components, we

find:

Idpsa,j(z
S) =

1

(2π)2∆T

∫ ∞
−∞

Π
( t

∆T

)∫
R2

n̂s(ω′)Ĝ0

(
ω′,X(Tj +

t

1 + β(Tj, zS)
),xs

)
× n̂s(ω)

ω2σrl
2
r

c2
0

Ĝ0

(
ω,X(Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)
), zr

)
Ĝ0(ω,zr,xs)

× exp
(
iω′(Tj +

t

1 + β(Tj, zS)
)− iω(Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)
)
)
dωdω′dt. (28)

Since ∆T is larger than the coherence time of the noise sources, that is, B∆T � 1,

the autocorrelation function is self-averaging and with the form of its autocorrelation

function in the Fourier domain〈
n̂s(ω)n̂s(ω

′)
〉

= 2πF̂ (ω)δ(ω − ω′), (29)
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we obtain

Idpsa,j(z
S) =

1

2π∆T

∫ ∞
−∞

Π
( t

∆T

)∫
R
F̂ (ω)Ĝ0

(
ω,X(Tj +

t

1 + β(Tj, zS)
),xs

)
× ω2σrl

2
r

c2
0

Ĝ0

(
ω,X(Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)
), zr

)
Ĝ0(ω, zr,xs)

× exp
(
iω(

t

1 + β(Tj, zS)
− t+ 2T (X(Tj), z

S)

1− β(Tj, zS)
)
)
dωdt. (30)

From Assumption (12), we have

V

c0

ω0∆T � 1. (31)

By inspection of the phase (i.e., the last line) in Eq. (30), we can see that the Doppler

correction is of the order of ωtβ. Since ω is of the order of ω0, t is of the order of ∆T ,

and β is of the order of V/c0, we can see that the Doppler effects are important. Since
∆Tc0
L
� 1, we also have V 2

c20
ω0∆T � V 2

c20
ω0∆T ∆Tc0

L
= V 2

c0L
ω0∆T 2, which is small by (12).

Accordingly,

V 2

c2
0

ω0∆T � 1, (32)

so that we can expand the Doppler terms to first-order in V/c0. By using the high-

frequency asymptotic form (20) of the homogeneous Green’s function, we then get

Idpsa,j(z
S) =

1

211/2π5/2

σrl
2
r√

|X(Tj)− zr||zr − xs||X(Tj)− xs|

∫
R

√
iω
√
c0

F̂ (ω)

× exp
(
i
ω

c0

(|X(Tj)− zr|+ |zr − xs| − |X(Tj)− xs| − 2|zS −X(Tj)|)
)

× Π̂
(
ω∆T (β(Tj, zr)− β(Tj,xs)− 2β(Tj, z

S))
)

× exp
(
i
ω

c0

|X(Tj)− zS|(β(Tj, zr)− β(Tj, z
S))
)
dω. (33)

Using the fact that B � ω0, we eventually get the desired result (27). �

Here we can briefly discuss the behavior of the partial imaging function (10):

- Since FB has width 1/B, the third term in the right-hand side of (27) (the term that

involves FB, and that comes from travel-time migration) imposes that the argument of

FB should be smaller than 1/B, which means that zS should be in a narrow annulus

with center at X(Tj), with radius 1
2
(|X(Tj)− zr|+ |zr − xs| − |X(Tj)− xs|):

|zS −X(Tj)| '
1

2
(|X(Tj)− zr|+ |zr − xs| − |X(Tj)− xs|), (34)

and with small width c0/B. Note that the radius of the annulus (the right-hand side of

(34)) is positive by the triangular inequality.

- Since Π̂ has width one, the fourth term in (27) (the term that involves Π̂ and that

comes from Doppler corrections) imposes that the argument of Π̂ should be smaller than
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(a) (b) (c)

Figure 2. The partial imaging function Idpsa,j(zS) presents a peak at the intersection

of the narrow annulus (34) and the narrow cone (35). In pictures (a) and (b) the narrow

annulus (represented by half a circle) and the narrow cone (represented by a line) are

plotted for two different Tj ’s. In picture (c) they are plotted for a sequence of nine

Tj ’s. Here xs is the source position, zr is the reflector position, (X(t))t∈[0,T ] is the

receiver antenna trajectory.

one, which means that the unit vector (zS −X(Tj))/|zS −X(Tj)| should be in a small

angular cone centered along the direction defined by:

Ẋ(Tj)

c0

· zS −X(Tj)

|zS −X(Tj)|
=

1

2
(β(Tj, zr)− β(Tj,xs)), (35)

the width of the cone being c0/(V ω0∆T ).

Therefore the partial imaging function Idpsa,j(z
S) has a peak centered at one particular

point zj, which is at the intersection of the narrow annulus and the small angular cone

that we have just described (see Figure 2). This point is not, in general, zr, as we will

see below. But the overall idea is that this point moves as the receiver antenna moves

and this motion is essentially ‘stationary’ at the reflector position.

3.3. Resolution analysis

In the forthcoming detailed resolution analysis, we assume that the segment joining zr

and xs intersects the receiver antenna trajectory in a unique point that we denote by

Xs. We also denote by Vs the velocity vector of the receiver antenna when it is at

position Xs. We need to assume that the velocity vector of the receiver antenna is

approximately constant at the time scale c0L/(V
2ω0∆T ), which is a very reasonable

assumption (this time scale is of the order of 1s with the numbers cited above).

We introduce two unit vectors ês1, ês2 that form an orthonormal basis of R2, with

ês1 =
zr − xs
|zr − xs|

, (36)

as shown in Figure 3.

Proposition 3.2 Under Assumptions (12-13), the imaging function (9) has the form

Idpsa(zS) =
1

27/2π1/2

σrl
2
r Π(0)

(Vs · ês2)2∆T
√
|Xs − zr||zr − xs||Xs − xs|( 1

|zr−Xs| + 1
|xs−Xs|)

√
ic0√
ω0
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Figure 3. Framework for the resolution analysis for the imaging function (9): xs is

the source position, zr is the reflector position, (X(t))t∈[0,T ] is the receiver antenna

trajectory, Xs and Vs are the receiver position and velocity at the critical time when

the trajectory crosses the segment joining zr and xs.

× exp
(
− iω0

c0

(
2yS · ês1 +

(yS · ês2)2

|zr −Xs|
(
|xs −Xs| − |zr −Xs|
|xs −Xs|+ |zr −Xs|

)− yS · ês2
ês2 · Vs
c0

))
× FB

( 1

c0

(
2yS · ês1 +

(yS · ês2)2

|zr −Xs|
(
|xs −Xs| − |zr −Xs|
|xs −Xs|+ |zr −Xs|

)− yS · ês2
ês2 · Vs
c0

))
+ cc, (37)

where yS = zS − zr.

Proof. Note that we have (zr−Xs)/|zr−Xs| = ês1 and (xs−Xs)/|xs−Xs| = −ês1
(see Figure 3). By denoting

X(Tj) = Xs + δXj and zS = zr + yS,

we have (up to leading order terms in δXj and yS):

|zS −X(Tj)| = |zr −Xs|+ (yS − δXj) · ês1 +
(yS · ês2)2

2|zr −Xs|

− (yS · ês2)(δXj · ês2)

|zr −Xs|
+

(δXj · ês2)2

2|zr −Xs|
,

|zr −X(Tj)| = |zr −Xs| − δXj · ês1 +
(δXj · ês2)2

2|zr −Xs|
,

|xs −X(Tj)| = |xs −Xs|+ δXj · ês1 +
(δXj · ês2)2

2|xs −Xs|
,

so that the phase term in (27) can be expanded as

|X(Tj)− zr|+ |zr − xs| − |X(Tj)− xs| − 2|zS −X(Tj)|

= −2yS · ês1 −
(yS · ês2)2

|zr −Xs|
+

2(yS · ês2)(δXj · ês2)

|zr −Xs|

− (δXj · ês2)2

2

( 1

|zr −Xs|
+

1

|xs −Xs|

)
.



Passive Synthetic Aperture Imaging with Limited Noise Sources 13

The Doppler term in (27) can also be expanded as

β(Tj, zr)− β(Tj,xs)− 2β(Tj, z
S) = − (Vs · ês2)(δXj · ês2)

c0

( 1

|zr −Xs|
+

1

|xs −Xs|

)
+ 2

(Vs · ês2)(yS · ês2)

c0

1

|zr −Xs|
,

and finally

β(Tj, zr)− β(Tj, z
S) =

(Vs · ês2)(yS · ês2)

c0

1

|zr −Xs|
. (38)

By denoting

δ̃Xj = δXj −
2|xs −Xs|

|xs −Xs|+ |zr −Xs|
yS,

we can also write:

|X(Tj)− zr|+ |zr − xs| − |X(Tj)− xs| − 2|zS −X(Tj)| = −2yS · ês1

− (yS · ês2)2

|zr −Xs|

( |xs −Xs| − |zr −Xs|
|xs −Xs|+ |zr −Xs|

)
− (δ̃Xj · ês2)2

2

( 1

|zr −Xs|
+

1

|xs −Xs|

)
,

β(Tj, zr)− β(Tj,xs)− 2β(Tj, z
S) = −(Vs · ês2)(δ̃Xj · ês2)

c0

( 1

|zr −Xs|
+

1

|xs −Xs|

)
.

From Assumption (12) we have

ω0V
2∆T 2

c0L
� 1, (39)

so that the sum over j of (27) contains many Doppler terms that are in the support of

the function Π̂. This gives the desired result (37). Note that the last term in (27) gives

the term in −yS · ês2 ês2·Vs

c0
in (37) because of (38). �

By Proposition 3.2, the imaging function (9) is nonzero only if the argument in

FB in Eq. (37) is smaller than 1/B (which is the width of FB). To leading order, this

shows that the reflector can be localized in the vicinity of the line going through zr and

perpendicular to ês1:

(zS − zr) · ês1 ' 0 (40)

with a ‘range’ resolution (along ês1) equal to c0/B. But there is no ‘cross-range’

resolution (along ês2).

Remark. Eq. (30) shows that the Doppler effects are negligible if

ω0
L

c0

V

c0

� 1 and ω0∆T
V

c0

� 1, (41)

where V is the velocity of the receiver antenna and L the typical propagation distance.

If the condition (41) is satisfied, it is equivalent (and therefore sufficient) to use the

simplified version (6) or:

Ipsa(zS) =
1

∆T

N∑
j=1

∫ ∞
−∞

Π
( t

∆T

)
Us(Tj + t)Us(Tj + t+ 2T (X(Tj), z

S))dt, (42)
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as in [13] for instance. But this imaging function cannot localize the reflector. The

imaging function is the superposition of the narrow annuli (34) over the different

positions X(Tj) and is therefore spread out in the search domain.

Note that the condition ω0
L
c0
V
c0
� 1 is not sufficient to ensure that Doppler effects can

be neglected, it is also necessary that ω0∆T V
c0
� 1. The situation in which ω0

L
c0
V
c0
� 1

and ω0∆T V
c0
� 1 is a situation in which the imaging function (9) can be used and

provides localization of the reflector. This situation can be encountered in realistic

situations, for instance, with ω0 = 2π109rad.s−1, L = 10km, and V = 200m.s−1, we

have ω0
L
c0
V
c0
∼ 10−1.

Remark. It is possible to get a better ‘cross-range’ resolution when there are

several sources as we discuss in the next section.

4. Multiple sources

We here consider the case where there are in fact M sources, located at xs, s = 1, . . . ,M .

The recorded data is

U(t) = u(t,X(t)) for t ∈ [0, T ], (43)

where u(t,x) is the wave field generated by the M noise sources:

1

c2(x)

∂2u

∂t2
−∆xu =

M∑
s=1

ns(t)δ(x− xs), (44)

with the speed of propagation of the form (1). The source terms ns(t), s = 1, . . . ,M , are

supposed to be independent and identically distributed, with the statistical distribution

described in Section 2.1, so that

〈ns(t)ns′(t′)〉 = F (t− t′)δss′ ,

where δ is here the Kronecker symbol.

We again use the imaging function (9):

Idpsa(zS) =
1

∆T

N∑
j=1

∫ ∞
−∞

Π
( t

∆T

)
U
(
Tj +

t

1 + β(Tj, zS)

)
× U

(
Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)

)
dt. (45)

The recorded data can be expressed as:

U(t) =
M∑
s=1

Us(t) for t ∈ [0, T ],

where Us(t) = us(t,X(t)) is the component of the recorded signal that has been emitted

by the source at xs, as introduced in (2). Accordingly

Idpsa(zS) =
1

∆T

M∑
s,s′=1

N∑
j=1

∫ ∞
−∞

Π
( t

∆T

)
Us

(
Tj +

t

1 + β(Tj, zS)

)
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× Us′
(
Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)

)
dt.

Each term of this double sum (in s, s′) can be analyzed following the lines of the previous

sections, and we find that the crossed terms s 6= s′ cancel by independence of the different

noise sources. Therefore the imaging function is equal to

Idpsa(zS) =
1

∆T

M∑
s=1

N∑
j=1

∫ ∞
−∞

Π
( t

∆T

)
Us

(
Tj +

t

1 + β(Tj, zS)

)
× Us

(
Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)

)
dt. (46)

If the sources are dense and well distributed, then the analysis carried out in [13] can be

readily extended to incorporate the Doppler effect and we will find the same result: the

‘range’ resolution is of order c0/B and the ‘cross-range’ resolution is of order λ0V T/L,

where V T is the length of the trajectory. It turns out that the analysis carried out

in this paper shows that we do not need the sources to be dense in order to achieve

such a result. Indeed the imaging function is the superposition of the imaging functions

studied in the previous sections corresponding to the individual point-like sources. A

few sources that produce unit vectors ês1, s = 1, . . . ,M , as defined by (36), covering a

cone of angular radius of order one will allow to localize the reflector with a ‘range’ and

‘cross-range’ resolution of order c0/B. We will see in Section 6 that two well-separated

sources are sufficient for reflector localization: the reflector location can be found at the

intersection of the two lines (zS − zr) · ês1 = 0, s = 1, 2. Finally, we can remark that

the receiver does not need to be coherent on a scale much larger than twice the travel

time to the search point, as the autocorrelation is only evaluated for such time lags.

5. Single source with known position

We have seen that the imaging function (9) can only localize the reflector to the vicinity

of a line when there is a single point-like noise source. This imaging function does not

require to know anything about the noise source. If, however, the location xs of the

noise source is known, then it is possible to design another imaging function that will

be able to localize the reflector accurately. We introduce

I(zS) =
N∑
j=1

Ij(zS), (47)

Ij(zS) =
1

∆T

∫ ∞
−∞

Π
( t

∆T

)
Us

(
Tj +

t

1− β(Tj,xs)

)
× Us

(
Tj +

t+ T (xs, z
S) + T (zS,X(Tj))− T (xs,X(Tj))

1− β(Tj, zS)

)
dt. (48)

Here we use the same notations as in Subsection 2.1. Note that we need to know the

source position xs to compute this imaging function. Proceeding as in Subsection 3.2,
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we obtain that

Ij(zS) =
1

211/2π5/2

σrl
2
r√

|X(Tj)− zr||zr − xs||X(Tj)− xs|

∫
R

√
iω
√
c0

F̂ (ω)

× exp
(
i
ω

c0

(|X(Tj)− zr|+ |zr − xs| − |zS − xs| − |X(Tj)− zS|)
)

× exp
(
i
ω

c0

(β(Tj, zr)− β(Tj, z
S))(|xs − zS|+ |zS −X(Tj)| − |xs −X(Tj)|)

)
× Π̂

(
ω∆T (β(Tj, zr)− β(Tj, z

S))
)
dω. (49)

Using the fact that B � ω0, we have

Ij(zS) =
1

29/2π3/2

σrl
2
r√

|X(Tj)− zr||zr − xs||X(Tj)− xs|

×
√
iω0√
c0

exp
(
i
ω0

c0

(|X(Tj)− zr|+ |zr − xs| − |zS − xs| − |X(Tj)− zS|)
)

× FB
(
− 1

c0

(|X(Tj)− zr|+ |zr − xs| − |zS − xs| − |X(Tj)− zS|)
)

× exp
(
i
ω0

c0

(β(Tj, zr)− β(Tj, z
S))(|xs − zS|+ |zS −X(Tj)| − |xs −X(Tj)|)

)
× Π̂

(
ω0∆T (β(Tj, zr)− β(Tj, z

S))
)

+ cc. (50)

By writing the search point zS = zr + yS, we can expand the phase term as

|X(Tj)− zr|+ |zr − xs| − |zS − xs| − |X(Tj)− zS|

= −yS ·
( zr − xs
|zr − xs|

+
zr −X(Tj)

|zr −X(Tj)|

)
,

and the Doppler term as

β(Tj, zr)− β(Tj, z
S)

=
Ẋ(Tj)

c0

·
( yS

|zr −X(Tj)|
− (zr −X(Tj))

(zr −X(Tj)) · yS

|zr −X(Tj)|3
)
.

We assume for simplicity that the antenna trajectory is straight with constant velocity

vector V . We denote

X0 = X(T/2), ∆X = X(T )−X(0) = V T, ês =
zr − xs
|zr − xs|

.(51)

We introduce the orthonormal basis (ê1, ê2) with

ê1 =
zr −X0

|zr −X0|
, (52)

as shown in Figure 4.

5.1. Small-aperture resolution analysis

Here we study the situation when |∆X| � L (i.e. the antenna trajectory is shorter

than the propagation distance). We can then write

I(zS) =
1

29/2π3/2

Nσrl
2
r√

|zr − xs||X0 − xs||X0 − zr|



Passive Synthetic Aperture Imaging with Limited Noise Sources 17

Figure 4. Framework for the resolution analysis for the imaging function (47).

×
√
iω0√
c0

exp
(
− iω0

c0

yS · (ê1 + ês)
)
FB

( 1

c0

yS · (ê1 + ês)
)

× sinc
(ω0

c0

∆X · ê2

2

yS · ê2

|zr −X0|

)
Π̂
(
ω0

V · ê2∆T

c0

yS · ê2

|zr −X0|

)
+ cc. (53)

Remember that, in the previous section, we had kept the second-order terms in yS

because they were the leading-order terms in the second direction ês2. Here there are

first-order terms in both directions, therefore the second-order terms do not play any

role anymore. Since ∆X · ê2 = V · ê2T = NV · ê2∆T , the last term (in Π̂) is negligible

compared to the sinc term, and we find

I(zS) =
1

29/2π3/2

Nσrl
2
r Π̂(0)√

|zr − xs||X0 − xs||X0 − zr|

√
iω0√
c0

exp
(
− iω0

c0

yS · (ê1 + ês)
)

× FB
( 1

c0

yS · (ê1 + ês)
)

sinc
(ω0

2

V · ê2T

c0

yS · ê2

|zr −X0|

)
+ cc. (54)

This expression shows that the Doppler effect has been completely mitigated. The

resolution of the imaging function (47) in the ‘range’ direction ê1 is equal to

c0/(2B cos2(φs/2)), where φs is the angle between ê1 and ês: cos(φs) = ê1 · ês. The

resolution in the ‘cross-range’ direction ê2 is Lλ0/(V · ê2T ). These resolution formulas

are in agreement with the ones obtained in the usual synthetic aperture imaging when

the moving receiver antenna is also a transmitter with the stop-go approximation [7, 8].

This shows that one can get the same images with active and passive imaging provided

the source position is known.

5.2. Large-aperture resolution analysis

Here we study the situation when |∆X| ∼ L (i.e. the length of the antenna trajectory

is of the same order as the propagation distance). The imaging function (47) takes the

form

I(zS) =
1

29/2π3/2

Nσrl
2
r√

|zr − xs|

√
iω0√
c0

exp
(
− iω0

c0

yS · ês
)
FB

( 1

c0

yS · (ê1 + ês)
)
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Figure 5. Modulus of the normalized point spread function (59).

× 1

T

∫ T

0

1√
|X(t)− xs||X(t)− zr|

exp
(
− iω0

c0

yS · ê(t)
)
dt+ cc, (55)

where

ê(t) =
zr −X(t)

|zr −X(t)|
. (56)

Since B � ω0, the term in FB plays a negligible role compared to the last (integral)

term:

I(zS) =
1

29/2π3/2

Nσrl
2
r√

|zr − xs|

√
iω0√
c0

exp
(
− iω0

c0

yS · ês
)

× 1

T

∫ T

0

1√
|X(t)− xs||X(t)− zr|

exp
(
− iω0

c0

yS · ê(t)
)
dt+ cc, (57)

and the resolution of the imaging function (47) is determined by the angular cone

described by the set of unit vectors {ê(t), t ∈ [0, T ]}. If the width of this cone is not

too large, then the previous expression can be approximated by the following one (by

expanding ê(t) around ê(T/2) = ê1):

I(zS) =
1

29/2π3/2

Nσrl
2
r√

|zr − xs||X0 − xs||X0 − zr|

√
iω0√
c0

exp
(
− iω0

c0

yS · (ê1 + ês)
)

× Φ
(ω0

c0

(V · ê2T )2 + 2(V · ê1T )2

|zr −X0|2
(yS · ê1),

ω0

c0

V · ê2T

|zr −X0|
(yS · ê2)

)
+ cc, (58)

with the normalized point spread function

Φ(x1, x2) =

∫ 1/2

−1/2

exp
(
i
s2

2
x1 + isx2

)
ds. (59)

The marginal functions are Φ(x1, 0) = (C(
√
x1/8)+ iS(

√
x1/8))/

√
x1/8 and Φ(0, x2) =

sinc(x2/2), where C and S are the tabulated Fresnel integrals [1, Section 7.3]:

C(x) =

∫ x

0

cos(s2)ds, S(x) =

∫ x

0

sin(s2)ds.

This shows that the width of the normalized point spread function is about 16π in the

first direction and about 2π in the second direction (see Figure 5). Accordingly, when
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(a) (b) (c)

Figure 6. Passive sensor array imaging with one unknown source. In picture (a)

the geometric set-up is plotted: xs is the source position, zr is the reflector position,

(X(t))t∈[0,T ] is the receiver antenna trajectory. In picture (b) the (modulus of the)

imaging function (9) is plotted. The diamond stands for the true position of the

reflector, the thin solid line is the theoretical line (40). Picture (c) is a zoom of

picture (b).

V is essentially along ê2, the resolution of the imaging function in the ‘cross-range’

direction ê2 is λ0/∆θ, where ∆θ is the width of the angular cone formed by the unit

vectors {ê(t), t ∈ [0, T ]}: ∆θ = V · ê2T/|zr − X0|. The resolution of the imaging

function in the ‘range’ direction ê1 is 8λ0/∆θ
2. These formulas are again in agreement

with the corresponding ones in active synthetic aperture imaging.

6. Numerical illustrations

6.1. Single unknown source

In this subsection we consider the situation in which the illumination is provided by a

single unknown point-like noise source. The imaging function (9) is used to localize the

reflector at zr. We actually plot the expected value of the imaging function (9) using

the expression (30). A full numerical validation of the method would be required with a

realistic noise model but it is beyond the scope of this paper. Here the envelope of the

power spectral density is Gaussian FB(t) = exp(−B2t2/2), the time-window function

is Π(s) = exp(−s2/2), ω0 = 2π 1010rad.s−1, B = 2π 107rad.s−1, c0 = 3 108m.s−1,

V = (200, 0)m.s−1, X(0) = (−2500, 0)m, X(T ) = (2500, 0)m, T = 25s, ∆T = 0.01s,

zr = (1000,−4000)m, and xs = (−1500, 5000)m. As can be seen in Figure 6(c), the

‘range’ resolution is c0/B ' 5m, but there is no ‘cross-range’ resolution.

6.2. Multiple unknown sources

In this subsection we consider the situation in which the illumination is provided by two

unknown point-like noise sources. The imaging function (9) (or (45)) is used to localize

the reflector at zr. The set-up is similar to the one of the previous subsection, except that

there are two point-like noise sources at x1 = (−1500, 5000)m and x2 = (1500, 4000)m

emitting two independent and identically distributed noise signals. As seen in Figure 7,
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(a) (b) (c)

Figure 7. Passive sensor array imaging with two unknown sources. In picture (a) the

geometric set-up is plotted. In picture (b) the (modulus of the) imaging function (9) is

plotted. The diamond stands for the true position of the reflector, the thin solid lines

are the theoretical lines (40) for the two sources. Picture (c) is a zoom of picture (b).

the reflector can be localized at the intersection of the two lines (40) with an accuracy

of the order of c0/B. The fringes that can be seen in the zoom of Figure 7(c) come from

the interference of the modulations at the central frequency, they are approximately of

the form cos [(ω0/c0)(ê11 − ê21) · (zS − zr)], where the vector

ê11 − ê21 =
zr − x1

|zr − x1|
− zr − x2

|zr − x2|
,

is here equal to (0.33, 0.035).

6.3. Single known source

In this subsection we consider the situation in which the illumination is provided by a

single point-like noise source with known position. The set-up is similar to the one of

Subsection 6.1, except that the source position is known so that we can use the imaging

function (47) to localize the reflector at zr.

In Figures 8 and 9 we plot the images obtained from two time subwindows [0, T0]

and [T − T0, T ], with T0 = 2.5s (the corresponding trajectories of the receiver antenna

can be seen in Figures 8(a) and 9(a)). We can see in Figures 8(b) and 9(b) that the

resolution in the ‘range’ direction is still c0/B ' 5m, but the resolution in the ‘cross-

range’ direction is now much higher than with the imaging function (9), of the order of

λ0L/(V T0) ' 0.5m, and secondary lobes corresponding to the sinc function in (54) are

visible. Of course, by the use of an apodization function Ψ with support in [0, 1] in the

sum over j (such as the Hanning function Ψ(s) = sin2(πs)1[0,1](s)):

I(zS) =
N∑
j=1

Ij(zS)Ψ
( j − 1

N − 1

)
, (60)

it is possible to reduce the secondary lobes (see Figures 8(c) and 9(c)).

Finally, in Figure 10 we plot the image obtained from the full time window [0, T ]

(the corresponding trajectory of the receiver antenna can be seen in Figure 10(a)). Note
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(a) (b) (c)

Figure 8. Passive sensor array imaging with one known source. In picture (a) the

geometric set-up is plotted. In picture (b) the (modulus of the) imaging function

(47) is plotted. The diamond stands for the true position of the reflector. In

picture (c) the (modulus of the) imaging function (60) with the Hanning function

Ψ(s) = sin2(πs)1[0,1](s).

(a) (b) (c)

Figure 9. Passive sensor array imaging with one known source. In picture (a) the

geometric set-up is plotted. In picture (b) the (modulus of the) imaging function

(47) is plotted. The diamond stands for the true position of the reflector. In

picture (c) the (modulus of the) imaging function (60) with the Hanning function

Ψ(s) = sin2(πs)1[0,1](s).

that the scales are different compared to the previous figures. We can see that the ‘cross-

range’ resolution is about λ0 ' 0.03m and the ‘range’ resolution is about 8λ0 ' 0.25m,

as predicted by the theory for such an aperture.

7. Conclusion

In this paper we have analyzed passive synthetic aperture imaging when the illumination

is poor and the number of noise sources is very limited. The imaging function uses

the autocorrelation functions of the signals recorded by the moving receiver antenna

and computed over successive time windows and migrate them with Doppler corrective

factors. Qualitatively, the use of rather large time windows enhances the Doppler effect

and is profitable for reflector imaging. Quantitatively, we have analyzed in detail a two-

dimensional situation and we have shown that the resolution properties of the proposed
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(a) (b) (c)

Figure 10. Passive sensor array imaging with one known source. In picture (a) the

geometric set-up is plotted. In picture (b) the (modulus of the) imaging function

(47) is plotted. The diamond stands for the true position of the reflector. In

picture (c) the (modulus of the) imaging function (60) with the Hanning function

Ψ(s) = sin2(πs)1[0,1](s).

imaging functions are the following ones:

- When there is only one point-like noise source, only the range coordinate of the target

can be determined with a resolution proportional to the inverse of the noise bandwidth

if the position of the source is not known.

- When there is only one point-like noise source whose position is known, then it is

possible to get an image with the same resolution properties of the ones of standard

active synthetic aperture imaging.

- When there are several (ie, at least two) unknown point-like noise sources that are far

from each other, the target can be imaged with an overall resolution proportional to the

inverse of the noise bandwidth.

The proposed correlation-based imaging method is robust with respect to measurement

noise as it evaluates the correlation of the recorded signals for quite large time lags.

It is sensitive to the knowledge of the positions of the receivers. The generalization of

the results to a general three-dimensional set-up requires some further work. We may

anticipate that we should need at least three unknown sources to localize a reflector in

a three-dimensional set-up or two known sources.

In this paper we have focused our attention on reflector localization and we have

carried out a resolution analysis. It is possible to improve the quantitative properties

of the imaging function by adding a multiplicative factor in the imaging function that

compensates for the geometric decay of the Green’s function, or more generally by the

use of a filter that makes the amplitude of the point spread function independent of the

position of the reflector, similarly to [24]. This would allow to address more complex

reflectivities as in [4].
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Appendix A. The contribution of the direct waves

The partial imaging function (10) has a contribution which comes from the

autocorrelation of the direct signals given by

Idpsa,j(z
S) =

1

∆T

∫ ∞
−∞

Π
( t

∆T

)
Udir
sj

( t

1 + β(Tj, zS)

)
Udir
sj

(t+ 2T (X(Tj), z
S)

1− β(Tj, zS)

)
dt. (A.1)

Using the expression (22) of Udir
sj , we get:

Idpsa,j(z
S) =

1

(2π)2∆T

∫ ∞
−∞

Π
( t

∆T

)∫
R2

n̂s(ω)Ĝ0

(
ω,X(Tj +

t

1 + β(Tj, zS)
),xs

)
× n̂s(ω′)Ĝ0

(
ω′,X(Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)
),xs

)
× exp

(
iω(Tj +

t

1 + β(Tj, zS)
)− iω′(Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)
)
)
dωdω′dt.

Since ∆T is larger than the coherence time of the noise sources, that is, B∆T � 1,

the autocorrelation function is self-averaging and with the form of its autocorrelation

function in the Fourier domain (29) we obtain:

Idpsa,j(z
S) =

1

2π∆T

∫ ∞
−∞

Π
( t

∆T

)∫ ∞
−∞

F̂ (ω)Ĝ0

(
ω,X(Tj +

t

1 + β(Tj, zS)
),xs

)
× Ĝ0

(
ω,X(Tj +

t+ 2T (X(Tj), z
S)

1− β(Tj, zS)
),xs

)
× exp

(
− iω 2β(Tj, z

S)t

1− β2(Tj, zS)
− iω2T (X(Tj), z

S)

1− β(Tj, zS)

)
dωdt.

Using the high-frequency asymptotic form of the homogeneous Green’s function (20),

we get

Idpsa,j(z
S) =

c0

16π2ω0∆T |X(Tj)− xs|

∫ ∞
−∞

∫ ∞
−∞

Π
( t

∆T

)
F̂ (ω)

× exp
(
− iω

|X(Tj + t
1+β(Tj ,zS)

)− xs|
c0

+ iω
|X(Tj +

t+2T (X(Tj),zS)

1−β(Tj ,zS)
)− xs|

c0

)
× exp

(
− iω 2β(Tj, z

S)t

1− β2(Tj, zS)
− iω2T (X(Tj), z

S)

1− β(Tj, zS)

)
dωdt.

We can expand the phase term as

|X(Tj + t
1+β(Tj ,zS)

)− xs|
c0

−
|X(Tj +

t+2T (X(Tj),zS)

1−β(Tj ,zS)
)− xs|

c0

= β(Tj,xs)
2T (X(Tj), z

S))

1− β(Tj, zS)
+O

(
β2(

L

c0

∨ t)
)
,
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and therefore, after integrating in ω:

Idpsa,j(z
S) =

c0

8πω0∆T |X(Tj)− xs|

∫ ∞
−∞

Π
( t

∆T

)
× F

( 2β(Tj, z
S)t

1− β2(Tj, zS)
+

2T (X(Tj), z
S)(1 + β(Tj,xs))

1− β(Tj, zS)

)
dt.

This integral is zero if the argument of F is always much larger than 1/B, which happens

if L/c0 � β∆T + 1/B, which is equivalent to L� V∆T and BL/c0 � 1, which holds

true.
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