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a b s t r a c t

This paper presents a detailed analysis of time-reversal experiments involving a moving
point source that emits a pulse. Different configurations are addressed with full-aperture
or partial-aperture time-reversalmirrors andwith subsonic or supersonic sources. Doppler
effects and lack of source-receiver reciprocity significantly affect the time-reversal refocus-
ingwhen the velocity of the source becomes comparable as or larger than the speedof prop-
agation. Themain result is that refocusing can be enhancedwhen the velocity of the source
becomes close to the speed of propagation compared to the classical diffraction-limited
refocusing properties when the source does not move, and this super-resolution effect can
be quantified by simple and explicit formulas.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Time reversal of waves was extensively studied in the last twenty years (see [1–3] and also [4–6]). A time-reversal
mirror consists in a set of transducers that can be used as receivers or as transmitters. A classical time-reversal experiment
consists in two steps. In the first step, a source generates a wave that propagates through a medium and is recorded by the
time-reversalmirror used as a set of receivers. In the second step, the time-reversalmirror is used as an array of transmitters,
it re-emits the time-reversed recorded signals. It turns out that the wave focuses back at the initial source position, as
if the wave were being played backwards. The refocusing properties have been studied experimentally, numerically, and
theoretically. They are characterized by diffraction-limited focal spots, that is to say, the size of the time-reversed focal spot
when the original source is point-like is of the order of the source carrier wavelength. Inmore detail, when the time-reversal
mirror has full aperture, i.e. it completely surrounds the original source, the focal spot has the form of the imaginary part of
Green’s function, which is a sinc function with a width equal to half-a-wavelength when the medium is homogeneous and
three-dimensional [7]. When the time-reversal mirror has finite size, then the size of the focal spot is given by the Rayleigh
resolution formula that depends on the numerical aperture of the mirror [8,9].
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Enhanced refocusing is a remarkable property observed in many time-reversal experiments. Let us consider the case of
a full-aperture time-reversal mirror. The focal spot is expected to be diffraction-limited, with a focal spot diameter equal
to the carrier wavelength. Several mechanisms can be responsible for an enhanced refocusing of the time-reversed wave.
First, the diffraction limit can be overcome if the source is replaced by its time-reversed image during the second step of the
time-reversal experiment. This requires to use an active sink that absorbs the time-reversed wave precisely at the original
source location and at the exact refocusing time [10]. Second it is possible to obtain subwavelength focusingwhen the initial
source is in the near field of the time-reversal mirror and the propagating medium is homogeneous [11]. Third, focusing be-
yond the diffraction limit with far-field time reversal is possible, provided a randomdistribution of scatterers is placed in the
near field of the original source, which locally reduces the effective wavelength [12]. Finally, if we consider limited-aperture
time-reversal mirrors, then it is possible to exploit the scattering properties of the backgroundmedium to beat the Rayleigh
resolution formula. Indeed multiple scattering due to random inhomogeneities in the medium can increase the directional
diversity of waves which enhances the time reversal refocusing [13–21].

In this paperwe present a newmechanism that can produce enhanced refocusing, for full-aperture time-reversalmirrors,
in which case the focal spot will be smaller than the diffraction limit, and for partial-aperture time-reversal mirrors, in
which case the focal spotwill be smaller than the Rayleigh resolution formula. Indeedwe revisit the time-reversal resolution
analysiswhen the original source ismoving. Very few results are availablewhen the source ismoving. Historically the related
problem of the impact of changes in the medium was addressed in [22–24] where is shown that time-reversal refocusing
is degraded by changes in the medium that occur between the two steps of the time-reversal experiment (i.e., between the
time that the signal is emitted from its source and the time that the time-reversal array reemits the time-reversed recorded
signals). In [25–29,34] the motion of the time-reversal mirror or the one of the source are shown to have little influence
for active sonar and underwater communication applications for small velocities. In [30] the impact of small displacements
of the target on the invariants of the time-reversal operator is investigated theoretically and experimentally. These studies
show that it is possible to quantitatively address time reversal with moving sources and sensors, although the main result
that we present in this paper is not exhibited.

In this paper we address both the cases of a full-aperture time-reversal mirror and of a finite-aperture time-reversal
mirror. Ourmain results predict that, when the velocity becomes non-negligible compared to the speed of propagation, then
the focal spot size can become smaller than the diffraction limit for full-aperture time-reversalmirrors and than the Rayleigh
resolution formula for partial-aperture time-reversal mirrors. These surprising super-resolution effects can be explained
from the physical point of view by the Doppler effect, which means that the receivers at the time-reversal mirror record
higher frequency components than the original carrier frequency of the source. From the mathematical point of view we
show the result in the case of a homogeneous medium by using some integral identities.

The paper is organized as follows. In Section 2 we address the case of a moving source and a full-aperture time-reversal
mirror in a three-dimensional homogeneous and open medium. We determine the form of the refocused time-reversed
wave and identify the resolution enhancement factors in the transverse and longitudinal directions. In Section 3 we address
the case of a partial-aperture time-reversal mirror in a three-dimensional homogeneous and open medium. We show that
resolution depends not only on the norm but also on the direction of the velocity vector of the source. In Section 4 we revisit
the results in the two-dimensional setting and show that they are similar as those in the three-dimensional set-up.

2. Time reversal with a full-aperture mirror

Weconsider a point-like sourcemoving in a three-dimensional openmediumand emitting a signalwith carrier frequency
ω0 and (real-valued) pulse profile f (t). The source position is

X⃗(t) = X⃗0 + vt e⃗z,

where e⃗z is the unit vector pointing in the z-direction, v the velocity of the source (with v ≥ 0), and X⃗0 is the position of
the source at time 0. We carry out a time-reversal experiment from the signals recorded at the surface of a ball with radius
L and center 0 and observe the time-reversed field around the original source location. We will see that time reversal with
Neumann data leads to super-resolution effects, both in space and time. We first present an integral representation of the
time-reversed field in Section 2.1 and then carry out explicit calculations in Sections 2.2 and 2.3 to address subsonic and
supersonic sources, respectively, when the source bandwidth is small. Finally, in Section 2.4 we present another approach
based on Helmholtz–Kirchhoff identity that allows us to give results valid for arbitrary bandwidth.

2.1. Integral representation of the time-reversed field

In the Fourier domain, the wave field û(ω, x⃗) emitted by the source satisfies the Helmholtz equation

1û +
ω2

c20
û = −ŝ(ω, x⃗),

where the source term is in the time domain

s(t, x⃗) = δ

x⃗ − X⃗(t)


e−iω0t f (t) + c.c.,
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where c.c. stands for complex conjugate (i.e. s(t) + c.c. = s(t) + s(t)), and in the Fourier domain

ŝ(ω, x⃗) :=


∞

−∞

s(t, x⃗)eiωtdt = δ(x − X0)
1
v
exp


i(ω − ω0)

z − Z0
v


f
 z − Z0

v


+ s.c., (1)

where s.c. means symmetric complex conjugate (i.e. ŝ(ω) + s.c. = ŝ(ω) + ŝ(−ω)), with the notation x⃗ = (x, z) ∈ R2
× R

and X⃗0 = (X0, Z0). Using the three-dimensional homogeneous Green’s function,

Ĝ(ω, x⃗, x⃗′) =
1

4π |x⃗ − x⃗′|
ei

ω
c0

|x⃗−x⃗′|
, (2)

the wave field is

û(ω, x⃗) =


R3

Ĝ(ω, x⃗, x⃗′)ŝ(ω, x⃗′)dx⃗′
+ s.c.

The signals are recorded on the surface of the ball B(0, L) centered at 0 and with radius L, so that the Neumann data set is
(in the frequency domain)

∂ν û(ω, x⃗) + s.c., x⃗ ∈ ∂B(0, L)

. (3)

By emitting the time-reversed data set from the surface of the ball B(0, L), we obtain the time-reversed wave field:

ûtr(ω, x⃗) =


∂B(0,L)

Ĝ(ω, x⃗, x⃗′)∂ν û(ω, x⃗′)dσ(x⃗′) + s.c. (4)

The refocusing properties of the time-reversed wave field are analyzed below, first for a subsonic source, and then for a
supersonic source. In both cases the goal is to show that we can get refocusing with super-resolution, in the sense that the
time-reversed wave refocuses with a focal spot that is smaller than the diffraction limit.

2.2. Subsonic source

In this subsection we assume that the velocity v of the source is smaller than the wave velocity c0:

M :=
v

c0
∈ (0, 1),

and we compute the form of the time-reversed wavefield.
If the initial source location X⃗0 is close to the center 0, that is to say, |X⃗0| ≪ L and ω0

c0
|X⃗0|

2
≪ L, and if the duration T

of the function f is small enough so that the source has moved little compared to L during the emission, more exactly, if
vT ≪ L and ω0

c0
(vT )2 ≪ L, then the signals recorded at the surface of the ball B(0, L) have the form

∂ν û(ω, x⃗) =
iω
c0

1
4πL

exp

i
ω

c0


L −

X⃗0 · x⃗
L


f̂

ω


1 − M

z
L


− ω0


+ s.c., |x⃗| = L.

The Doppler effect is noticeable. Indeed, if we think of f̂ as a Dirac distribution (this is the limit case f ≡ 1), then the central
frequency recorded at position x⃗ = (x, z) is ω0/(1 − Mz/L) ∈ [ω0/(1 + M), ω0/(1 − M)].

The recorded signals are time-reversed and reemitted. In the Fourier domain, the time-reversed wave field is (4). If the
search point x⃗ is close to the center 0, that is to say, |x⃗| ≪ L and ω0

c0
|x⃗|2 ≪ L, then the time-reversed wave field is

utr(t, x⃗) =
−i

16π2c0


∞

−∞

dωωf̂ (ω − ω0)

 1

−1
dqJ0


1 − q2

1 − Mq
|ω||x − X0|

c0


exp


−iω

t +
z−Z0
c0

q

1 − Mq

 1
1 − Mq

2 + c.c., (5)

where J0 is the Bessel function of the first kind and of zero order.
Main results. In terms of the Mach numberM = v/c0, after some calculations (see Appendix A), we find that, when the

bandwidth B (of f ) is smaller than the carrier frequency ω0 (in practice B ≤ 0.1ω0 is enough), the refocused wave has the
form:

utr(t, x⃗) =
−iω0

4πc0(1 − M2)
sinc


ω0

c0


|x − X0|

2

1 − M2
+

(z − Z0 + Mc0t)2

(1 − M2)2



× exp

−iω0

t + M z−Z0
c0

1 − M2


f

−

t + M z−Z0
c0

1 − M2


+ c.c., (6)

where sinc(q) = sin(q)/q. The sinc function is also known as the spherical Bessel function of the first kind and of zero order
j0. The modulus of the refocused wave profile is plotted in Fig. 1 at time t = 0 for f ≡ 1.

In the limit case M = 0 we recover the standard isotropic sinc function for the refocused spatial profile with a diameter
equal to the carrier wavelength, and we recover the time-reversed initial pulse profile.

WhenM ∈ (0, 1) the classical time-reversed refocused spatial profile undergoes several modifications:
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Fig. 1. Spatial profile of the time-reversed refocused wave at t = 0 with Neumann data whenM = v/c0 = 0.8. In the center and right figures, the dashed
red lines are the standard sinc function when the source does not move. The profiles are normalized so that their maximum is one. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Spatial profile of the time-reversed refocused wave at t = −4 (top left), t = −2 (top center), t = 0 (top right), t = 2 (bottom left), t = 4 (bottom
right) with Neumann data whenM = v/c0 = 0.8, ω0 = 1, c0 = 1, and the source pulse is f (t) = exp(−B2t2), B = 0.1.

– First, the carrier frequency is increased to the value ω0/(1 − M2). Note that it is the arithmetic average of the carrier
frequencies recorded by the mirror which belong to the interval [ω0/(1 + M), ω0/(1 − M)].

– Second, the center of the refocused wave profile follows the time-reversed trajectory of the original source (see Fig. 2).
– Third, spatial refocusing is enhanced when the source is moving, both in the longitudinal direction of the source motion

and in the transverse directions. The enhancement factor is larger in the longitudinal direction than in the transverse ones
(1/(1−M2) versus 1/

√
1 − M2). This enhancement can be related to the Doppler effect, which means that the recorded

signals contain higher frequencies than in the case when the source does not move. Therefore the classical diffraction
limit is in fact not violated by this super-resolution phenomenon.

Remark. For the sake of completenesswe describe in Appendix B the time-reversed refocusedwave obtainedwith Dirichlet
data (i.e. û instead of ∂ν û in (3)–(4)). The results are qualitatively the same ones, although we can notice a quantitatively
sharper refocusing for Neumann data (compare Figs. 1 and B.1). That is why we focus our attention on Neumann data in this
paper.

2.3. Supersonic source

We consider the same situation as in the previous subsection, but we assume now that the source speed v is larger than
the wave velocity c0 (i.e.M = v/c0 > 1). The expressions of the recorded signals are the same ones as in the subsonic case.
This means that there is a singularity in the amplitude of the recorded signals at x⃗ = (x, L) ∈ ∂B(0, L) such that Mz = L,
that is to say points of the form (|x|, z) = L(


1 − 1/M2, 1/M).



84 J. Garnier, M. Fink / Wave Motion 53 (2015) 80–93

Fig. 3. Spatial profile of the time-reversed refocused wave at t = −4, −2, 0, 2, 4 with Neumann data when M = v/c0 = 1.2, ω0 = 1, c0 = 1, and the
source pulse is f (t) = exp(−B2t2) with B = 0.1.

Around the original source location, the refocused wave has the form

utr(t, x⃗) =
−i

16π2c0


∞

−∞

dωωf̂ (ω − ω0)

 1

−1
dqJ0

 
1 − q2

|1 − Mq|
|ω||x − X0|

c0


exp


−iω

t +
z−Z0
c0

q

1 − Mq

 sgn

1 − Mq


1 − Mq

2 + c.c.,

(7)
where sgn(q) = 1 if q > 0, −1 if q < 0, and 0 if q = 0.

Main results. In terms of the Mach numberM = v/c0, after some calculations (see Appendix A), we find that, when the
bandwidth (of f ) is smaller than the carrier frequency ω0, the refocused wave has the form:

utr(t, x⃗) =
ω0sgn


z − Z0 + Mc0t


4π(M2 − 1)c0

Φ


ω0

c0

|z − Z0 + Mc0t|
M2 − 1

,
ω0

c0

|x − X0|
√
M2 − 1



× exp

iω0

t + M z−Z0
c0

M2 − 1


f
 t + M z−Z0

c0

M2 − 1


+ c.c., (8)

where

Φ(a, b) =


0 if a < b,
y0


a2 − b2


if a > b,

(9)

and the function y0(s) = − cos(s)/s is known as the spherical Bessel function of the second kind and of zero order. We can
notice that:
– The carrier frequency is ω0/(M2

− 1).
– Outside the Mach cone, the refocused wave is vanishing. The Mach cone is defined by the usual formula |z − Z0 + vt| =

√
M2 − 1|x − X0|.

– The center of the refocused wave profile follows the time-reversed trajectory of the original source X⃗(−t), which
can be identified with infinite resolution as it is precisely at the interaction of the two Mach cones z − Z0 + vt =

±
√
M2 − 1|x − X0| (see Fig. 3). Infinite resolution can be reached here because we assume that the receivers can record

all frequencies, and that the sources of themirror can reemit all frequencies. This is possible if backpropagation is carried
out numerically, but this is difficult if a physical time reversal experiment is performed.

2.4. Application of the Helmholtz–Kirchhoff identity

The goal of this subsection is to propose another approach based on integral equations to study time reversal. This ap-
proach is less transparent than the direct calculations carried out in the two previous subsections, which allowed to char-
acterize the Doppler effect, but it gives explicit expressions valid for any bandwidth.
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We recall that the general expression of the time-reversed field is

ûtr(ω, x⃗) =


R3


∂B(0,L)

Ĝ(ω, x⃗, x⃗′)∂ν Ĝ(ω, x⃗′, y⃗)ŝ(ω, y⃗)dσ(x⃗′)dy⃗ + s.c.

If L is large, the application of the Helmholtz–Kirchhoff identity (see, for instance [31, p. 419] or [32, Theorem 2.33]) gives

ûtr(ω, x⃗) = −
1
2


R3


Ĝ(ω, x⃗, y⃗) − Ĝ(ω, x⃗, y⃗)


ŝ(ω, y⃗)dy⃗ + s.c.

By substituting the expression of the three-dimensional Green’s function (2) and the one of the moving source (1), we get
for x⃗ = (x, z):

ûtr(ω, x⃗) =
−i
4π


∞

−∞

sin


ω
c0


(z − Z0 − vτ)2 + |x − X0|

2



(z − Z0 − vτ)2 + |x − X0|

2
e−i(ω−ω0)τ f (τ )dτ + s.c., (10)

in the frequency domain, and

utr(t, x⃗) =
1
8π


∞

−∞

1
(z − Z0 − vτ)2 + |x − X0|

2


δ

φ+(τ ; t, x⃗)


− δ


φ−(τ ; t, x⃗)


eiω0τ f (τ )dτ + c.c., (11)

φ±(τ ; t, x⃗) = τ + t ±
1
c0


(z − Z0 − vτ)2 + |x − X0|

2, (12)

in the time domain. This expression is valid for any velocity of the source. The evaluation of the two Dirac distributions
involves the zeros of φ± and it depends on the subsonic or supersonic character of the source motion. As we see below this
analysis gives the same expressions for the time-reversed field as the ones obtained in the previous subsections when the
bandwidth is small.

We consider the subsonic caseM = v/c0 ∈ (0, 1). The equation φ±(τ ) = 0 has a unique solution

τ± =
−M(z − Z0) − c0t ∓


∆(t, x⃗)

c0(1 − M2)
, ∆(t, x⃗) = (z − Z0 + vt)2 + (1 − M2)|x − X0|

2, (13)

and we have


(z − Z0 − vτ±)2 + |x − X0|
2φ′

±
(τ±) =


∆(t, x⃗). As a result (11) gives

utr(t, x⃗) =
1

8π


∆(t, x⃗)


f (τ+)eiω0τ+ − f (τ−)eiω0τ−


+ c.c. (14)

This expression is exact whatever the bandwidth of f . If the bandwidth is smaller than the carrier frequency, then the
expression can be simplified into

utr(t, x⃗) =
−iω0

4πc0(1 − M2)
sinc

ω0


∆(t, x⃗)

c0(1 − M2)


exp


iω0

−M z−Z0
c0

− t

1 − M2


f
−M z−Z0

c0
− t

1 − M2


+ c.c., (15)

which is exactly (6).
We consider the supersonic case M > 1. Let φ± be defined by (12). The equation φ±(τ ) = 0 has no solution if |z − Z0

+ vt|2 < (M2
− 1)|x − X0|

2 (because then ∆(t, x⃗) < 0), and as a result (11) gives

utr(t, x⃗) = 0, (16)

in agreement with (8).
Let us now consider a point such that |z−Z0+vt|2 > (M2

−1)|x−X0|
2. If z−Z0+vt > 0, then the equation φ+(τ ) = 0 has

no solution while the equation φ−(τ ) = 0 has two solutions τ− and τ+ given by (13). If z − Z0 + vt < 0, then the equation
φ−(τ ) = 0 has no solution while the equation φ+(τ ) = 0 has two solutions τ− and τ+ given by (13). As a result (11) gives

utr(t, x⃗) =
−sgn(z − Z0 + vt)

8π


∆(t, x⃗)


f (τ−)eiω0τ− + f (τ+)eiω0τ+


+ c.c. (17)

This expression is exact whatever the bandwidth of f . If the bandwidth is smaller than the carrier frequency, then the
expression can be simplified into

utr(t, x⃗) =
ω0sgn(z − Z0 + vt)

4πc0(M2 − 1)
y0

ω0


∆(t, x⃗)

c0(M2 − 1)


exp


iω0

M z−Z0
c0

+ t

M2 − 1


f
M z−Z0

c0
+ t

M2 − 1


+ c.c., (18)

where y0(q) = − cos(q)/q, which is exactly (8).
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3. Time reversal with a partial mirror

In Section 2 we assumed that the time-reversal mirror has full aperture and lies at the surface of the ball B(0, L). We
revisit the results in the case in which the mirror has partial aperture and lies in the square [−a/2, a/2]2 × {0}. The goal
is to compute the time-reversed wave field and to exhibit an enhanced refocusing phenomenon, which here means to go
beyond the Rayleigh resolution formula.

We consider a moving point-like source emitting a signal with carrier frequency ω0 and pulse profile f (t). The source
position is

X⃗(t) = X⃗0 + V⃗0t,

where X⃗0 = (X0, Z0) and V⃗0 = (Vx, Vz). We consider the situation in which |X0| ≪ Z0 and λ0 ≪ a ≪ Z0. This means that
we can expand for any x⃗ = (x, 0) ∈ [−a/2, a/2]2 × {0}:

|x⃗ − X⃗(t)| = Z0 +
|X0 − x|2

2Z0
+ Vz t + Vxt ·

X0 − x
Z0

.

This is the so-called paraxial regime.We also assume that the bandwidth B of the source is smaller than the carrier frequency
ω0. Therefore, the normal derivative of the field recorded at the time-reversal mirror is

∂ν û(ω, x⃗) = −
iω

4πc0Z0
exp


i
ω

c0


Z0 +

|x − X0|
2

2Z0


f̂

ω


1 +

Vz

c0
+

Vx · (X0 − x)
c0Z0


− ω0


+ s.c.,

for x⃗ = (x, 0), x ∈ [−a/2, a/2]2. The time-reversed wave field for x⃗ = X⃗0 + (ξ, η) with |η| ≪ Z0 and ω0
c0

|ξ|2 ≪ Z0 is

utr(t, x⃗) =
1

(4πZ0)2c0


[−a/2,a/2]2

iω0 exp

i
ω0

c0

−c0t + η +
ξ·(X0−x′)

Z0
−

η|X0−x′|2

2Z20

1 +
Vz
c0

+
Vx·(X0−x′)

c0Z0



×

sgn

1 +

Vz
c0

+
Vx·(X0−x′)

c0Z0



1 +

Vz
c0

+
Vx·(X0−x′)

c0Z0

2 f
−c0t + η +

ξ·(X0−x′)
Z0

−
η|X0−x′|2

2Z20

c0

1 +

Vz
c0

+
Vx·(X0−x′)

c0Z0

 
dx′

+ c.c.

This expression can be further simplified but we need to specify two cases depending on the bandwidth.
Main results. If the bandwidth B is such that a2/Z2

0 ≪ B/ω0 ≪ 1, then the time-reversedwave field in the neighborhood
of time t = 0 and point (X0, Z0) is of the form

utr(t, x⃗) =
iω0a2sgn(1 + Mv)

(4πZ0)2c0(1 + Mv)2

2
j=1

sinc


ω0a
2c0Z0(1 + Mv)2


ξj − η

X0j

Z0


1 +

Vz

c0


−

Vxj

c0
(η − c0t)



× exp

i

ω0

c0(1 + Mv)


η

1 −

|X0|
2

2Z2
0


+ ξ ·

X0

Z0
− c0t


f
η(1 −

|X0|
2

2Z20
) + ξ ·

X0
Z0

− c0t

c0(1 + Mv)


+ c.c., (19)

where we have introduced the parameter

Mv =
Vz

c0
+

Vx · X0

c0Z0
=

V⃗0 · X⃗0

c0Z0
. (20)

The Doppler effect is responsible for a shift in the carrier frequency of the recorded data that becomes ω0/|1 + Mv|. As a
result the cross-range resolution is the standard Rayleigh resolution formula λeffZ0/a, with λeff = λ0|1 + Mv|. The range
resolution is c0/Beff, with Beff = B/|1 + Mv| (see Fig. 4). Note that, contrarily to the full-aperture case, the center of the
refocused wave profile does not follow the time-reversed trajectory of the original source. It is a wave profile that comes
from the time-reversal array and that propagates at velocity c0.

If B/ω0 ≪ a2/Z2
0 ≪ 1 (quasi-monochromatic case), then

utr(t, x⃗) =
iω0a2sgn(1 + Mv)

(4πZ0)2c0(1 + Mv)2
exp


i

ω0

c0(1 + Mv)


η

1 −

|X0|
2

2Z2
0


+ ξ ·

X0

Z0
− c0t


f (0)

×

2
j=1

Ψ


ω0a

c0Z0(1 + Mv)2


ξj − η

X0j

Z0


1 +

Vz

c0


−

Vxj

c0
(η − c0t)


,

ω0a2

2c0Z2
0 (1 + Mv)

η


+ c.c., (21)

Ψ (ξ̃ , η̃) =

 1/2

−1/2
exp(−iqξ̃ − iq2η̃)dq. (22)
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Fig. 4. Spatial profile of the time-reversed refocused wave at t = 0 when Vz = −0.8, Vx = (−0.2, 0) for t = −4 (left), t = 0 (center), and t = 4 (right).
Here ω0 = 1, c0 = 1, a = 50, B = 0.1, Z0 = 500, X0 = 0, f (t) = exp(−B2t2).

The marginal formulas can be expressed in terms of tabulated functions:

Ψ (ξ̃ , 0) = sinc
 ξ̃

2


, Ψ (0, η̃) =

2
|η̃|

(C − iS)


|η̃|

2


,

where C and S are the Fresnel integrals

C(x) =

 x

0
cos(q2)dq, S(x) =

 x

0
sin(q2)dq.

Here the cross-range resolution is λeffZ0/a and the range resolution is λeffZ2
0 /a2, with λeff = λ0|1 + Mv|.

These results demonstrate that the motion of the source affects the resolution of time-reversal refocusing in a
three-dimensional open medium with a partial-aperture mirror. The enhancement factor depends on the velocity vector. If
the velocity vector of the source is pointed towards the time-reversal array, then Mv < 0 and the resolution is enhanced.
If the velocity vector is pointed away from the time-reversal array, then Mv > 0 and the resolution is reduced. This can be
interpreted as a consequence of Doppler effect.

4. Two-dimensional case

4.1. Two-dimensional time reversal with a full-aperture mirror

We revisit the analysis of the time-reversal experiment in a two-dimensional set-up, for a moving source with position
X⃗(t) = X⃗0 + vt e⃗z (with v > 0) and for a time-reversal mirror that covers the surface of the disk B(0, L) with center 0
and radius L. As we will see, the results about time-reversal refocusing are similar as in the three-dimensional set-up, in
particular the resolution enhancement factors are the same ones.

The general expression of the time-reversed field is

ûtr(ω, x⃗) =


R2


∂B(0,L)

Ĝ(ω, x⃗, x⃗′)∂ν Ĝ(ω, x⃗′, y⃗)ŝ(ω, y⃗)dσ(x⃗′)dy⃗ + s.c.

If L is large, the application of the Helmholtz–Kirchhoff identity gives

ûtr(ω, x⃗) = −
1
2


R2


Ĝ(ω, x⃗, y⃗) − Ĝ(ω, x⃗, y⃗)


ŝ(ω, y⃗)dy⃗ + s.c.

By substituting the expression of the two-dimensional Green’s function:

G(t, x⃗, y⃗) =
1
2π

1
t− |x⃗−y⃗|

c0
≥0

1
t2 −

|x⃗−y⃗|2

c20

,

Ĝ(ω, x⃗, y⃗) =
i
4
H(1)

0

 ω

c0
|x⃗ − y⃗|


,

where H(1)
0 is a Hankel function, also known as the Bessel function of the third kind and zero order, whose real part is J0, and

the one of the moving source:

s(t, x⃗) = δ

x⃗ − X⃗(t)


e−iω0t f (t) + c.c.,

ŝ(ω, x⃗) = δ(x − X0)
1
v
exp


i(ω − ω0)

z − Z0
v


f
 z − Z0

v


+ s.c.,
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Fig. 5. Spatial profile of the time-reversed refocused wave at t = −4, −2, 0, 2, 4 with Neumann data when M = v/c0 = 0.8, ω0 = 1, c0 = 1, and the
source pulse is f (t) = exp(−B2t2), B = 0.1. The set-up is two-dimensional.

we get for x⃗ = (x, z) ∈ R × R:

utr(t, x⃗) =
1
4π


∞

−∞

f (τ )eiω0τ
(t + τ)2 −

|x⃗−X⃗(τ )|2

c20


1 |x⃗−X⃗(τ )|

c0
≤−t−τ

1τ+t≤0 − 1 |x⃗−X⃗(τ )|
c0

≤t+τ
1τ+t≥0


dτ + c.c.,

in the time domain, and

ûtr(ω, x⃗) =
−i
4


∞

−∞

J0
 ω

c0
|x⃗ − X⃗(τ )|


e−i(ω−ω0)τ f (τ )dτ + s.c., (23)

in the frequency domain (with the convention J0(−q) = −J0(q)). These expressions are valid for any velocity of the source.
Explicit expressions of the refocusedwave profile depends on the velocity of the source (subsonic or supersonic) as explained
in Appendix C.

Main results. In the subsonic regimeM := v/c0 ∈ (0, 1), if the bandwidth of f is smaller than ω0, then we find

utr(t, x⃗) =
−i

4
√
1 − M2

exp

−iω0

t + M z−Z0
c0

1 − M2


f

−

t + M z−Z0
c0

1 − M2


J0
ω0

c0


(z − Z0 + Mc0t)2

(1 − M2)2
+

(x − X0)2

1 − M2


+ c.c. (24)

As in the three-dimensional case, we find that the carrier frequency is ω0/(1 − M2), and that refocusing is enhanced when
the source is moving, both in the direction of the source motion and in the transverse directions, with the enhancement
factor 1/(1 − M2) in the longitudinal direction and 1/

√
1 − M2 in the transverse one (see Fig. 5).

In the supersonic regimeM > 1, if the bandwidth of f is smaller than ω0, then we find

utr(t, x⃗) =
−sgn


z − Z0 + Mc0t


4
√
M2 − 1

exp

iω0

t + M z−Z0
c0

M2 − 1


f
 t + M z−Z0

c0

M2 − 1


J
ω0

c0

|z − Z0 + Mc0t|
M2 − 1

,
ω0

c0

|x − X0|
√
M2 − 1


+ c.c.,

(25)
where

J(a, b) =


0, if b > a,
J0


a2 − b2

, if a > b.

(26)

Note that the carrier frequency isω0/(M2
−1) and that inside theMach cone the refocusedwave oscillates and decays slowly

as a square root (this is the behavior of J0). The Mach cone is defined by the usual formula |z − Z0 + vt| =
√
M2 − 1|x− X0|

(see Fig. 6).

Remark. The expressions of the refocused time-reversed wave for a subsonic or a supersonic source with arbitrary band-
width are given in Appendix C. The resolution properties are qualitatively as discussed above.
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Fig. 6. Spatial profile of the time-reversed refocused wave at t = −4, −2, 0, 2, 4 with Neumann data when M = v/c0 = 1.2, ω0 = 1, c0 = 1, and the
source pulse is f (t) = exp(−B2t2), B = 0.1. The set-up is two-dimensional.

4.2. Two-dimensional time reversal with a partial-aperture mirror

We revisit the analysis of the time-reversal experiment in a two-dimensional set-up, for a moving source and for a
time-reversal mirror that covers the line [−a/2, a/2] × {0}. As we will see, the results for time-reversal refocusing are
similar as those in the three-dimensional set-up.

We consider a moving point-like source emitting a signal with carrier frequency ω0 and pulse profile f (t). The source
position is

X⃗(t) = X⃗0 + V⃗0t,

where X⃗0 = (X0, Z0) and V⃗0 = (Vx, Vz). We consider the paraxial regime in which |X0| ≪ Z0 and λ0 ≪ a ≪ Z0. We also
assume that the bandwidth B of the source is smaller than the carrier frequency ω0. Therefore the normal derivative of the
field recorded at the time-reversal mirror is

∂ν û(ω, x⃗) =

√
ωe−i π4

2
√
2πc0Z0

exp

i
ω

c0


Z0 +

(x − X0)
2

2Z0


f̂

ω


1 +

Vz

c0
+

Vx(X0 − x)
c0Z0


− ω0


+ s.c.,

for x⃗ = (x, 0), x ∈ [−a/2, a/2]. Herewe have used the asymptotic form of the Hankel functionH(1)
0 (q) ≃

√
2/(πq) exp(iq−

iπ/4) for q ≫ 1. The time-reversed wave field for x⃗ = X⃗0 + (ξ , η) with |η| ≪ Z0 and ω0
c0

ξ 2
≪ Z0 is

utr(t, x⃗) =
i

8πZ0

 a/2

−a/2
exp


i
ω0

c0

−c0t + η +
ξ(X0−x′)

Z0
−

η(X0−x′)2

2Z20

1 +
Vz
c0

+
Vx(X0−x′)

c0Z0



×
11 +

Vz
c0

+
Vx(X0−x′)

c0Z0

 f −c0t + η +
ξ(X0−x′)

Z0
−

η(X0−x′)2

2Z20

c0

1 +

Vz
c0

+
Vx(X0−x′)

c0Z0

 
dx′

+ c.c. (27)

This expression can be simplified as explained below.
Main results. If a2/Z2

0 ≪ B/ω0 ≪ 1, then the time-reversed wave field is of the form

utr(t, x⃗) =
ia

8πZ0|1 + Mv|
sinc


ω0a

2c0Z0(1 + Mv)2


ξ − η

X0

Z0


1 +

Vz

c0


−

Vx

c0
(η − c0t)



× exp

i

ω0

c0(1 + Mv)


η

1 −

X2
0

2Z2
0


+ ξ

X0

Z0
− c0t


f
η(1 −

X2
0

2Z20
) + ξ

X0
Z0

− c0t

c0(1 + Mv)


+ c.c., (28)



90 J. Garnier, M. Fink / Wave Motion 53 (2015) 80–93

where we have introduced the parameter

Mv =
Vz

c0
+

VxX0

c0Z0
=

V⃗0 · X⃗0

c0Z0
. (29)

The Doppler effect is responsible for a shift in the carrier frequency of the recorded data that becomes ω0/|1 + Mv|. As a
result the cross-range resolution is the standard Rayleigh resolution formula λeffZ0/a, with λeff = λ0|1 + Mv|. The range
resolution is c0/Beff, with Beff = B/|1 + Mv|.

If B/ω0 ≪ a2/Z2
0 ≪ 1 (quasi-monochromatic case), then

utr(t, x⃗) =
ia

8πZ0|1 + Mv|
exp


i

ω0

c0(1 + Mv)


η

1 −

X2
0

2Z2
0


+ ξ

X0

Z0
− c0t


f (0)

× Ψ


ω0a

c0Z0(1 + Mv)2


ξ − η

X0

Z0


1 +

Vz

c0


−

Vx

c0
(η − c0t)


,

ω0a2

2c0Z2
0 (1 + Mv)

η


+ c.c., (30)

where Ψ is defined by (22). Here the cross-range resolution is λeffZ0/a but the range resolution is λeffZ2
0 /a2, with λeff =

λ0|1 + Mv|.

5. Conclusions

This paper analyzes time-reversal refocusing for a moving source and shows resolution enhancement when the source
velocity becomes non-negligible compared to thewave speed. This phenomenon is essentially independent of the dimension
and it can be related to Doppler effects that allow the time-reversal mirror to record information with a bandwidth that is
larger than the source bandwidth.

If the source is subsonic then the time-reversed refocused spot has the same form as in the case of a stationary source, but
in a stretched space. The formulas are especially simple in the full-aperture case (when the time-reversal mirror surrounds
the original source), as we recover the classical diffraction-limited focal spots, but with a stretching by a factor 1 − M2 in
the longitudinal direction (along the velocity vector) and

√
1 − M2 in the transverse direction(s) (M is the Mach number).

When the mirror has partial aperture, the enhancement factors depend on the norm and direction of the velocity vector. If
the velocity vector of the source is pointed towards the time-reversal array, then resolution is enhanced compared to the
case of a stationary source. If the velocity vector is pointed away from the time-reversal array, then resolution is reduced.

Similar results have been presented for a supersonic source. The refocused spatial spot for a full-aperture mirror exhibits
a nearly-infinite resolution as the original source location is at the interaction of two Mach cones.
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Appendix A. Proof of (6) and (8)

We consider the expression (5) of the refocused wave in the subsonic caseM < 1, which can be written as

utr(t, x⃗) =
1

16π2c0


∞

−∞

dω(−iω)f̂ (ω − ω0)I

ωt,

|ω|

c0
|x − X0|,

ω

c0
(z − Z0)


+ c.c., (A.1)

with

I(t̃, x̃, z̃) =

 1

−1

1
(1 − Mq)2

J0


1 − q2

1 − Mq
x̃

e−i t̃+z̃q

1−Mq dq.

By the change of variable r =
1−M2

2M

 1
1−Mq −

1
1+M


, we get

I(t̃, x̃, z̃) =
2

1 − M2

 1

0
J0
 2x̃
1 − M2


r − r2


e
−2i Mt̃+z̃

1−M2 r−i t̃−z̃
1+M dr.

Then we apply the change of variable r = cos2(θ/2):

I(t̃, x̃, z̃) =
1

1 − M2

 π

0
J0
 x̃
1 − M2

sin θ

exp


i
Mt̃ + z̃
1 − M2

cos θ

sin θdθ exp


−i

t̃ + Mz̃
1 − M2


=

2
1 − M2

 π/2

0
J0
 x̃
1 − M2

sin θ

cos

Mt̃ + z̃
1 − M2

cos θ

sin θdθ exp


−i

t̃ + Mz̃
1 − M2


,
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Fig. B.1. Spatial profile of the time-reversed refocusedwave at t = 0with Dirichlet data whenM = v/c0 = 0.8. In the center and right figures, the dashed
red lines are the standard sinc function when the source does not move. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

and we use [33, formula 6.688.2] which gives:

I(t̃, x̃, z̃) =
2

1 − M2
sinc


x̃2

1 − M2
+

(z̃ + Mt̃)2

(1 − M2)2


exp


−i

t̃ + Mz̃
1 − M2


. (A.2)

Substituting into (A.1) we find the expression of the time-reversed wave valid for arbitrary bandwidth. If the bandwidth of
f̂ is small, then we get (6).

The derivation of (8) from (7) when M > 1 follows the same line and makes use of [33, formula 6.737.5] (instead of
[33, formula 6.688.2] as above), so we get 1

−1

sgn(1 − Mq)
(1 − Mq)2

J0
 

1 − q2

|1 − Mq|
x̃

e−i t̃+z̃q

1−Mq dq =
2isgn(z̃ + Mt̃)

M2 − 1
Φ


|z̃ + Mt̃|
M2 − 1

,
x̃

√
M2 − 1


exp


i
t̃ + Mz̃
M2 − 1


, (A.3)

with Φ defined by (9).

Appendix B. Dirichlet data

Throughout the paper we have addressed time reversal using Neumann data. For the sake of completeness, we briefly
address the case of Dirichlet data to show that the results are not qualitatively affected. We consider the same set-up as in
Section 2, but themirror records the field itself and not its normal derivative, so that theDirichlet data set is (in the frequency
domain):

û(ω, x⃗) + c.c., x⃗ ∈ ∂B(0, L)

, (B.1)

instead of (3). The time-reversal mirror re-emits the time-reversed recorded signals so that the time-reversed wave field is

ûdtr(ω, x⃗) =


∂B(0,L)

Ĝ(ω, x⃗, x⃗′)û(ω, x⃗′)dσ(x⃗′) + s.c. (B.2)

If the search point x⃗ is close to the center 0, that is to say, |x⃗| ≪ L and ω0
c0

|x⃗|2 ≪ L, then the time-reversed wave field is

udtr(t, x⃗) =
1
8π

 1

−1

11 − Mq
 J0


1 − q2

|1 − Mq|
ω0|x − X0|

c0


× exp


−iω0

t +
z−Z0
c0

q

1 − Mq


f

−

t +
z−Z0
c0

q

1 − Mq


dq + c.c.,

provided the bandwidth (of f ) is smaller than the carrier frequency ω0. The modulus of this function is plotted in Fig. B.1 at
time 0 for f ≡ 1. By comparing with Fig. 1 one can see that the peak has the same width, but the lobes (in the longitudinal
direction) are larger with Dirichlet data than with Neumann data.

Appendix C. Proof of (24) and (25)

We consider the expression (23) of the refocused wave which can be written as

ûtr(ω, x⃗) =
−i
8πv


∞

−∞


R
J0
 ω

c0


(x − X0)2 + ζ 2


ei

ω′
−ω
v ζdζ ei

ω′
−ω
v (z−Z0) f̂ (ω′ − ω0)dω′.
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In this appendixwe dowrite the c.c. and s.c. terms. Using formula [33, formula 6.677.3] to compute the integralwith respect
to ζ , we get

ûtr(ω, x⃗) =
−i
4π

sgn(ω)


∞

−∞

cos


|x−X0|
Mc0


M2ω2 − (ω′ − ω)2



M2ω2 − (ω′ − ω)2

× ei
ω′

−ω
Mc0

(z−Z0)1M|ω|>|ω′−ω| f̂ (ω′ − ω0)dω′. (C.1)

In the subsonic regimeM ∈ (0, 1), this can be written as

ûtr(ω, x⃗) =
−i
4π

sgn(ω)


∞

−∞

cos

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In the time domain
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1
2π
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After the change of variable q = sinφ and the use of the formula
 π

0 eix sinφdφ = π J0(x) [33, formula 8.411.1] which implies π/2

0
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,

we get
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This formula is valid whatever the bandwidth of f . If the bandwidth is smaller than ω0, then we get (24).
In the supersonic regimeM > 1, Eq. (C.1) can be written as

ûtr(ω, x⃗) =
−i
4π
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In the time domain
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After the change of variable q = coshφ and the use of the formula


∞

0 sin(x coshφ)dφ = π J0(x)/2 [33, formula 8.411.11]
which implies
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we get
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This formula is valid whatever the bandwidth of f . If the bandwidth is smaller than ω0, then we get (25).
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