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Abstract. It was shown in [Garnier et al., SIAM J. Imaging Sciences 2 (2009),
396] that it is possible to image reflectors by backpropagating cross correlations

of signals generated by ambient noise sources and recorded at passive sensor

arrays. The resolution of the image depends on the directional diversity of
the noise signals relative to the locations of the sensor array and the reflector.

When directional diversity is limited it is possible to enhance it by exploiting

the scattering properties of the medium since scatterers will act as secondary
noise sources. However, scattering increases the fluctuation level of the cross

correlations and therefore tends to destabilize the image by reducing its signal-

to-noise ratio. In this paper we study the trade-off in passive, correlation-based
imaging between resolution enhancement and signal-to-noise ratio reduction

that is due to scattering.

1. Introduction. It has been shown recently that the Green’s function of the wave
equation in an inhomogeneous medium can be estimated by cross correlating signals
emitted by ambient noise sources and recorded by a passive sensor array [1, 9, 29, 30].
The cross correlation C(τ,x1,x2) of the signals recorded at two sensors x1 and x2:

C(τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt

is related to the Green’s function between x1 and x2. In a homogeneous medium
and when the source of the waves is a space-time stationary random field that is also
delta-correlated in space and time, it has been shown [25, 21] that the τ -derivative
of the cross correlation of the recorded signals is proportional to the symmetrized
Green’s function between the sensors (ie the difference of the causal and anticausal
Green’s functions):

(1)
∂

∂τ
C(τ,x1,x2) ' −

[
G(τ,x1,x2)−G(−τ,x1,x2)

]
,
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where G is the causal Green’s function. In an inhomogeneous medium and when the
sources completely surround the region of the sensors the approximate identity (1)
is still valid and it can be shown using the Helmholtz-Kirchhoff theorem [29, 13].
This is true even with spatially localized noise source distributions provided the
waves propagate within an ergodic cavity [1]. More generally, in an inhomogeneous
medium the cross correlation as a function of the lag time τ can have a distinguish-
able peak at plus or minus the inter-sensor travel time T (x1,x2), provided the
ambient noise sources are well distributed around the sensors and scattering by the
inhomogeneities in the region between x1 and x2 is weak. The inter-sensor travel
times obtained from peaks of cross correlations can then be used tomographically
for background velocity estimation [2, 6, 17, 23, 31]. However, when the ambient
noise sources have spatially limited support, the signals recorded by the sensors are
generated by wave energy flux coming from the direction of the noise sources, which
results in an azimuthal dependence of the quality of travel time estimation [27]. In
general, travel time estimation by cross correlation of noise signals is possible when
the line between the sensors is along the general direction of the energy flux and
difficult or impossible when it is perpendicular to it. This can be explained and
analyzed using the stationary phase method [4, 13, 16]. It is, however, possible to
enhance the quality of travel time estimates by exploiting the increased directional
diversity provided by the scattering of waves in a randomly inhomogeneous medium
[13, 26]. We consider this briefly in Section 6.

Cross correlations of signals emitted by ambient noise sources and recorded by
a passive sensor array can also be used for imaging of reflectors as was shown in
[17, 13, 14]. The data that is used for imaging is the matrix of cross correlations
(C(τ,xj ,xl))j,l=1,...,N between pairs of sensors (xj)j=1,...,N . The objective is to im-
age reflectors in the medium. In this paper we consider the two imaging functionals
that use this data set and were introduced in [13, 14], corresponding to daylight and
backlight illumination as described in the next paragraph. The form of these two
functionals is motivated by the analysis in a homogeneous medium of the cross cor-
relation matrix in the asymptotic regime in which the coherence time of the sources
is small compared to typical travel times. These imaging functionals can also be
applied in inhomogeneous media which is what is studied in this paper. We briefly
review here the resolution results of [14] and analyze in detail the signal-to-noise
ratio (SNR) of the imaging functionals. We only consider here images of single point
reflectors and the SNR is defined as the mean of the image at the reflector position
divided by the standard deviation of the image, also at the reflector position.

We consider relatively simple models for the reflector and the background medium
that allow for a rather complete analysis that explains the main phenomena of in-
terest when scattering is weak. In particular we show that resolution and SNR are
not independent imaging attributes in a randomly scattering medium. In the anal-
ysis we use the Born approximation [5, 19, 11] for the reflectors and a single- and
double-scattering approximations for the random medium. We also use extensively
the stationary phase method [4]. We carry out numerical simulations to illustrate
the results. This confirms that the theoretical predictions obtained in asymptotic
regimes can be observed.

Homogeneous background medium. We summarize the main results in
[13, 14] when the background medium is homogeneous. When there is only one
reflector located at zr, the cross correlation C(τ,xj ,xl) between the two sensors at
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Figure 1. Passive sensor imaging using cross correlations of am-
bient noise signals. The circles indicate the location of the noise
sources, the triangles that of the sensors, and the diamond that
of the reflector. Figure (a) shows a daylight illumination config-
uration. Figure (b) shows a backlight illumination configuration.
Figure (c) shows a primary backlight illumination configuration
where the scatterers, indicated by squares, play the role of sec-
ondary sources providing a daylight illumination.

xj and xl can have additional peaks at lag times that are different from the inter-
sensor travel times. Stationary phase analysis [13] shows that these additional peaks
appear at lag times equal to either the sum or the difference between the travel times
from the sensors to the reflector. This suggests that the reflector can be imaged by
backpropagating or migrating the cross correlation matrix of the recorded signals
because migration imaging exploits effectively these peaks. This form of passive
sensor array imaging depends in an essential way on the illumination configuration,
that is, the relative positions of the sensors, the noise sources and the reflector as
follows:
- If the noise sources are spatially localized and the sensors are between the sources
and the reflector, then additional peaks in the cross correlations occur at lag times
equal to plus or minus the sum of travel times T (xl, zr) + T (xj , zr). We call this
the daylight configuration (see Figure 1a).
- If the noise sources are spatially localized and the reflector is between the sources
and the sensors, then an additional peak in the cross correlations occurs at lag
time equal to the difference of travel times T (xl, zr) − T (xj , zr). We call this the
backlight configuration (see Figure 1b).

The imaging functional that we use depends therefore on the illumination config-
uration. To form an image in a daylight illumination configuration, each element of
the cross correlation matrix is evaluated at lag time equal to the sum of the travel
times T (xl, z

S) + T (zS ,xj) between the sensor xl and a search point zS in the
image domain, and between the search point zS and the sensor xj . The daylight
imaging functional is the sum of the migrated matrix elements over all pairs of sen-
sors, as discussed in Subsection 3.3. To form an image in a backlight illumination
configuration, each element of the cross correlation matrix is evaluated at lag time
equal to the difference of the travel times T (xl, z

S)− T (zS ,xj) and the migrated
matrix elements are summed over all pairs of sensors. The backlight imaging func-
tional has poor range resolution because it exploits only differences of travel times,
which are much less sensitive to the range than the sums of travel times [14].

Inverse Problems and Imaging Volume 8, No. 3 (2014), 645–683



648 Josselin Garnier and George Papanicolaou

Randomly scattering medium. The main result of this paper is a detailed
analysis of how wave scattering affects both the resolution and the SNR of passive
sensor imaging when using cross correlations of noise signals. We show in Section
4 that the scattering medium enhances the directional diversity of waves, which in
turn can improve the resolution of the imaging functional. We show also that the
random fluctuations in the cross correlations due to the scattering reduce the SNR
of the imaging functional. These are the two competing phenomena that we analyze
here in detail in a regime of weak scattering.

It is known that scattering by random inhomogeneities in the medium can en-
hance the directional diversity of waves leading to radiative transport and diffusion
of wave energy [22]. In the context of time-reversal experiments it has been shown
that time-reversal refocusing can be enhanced in a randomly scattering medium
[11, 20]. This was also considered in the context of travel time estimation by cross
correlation of noisy signals [13, 26].

We consider passive sensor imaging with cross correlations in configurations such
as the one shown in Figure 1c. In such configurations the noise sources (on the left in
Figure 1c) provide directly only backlight illumination, which leads to images with
bad resolution but high SNR, while the scatterers (on the right in Figure 1c) provide
a secondary daylight illumination, which leads to images with good resolution but
low SNR. We address in this paper the quantification of this trade-off between
resolution enhancement versus SNR reduction by scattering. We compute both
the heights and widths of the peaks of the cross correlation at special lag times
associated with the peaks influencing the migration functionals. We also calculate
the standard deviations of the fluctuations of the cross correlations due to scattered
waves. The main results of the SNR analysis at the peak in the cross correlations
generated by the secondary illumination from the scatterers are summarized in
Subsection 4.7. We also discuss a simple way to benefit from the advantages of
both illuminations (ie, the direct and secondary illuminations) in a single imaging
functional in Subsection 6.2.

A particular result of the analysis is that when the scattering region is far enough
from the sensor array then migrating directly the cross correlations works well, as
the theory of Section 4 predicts and as shown in Figure 7c. However, in unfavorable
scattering situations the peaks generated by the secondary illumination are weak
compared to the random fluctuations of the cross correlations. An example is given
in Section 6 where the scattering region is too close to the sensor array. As a
consequence migration of the cross correlation matrix gives the blurred and speckled
image shown in Figure 12b. This is a typical example where the potential resolution
enhancement is not achieved because of low SNR. In order to enhance the SNR we
time window the cross correlations, select the tails (or coda) and cross correlate
them. By migrating this special fourth-order cross correlation matrix it is possible
to get a much better image than by migrating directly the cross correlation matrix.
This is what we show in Section 6 but we do not have a complete mathematical
analysis of the SNR for this kind of use of fourth-order cross correlations. Some
analysis of fourth-order cross correlations in travel time estimation is given in [13].

When scattering is very strong then imaging with cross correlations cannot be
done with migration or related coherent imaging methods. Fluctuations in the cross
correlations from wave scattering are then large and the resulting low SNR becomes
a limiting factor in image formation [15].

Inverse Problems and Imaging Volume 8, No. 3 (2014), 645–683
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The paper is organized as follows. In Section 2 we introduce the framework for
the analysis of cross correlations of noise signals. In Section 3 imaging by cross
correlation of noise signals is reviewed briefly for a homogeneous background. Sec-
tion 4 contains the main results of the paper, which address cross correlation based,
passive array imaging in a weakly scattering medium. In Section 5 we consider the
case in which scattering is not generated by random inhomogeneities but by a de-
terministic reflecting interface in the medium. In Section 6 we show how the use of
iterated (fourth-order) cross correlations and appropriate imaging functionals can
improve the resolution and SNR of passive sensor imaging in a scattering medium.

2. The cross correlation of ambient noise signals.

2.1. The wave equation with noise sources. We consider the solution u of
the wave equation in a three-dimensional inhomogeneous medium with propagation
speed c(x):

(2)
1

c2(x)

∂2u

∂t2
−∆xu = n(t,x).

The propagation speed c(x) may have a background part and localized changes
(to be imaged). The background part can be homogeneous (this case is addressed
in Section 3) or randomly heterogeneous (this case is addressed in Section 4).

The term n(t,x) models a random field of noise sources. It is a zero-mean
stationary (in time) random process with autocorrelation function

(3) 〈n(t1,y1)n(t2,y2)〉 = F (t2 − t1)K(y1)δ(y1 − y2).

Here 〈·〉 stands for statistical average with respect to the distribution of the noise
sources. For simplicity we assume that the process n has Gaussian statistics.

The time distribution of the noise sources is characterized by the correlation
function F (t2 − t1), which is a function of t2 − t1 only by time stationarity. The

function F is normalized so that F (0) = 1. The Fourier transform F̂ (ω) of the time
correlation function F (t) is a nonnegative, even, real-valued function proportional
to the power spectral density of the sources:

(4) F̂ (ω) =

∫
F (t)eiωtdt.

The width of ω → F̂ (ω) is the bandwidth. It is inversely proportional to the width
of t→ F (t), which is the decoherence time.

The spatial distribution of the noise sources is characterized by the autocova-
riance function δ(y1−y2)K(y1). The process n is delta-correlated in space and the
nonnegative function K characterizes the spatial support of the sources, assumed
compact.

2.2. Statistical stability of the cross correlation function. The stationary
solution of the wave equation has the integral representation

u(t,x) =

∫∫
n(t− s,y)G(s,x,y)dsdy,(5)

where G(t,x,y) is the time-dependent outgoing Green’s function. It is the funda-
mental solution of the wave equation

(6)
1

c2(x)

∂2G

∂t2
−∆xG = δ(t)δ(x− y),

Inverse Problems and Imaging Volume 8, No. 3 (2014), 645–683
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starting from G(0,x,y) = ∂tG(0,x,y) = 0 (and continued on the negative time
axis by G(t,x,y) = 0, ∀t ≤ 0).

The empirical cross correlation of the signals recorded at x1 and x2 for an inte-
gration time T is

(7) CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt.

It is a statistically stable quantity, in the sense that for a large integration time
T , the empirical cross correlation CT is independent of the realization of the noise
sources. This is stated in the following proposition proved in [13].

Proposition 1. 1. The expectation of the empirical cross correlation CT (with
respect to the distribution of the sources) is independent of T :

(8) 〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2),

where the statistical cross correlation C(1) is given by

(9) C(1)(τ,x1,x2) =
1

2π

∫∫
dydωF̂ (ω)K(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)e−iωτ ,

and Ĝ(ω,x,y) is the time-harmonic Green’s function (i.e. the Fourier transform of
G(t,x,y).

2. The empirical cross correlation CT is a self-averaging quantity:

(10) CT (τ,x1,x2)
T→∞−→ C(1)(τ,x1,x2),

in probability with respect to the distribution of the sources.

2.3. Small decoherence time hypothesis. We assume from now on that the
decoherence time of the noise sources is much smaller than the typical travel time
that we want to estimate, that is, the travel time from the reflector(s) to the sensor
array. If we denote by ε the (small) ratio of these two time scales, then we can write
the time correlation function Fε of the noise sources in the form

(11) Fε(t2 − t1) = F
( t2 − t1

ε

)
,

where t1 and t2 are scaled relative to typical travel times. The hypothesis ε� 1 is
both natural and useful:

1) In surface wave tomography in geophysics, noise records are first bandpass-
filtered and then cross correlated [23]. If the central frequency ω0 of the filter, within
the noise source bandwidth, is high enough so that the corresponding wavelength λ0

is small compared to the distance d from the sensor array to the reflector, then we
have ε = λ0/d� 1. As we will see below, the range resolution of migration imaging
by cross correlation is inversely proportional to the bandwidth, so the hypothesis
ε� 1 turns out to be natural in order to get some resolution.

2) The Fourier transform F̂ε of the time correlation function of the sources Fε
has the form F̂ε(ω) = εF̂ (εω), so that the statistical cross correlation (9) (after

substituting F̂ε(ω) for F̂ (ω) and after the change of variables ω → ω/ε) involves a
product of Green’s functions evaluated at high frequencies:

C(1)(τ,x1,x2) =
1

2π

∫∫
dydωF̂ε(ω)K(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)e−iωτ

=
1

2π

∫∫
dydωF̂ (ω)K(y)Ĝ

(ω
ε
,x1,y

)
Ĝ
(ω
ε
,x2,y

)
e−i

ω
ε τ .(12)

Inverse Problems and Imaging Volume 8, No. 3 (2014), 645–683
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If the medium is smooth and if we can use a high-frequency approximation of the
Green’s function, then the stationary phase method [4] can be used in the regime
ε� 1, as was done in [13]

3. Passive sensor imaging with cross correlations in a homogeneous back-
ground medium. In this section we revisit the results of [13, 14] and show that it
is possible to image reflectors by cross correlations of signals generated by ambient
noise sources and recorded by passive sensors.

We want to image reflectors in the medium from signals recorded by the array
of sensors located at (xj)j=1,...,N . In active array imaging the sensors can be used
as emitters as well as receivers. The data set collected is the impulse response
matrix (P (t,xj ,xl))j,l=1,...,N,t∈R, where the (j, l)-entry of this matrix is the sig-
nal (P (t,xj ,xl))t∈R recorded by the jth sensor when the lth sensor emits a Dirac
impulse. The usual migration techniques [3, 8] that backpropagate the impulse
responses numerically in a fictitious medium produce images of the reflectors. How-
ever, in passive sensor imaging the sensors of the array do not have emission capacity
and they can only act as receivers. The data collected in passive array imaging are
the signals (u(t,xj))t∈R generated by ambient noise sources and recorded by the
jth sensor j = 1, . . . , N . It turns out that the matrix of cross correlations of the
recorded signals (C(τ,xj ,xl))j,l=1,...,N,τ∈R (with C defined as in (7)) behaves like
the impulse response matrix of an active sensor array. It is therefore possible to
image the reflectors by backpropagating the cross correlations.

3.1. Differential cross correlations. In order to image reflectors with cross cor-
relations it is often necessary to have available data sets {C(τ,xj ,xl)}j,l=1,...,N and
{C0(τ,xj ,xl)}j,l=1,...,N , with and without the reflectors, respectively, so that we
can compute the differential cross correlations {C−C0} and migrate them. In gen-
eral, the primary data set {C} cannot be used directly for imaging because peaks
in the cross correlations due to the reflectors may be very weak compared both to
the peaks of the direct waves, at lag times equal to the inter-sensor travel times, as
well as to the non-singular components due to the directionality of the energy flux
[13]. This is so both in homogeneous and in scattering media. By singular com-
ponent of a cross correlation we mean the leading contribution for ε small coming
from the stationary phase approximation. By non-singular component we mean the
remainder beyond the stationary phase approximation.

When the peaks in the cross correlations due to the reflectors to be imaged are
well separated from peaks at inter-sensor travel times and from effects from noise
energy flux directionality, we may be able to migrate directly the cross correlations
of the primary data set {C(τ,xj ,xl)}j,l=1,...,N . This issue is discussed in detail in
Section 6 in [13].

3.2. Stationary phase analysis. In this section we review the analysis of the
peaks of the cross correlations when the background medium is homogeneous with
background speed c0 and there is a point reflector at zr [14]. Since we assume that
the reflector is weak and small, we can use the point interaction approximation for
the Green’s function, discussed in detail in Subsection 4.1:

(13) Ĝ0,r

(
ω,x,y

)
= Ĝ0

(
ω,x,y

)
+
ω2

c20
σrl

3
r Ĝ0

(
ω,x, zr

)
Ĝ0

(
ω,zr,y

)
,

σr is the reflectivity of the point reflector and l3r is the effective scattering volume.

Here Ĝ0 is the Green’s function of the homogeneous background medium, that is,

Inverse Problems and Imaging Volume 8, No. 3 (2014), 645–683
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in the absence of reflector,

(14) Ĝ0(ω,x,y) =
1

4π|x− y|
eiωT (x,y), T (x,y) =

|x− y|
c0

,

where T (x,y) is the travel time between x and y. The statistical differential cross
correlation is given by

(15) ∆C
(1)
0 (τ,x1,x2) = C

(1)
0,r (τ,x1,x2)− C(1)

0 (τ,x1,x2),

where C
(1)
0,r is the statistical cross correlation in the presence of the reflector, that

is, equation (12) with the full Green’s function (13). The cross correlation C
(1)
0 is

obtained in the absence of the reflector, that is, equation (12) with the background
Green’s function (14). We collect the terms with the same power in σr. The terms
of order O(1) cancel and we retain only the terms of order O(σr) consistent with
the Born or lowest order scattering approximation:

∆C
(1)
0 (τ,x1,x2) =

σrl
3
r

2πc20ε
2

∫∫
dydωK(y)ω2F̂ (ω)Ĝ0

(ω
ε
,x1,y

)
Ĝ0

(ω
ε
,x2, zr

)
×Ĝ0

(ω
ε
, zr,y

)
e−i

ωτ
ε

+
σrl

3
r

2πc20ε
2

∫∫
dydωK(y)ω2F̂ (ω)Ĝ0

(ω
ε
,x1, zr

)
Ĝ0

(ω
ε
, zr,y

)
×Ĝ0

(ω
ε
,x2,y

)
e−i

ωτ
ε .(16)

In the differential cross correlations the contributions of the direct waves are re-
moved since they are common in the cross correlations in the presence and in the
absence of the reflector. As a result the small singular components corresponding
to the waves scattered by the reflector can be observed.

The next proposition 2 identifies the singular components of the differential cross
correlations, which is useful to determine the appropriate imaging functional that
should be used to migrate the cross correlations as we discuss in Subsection 3.3.
This proposition is also the first step in the SNR analysis that we carry out in
Section 4. It is proved in [14]. The proof uses stationary phase analysis for (16)
in order to show that the singular contributions of the differential cross correlation
correspond to (stationary) pairs of ray segments joining a source point y (ie a point
in the support of K), the reflector zr, and the sensors x1 and x2. The proposition
shows that there are two main types of configurations of sources, sensors, and re-
flectors.
1) The noise sources are spatially localized and the sensors are between the sources
and the reflectors (cases (a) and (b) in Figure 2). We call this the daylight illumina-
tion configuration. In this configuration the singular components of the differential
cross correlation are concentrated at lag times equal to (plus or minus) the sum of
travel times T (x2, zr) + T (x1, zr).
2) The noise sources are spatially localized and the reflectors are between the sources
and the sensors (cases (c) and (d) in Figure 2). We call this the backlight illumina-
tion configuration. In this configuration the singular components of the differential
cross correlation are concentrated at lag times equal to the difference of travel times
T (x2, zr)− T (x1, zr).

Proposition 2. In the backlight imaging configuration, in the regime ε → 0, the

differential cross correlation ∆C
(1)
0 has a unique singular contribution at lag time

Inverse Problems and Imaging Volume 8, No. 3 (2014), 645–683
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Figure 2. Configurations of ray segments that contribute to the

singular components of the differential cross correlation ∆C
(1)
0 of

noise signals between x1 and x2. The circles are noise sources,
the triangles are sensors, and the diamond is the reflector. (a-
b) are daylight configurations (the sensors are between the noise
sources and the reflector), giving rise to a singular component
at lag time equal to (plus or minus) the sum of travel times
T (x1, zr) + T (x2, zr), (c-d) are backlight configurations (the re-
flector is between the noise sources and the sensors), giving rise to
a singular component at lag time equal to the difference of travel
times T (x2, zr)− T (x1, zr),

equal to the difference of travel times T (x2, zr)− T (x1, zr) and it has the form:
(17)

∆C
(1)
0 (τ,x1,x2) =

σrl
3
r

32π2c0

Kzr,x1
−Kzr,x2

|zr − x1||zr − x2|
∂τFε

(
τ − [T (x2, zr)− T (x1, zr)]

)
,

where Kz,x is the energy released by the noise sources along the ray in their support
joining x and z expressed by

(18) Kz,x =

∫ ∞
0

K
(
z +

z − x

|z − x|
l
)

dl.

In the daylight illumination configuration, the differential cross correlation ∆C
(1)
0

has two singular contributions at lag times equal to plus or minus the sum of travel
times T (x2, zr) + T (x1, zr). The peak centered at plus the sum of travel times has
the form:
(19)

∆C
(1)
0 (τ,x1,x2) =

σrl
3
r

32π2c0

Kx1,zr

|zr − x1||zr − x2|
∂τFε

(
τ − [T (x2, zr) + T (x1, zr)]

)
.

The peak centered at minus the sum of travel times has the form:
(20)

∆C
(1)
0 (τ,x1,x2) =

−σrl
3
r

32π2c0

Kx2,zr

|zr − x1||zr − x2|
∂τFε

(
τ + [T (x2, zr) + T (x1, zr)]

)
.

Note that Eq. (18) shows that Kzr,xj is nonnegative and it is positive only when
the ray going from xj to zr extends into the source region, which is the backlight
illumination configuration, while Kxj ,zr

is positive only when the ray going from zr

to xj extends into the source region, which is the daylight illumination configuration.
Proposition 2 shows that 1) the heights of the peaks are inversely proportional to
the square of the distance from the reflector to the sensor array, 2) they do not
depend on the distance from the sources to the reflector or the sensor array, and
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Figure 3. Passive sensor imaging using the differential cross cor-
relation technique in a homogeneous medium. The backlight illu-
mination configuration is shown in Figure a: the circles are the
noise sources, the triangles are the sensors, and the diamond is the
reflector. Figure b shows the image obtained with the backlight
imaging functional (22). Figure c shows the image obtained with
the daylight imaging functional (21).

3) they are proportional to the thickness of the source region, that is, the thickness
of the support of K (see (18)). The second property was already noted in [14]. It
is a consequence of two competing phenomena that cancel each other: on the one
hand the geometric decay of the amplitude of the Green’s function as a function
of the distance from the sources to the reflector, and on the other hand the decay
of the Hessian determinant of the phase at the stationary points, which by the
stationary phase approximation produces a multiplicative factor in the evaluation
of the integral (16).

3.3. Migration imaging of cross correlations. We consider first migration
imaging with daylight illumination. The imaging functional at a search point zS is
the daylight imaging functional defined by [13]

(21) ID(zS) =

N∑
j,l=1

∆C
(
T (zS ,xl) + T (zS ,xj),xj ,xl

)
.

It is a consequence of Proposition 2 that the migration functional is obtained by
summing the differential cross correlation at lag time equal to the sum of travel
times T (zS ,xl) + T (zS ,xj). Indeed it is shown there that the singular component
of ∆C(τ,xj ,xl) is at τ = ±[T (zr,xl)+T (zr,xj)]. By summing ∆C over the sum of
travel times T (zS ,xl) +T (zS ,xj) the imaging functional ID(zS) presents a strong
peak at the reflector location zS = zr. The resolution analysis of the daylight
imaging functional is carried out in [14]. The cross range resolution of the daylight
imaging functional for a linear sensor array with aperture a is given by λ0a/d(A,R).
Here d(A,R) is the distance between the sensor array and the reflector and λ0 is the
central wavelength. The range resolution for broadband noise sources is equal to
c0/B where c0 is the background propagation speed and B is the bandwidth. The
range resolution for narrowband noise sources is λ0a

2/d(A,R)2. These resolution
estimates are as in active array imaging in homogeneous media.

Inverse Problems and Imaging Volume 8, No. 3 (2014), 645–683



Resolution Enhancement from Scattering in Passive Sensor Imaging 655

0 50 100 150 200
!50

0

50

x1

xNzr

z

x

a) Configuration b) IB c) ID

Figure 4. Passive sensor imaging using the differential cross cor-
relation technique in a homogeneous medium. The daylight illu-
mination configuration is shown in Figure a. Figure b shows the
image obtained with the backlight imaging functional (22). Figure
c shows the image obtained with the daylight imaging functional
(21).

We consider next migration imaging with backlight illumination. The imaging
functional at a search point zS is the backlight imaging functional defined by [13]

(22) IB(zS) =

N∑
j,l=1

∆C(T (zS ,xl)− T (zS ,xj),xj ,xl).

The sign of the travel time in the argument of the imaging functional is deter-
mined by Proposition 2. Indeed it is shown there that the singular component of
∆C(τ,xj ,xl) is at τ = T (zr,xl)−T (zr,xj). The resolution analysis of the backlight
imaging functional is carried out in [14]. The cross range resolution is λ0a/d(A,R)
while the range resolution is λ0a

2/d(A,R)2 whatever the bandwidth, which means
that the range resolution is very poor compared to the daylight imaging functional.

3.4. Numerical simulations. In the numerical simulations presented here we

evaluate the statistical cross correlations C
(1)
0,r and C

(1)
0 for different configurations

of noise sources, reflector, and sensors. The statistical cross correlation is what is
obtained with the empirical cross correlation CT for an infinitely large integration
time T . The statistical stability (i.e. the fact that the fluctuations of CT with
respect to its statistical average are small for finite T ) can be characterized by
the ratio of the standard deviation of the cross correlation over its mean. It has
been studied in detail theoretically and numerically in [13], where it is shown that
statistical stability is ensured provided the recording time window is sufficiently
large.

We consider a three-dimensional homogeneous background medium with speed
c0 = 1. We compute the image in the plane (x, z) and use the homogeneous back-
ground Green’s function (14). The random sources are a collection of 100 ran-
domly located point sources in a layer of size 100× 15 with power spectral density
F̂ (ω) = exp(−ω2). We consider a point reflector at position (−5, 60) with reflectiv-
ity σrl

3
r = 0.01 and 5 sensors located at (−37.5 + 7.5j, 100), j = 1, . . . , 5.

In Figure 3 we consider a backlight illumination configuration. We apply both
the backlight imaging functional (22) and the daylight imaging functional (21).
As predicted by the theory, the backlight imaging functional has good cross-range
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resolution but very poor range resolution. The daylight imaging functional is not
appropriate.

In Figure 4 we consider a daylight illumination configuration. We apply both
the backlight imaging functional (22) and the daylight imaging functional (21). As
predicted by the theory, the daylight imaging functional has good cross-range and
range resolutions. The backlight imaging functional is not appropriate.

4. Passive sensor imaging in a randomly scattering medium. In this section
we consider imaging by cross correlations, as in the previous section, but in addi-
tion to the homogeneous background there are random inhomogeneities that cause
scattering. In the first four subsections we formulate the multiple scattering prob-
lem and introduce the setup for the analysis of the differential cross correlations.
In the following subsections we focus our attention on the backlight illumination
configuration with scatterers behind the sensor array (see Figure 7a). This is an
interesting configuration because the sources provide a backlight illumination and
only the backlight imaging functional gives an image of the reflector in a homo-
geneous medium, as in Figure 3. In a scattering medium we anticipate that the
scatterers have the advantage that they can enhance the directional diversity and
provide a secondary daylight illumination, but they also have the drawback that
they introduce fluctuations in the cross correlations. These are the phenomena that
we want to analyze in detail. Subsections 4.5-4.7 give a quantitative analysis of
the first two moments (mean and variance) of the differential cross correlation at
appropriate lag times. Subsection 4.8 summarizes this quantitative analysis and
applications to migration imaging are discussed in Subsection 4.9.

4.1. A model for the scattering medium. In order to analyze the cross cor-
relation technique in a scattering medium, we first introduce a model for the in-
homogeneous medium. We assume that the speed of propagation of the medium
has a homogeneous background speed value c0 and small and weak fluctuations
responsible for scattering:

(23)
1

c2clu(x)
=

1

c20

[
1 + V (x)

]
,

where V (x) is a random process with mean zero and covariance function of the form

(24) E
[
V (x)V (x′)

]
= σ2

sR(x,x′).

Here E stands for the expectation with respect to the distribution of the randomly
scattering medium, σs is the standard deviation of the fluctuations, and the function
x → R(x,x) characterizes the spatial support of the scatterers, assumed to be

compact. The cluttered Green’s function Ĝclu, that is to say, the Green’s function
of the medium with clutter in the absence of reflector, is the fundamental solution
of

(25) ∆xĜclu

(
ω,x,y

)
+

ω2

c2clu(x)
Ĝclu

(
ω,x,y

)
= −δ(x− y),

with cclu(x) given by (23) (along with a radiation condition).
We now assume that a reflector is embedded at zr in the cluttered medium. We

model the reflector by a local variation Vr(x) of the speed of propagation:

1

c2(x)
=

1

c20

[
1 + V (x) + Vr(x)

]
, Vr(x) = σr1Ωr

(x− zr).
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Here Ωr is a compactly supported domain with volume l3r . The full Green’s function

Ĝclu,r, that is to say, the Green’s function of the medium with clutter in the presence
of the reflector at zr, is solution of

∆xĜclu,r

(
ω,x,y

)
+

ω2

c2(x)
Ĝclu,r

(
ω,x,y

)
= −δ(x− y).

It can be written as the sum

(26) Ĝclu,r(ω,x,y) = Ĝclu(ω,x,y) + Ĝcor(ω,x,y),

where the clutter Green’s function Ĝclu is solution of (25). The correction Ĝcor is
solution of the Helmholtz equation with propagation speed cclu and the source term
−c−2

0 ω2Vr(x)Ĝclu,r(ω,x,y):

∆xĜcor

(
ω,x,y

)
+

ω2

c2clu(x)
Ĝcor

(
ω,x,y

)
= −ω

2

c20
Vr(x)Ĝclu,r(ω,x,y),

so that it can be represented as

Ĝcor(ω,x,y) =
ω2

c20

∫
Ĝclu(ω,x, z)Vr(z)Ĝclu,r(ω,z,y)dz(27)

=
ω2

c20

∫
Ĝclu(ω,x, z)Vr(z)

[
Ĝclu(ω,z,y) + Ĝcor(ω,z,y)

]
dz.(28)

This expression is exact and it is called the Lippmann-Schwinger equation [18]. The
Born approximation (or single-scattering approximation) consists in substituting

Ĝclu for Ĝclu,r on the right side of (27) (or equivalently neglecting Ĝcor on the right
side of (28)), which gives [5, section 13.1.2]:

Ĝcor(ω,x,y) ' ω2

c20

∫
Ĝclu(ω,x, z)Vr(z)Ĝclu(ω,z,y)dz.

This approximation is formally valid if the correction Ĝcor is small compared to
Ĝclu, i.e., in the regime in which σr � 1, with an error that is formally of order
O(σ2

r ). We also assume that the diameter lr of the scattering region Ωr is small
compared to the typical wavelength. We can then model the reflector by a point
reflector (the point interaction approximation)

Vr(x) = σr1Ωr
(x− zr) ≈ σrl

3
r δ(x− zr),

and we can write the correction in the form

Ĝcor(ω,x,y) =
ω2

c20
σrl

3
r Ĝclu(ω,x, zr)Ĝclu(ω,zr,y),

and with these approximations the full Green’s function is

(29) Ĝclu,r

(
ω,x,y

)
= Ĝclu

(
ω,x,y

)
+
ω2

c20
σrl

3
r Ĝclu

(
ω,x, zr

)
Ĝclu

(
ω,zr,y

)
.

A mathematically rigorous analysis of these approximations, in random media, is
not available to our knowledge. Interesting multiple scattering results are analyzed
at a physical level in [24]. Detailed analysis of multiple scattering in randomly
layered media, including layered interfaces, is carried out in [11]. But even in
randomly layered media a detailed mathematical analysis of scattering by a small
isotropic reflector has not been carried out, to our knowledge.
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4.2. The differential cross correlation. We consider the statistical differential
cross correlation, that is the difference between the statistical cross correlations in
the presence and in the absence of reflector. It is given by

∆C(1)(τ,x1,x2) = C
(1)
clu,r(τ,x1,x2)− C(1)

clu (τ,x1,x2),(30)

C
(1)
clu,r(τ,x1,x2) =

1

2π

∫∫
dydωK(y)F̂ (ω)Ĝclu,r

(ω
ε
,x1,y

)
×Ĝclu,r

(ω
ε
,x2,y

)
e−i

ωτ
ε ,(31)

C
(1)
clu (τ,x1,x2) =

1

2π

∫∫
dydωK(y)F̂ (ω)Ĝclu

(ω
ε
,x1,y

)
×Ĝclu

(ω
ε
,x2,y

)
e−i

ωτ
ε ,(32)

where Ĝclu is the clutter Green’s function (36) in the absence of the reflector and

Ĝclu,r is the full Green’s function (29) in the presence of the reflector. We substitute
the approximation (29) into (30-31). Consistent with the Born approximation, we
neglect the terms of order O(σ2

r ) in ∆C(1)(τ,x1,x2) and we find

∆C(1)(τ,x1,x2) =
σrl

3
r

2πc20ε
2

∫∫
dydωK(y)ω2F̂ (ω)Ĝclu

(ω
ε
,x1,y

)
Ĝclu

(ω
ε
,x2, zr

)
×Ĝclu

(ω
ε
, zr,y

)
e−i

ωτ
ε

+
σrl

3
r

2πc20ε
2

∫∫
dydωK(y)ω2F̂ (ω)Ĝclu

(ω
ε
,x1, zr

)
Ĝclu

(ω
ε
, zr,y

)
×Ĝclu

(ω
ε
,x2,y

)
e−i

ωτ
ε .(33)

When the medium is homogeneous we recover the expression (16). When the

medium is cluttered the expression (33) involves the clutter Green’s function Ĝclu

solution of (25) that can have a complicated structure. We simplify the expression
of the clutter Green’s function in the next subsection in order to get a model that
is mathematically tractable, and complex enough to explain the main phenomena
we want to study, in terms of resolution enhancement and SNR reduction.

4.3. Expansion of the clutter Green’s function. The Lippmann-Schwinger
integral equation for the clutter Green’s function Ĝclu defined by (25) is

(34) Ĝclu(ω,x,y) = Ĝ0(ω,x,y) +
ω2

c20

∫
Ĝ0(ω,x, z)V (z)Ĝclu(ω,z,y)dz,

where Ĝ0 is the Green’s function (14) of the homogeneous background medium and
V (x) is the random process modeling the background fluctuations as described by
(23). Iterating once this integral equation we have

Ĝclu(ω,x,y) = Ĝ0(ω,x,y) +
ω2

c20

∫
Ĝ0(ω,x, z)V (z)Ĝ0(ω,z,y)dz

+
ω4

c40

∫∫
Ĝ0

(
ω,x, z

)
V (z)Ĝ0

(
ω,z, z′

)
V (z′)Ĝclu

(
ω,z′,y

)
dzdz′.(35)

We will use the second order Born or multiple scattering approximation for the
clutter Green’s function solution of (35) by replacing Ĝclu by Ĝ0 on the right side.
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This approximation takes into account single and double scattering events for the
interaction of the waves with the cluttered medium:

(36) Ĝclu

(
ω,x,y

)
= Ĝ0

(
ω,x,y

)
+ Ĝ1

(
ω,x,y

)
+ Ĝ2

(
ω,x,y

)
,

where Ĝ1 and Ĝ2 are given by

Ĝ1

(
ω,x,y

)
=
ω2

c20

∫
Ĝ0

(
ω,x, z

)
V (z)Ĝ0

(
ω,z,y

)
dz,(37)

Ĝ2

(
ω,x,y

)
=
ω4

c40

∫∫
Ĝ0

(
ω,x, z

)
V (z)Ĝ0

(
ω,z, z′

)
V (z′)Ĝ0

(
ω,z′,y

)
dzdz′,(38)

and the error is formally of order O(σ3
s) where σs is the standard deviation of V (x).

We take into account single and double scattering events because when scattering
from the reflector described in the previous section is included, we collect and study
all terms of order O(σr), O(σrσs), and O(σrσ

2
s ) in the differential cross correlation in

the approximate form (33), while we neglect all terms of order O(σrσ
3
s ) and O(σ2

r ).
This means that we consider a regime in which σr � σs � 1. In words, scattering
due to the random medium is weak, and the scattering due to the reflector is even
weaker. That is why we have first expanded the differential cross correlation with
respect to σr, and then with respect to σs. The reason we keep the term Ĝ2 in
(36), which is of order O(σ2

s), is that in calculating moments of the differential cross
correlation the lowest correction due to the random medium is of order O(σ2

s) and
so consistency requires keeping all terms of this order.

In calculating means and variances of differential cross correlations, we make one
more approximation. We assume that fluctuation covariance R(x,x′) goes to zero
rapidly when x 6= x′, which we express by writing

(39) R(x,x′) = l3sρ(x)δ(x− x′),

where ls is a characteristic correlation length and ρ(x) characterizes the spatial
support of the scatterers, assumed to be compact.

A rigorous mathematical analysis for the above approximations is lacking at
present. We know that in randomly layered media finite-order multiple scattering
approximations are not correct, no matter how weak may be the random fluctua-
tions in the medium [11]. This is because of wave localization. In three dimensions,
multiple scattering in a random medium is analyzed mathematically using diagram-
matic expansions [10] but the results needed here are not in the literature, to our
knowledge. Formal multiple scattering expansions have been used extensively in
random media [12, 28] for a long time.

4.4. Expansion of the differential cross correlation. By substituting the ex-
pansion (36) into (33) we can distinguish three contributions in the differential cross
correlation:

(40) ∆C(1)(τ,x1,x2) = ∆C
(1)
0 (τ,x1,x2) + ∆C

(1)
1 (τ,x1,x2) + ∆C

(1)
2 (τ,x1,x2),

where
- ∆C

(1)
0 is the contribution of the direct waves (i.e. those which have not interacted

with the random scatterers) which is given by (16),

- ∆C
(1)
1 is the contributions of the waves that have been scattered once by the

random scatterers, which is given by a sum of terms of the form (16) in which one

of the factors Ĝ0 is replaced by Ĝ1,

- ∆C
(1)
2 is the contributions of the waves that have been scattered twice by the
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random scatterers, which is given by a sum of terms of the form (16) in which two

of the factors Ĝ0 are replaced by Ĝ1 or one of the factors Ĝ0 is replaced by Ĝ2,
- we neglect higher-order terms as discussed in the previous section.

It turns out that in ∆C
(1)
2 the second order scattering term Ĝ2 in (36) contributes

neither to the mean to leading order, σrσ
2
s , nor to the standard deviation to leading

order, σrσs, in the differential cross correlation. This is a result of the high-frequency
(stationary phase) analysis when applied to the particular geometric configuration
of the scattering region, the array and the reflector shown schematically in Figure
7a. It is not known in advance that such a result will hold, and it may not hold in
other reflector-array-scattering region configurations. The calculations leading to
this conclusion are presented in the second half of Appendix B. Thus, only the cross
correlation terms that involve two (single-scattering) components Ĝ1 in (33) give a
significant contribution to the mean and the variance of the overall cross correlation,
while cross correlation terms that involve one (double-scattering) component Ĝ2 do
not make any significant contribution.

4.5. Statistical analysis of the differential cross correlation. The contri-
butions of the direct waves to the differential cross correlation are described in
Proposition 2. In particular, the singular contribution (17) of the direct waves gives
a peak to the backlight imaging functional (22) at the reflector location, but it does
not give any contribution to the daylight imaging functional (21) at the reflector
location.

We now analyze the contributions ∆C
(1)
1 and ∆C

(1)
2 of the scattered waves to

the differential cross correlation in a backlight illumination configuration. Proposi-
tion 3 shows that scattering generates zero-mean random fluctuations in the cross
correlations. This will reduce the SNR as we will discuss in the next subsections.
Proposition 4 shows that scattering can increase the resolution of the image by
enhancing directional diversity because it generates additional singular peaks in
the cross correlations that are not present with only direct illumination, and they
improve migration imaging.

The following proposition is proved in Appendix A. It describes the behavior

of the first two moments of the cross correlation ∆C
(1)
1 . Here the mean and the

variance are computed with respect to the distribution of the randomly scattering
medium.

Proposition 3. The contributions ∆C
(1)
1 (x1,x2, τ) have mean zero and variance

whose leading-order terms are as follows.
At lag time equal to the difference of travel times τ = T (x2, zr) − T (x1, zr) the

variance of the fluctuations is

Var
(
∆C

(1)
1 (τ,x1,x2)

)
=

σ2
r l

6
rσ

2
s l

3
s

214π6c50

[ ∫
F̂ 2
ε (ω)ω6dω

][K2
x2,zr

(ρ
(i)
x1,zr + ρ

(i)
x2,zr + 2ρ

(ii)
x2,zr)

|x1 − zr|2|x2 − zr|2
(41)

+
K2

x1,zr
(ρ

(i)
x1,zr + ρ

(i)
x2,zr + 2ρ

(ii)
x1,zr)

|x1 − zr|2|x2 − zr|2
]
,

where

(42) ρ(i)
xj ,zr

=

∫ 1

0

ρ
(
xj + (zr − xj)a

)
a(1− a)

da, ρ(ii)
xj ,zr

=

∫ ∞
1

ρ
(
xj + (zr − xj)a

)
(a− 1)a

da.
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At lag time equal to the sum of travel times τ = T (x2, zr)+T (x1, zr) the variance
of the fluctuations is

Var
(
∆C

(1)
1 (τ,x1,x2)

)
=
σ2

r l
6
rσ

2
s l

3
s

215π7c50

[ ∫
F̂ 2
ε (ω)ω6dω

] ρKx1,x2,zr

|x1 − zr|2|x2 − zr|2
,(43)

where

ρKx1,x2,zr
= 2

∫ 2π

0

dψ

∫ 1

−1

dv

(
K2

zr,x1
+K2

zr,z(v,ψ)

)
ρ(z(v, ψ))

u2 − v2
,(44)

with

u = 1 + 2
|x1 − zr|
|x2 − zr|

, z(v, ψ) =
|x2 − zr|

2

 vu√
1− v2

√
u2 − 1 cosψ√

1− v2
√
u2 − 1 sinψ

 .

At lag time equal to minus the sum of travel times τ = −T (x2, zr) − T (x1, zr)
the variance of the fluctuations is

Var
(
∆C

(1)
1 (τ,x1,x2)

)
=
σ2

r l
6
rσ

2
s l

3
s

215π7c50

[ ∫
F̂ 2
ε (ω)ω6dω

] ρKx2,x1,zr

|x1 − zr|2|x2 − zr|2
.

In order to complete the picture we add that:
1) The coherence time of the fluctuations is the inverse of the bandwidth B of the
noise sources.
2) The time lag-integrated variance is:∫

Var
(
∆C

(1)
1 (τ,x1,x2)

)
dτ =

σ2
r l

6
rσ

2
s l

3
s

215π7c60

[ ∫
F̂ 2
ε (ω)ω6dω

] ∫
dz

ρ(z)

|zr − z|2

×
(K2

zr,z +K2
z,zr

+K2
zr,x1

+K2
z,x2

+K2
x2,z

|x1 − zr|2|x2 − z|2

+
K2

zr,z +K2
z,zr

+K2
zr,x2

+K2
z,x1

+K2
x1,z

|x1 − z|2|x2 − zr|2
)
.(45)

3) The quantity ρKx1,x2,zr
is the integral of the function z → ρ(z)

(
K2

zr,z + K2
zr,x1

)
over the surface Sx1,x2,zr that has the form of an ellipsoid whose main axis is the
line joining zr to x2. The support of this function is that of the scattering region.
Therefore, the quantity ρKx1,x2,zr

is zero when the scattering region does not intersect
the ellipsoid. The equation of the ellipsoid is

Sx1,x2,zr =
{
z such that |x2 − z|+ |zr − z| = 2|x1 − zr|+ |x2 − zr|

}
.

If the sensor array is centered at x0 and the diameter of the array is smaller than
the distance from the array to the reflector, then the ellipsoid is an oblate spheroid
centered at xc = (zr +x0)/2, its main axis is the line from zr to x0, the polar radius

is (3/2)|zr − x0| and the equatorial radius is
√

2|zr − x0| (see Figure 5):

(46) Szr
=
{
z such that |z − x0|+ |z − zr| = 3|x0 − zr|

}
.

The following proposition is proved in Appendix B. It describes the first moment

of cross correlation ∆C
(1)
2 . It is in this result that the second order term Ĝ2 in (36)

turns out not to make a significant contribution, as noted at the end of the previous
section.
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zr
x0

Figure 5. The ellipsoid Szr defined by (46) which determines the
scattering region giving rise to fluctuations in the cross correlation
at lag time equal to the sum of travel times.

Proposition 4. The mean of the cross correlation ∆C
(1)
2 has a singular contribu-

tion at lag time equal to the sum of travel times T (x2, zr) + T (x1, zr) provided that
the ray going from zr to x1 reaches into the scattering region behind the sensors
(see the left picture in Figure 6). This singular contribution has the form
(47)

E
[
∆C

(1)
2

(
τ,x1,x2

)]
=
σrl

3
rσ

2
s l

3
s

29π4c50

Kρ
x1,zr

|zr − x1||zr − x2|
∂5
τFε
(
τ− [T (x2, zr)+T (x1, zr)]

)
,

where

(48) Kρ
x,z =

∫ ∞
0

Kρ
(
x +

x− z

|x− z|
l
)

dl, Kρ(y) = ρ(y)

∫
K(y′)

|y − y′|2
dy′.

The mean of the cross correlation ∆C
(1)
2 has a singular contribution at lag time

equal to minus the sum of travel times T (x2, zr) + T (x1, zr) provided that the ray
going from zr to x2 reaches into the scattering region behind the sensors (see the
right picture in Figure 6):

E
[
∆C

(1)
2

(
τ,x1,x2

)]
=− σrl

3
rσ

2
s l

3
s

29π4c50

Kρ
x2,zr

|zr − x1||zr − x2|
∂5
τFε
(
τ + [T (x2, zr) + T (x1, zr)]

)
.(49)

The variance of the fluctuations of ∆C
(1)
2 is smaller (of order O(σ2

r σ
4
s )) than

the variance of ∆C
(1)
1 (of order O(σ2

r σ
2
s ) as seen in Proposition 3) so we shall not

describe it in detail.

4.6. The cross correlation at the difference of travel times. We can now
describe the form of the cross correlation at lag time equal to the difference of
travel times, which consists of a singular peak generated by the primary energy flux
and described in Proposition 2, and random fluctuations described in Proposition
3.

The order of magnitude of the height of the singular peak can be obtained from
(17). If we denote by d(A,R) the distance from the source array to the reflector,
by WK the width of the source region, by K0 the typical value of K, and by B the
bandwidth of the noise sources, then (17) shows that the typical height (amplitude)
of the singular peak is

(50) ∆C
(1)
0 ∼ σrl

3
rWKK0

c0d(A,R)2

[ ∫
|ω|F̂ε(ω)dω

]
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Figure 6. Configurations of ray segments that contribute to sin-

gular components of the differential cross correlation ∆C
(1)
2 of sig-

nals between x1 and x2 in the presence of the reflector at zr. The
circles are noise sources, the triangles are sensors, the squares are
scatterers, and the diamond is the reflector. The scatterers provide
secondary daylight illumination and give rise to a singular compo-
nent at lag time equal to (plus or minus) the sum of travel times
T (x1, zr) + T (x2, zr).

and the width of the peak in time lag τ is of order B−1. If we denote by ω0 the
central frequency of the sources then the height of the peak is

(51) ∆C
(1)
0 ∼ σrl

3
rWKK0ω0

c0d(A,R)2
.

It is possible to give the order of magnitude of the variance of the fluctuations
of the cross correlation at lag time equal to the difference of travel times from (42).
This order of magnitude depends on the location of the scattering region. Indeed
we can observe the following important fact:

The variance (42) of the fluctuations of the cross correlation at lag time
equal to the difference of travel times depends only on the scatterers
localized along the rays that contribute to the singular peak at the dif-
ference of travel times and shown in Figure 2c-d, to leading order.

The variance is especially sensitive to the scatterers close to the reflector at zr and
close to the sensor array, as can be seen from the form of the denominators in (42).

We consider two typical situations:
- if there are scatterers only to the right of the sensor array, as in Figure 7a, then

these scatterers do not produce fluctuations in the cross correlation at the difference
of travel times. The singular contribution at this lag time is thus not affected, and
the backlight imaging functional will have a clear but elongated peak at the reflector
location.

- if there are scatterers only between the sources and the reflector, then there
are fluctuations in the cross correlation at lag time equal to the difference of travel
times. If we denote by d(A,R) the distance from the sensor array to the reflector, by
d−(A,S) the distance from the sensor array to the scattering region that is between
the sources and the reflector, by WK the width of the source region, by W−s the
width of the scattering region that is between the sources and the reflector, then
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we have

(52) Std
(
∆C

(1)
1

)
∼ σrl

3
rσsl

3/2
s

c
5/2
0

[ ∫
F̂ 2
ε (ω)ω6dω

]1/2 K0WK(W−s )1/2

d(A,R)3/2d−(A,S)
.

If we denote by B the bandwidth of the noise sources and by ω0 the central fre-
quency, then the SNR of the main peak at the difference of travel times T (x1, zr)−
T (z1, zr) over the standard deviation of the fluctuations of the cross correlations at
this lag time is

(53)
∆C

(1)
0

Std
(
∆C

(1)
1

) ∼ c
3/2
0

σsl
3/2
s

B1/2

ω2
0

d(A,S)

(W−s )1/2d(A,R)1/2
.

This formula gives an insight into the performance of cross correlation imaging
in a scattering medium from the point of view of the SNR of the cross correlation
at lag time equal to the difference of travel times, which has a singular contribution
that influences the backlight imaging functional.

1) The SNR does not depend on the distance from the sensor array to the sources.
2) The SNR depends only on the scatterers localized along the rays that con-

tribute to the singular peak at lag time equal to the difference of travel times and
shown in Figure 2c-d.

3) The SNR depends on the distance from the sensor array to the reflector and
it decays with this distance.

4) The SNR depends on the distance from the sensor array to the scattering
region and it increases with this distance.

The noise sources have usually a large bandwidth, so it is possible to filter the
recorded signals and to select a given frequency band of the form [ω0−B/2, ω0+B/2]
(with B < ω0). We can see that the resolution is proportional to B−1 while the
SNR is proportional to B1/2. By increasing the bandwidth, it is therefore possible
to increase the SNR and to enhance the resolution.

When forming the imaging functional the cross correlations are summed as in
(21). If we assume that the distances between the sensors are larger than c0/B,

then the cross correlations
(
∆C

(1)
1 (τ,xj ,xl)

)
j,l=1,...,N

are uncorrelated from each

other for all distinct pairs. Therefore the noise level is reduced by a factor N/
√

2
so that the SNR of the image is:

(54)
E
[
I
]

Std
(
I
) ' N√

2

E
[
∆C(1)

]
Std
(
∆C(1)

) .
This means that, even if the singular peaks of the cross correlations are buried by
fluctuations due to the clutter, the imaging functional helps in building up the SNR.

4.7. The cross correlation at the sum of travel times. At a lag time equal to
the sum of travel times T (x1, zr) + T (x2, zr), the cross correlation has a singular
peak and random fluctuations. The width of the peak and the coherence time of
the fluctuations are equal to B−1. The order of magnitude of the height of the peak
of the mean and of the standard deviation of the cross correlation at lag time equal
to the sum of travel times is obtained from (47) and (43). The main result in this
case is in the following remark:

The mean (47) of the cross correlation has a singular contribution at lag
time equal to the sum of travel times provided that the rays going from
the reflector to the sensors intersect the scattering region.
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The variance (43) of the fluctuations of the cross correlation at lag
time equal to the sum of travel times depends only on the scatterers
localized along the ellipsoid (46) to leading order.

If the scattering region intersects the rays going from the reflector to the sensors
but is outside the region delimited by the ellipsoid (46), then the cross correlation
exhibits a clear peak at the sum of travel times.

If the scattering region intersects the rays going from the reflector to the sensors
and the ellipsoid (46), then we have the following. If we denote by d(A,R) the
distance from the sensor array to the reflector, by d(A,S) the distance from the
sensor array to the scattering region, by d(K,S) the distance from the source region
to the scattering region, by WK the width of the source region, and by W+

s the
width of the scattering region that is behind the sensor array, then we have

E
[
∆C

(1)
2

]
∼ σrl

3
rσ

2
s l

3
s

c50

Vol(ΩK)W+
s K0

d(K,S)2d(A,R)2

[ ∫
F̂ε(ω)|ω|5dω

]
,(55)

Std
(
∆C

(1)
1

)
∼ σrl

3
rσsl

3/2
s

c
5/2
0

[ ∫
F̂ 2
ε (ω)ω6dω

]1/2WKW
+
s K0

d(A,R)3
.(56)

The SNR of the main peak at the sum of travel times T (x1, zr)+T (z1, zr) over the
standard deviation of the fluctuations of the cross correlations at this lag time is

(57)
E
[
∆C

(1)
2

]
Std
(
∆C

(1)
1

) ∼ σsl
3/2
s

c
5/2
0

ω2
0B

1/2 Vol(ΩK)d(A,R)

WKd(K,S)2
.

Let us discuss the main properties of the SNR of the cross correlation at lag time
equal to the sum of travel times:
1) The SNR is high if the scattering region is far enough from the sensor array
(more exactly, if it is outside the volume delimited by the ellipsoid (46)).
2) It is sensitive to the scattering region behind the sensor array when not too far.
3) It increases with the source volume but decays with the square distance from the
source region to the scattering region.
4) It increases with the bandwidth. This shows that both the resolution and the
SNR increases with the bandwidth.

Note that the third point simply means that the SNR is proportional to the
energy emitted by the noise sources and received by the scattering region, which
is then scattered to provide the secondary daylight illumination. The SNR of the
image is given by the same expression (54) as in the difference travel time case of
the previous section.

4.8. On the trade-off between resolution enhancement and signal-to-noise
ratio reduction. We can now discuss the trade-off between resolution enhance-
ment and SNR reduction due to scattering.

1) Proposition 4 shows that scattering leads to the appearance of a singular
contribution in the cross correlation at lag time equal to (plus or minus) the sum of
travel times. This happens provided there are rays issuing from the scattering region
and going to the sensors and then to the reflector. The scatterers can thus be seen
as secondary sources that could provide a daylight illumination for the reflector,
as shown in Figure 6. This ensures that the daylight imaging functional (21) will
have a peak at the reflector location with good range resolution. This is a very
interesting result, the one we wanted to get in this paper, because in the backlight
illumination configuration considered here the direct waves do not generate such a
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peak and only the backlight imaging functional (22) can be used in the absence of
scattering, which produces an elongated peak with poor range resolution.

2) Proposition 3 shows that the scattered waves generate additional fluctuations
in the cross correlations that can be larger than the additional peaks considered
in Proposition 4. As a consequence, the peak in the daylight imaging functional
(21) at the reflector location that we have just mentioned can be buried in the
contributions of the non-singular random components. This happens in the case
shown in the schematic of Figure 12, which we discuss in Subsection 6.2.

3) There exist special configurations which are favorable for imaging with sec-
ondary illumination from scatterers. If the scatterers are far enough from the sensor
array, in the sense that the scattering region is outside the region delimited by the
ellipsoid (46), then the fluctuations of the cross correlation at lag time equal to the
sum of travel times are small. This situation does not prevent the existence of a ray
going through the reflector, a sensor, and a scatterer, which ensures the existence
of a singular peak in the cross correlation at lag time equal to the sum of travel
times.

4) What happens if these favorable conditions are not met? We will see in Section
6 that an iterated cross correlation technique can often enhance the contributions of
the scattered waves in order to strengthen the singular components of the scattered
waves and improve the SNR of the image.

4.9. Numerical simulation of migration imaging with cross correlations in
the presence of scatterers. In the previous subsection we saw that the scatterers
can play the role of secondary sources. Here we illustrate this fact by showing that
it is possible to use the daylight imaging functional (21) in configurations that are
not in a daylight illumination configuration without the scattering.

In Figure 7 we consider a configuration with a backlight illumination of the region
of interest and with a layer of scattering medium behind it. We show the images
obtained with the backlight imaging functional (22) and with the daylight imaging
functional (21). The backlight imaging functional gives a good image (Figure 7b), as
in Figure 3b, which is expected since it is the result of the contributions of the direct
waves described in Proposition 2. More striking is the daylight imaging functional
(Figure 7c) that also gives a good image, in contrast to Figure 3c. This shows that
the layer of scattering medium succeeds in redirecting part of the flux of energy so
that the region of interest experiences a secondary daylight illumination and the
daylight imaging functional gives a good image. By comparing with the primary
daylight configuration of Figure 4, one can see that the daylight imaging functional
in Figure 7c has range and cross-range resolutions that are comparable to the ones
obtained in a primary daylight configuration. Here the situation is favorable in that
the scattering region does not intersect the ellipsoid (46), so that the fluctuations
of the cross correlation at lag time equal to the sum of travel times are small and
the SNR of the image in Figure 7c is high. A lower SNR can become problematic
if the scattering region intersects the ellipsoid (46). We will see in Section 6 how to
enhance the contributions of the scattered waves by an iterative cross correlation
technique and thus increase the SNR of the image.

5. Passive sensor imaging with a reflecting interface. In this section we
consider the case in which scattering is not generated by random inhomogeneities
but by a partially or totally reflecting interface in the medium. This configuration
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Figure 7. Passive sensor imaging using the differential cross cor-
relation technique in a scattering medium. The backlight illumi-
nation configuration is shown in Figure a: the circles are the noise
sources, the triangles are the sensors, the diamond is the reflector,
and the squares are the scatterers. Figure b shows the image ob-
tained with the backlight imaging functional (22). Figure c shows
the image obtained with the daylight imaging functional (21).

is of interest in geophysical applications where the earth’s surface may play the role
of a reflecting interface.

5.1. Stationary phase analysis of the cross correlation with a reflecting
interface. In this section we will assume that the medium is homogeneous with
background speed c0 and the interface Im is a plane of equation x3 = zm. As a
consequence the method of images can be applied. For any point x = (x1, x2, x3)
we associate the virtual point x̃ which is the image of x through the symmetry with
respect to the plane Im:

x̃ = (x1, x2, 2zm − x3).

The Green’s function in the presence of the reflecting interface and in the absence
of the reflector is then simply

Ĝm(ω,x,y) = Ĝ0(ω,x,y) +RmĜ0(ω,x, ỹ),

with Rm the reflection coefficient of the interface and Ĝ0 the free space Green’s
function (14). In the case of a perfect mirror we have Rm = −1. In the presence of
the reflector at zr and in the point interaction approximation for the reflector, the
Green’s function is of the form

Ĝm,r

(
ω,x,y

)
= Ĝm

(
ω,x,y

)
+
ω2

c20
σrl

3
r Ĝm

(
ω,x, zr

)
Ĝm

(
ω,zr,y

)
,

and it contains the contributions of rays reflected by the interface.
In the next proposition 5, proved in Appendix C, the virtual source region denotes

the image of the support of the functionK through the symmetry with respect to the
plane Im. Proposition 5 shows that the mirror generates virtual sources which play
the role of secondary noise sources and can provide a daylight illumination of the
region of interest (the reflector and the sensors). Beyond the interesting additional
singular components described below, at lag times equal to plus or minus the sum of
travel times that contribute to the daylight imaging functional, there are additional
components at lag times which are at least of the order of twice the travel time
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Figure 8. Passive sensor imaging using the differential cross corre-
lation technique in a homogeneous medium with a reflecting bound-
ary. The configuration is shown in Figure a: the circles are the
noise sources, the triangles are the sensors, and the diamond is the
reflector. Figure b shows the image obtained with the backlight
imaging functional (22). Figure c shows the image obtained with
the daylight imaging functional (21).

from the sensors to the reflecting interface, so that they do not play any role in the
daylight imaging functional provided the reflecting interface is distant enough.

Proposition 5. Let us consider the backlight illumination configuration with a
mirror behind the sensor array (Figure 8a). The differential cross correlation has
several singular components.

There is a singular contribution at lag time equal to the difference of travel times
as described by (17).

There is a singular contribution at lag time equal to the sum of travel times
T (x2, zr) + T (x1, zr) which has the form:
(58)

∆C(1)(τ,x1,x2) =
σrl

3
rR

2
m

32π2c0

K̃x1,zr

|zr − x1||zr − x2|
∂τFε

(
τ − [T (x2, zr) + T (x1, zr)]

)
,

there is a singular contribution at lag time equal to minus the sum of travel times
−[T (x2, zr) + T (x1, zr)] which has the form:
(59)

∆C(1)(τ,x1,x2) = −σrl
3
rR

2
m

32π2c0

K̃x2,zr

|zr − x1||zr − x2|
∂τFε

(
τ + [T (x2, zr) + T (x1, zr)]

)
,

where K̃x,z is the energy released by the virtual sources along the ray joining x and
z:

(60) K̃x,z =

∫ ∞
0

K̃
(
x +

x− z

|x− z|
l
)

dl, K̃(y) = K(ỹ).

Note that K̃xj ,zr is positive only when the ray going from zr to xj extends into
the virtual source region, which is the secondary daylight illumination configuration
mentioned above.

5.2. Numerical simulations of migration imaging with cross correlations
in presence of an interface. In Figure 8 we show the images obtained in a
backlight illumination configuration with a mirror behind the region of interest.
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a) IB × ID, scattering layer b) IB × ID, reflecting boundary

Figure 9. Images obtained by multiplying the backlight imaging
functional (22) with the daylight imaging functional (21). Picture
a corresponds to the configuration with a scattering layer of Figure
7a and picture b corresponds to the configuration with a reflecting
boundary of Figure 8a.

The image obtained with the backlight imaging functional (22) is expected since
it is the result of the contributions of the direct waves described in Proposition 2.
The good image obtained with the daylight imaging functional (21) illustrates the
theoretical predictions of Proposition 5: the mirror generates virtual sources that
illuminate the region of interest with a secondary daylight illumination.

The configuration with a mirror and the configuration with a randomly scatter-
ing medium studied in the previous section have therefore common points: They
both provide a secondary daylight illumination. As a result, the daylight migration
functional can use the scattered or reflected waves and gives a good range resolution
of the reflector, while the backlight migration functional uses the direct waves and
gives a good cross range resolution of the reflector. By multiplying the two func-
tionals, one obtains the location of the reflector with a good accuracy (see Figure
9).

There are two major differences between the configuration with a mirror and the
configuration with a randomly scattering medium:
1) A very significant part of the energy flux is reflected in the case of the mirror,
while only a small part is scattered in the case of a randomly scattering medium
(in the weakly scattering regime that we address).
2) The randomly scattering medium redirects the energy flux in all directions, while
the reflecting interface redirects the energy flux only in the specular direction.

This means that the mirror induces an enhancement of the directional diversity
that is strong but only in a special direction. Therefore the enhancement of the
directional diversity by a mirror is not as effective as the one provided by a randomly
scattering medium. If the orientation of the interface is not adjusted properly, so
that there is no ray issuing from a virtual source point and going to a sensor and to
the reflector, then the daylight imaging functional does not perform well as predicted
by Proposition 5 and as shown in Figure 10. In contrast to this result, the orientation
of the randomly scattering layer plays no role, as predicted by Proposition 3 and as
shown in Figure 11.

6. Iterated cross correlations for passive imaging in a randomly scatter-
ing medium. We have noted in Section 4 that the peaks in the differential cross
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Figure 10. Passive sensor imaging using the differential cross cor-
relation technique in a homogeneous medium with an oblique re-
flecting boundary (the angle is π/4, which means that the right-
going primary energy flux is reflected as a down-going energy flux).
The configuration is shown in Figure a. Figure b shows the im-
age obtained with the backlight imaging functional (22). Figure
c shows the image obtained with the daylight imaging functional
(21).
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Figure 11. Passive sensor imaging using the differential cross cor-
relation technique in a homogeneous medium with an oblique ran-
domly scattering layer. The configuration is shown in Figure a.
Figure b shows the image obtained with the backlight imaging func-
tional (22). Figure c shows the image obtained with the daylight
imaging functional (21).

correlation ∆C(1)(τ,xj ,xl) that are relevant to imaging of reflectors can be buried
in fluctuations. This happens when the SNR of the peaks at lag time equal to plus
or minus the sum of travel times ±[T (xj , zr) + T (xl, zr)] is low. In this section
we introduce an iterated cross correlation imaging technique that masks the con-
tributions of the direct waves and increases the effective SNR of the peaks. This
technique was shown to be efficient for inter-sensor travel time estimation in [13, 26]
and is briefly reviewed in Appendix D. In the next subsections we describe this ap-
proach for reflector imaging with secondary daylight illumination from scattering,
and present the results of some numerical simulations.

6.1. The coda cross correlation. It is possible to form a special fourth-order

differential cross correlation matrix ∆C
(3)
T (τ,xj ,xl) between sensors (xj)j=1,...,N
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from the differential cross correlations ∆CT (τ,xj ,xl) obtained from the recorded
data. This is done as follows.

1) Calculate the coda (i.e. the tails) by truncation of the differential cross corre-
lations:

∆CT,coda(τ,xj ,xl) = ∆CT (τ,xj ,xl)1[Tc1,Tc2](|τ |), j, l = 1, . . . , N.

2) Cross correlate the tails of the differential cross correlations and sum them over
all complementary sensors in the array to form the coda cross correlation between
xj and xl:
(61)

∆C
(3)
T (τ,xj ,xl) =

N∑
k=1,k 6∈{j,l}

∫
∆CT,coda(τ ′,xk,xj)∆CT,coda(τ ′ + τ,xk,xl)dτ

′.

This algorithm depends on three important time parameters:
1) The time T is the integration time and it should be large so as to ensure statistical
stability with respect to the distribution of the noise sources.
2) The time Tc1 is chosen so that the parts of the Green’s functions t 7→ G(t,xk,xj)
and t 7→ G(t,xk,xl) limited to [Tc1, Tc2] do not contain the contributions of the
direct waves. This means that Tc1 depends on the index of the sensors j, l, k and
should be a little bit larger than max(T (xk,xj), T (xk,xl)).
3) The time Tc2 should be large enough so that the parts of the Green’s functions
t 7→ G(t,xk,xj) and t 7→ G(t,xk,xl) limited to [Tc1, Tc2] contain the contributions
of the incoherent scattered waves. This means that Tc2 should be of the order of
the power delay spread.

As shown in [13], it follows from the statistical stability of the cross correlation

CT that the differential coda cross correlation ∆C
(3)
T is a self-averaging quantity

and it is equal to the statistical differential coda cross correlation ∆C(3) as T →∞:

∆C(3)(τ,xj ,xl) =

N∑
k=1,k 6∈{j,l}

∫
∆Ĉ

(1)
coda(ω,xk,xj)∆Ĉ

(1)
coda(ω,xk,xl)e

−iωτdω,

∆C
(1)
coda(τ,xk,xl) = ∆C(1)(τ,xk,xl)1[Tc1,Tc2](|τ |).

The time windowing is important because it selects the contributions that we want
to use for imaging the reflector at zr. The asymptotic analysis of the functional
∆C(3) can be carried out under the same conditions and with the same tools as
those used in Section 4. This involves some long and tedious calculations that have
not been carried out at present. However we do know that the differential coda cross
correlation ∆C(3) has singular components at lag time equal to (plus or minus) the
sum of travel times ±[T (x1, zr) + T (x2, zr)], and has fewer additional terms than
the usual differential cross correlation studied in Subsection 4.2. As a consequence
we expect that migration of the differential coda cross correlation using the daylight
migration functional will produce an image of the reflector with a higher SNR.

An alternative version of the differential coda cross correlation can be obtained
with the following algorithm:

1) Calculate the tails of the cross correlations CT,coda using the data CT collected
in the presence of the reflector and the tails of the cross correlations CT,coda,0 using

Inverse Problems and Imaging Volume 8, No. 3 (2014), 645–683



672 Josselin Garnier and George Papanicolaou

the data CT,0 collected in its absence:

CT,coda(τ,xj ,xl) = CT (τ,xj ,xl)1[Tc1,Tc2](|τ |), j, l = 1, . . . , N,

CT,coda,0(τ,xj ,xl) = CT,0(τ,xj ,xl)1[Tc1,Tc2](|τ |), j, l = 1, . . . , N.

2) Compute the coda cross correlations C
(3)
T using CT,coda and C

(3)
T,0 using

CT,coda,0:

C
(3)
T (τ,xj ,xl) =

N∑
k=1,k 6∈{j,l}

∫
CT,coda(τ ′,xk,xj)CT,coda(τ ′ + τ,xk,xl)dτ

′,

C
(3)
T,0(τ,xj ,xl) =

N∑
k=1,k 6∈{j,l}

∫
CT,coda,0(τ ′,xk,xj)CT,coda,0(τ ′ + τ,xk,xl)dτ

′.

3) Take the difference between the coda cross correlations:

(62) ∆C
(4)
T (τ,xj ,xl) = C

(3)
T (τ,xj ,xl)− C(3)

T,0(τ,xj ,xl), j, l = 1, . . . , N.

This algorithm produces a version ∆C
(4)
T of the differential coda cross correlation

that is different from ∆C
(3)
T . It is a statistically stable quantity. Its statistical

average ∆C(4) contains the singular components at lag time equal to (plus or minus)
the sum of travel times ±[T (x1, zr) + T (x2, zr)] that we want to use for imaging
and it has less unwanted contributions compared to ∆C(1), similarly as ∆C3). As

a result we anticipate that both versions ∆C
(3)
T and ∆C

(4)
T of the differential coda

cross correlation will produce images by migration.

6.2. Numerical simulations of migration imaging with coda cross corre-
lations. In Figure 12 we consider a configuration in which the scattering region
intersects the ellipsoid (46), which involves fluctuations of the cross correlation at
lag time equal to the sum of travel times. As a result the daylight imaging func-
tional with the usual differential cross correlation technique does not have a peak at
the reflector location (Figure 12b), because the peaks at lag times equal to the sums
of travel times ±[T (x1, zr) + T (x2, zr)] are obscured, contrary to what happens in
Figure 7 when the scattering region does not intersect the ellipsoid. However, the
daylight imaging functional with the differential coda cross correlation technique
∆C(3) (figure 12e) or ∆C(4) (figure 12h) gives a much better image. The overall
result is that the backlight imaging functional IB using ∆C(1) has good cross-range
resolution and SNR while the daylight imaging functional ID using ∆C(3) or ∆C(4)

has good range resolution and SNR. The multiplication of these two imaging func-
tions gives the location of the reflector with greater accuracy (Figure 12f or i). The
multiplication is a straightforward way to benefit from the advantages of both il-
luminations (direct and scattered) but it is probably not the optimal way. It can
give a very good image in the presence of point-like reflectors but the image of an
extended object may not be so good. This problem deserves more study.

7. Conclusion. In this paper we have analyzed the role of wave scattering in
passive sensor imaging with ambient noise source illumination. The main result is
a detailed quantitative analysis, presented in Section 4, of the trade-off between
improved image resolution due to enhanced directional diversity of illumination by
scattering versus lower signal-to-noise ratio (SNR) due to random fluctuations by
scattering.
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a) IB with ∆C(1) b) ID with ∆C(1) c) Configuration

d) IB with ∆C(3) e) ID with ∆C(3) f)
ID with ∆C(3)

times IB with ∆C(1)

g) IB with ∆C(4) h) ID with ∆C(4) i)
ID with ∆C(4)

times IB with ∆C(1)

Figure 12. The configuration is shown in Figure c: the circles are
the noise sources and the squares are the scatterers. Figure a (resp.
b) shows the image obtained with the backlight imaging functional
(22) (resp. the daylight imaging functional (21)) applied with the
differential cross correlation ∆C(1). Figure d (resp. e) shows the
image obtained with the backlight imaging functional (22) (resp.
the daylight imaging functional (21)) applied with the differential
coda cross correlation ∆C(3). Figure f shows the image obtained
with the daylight imaging functional (21) applied with the differen-
tial coda cross correlation ∆C(3) multiplied by the backlight imag-
ing functional (22) applied with the differential cross correlation
∆C(1). Figure g (resp. h) shows the image obtained with the back-
light imaging functional (22) (the daylight imaging functional (21))
applied with the differential coda cross correlation ∆C(4). Figure
i shows the image obtained with the daylight imaging functional
(21) applied with the differential coda cross correlation ∆C(4) mul-
tiplied by the backlight imaging functional (22) applied with the
differential cross correlation ∆C(1).
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One result is that a randomly scattering medium can increase the directional
diversity of the energy flux that illuminates the region of interest consisting of the
sensor array and the reflectors to be imaged. The range resolution can thus be
enhanced significantly when the scattering medium provides a secondary daylight
illumination for the region of interest, which generates a peak at the reflector loca-
tion in the daylight imaging functional (21). We have also shown that a randomly
scattering layer is more efficient for directional diversity enhancement than a deter-
ministic reflecting surface.

A second result is that a randomly scattering medium also introduces random
fluctuations in the cross correlations which reduce the SNR of the peaks in the
cross correlations that contribute to the formation of the image. When the scatter-
ing region is far enough from the sensor array these fluctuations are small. When,
however, the scattering region is close, the contribution of the reflectors to the
peaks of the cross correlations can be weak compared to the standard deviation
of the fluctuations due to the scattering. Migration (backpropagation) of the cross
correlations then gives blurred and speckled images. We have also considered briefly
the migration of special fourth-order cross correlations obtained by cross correlating
the tails (coda) of the second-order cross correlations. This approach aims at mask-
ing the contributions of the direct waves and enhancing the contributions of the
scattered waves. As a result, passive imaging using differential fourth-order coda
cross correlations and a product of two different (backlight and daylight) migration
functionals turns out to be quite effective in that it gives an image with good SNR
and good resolution.

This trade-off between enhancement of the directional diversity of the illumi-
nation along with reduction of the SNR of the image makes sense only when the
scattering is weak. As scattering strength increases migration of cross correlations,
including fourth-order cross correlations, will eventually fail. It may be possible to
estimate inter-sensor travel times, as was done in a recent study [7] in the microwave
regime, in an indoor environment, using special statistical techniques, but it will be
difficult to image in such strongly scattering media. Therefore, correlation based
methods for passive sensor imaging in scattering media are likely to be effective in
only regimes of weak to intermediate scattering.

Appendix A. Proof of Proposition 3. The first-order cross correlation ∆C
(1)
1

is the sum of many terms, and we will study in detail one of them, the other terms
can be addressed in the same way. These cross correlation terms involve one wave
with one component Ĝ1 and another wave with only components of the form Ĝ0.
This is a cross correlation of a wave that has been single-scattered by the medium
with a wave that has not interacted with the medium. The term that we study is

∆C
(1)
1,1(τ,x1,x2) =

σrl
3
r

2πc20ε
4

∫∫
dydωK(y)ω2F̂ (ω)

×Ĝ0

(ω
ε
,x1, zr

)
Ĝ0

(ω
ε
, zr,y

)
Ĝ1

(ω
ε
,x2,y

)
e−i

ω
ε τ ,

which can also be written as

∆C
(1)
1,1(τ,x1,x2) =

σrl
3
r

2πc40ε
4

∫∫∫
dydzdωK(y)ω4F̂ (ω)

×Ĝ0

(ω
ε
,x1, zr

)
Ĝ0

(ω
ε
, zr,y

)
Ĝ0

(ω
ε
,x2, z

)
V (z)Ĝ0

(ω
ε
, z,y

)
e−i

ω
ε τ .
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It is the cross correlation of a wave emitted by a source point at y, reflected at
zr, and recorded at x1, with a wave emitted by the source point at y, scattered at

z, and recorded at x2. Since V (z) has mean zero, ∆C
(1)
1,1(τ,x1,x2) has also mean

zero. Using the delta-correlation property of V , we find that its variance is

Var
(
∆C

(1)
1,1(τ,x1,x2)

)
=
σ2

r l
6
rσ

2
s l

3
s

4π2c80ε
8

∫∫∫
dy1dω1dy2dω2dzρ(z)ω4

1F̂ (ω1)ω4
2F̂ (ω2)

×K(y1)K(y2)Ĝ0

(ω1

ε
,x1, zr

)
Ĝ0

(ω1

ε
, zr,y1

)
Ĝ0

(ω2

ε
,x2, z

)
Ĝ0

(ω2

ε
, z,y2

)
×Ĝ0

(ω1

ε
,x2, z

)
Ĝ0

(ω1

ε
, z,y1

)
Ĝ0

(ω2

ε
,x1, zr

)
Ĝ0

(ω2

ε
, zr,y2

)
e−i

ω1−ω2
ε τ ,

which can also be written as

Var
(
∆C

(1)
1,1(τ,x1,x2)

)
=

σ2
r l

6
rσ

2
s l

3
s

218π10c80ε
8

∫∫∫
dy1dω1dy2dω2dzρ(z)

× ω4
1F̂ (ω1)ω4

2F̂ (ω2)K(y1)K(y2)

|x1 − zr|2|x2 − z|2|zr − y1||z − y2||z − y1||zr − y2|
ei
ω1
ε T0(y1,z)e−i

ω2
ε T0(y2,z),

with

T0(y, z) = −T (x1, zr)− T (zr,y) + T (x2, z) + T (z,y)− τ.
Motivated by a stationary phase argument, we make the change of variables (ω1, ω2)
7→ (ω, h) := (ω1+ω2

2 , ω1−ω2

ε ), which gives

Var
(
∆C

(1)
1,1(τ,x1,x2)

)
=

σ2
r l

6
rσ

2
s l

3
s

218π10c80ε
7

∫∫∫
dy1dy2dωdhdzρ(z)

× K(y1)K(y2)ω8F̂ 2(ω)

|x1 − zr|2|x2 − z|2|zr − y1||z − y2||z − y1||zr − y2|
eihTs(y1,y2,z)ei

ω
ε Tr(y1,y2,z),

where the rapid and slow phases are given by

Tr(y1,y2, z) = −T (zr,y1) + T (zr,y2) + T (z,y1)− T (z,y2),

Ts(y1,y2, z) = −T (x1, zr) + T (x2, z)

+
1

2

(
− T (zr,y1)− T (zr,y2) + T (z,y1) + T (z,y2)

)
− τ.

In order to identify the dominant contribution we apply the stationary phase
method. The stationary points should satisfy the four conditions

∂ω
(
ωTr

)
= 0, ∇y1

(
ωTr

)
= 0, ∇y2

(
ωTr

)
= 0, ∇z

(
ωTr

)
= 0.

In the backlight illumination configuration this means that the four points should
be along the same ray with y1,y2 → zr → z or y1,y2 → z → zr.

We first study the contribution (i) of the scatterers z such that y1,y2 → zr → z.
We introduce the unit vector

ê1 =
zr − z

|zr − z|
and complete it with two other unit vectors (ê2, ê3) so that (ê1, ê2, ê3) is an or-
thonormal basis. We make the change of variables yj 7→ (aj , bj , cj), for j = 1, 2:

yj = zr + |zr − z|
[
aj ê1 + ε1/2bj ê2 + ε1/2cj ê3

]
,

with aj > 0 since we consider here that yj → zr → z. The Jacobian of the change
of variables is ε|zr− z|3. This gives a parameterization of the variable yj along the
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ray joining z and zr. We obtain

Var
(
∆C

(1)
1,1(τ,x1,x2)

)(i)
=

σ2
r l

6
rσ

2
s l

3
s

218π10c80ε
5

∫∫∫
da1da2dωdhdzρ(z)|zr − z|2

×K(zr + (zr − z)a1)K(zr + (zr − z)a2)ω8F̂ 2(ω)

|x1 − zr|2|x2 − z|2a1(1 + a1)a2(1 + a2)
eihTs(zr+(zr−z)a1,zr+(zr−z)a2,z)

×
∫∫

db1dc1db2dc2e
−i ω2c0

b21+c21
a1(1+a1)

|zr−z|+i ω2c0
b22+c22

a2(1+a2)
|zr−z|.

We compute the integrals in h, b1, c1, b2, c2 by making use of the identity∫
dbe−i

b2

2 =
√

2πe−i
π
4 ,

and we make the changes of variables aj = lj/|zr − z|, j = 1, 2, so that we obtain

Var
(
∆C

(1)
1,1(τ,x1,x2)

)(i)
=

σ2
r l

6
rσ

2
s l

3
s

215π7c50ε
5

∫∫∫
dl1dl2dωdzω6F̂ 2(ω)ρ(z)

×
K(zr + zr−z

|zr−z| l1)K(zr + zr−z
|zr−z| l2)

|x1 − zr|2|x2 − z|2|zr − z|2
δ
(
|x2 − z| − |x1 − zr|+ |zr − z| − c0τ

)
,

which gives

Var
(
∆C

(1)
1,1(τ,x1,x2)

)(i)
=

σ2
r l

6
rσ

2
s l

3
s

215π7c50ε
5

[ ∫
dωω6F̂ 2(ω)

]
×
∫

dz
K2

zr,zρ(z)

|x1 − zr|2|x2 − z|2|zr − z|2

×δ
(
|x2 − z| − |x1 − zr|+ |zr − z| − c0τ

)
.

We second study the contribution (ii) of the scatterers z such that y1,y2 → z → zr.
We introduce the unit vector

ê1 =
z − zr

|z − zr|
,

and we complete it with two other unit vectors (ê2, ê3) so that (ê1, ê2, ê3) is an
orthonormal basis. We proceed as above and find

Var
(
∆C

(1)
1,1(τ,x1,x2)

)(ii)
=

σ2
r l

6
rσ

2
s l

3
s

215π7c50ε
5

[ ∫
dωω6F̂ 2(ω)

]
×
∫

dz
K2

z,zr
ρ(z)

|x1 − zr|2|x2 − z|2|zr − z|2

×δ
(
|x2 − z| − |x1 − zr| − |zr − z| − c0τ

)
.

The other terms can be addressed in the same way, and we find that the time-
integrated variance has the form (45) while the variance for a fixed lag time τ is
(42).

Appendix B. Proof of Proposition 4. The second-order cross correlation ∆C
(1)
2

is the sum of many terms, which can be orgaized into two groups:
- We study in Subsection B.1 the first group, which contains the cross correlations
of two waves that have been single-scattered by the medium. More exactly, the
term that we study in detail in Subsection B.1 involves one component Ĝ1 for each
of the two waves that are cross correlated.
- We study in Subsection B.2 the second group, which contains the cross correlations
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of a wave that has been double-scattered by the medium with a wave that has not
been scattered by the medium. More exactly, the term that we study in detail in
Subsection B.2 involves two components Ĝ1 for one of the two waves that are cross
correlated, while the other wave involves only Ĝ0. We also briefly address a term
that involves one component Ĝ2 for one of the two waves that are cross correlated,
while the other wave involves only Ĝ0, which is of the same form as the previous
one.

B.1. First group. The first term that we address in detail is

∆C
(1)
2,1(τ,x1,x2) =

σrl
3
r

2πc20ε
6

∫
dydωK(y)ω2F̂ (ω)

×Ĝ0

(ω
ε
,x1, zr

)
Ĝ1

(ω
ε
, zr,y

)
Ĝ1

(ω
ε
,x2,y

)
e−i

ω
ε τ ,

which can also be written as

∆C
(1)
2,1(τ,x1,x2) =

σrl
3
r

2πc60ε
6

∫∫∫
dydzdz′dωK(y)ω6F̂ (ω)

×Ĝ0

(ω
ε
,x1, zr

)
Ĝ0

(ω
ε
, zr, z

)
V (z)

×Ĝ0

(ω
ε
, z,y

)
Ĝ0

(ω
ε
,x2, z

′
)
V (z′)Ĝ0

(ω
ε
, z′,y

)
e−i

ω
ε τ .

It is the cross correlation of a wave emitted by a source point at y, scattered at z,
reflected at zr, and recorded at x1, with a wave emitted by the source point at y,
scattered at z′, and recorded at x2. Using the delta-correlation property of V , its
mean is

E[∆C
(1)
2,1(τ,x1,x2)] =

σrl
3
rσ

2
s l

3
s

2πc60ε
6

∫∫∫
dydzdωK(y)ρ(z)ω6F̂ (ω)

×Ĝ0

(ω
ε
,x1, zr

)
Ĝ0

(ω
ε
, zr, z

)
Ĝ0

(ω
ε
, z,y

)
Ĝ0

(ω
ε
,x2, z

)
Ĝ0

(ω
ε
, z,y

)
e−i

ω
ε τ ,

which can also be written as

E[∆C
(1)
2,1(τ,x1,x2)] =

σrl
3
rσ

2
s l

3
s

211π6c60ε
6

∫∫∫
dydzdωK(y)ρ(z)ω6F̂ (ω)

× 1

|x1 − zr||zr − z||z − y|2|x2 − z|
ei
ω
ε T0(y,z),

where the rapid phase is

T0(y, z) = −T (x1, zr)− T (zr, z) + T (x2, z)− τ.
This is the cross correlation of waves that have interacted once with the scattering
medium and once with the reflector with waves that have interacted once with
the scattering medium. That is why the average (with respect to the scattering
medium) is not zero.

The stationary points satisfy the three conditions

∂ω
(
ωT0

)
= 0, ∇y

(
ωT0

)
= 0, ∇z

(
ωT0

)
= 0.

The rapid phase does not depend on y, so the stationary points need to fulfill the
two conditions

∇zT (z,x2) = ∇zT (z, zr) and T (x2, z)− T (x1, zr)− T (zr, z) = τ.

The first condition means that x2 and zr must be on the same ray issued from z.
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If z → zr → x2, then the second condition means τ = −T (x1, zr) + T (x2, zr).
This corresponds to a backlight illumination from the secondary source z.

If z → x2 → zr, then the second condition means τ = −T (x1, zr) − T (x2, zr).
This is the contribution corresponding to a daylight illumination from the secondary
source z and shown in the right Figure 6. We focus our attention to the backlight
illumination configuration. We introduce the unit vector

ê1 =
x2 − zr

|x2 − zr|
,

and we complete it with two other unit vectors (ê2, ê3) so that (ê1, ê2, ê3) is an
orthonormal basis. We make the change of variables z 7→ (a, b, c) with

z = x2 + |x2 − zr|
[
aê1 + ε1/2bê2 + ε1/2cê3

]
.

This gives a parameterization of the variable z along the ray joining x2 and zr. Here
the scatterers are behind the sensor array which means that we restrict ourselves to
a > 0. We also parameterize the lag time τ around the difference of travel times:

τ = −T (x2, zr)− T (x1, zr) + εs.

We perform a Taylor series expansion of the rapid phase

E[∆C
(1)
2,1(τ,x1,x2)]

=
σrl

3
rσ

2
s l

2
s |x2 − zr|

211π6c60ε
5|x1 − zr|

∫∫∫
dadydωω6F̂ (ω)

K(y)ρ(x2 + a(x2 − zr))

a(1 + a)

× 1

|x2 + a(x2 − zr)− y|2
e−iωs

∫∫
dbdcei

ω
2c0

b2+c2

a(1+a)
|x2−zr|

=
σrl

3
rσ

2
s l

2
s

210π5c50ε
5|x1 − zr||x2 − zr|

×
[ ∫

dω(iω5)F̂ (ω)e−iωs
] ∫∫∫

dady
K(y)ρ(x2 + a(x2 − zr))

|x2 + a(x2 − zr)− y|2

= − σrl
3
rσ

2
s l

2
s

29π4c50ε
5|x1 − zr||x2 − zr|

[ ∫
dlKρ

(
x2 + l

x2 − zr

|x2 − zr|

)]
∂5

sF (s),

where Kρ is defined by (48).

The analysis of the other terms involving one single-scattering component Ĝ1 for
each of the two waves that are cross-correlated is similar.

B.2. Second group. The cross correlation terms that involve one wave with two
components Ĝ1 and one wave with only Ĝ0 are dealt with according to the following
way. These terms involve double-scattering events with respect to the randomly
scattering medium, but they have to be taken into account because they are a
priori of the same order of magnitude as the terms studied above, which involve
the cross correlation of two waves with one single scattering event for each. One of
these terms is

∆C
(1)
2,2(τ,x1,x2) =

σrl
3
r

2πc20ε
6

∫
dydωK(y)ω2F̂ (ω)

×Ĝ1

(ω
ε
,x1, zr

)
Ĝ1

(ω
ε
, zr,y

)
Ĝ0

(ω
ε
,x2,y

)
e−i

ω
ε τ ,
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which can also be written as

∆C
(1)
2,2(τ,x1,x2) =

σrl
3
r

2πc60ε
6

∫∫∫
dydzdz′dωK(y)ω6F̂ (ω)

×Ĝ0

(ω
ε
,x1, z

′
)
V (z′)Ĝ0

(ω
ε
, z′, zr

)
×Ĝ0

(ω
ε
, zr, z

)
V (z)Ĝ0

(ω
ε
, z,y

)
Ĝ0

(ω
ε
,x2,y

)
e−i

ω
ε τ .

The term ∆C
(1)
2,2 is the cross correlation of a wave emitted by a source point at y,

scattered at z, reflected at zr, scattered at z′, and recorded at x1, with a wave
emitted by the source point at y and recorded at x2. Its mean is

E[∆C
(1)
2,2(τ,x1,x2)] =

σrl
3
rσ

2
s l

3
s

2πc60ε
6

∫∫∫
dydzdωK(y)ρ(z)ω6F̂ (ω)

×Ĝ0

(ω
ε
,x1, z

)
Ĝ0

(ω
ε
, zr, z

)2

Ĝ0

(ω
ε
, z,y

)
Ĝ0

(ω
ε
,x2,y

)
e−i

ω
ε τ ,

which can also be written as

E[∆C
(1)
2,2(τ,x1,x2)] =

σrl
3
rσ

2
s l

3
s

211π6c60ε
6

∫∫∫
dydzdωK(y)ρ(z)ω6F̂ (ω)

× 1

|x1 − z||z − zr|2|z − y||x2 − y|
ei
ω
ε T0(y,z),

where the rapid phase is

T0(y, z) = −T (x1, z)− 2T (zr, z)− T (z,y) + T (x2,y)− τ.

The stationary points satisfy the three conditions

∂ω
(
ωT0

)
= 0, ∇y

(
ωT0

)
= 0, ∇z

(
ωT0

)
= 0,

that is to say:

∇yT (y,x2) = ∇yT (y, z), ∇zT (z,x2) + 2∇zT (z, zr) +∇zT (z,y) = 0,

and

T (x2,y)− T (x1, z)− 2T (zr, z)− T (z,y) = τ.

The second condition (in ∇z) cannot be fulfilled in our geometry (Figure 7a), in
which the scatterers z are on the opposite side of the sensor x2, the reflector zr,

and the sources y. Therefore the term E[∆C
(1)
2,2(τ,x1,x2)] gives a negligible contri-

bution.
The cross correlation terms that involve one wave with one component Ĝ2 and

one wave with only Ĝ0 have similar properties as the term ∆C
(1)
2,2 studied here

above, in the sense that it is not possible to find stationary points or maps of points
that give a contribution to their expectations. This is again due to our geometry in
which the scatterers are on the opposite side of the sensor array, the reflector, and
the sources. Therefore they do not contribute to the mean of the cross correlation.

Appendix C. Proof of Proposition 5. The proof of Proposition 5 is not com-
pletely obvious because the virtual sources are fully correlated with the noise sources.
By expanding the expression of the cross correlation in terms of the background
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Green’s function Ĝ0, we obtain that the differential cross correlation is the contri-
bution of sixteen terms, which correspond to take into account the virtual sources
and the virtual reflector. We will study in detail one of them:

∆C
(1)
1 (τ,x1,x2) =

σrl
3
rR

2
m

27π4c20ε
2

∫∫
dydωω2F̂ (ω)

K(y)

|ỹ − x1||ỹ − zr||zr − x2|
ei
ω
ε T0(y),

where the rapid phase is

T0(y) = −T (ỹ,x1) + T (ỹ, zr) + T (zr,x2)− τ.
We use the fact that T (x, ỹ) = T (x̃,y) for any pair of points (x,y) and we apply
the stationary phase method. The dominant contribution comes from the stationary
points that satisfy

∇y

(
ωT0(y)

)
= 0, ∂ω

(
ωT0(y)

)
= 0,

which reads

∇yT (y, x̃1) = ∇yT (y, z̃r), τ = −T (ỹ,x1) + T (ỹ, zr) + T (zr,x2).

The first condition imposes that x̃1 and z̃r are on the same ray issued from y, which
is equivalent to the condition that x1 and zr are on the same ray issued from ỹ.
The second condition then reads

τ = ±T (zr,x1) + T (zr,x2),

with the sign + (resp. −) if zr → x1 → ỹ (resp. x1 → zr → ỹ).
We focus our attention to the backlight illumination configuration zr → x1 → ỹ.

Using the change of variable y 7→ ỹ, we find

∆C
(1)
1 (τ,x1,x2) =

σrl
3
rR

2
m

27π4c20ε
2

∫∫
dydωω2F̂ (ω)

K̃(y)

|y − x1||y − zr||zr − x2|
×eiωε (−T (y,x1)+T (y,zr)+T (zr,x2)−τ).

The analysis using the stationary phase theorem then goes along the same lines as
in the previous appendices. The analysis of the other terms is similar and completes
the proof.

Appendix D. Inter-sensor travel time estimation with coda cross cor-
relations. It is possible to estimate the travel time between two sensors x1 and
x2 in a scattering medium by looking at the main peaks of a special fourth-order

cross correlation C
(3)
T (τ,x1,x2). This fourth-order cross correlation uses the data

recorded by an array of auxiliary sensors xa,k, k = 1, . . . , Na, and it is evaluated as
follows.

1) Calculate the cross correlations between x1 and xa,k and between x2 and xa,k

for each auxiliary sensor xa,k:

CT (τ,xa,k,xl) =
1

T

∫ T

0

u(t,xa,k)u(t+ τ,xl)dt, l = 1, 2, k = 1, . . . , Na.

2) Calculate the coda (i.e. the tails) of these cross correlations:

CT,coda(τ,xa,k,xl) = CT (τ,xa,k,xl)1[Tc1,Tc2](|τ |), l = 1, 2, k = 1, . . . , Na.

3) Cross correlate the tails of the cross correlations and sum them over all aux-
iliary sensors to form the coda cross correlation between x1 and x2:

C
(3)
T (τ,x1,x2) =

Na∑
k=1

∫
CT,coda(τ ′,xa,k,x1)CT,coda(τ ′ + τ,xa,k,x2)dτ ′.
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The roles of the three parameters T , Tc1, and Tc2 are described in Subsection

6.1. The coda cross correlation C
(3)
T is a self-averaging quantity and it is equal to

the statistical coda cross correlation C(3) as T →∞:

C(3)(τ,x1,x2) =

Na∑
k=1

∫
Ĉ

(1)
coda(ω,xa,k,x1)Ĉ

(1)
coda(ω,xa,k,x2)e−iωτdω,

C
(1)
coda(τ,xa,k,xl) = C(1)(τ,xa,k,xl)1[Tc1,Tc2](|τ |).

The statistical coda cross correlation C(3) was studied in [13] by a stationary phase
analysis. It differs from the statistical cross correlation C(1) in that the contributions
of the direct waves are eliminated and only the contributions of the scattered waves
are taken into account (note that some of the contributions of scattered waves are
also eliminated, but only those which correspond to small additional travel times,
which are also those which induce small directional diversity). Since scattered
waves have more directional diversity than the direct waves when the noise sources
are spatially localized, the coda cross correlation C(3)(τ,x1,x2) usually exhibits
a stronger peak at lag time equal to the inter-sensor travel time T (x1,x2). In
particular, in contrast with the cross correlation C(1), the existence of a singular
component at lag time equal to the travel time T (x1,x2) does not require that the
ray joining x1 and x2 reaches into the source region, but only into the scattering
region.

We illustrate these results in Figures 13-14 in which the five sensors are aligned
perpendicularly to the energy flux coming from the noise sources and the cross
correlation C(1)(τ,x1,xj), j = 1, . . . , 5 does not have a peak at lag time equal to
the travel time between the sensors x1 and xj . In Figure 13 the ray going through
the sensors x1 and xj intersects the scattering layer and the coda cross correlation

C(3)(τ,x1,xj) has a peak at lag time equal to the travel time between the sensors.
In Figure 14 the ray going through the sensors x1 and xj does not intersect the

scattering layer and the coda cross correlation C(3)(τ,x1,xj) does not have a peak
at lag time equal to the travel time between the sensors. Note the presence of the
auxiliary sensors that are necessary for the evaluation of the coda cross correlation.
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Figure 13. The configuration is shown in Figure a: the circles are
the noise sources, the squares are the scatterers, and the triangles
are the sensors. Figure b shows the cross correlation C(1) between
the pairs of sensors (x1,xj), j = 1, . . . , 5, versus the distance |xj−
x1|. Figure c shows the coda cross correlation C(3) between the
pairs of sensors (x1,xj), j = 1, . . . , 5, which shows the singular
peak at lag time equal to the travel time T (x1,xj) in the coda

cross correlation C(3), because the ray going through x1 and xj
intersects the scattering region.
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Figure 14. Same as in Figure 14 but here the scatterers are
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