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Abstract. The aim of this paper is to develop an efficient reconstruction
algorithm for ultrasound-modulated diffuse optical tomography. In diffuse op-
tical imaging, the resolution is in general low. By mechanically perturbing the
medium, we show that it is possible to achieve a significant resolution enhance-
ment. When a spherical acoustic wave is propagating inside the medium, the
optical parameter of the medium is perturbed. Using cross-correlations of the
boundary measurements of the intensity of the light propagating in the per-
turbed medium and in the unperturbed one, we provide an iterative algorithm
for reconstructing the optical absorption coefficient. Using a spherical Radon
transform inversion, we first establish an equation that the optical absorption
satisfies. This equation together with the diffusion model constitutes a non-
linear system. Then, solving iteratively such a nonlinear coupled system, we
obtain the true absorption parameter. We prove the convergence of the al-
gorithm and present numerical results to illustrate its resolution and stability
performances.

1. Introduction

Diffuse optical tomography is an emerging biomedical modality that uses dif-
fuse light to probe structural variations in the optical properties of tissue [6]. The
associated inverse problem for diffuse waves consists of recovering the absorption
properties of a medium of interest from boundary measurements of the light in-
tensity. The most important current applications of diffuse optical imaging are
detecting tumors in the breast and brain imaging [8].

Let Ω be a smooth bounded domain of Rd, for d = 2, 3, satisfying the interior
ball condition. Let ν denote the unit normal outward vector on ∂Ω and let ∂ν
denote the normal derivative at ∂Ω. When a laser beam is applied at a point x0

on ∂Ω, the energy density ϕ∗ is governed by the diffusion equation

(1.1)

{
−Δϕ∗ + q∗ϕ∗ = 0 in Ω,

l∂νϕ∗ + ϕ∗ = g on ∂Ω,

where q∗ is the (spatially-varying) optical absorption coefficient and g ≥ 0 is a
smooth approximation of the Dirac function at x0. Note that in the Robin type
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boundary condition in (1.1), l is the extrapolation length [24]. Throughout this
paper we will assume without loss of generality that l = 1.

The aim of this paper is to model a new method for reconstructing the optical
absorption coefficient q∗ of a medium occupied by Ω from boundary measurements
of ∂νϕ∗ on the boundary ∂Ω using only one g. We provide a mathematical and
numerical framework for it.

We assume that the Born assumption holds, i.e., the optical coefficient q∗ takes
the form

(1.2) q∗ = q0(1 + δs∗).

Here δ is a small constant and s∗ is a smooth function whose supportD is known and
compactly contained in the background medium Ω. The Born approximation and
its higher order corrections have been widely used; see, for instance, [14–16,21,22].

Under the Born assumption, it is known that by using boundary measurements
of the normal derivative of the solution to the diffusion equation (1.1) correspond-
ing to many g, it is possible to determine the optical coefficient q∗ [6, 26]. Direct
reconstruction methods have been designed in this linearized case for particular ex-
perimental geometries [26]. However, the resolution of the reconstruction is usually
low due to the inherent severely ill-posed character of diffuse optical imaging.

In this paper we propose a new method for reconstructing the optical coefficient,
which is based on the use of mechanical perturbations of the medium. Only one g is
used. The idea behind our new method is to perturb the medium by a propagating
acoustic wave while taking the boundary measurements of the normal derivative of
the energy density corresponding to g. Let y ∈ Ω \ D. Consider a displacement
field uy generated at the source point y such that its support is a thin spherical
shell growing at a constant speed c. Denote q∗(x+ uy(x, t)) by qu(x,y, t), x ∈ Ω,
t > 0, and the corresponding energy density by ϕu(x,y, t). The presence of the
propagating acoustic wave generated at the source point y changes the medium
and yields the perturbed diffusion equation

(1.3)

{
−Δϕu + quϕu = 0 in Ω,

∂νϕu + ϕu = g on ∂Ω.

Then, in order to reconstruct q∗, we cross-correlate the boundary values of the
intensity of the light propagating in the medium changed by the propagation of the
acoustic wave and those corresponding to the unperturbed one. We compute the
quantity

(1.4)

∫
∂Ω

g(∂νϕ∗ − ∂νϕu) dσ.

Assume that y moves along a circle or a sphere. Then the use of a Helmholtz
decomposition yields (3.6) for q∗ where the source term is obtained from the data
given by (1.4) by using a circular or a spherical Radon transform inversion. Hence
the functions q∗ and ϕ∗ satisfy the coupled system of equations (1.1) and (3.6). This
nonlinear coupling suggests the iterative algorithm (3.10)–(3.11) for reconstructing
q∗. One of the main contributions of this paper is to prove the convergence of the
iterative scheme to the true image of q∗ using the contraction fixed point theorem
and to illustrate it numerically. Moreover, the high resolution and the good stability
properties of the reconstructed images are shown.

The idea of mechanically perturbing the medium was first introduced in [3] for
electromagnetic imaging in free space. In [3], since the amplitude of the background



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ULTRASOUND-MODULATED DIFFUSE OPTICAL TOMOGRAPHY 3223

solution is constant, an inversion of the spherical Radon transform yields the correct
image. The algorithm proposed in [3] is a direct algorithm. On the other hand,
it is also worth emphasizing that this approach is different from the imaging by
controlled perturbations [1, 2, 5, 10], where local changes of the parameters of the
medium are produced by focalizing an ultrasound beam. Both techniques lead to
resolution enhancements. In imaging by controlled perturbations, the resolution is
of order the size of the focal spot, while here it is of order the width of the wave
front of the wave propagating in the medium. Our new method is called ultrasound-
modulated optical tomography. It significantly differs from those proposed in [9,
11,28], where the spatial scales are much smaller than those considered here. In [7],
an ultrasound-modulated approach for diffuse optical imaging has been proposed.
However, the modulation of the medium is different. For the acoustic wave, plane
waves are used in [7] instead of spherical waves used here. This leads to a completely
different model: a nonlinear partial differential equation (called zero-Laplacian)
for the energy density. While the algorithms developed in [2, 10] can be used to
efficiently solve such a nonlinear PDE, new techniques have to be designed for the
present spherically modulated model.

The paper is organized as follows. In Section 2 we introduce some preliminary
results. In Section 3 we present our reconstruction algorithm. In Section 4 we
provide a proof of convergence of the algorithm. In Section 5 we illustrate the
performance of the proposed algorithm in terms of resolution and stability. The
paper ends with a short discussion. Throughout the paper, C is a universal constant
depending only on known quantities and functions.

2. Preliminaries

In this section, we first recall two consequences of well-known regularity results.
The propositions we present here are special cases in those papers and enough for
us to study ultrasound-modulated optical tomography. The reader can find the
following result in [17, 19].

Proposition 2.1. Suppose that Ω is smooth. If p ∈ L∞(Ω), then any weak and
bounded solution ϕ of the equation

(2.1) −Δϕ+ pϕ = 0, with ‖ϕ‖L∞(Ω) ≤ M,

is in C1(Ω) and
‖ϕ‖C1(Ω

′
) ≤ c1(M, ‖p‖L∞(Ω), dist(Ω

′, ∂Ω))

for all Ω′ � Ω.

The following proposition is from [12, 18].

Proposition 2.2. Let D be a bounded smooth domain and λ < Λ,M be positive
constants. If ϕ ∈ L∞(D) is such that

0 < λ ≤ ϕ ≤ Λ in D

and if f ∈ L∞(D) is such that ‖f‖L∞(D) ≤ M , then the solution q of

(2.2)

{
∇ · (ϕ2∇q) = f in D,

q = 0 on ∂D

is in C1(D) with

(2.3) ‖q‖C1(D) ≤ c2(λ,Λ,M).
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Remark 2.3. Assume that the constant c2 in (2.3) is optimal; i.e., c2 is the infimum
of all of its possible values. Then,

(2.4) c2(λ,Λ, δM) ≤ δc2(λ,Λ,M)

for all 0 < δ < 1. This can be seen by multiplying both sides of (2.2) by δ.

We next establish the weak comparison principle and the strong maximum prin-
ciple for Laplace equations with the Robin boundary condition under consideration.
The main idea of the proof is based on the weak comparison principle in [20] for
Dirichlet boundary conditions, with some suitable modifications. Although this
might be a well-known result, we provide a proof here for the sake of completeness.
Also, our strong maximum principle is somewhat different from the classical one.

Proposition 2.4 (Weak comparison principle). Let p be a nonnegative measurable
function and assume that ϕ ∈ H1(Ω) satisfies

(2.5)

{
−Δϕ+ pϕ ≥ 0 in Ω,

∂νϕ+ ϕ ≥ 0 on ∂Ω.

We have ϕ ≥ 0 a.e. in Ω.

Proof. Using ϕ− = max{0,−ϕ} ≥ 0 as a test function in the variational formulation
of (2.5) gives

0 ≤
∫
Ω

∇ϕ · ∇ϕ−dx−
∫
∂Ω

∂νϕϕ
−dσ +

∫
Ω

pϕϕ−dx

≤
∫
Ω

∇ϕ · ∇ϕ−dx+

∫
∂Ω

ϕϕ−dσ +

∫
Ω

pϕϕ−dx

= −
∫
Ω

|∇ϕ−|2dx−
∫
∂Ω

|ϕ−|2dσ −
∫
Ω

p|ϕ−|2dx.

It follows that ϕ− = 0. Note that ϕ− is admissible to be a test function because it
belongs to H1(Ω) (see [13]). �

Proposition 2.5 (Strong maximum principle). Let g �≡ 0 be a nonnegative smooth
function defined on ∂Ω. Let D � Ω be smooth. For all c > 0, the solution ϕc of

(2.6)

{
−Δϕc + cϕc = 0 in Ω,

∂νϕc + ϕc = g on ∂Ω

is bounded and positive in D.

We need the following lemma to prove this strong maximum principle [23].

Lemma 2.6 (Hopf lemma). Let ϕ ∈ C1
(
Ω

)
∩ C2 (Ω) satisfy

−Δϕ+ cϕ ≥ 0

on Ω where c is a nonnegative constant. If there exists x0 ∈ ∂Ω such that ϕ(x0) ≤ 0
and ϕ(x) > ϕ(x0) for all x ∈ Ω, then

∂νϕ(x0) < 0.

Proof of Proposition 2.5. Since g is nonnegative, so is ϕc because of Proposition 2.4.
On the other hand, applying Proposition 2.4 again for ‖g‖L∞(∂Ω) − ϕ, we can see
that ϕ ≤ ‖g‖L∞(∂Ω). The boundedness of ϕc in Ω, and hence D, has been verified.
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In order to use the Hopf lemma, we show that ϕc ∈ C2(Ω). In fact, for all x0 ∈ Ω,
let D1 and D2 satisfying

D1 � D2 � Ω

be two open neighbourhoods of x0. The boundedness of ϕc in the previous para-
graph and Proposition 2.1 imply that ϕc belongs to C1(D2). On the other hand,
Theorem 8.8 in [13] helps us to see that ϕc ∈ H2(D2). Hence, ∂xi

ϕc, i = 1, · · · , d,
is in H1(D2). It also satisfies the equation

−Δ∂xi
ϕc + c∂xi

ϕc = 0.

Hence, ∂xi
ϕc belongs to C1(D1) by Proposition 2.1. In other words, ϕc ∈ C2(D1).

We claim that ϕc > 0 not only in D but also in Ω. Assume that ϕc(x0) = 0
for some x0 ∈ Ω. Since g is not identically zero, neither is ϕc. Hence, we can find
a point x1 ∈ Ω such that ϕc(x1) > 0. Without loss of generality, we can suppose
that B(x1, r) ⊂ Ω with r = |x1 − x0| and ϕc(x) > 0 for all x ∈ B(x1, r). Since

ϕc ∈ C2(Ω), ϕc belongs to C1(B(x1, r)) ∩ C2(B(x1, r)). We can apply the Hopf
lemma for ϕc in B(x1, r) to get

∇ϕc(x0) · (x1 − x0) < 0.

This is a contradiction because ϕc attains its minimum value at x0 and ∇ϕc(x0) =
0. �

3. A reconstruction algorithm

In order to achieve a resolution enhancement ultrasound-modulated optical to-
mography can be used. Its basic principles are as follows. We generate a spherical
acoustic wave inside the medium. The propagation of the acoustic wave changes
the absorption parameter of the medium. During the propagation of the wave we
measure the light intensity on ∂Ω. The aim is now to reconstruct the optical ab-
sorption coefficient from such a set of measurements with a better resolution and
stability than using pure optical tomography.

In [3], we have shown that the displacement function u at x caused by a short
diverging spherical acoustic wave generated at y ∈ R

d \D is of the form

(3.1) u(x) = uy(x, t) = − η

ct
w

(
|x− y| − ct

η

)
x− y

|x− y| , x ∈ Ω,

where the constant c is the acoustic wave speed, w ∈ C∞(R,R+) (called the shape
function) is with support contained in [−1, 1], η is a positive parameter representing
the thickness of the wavefront, i.e., the thickness of the support of the displacement
field u, and t is understood as the time parameter.

Now, from (1.1) and (1.3), it follows that

‖ϕu − ϕ∗‖H1(Ω) ≤ c‖qu − q∗‖L2(Ω),

for some positive constant c, and therefore [3]

(3.2)

∫
∂Ω

g(∂νϕ∗ − ∂νϕu) dσ =

∫
Ω

ϕ∗ϕu(q∗ − qu) dx ≈ −
∫
Ω

ϕ2
∗∇q∗ · u dx.

Since ∂νϕ∗ and ∂νϕu can be measured on ∂Ω, it is possible to evaluate the
quantity

∫
∂Ω

g(∂νϕ∗ − ∂νϕu) dσ for all y, t. This quantity is nothing other than
the cross-correlations between the boundary measurements in the perturbed and
unperturbed media.
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Next, from (3.2) we establish an equation for q∗. Using Helmholtz decomposition,
we write

(3.3) ϕ2
∗∇q∗ = −∇ψ +∇×Ψ.

Here, in order to insure the uniqueness of ψ and Ψ we assume that Ω is simply
connected, Ψ is such that ∇ · Ψ = 0, and we supply the boundary conditions
∂νψ = −ϕ2

∗∂νq∗ and Ψ× ν = 0 on ∂Ω.
Since u takes the radial form (3.1), integration by parts yields∫

Ω

∇×Ψ · u dx = 0,

and so (3.2) can be rewritten as∫
∂Ω

g(∂νϕ∗ − ∂νϕu) dσ ≈
∫
Ω

∇ψ · u dx.

Hence, ψ can be constructed and considered as the given data by employing the
spherical Radon transform, as was done in Section 5 in [3].

Let

(3.4) Nu(y, r) :=

∫
∂Ω

g(x)
(
∂νϕ∗(x)− ∂νϕu(x,y, r/c)

)
dσ(x),

where uy is given by (3.1).
For f ∈ C0(Rd) and E ⊂ R

d, define the spherical Radon transform of f over E
by

Rf(y, r) =
1

|S|

∫
S

f(y + rξ) dσ(ξ) y ∈ E, r > 0,

where |S| is the surface of the unit sphere S and dσ is the surface measure over S.
From [3] the following lemma holds.

Lemma 3.1. Fix y ∈ Ω \ D and let r0 > 0. Suppose that q∗(x) = q0 for x ∈
B(y, r0), where B is the ball of center y and radius r0. Suppose also that q∗ ∈
C1,β(Ω) and η is small enough. Then, for all r > r0 and η � r, we have

(3.5) Rψ(y, r) ≈ − 1

η2‖w‖L1 |S|

∫ r

r0

Nu(y, ρ)

ρd−2
dρ.

Having in hand ψ from the cross-correlations between boundary measurements
using a spherical Radon transform inversion, we take the divergence of (3.3) to
arrive at

(3.6) −∇ · (ϕ2
∗∇q∗) = Δψ.

This together with (1.2) also implies that

(3.7) −Δψ = δq0∇ · (ϕ2
∗∇s∗),

where δ and s∗ were introduced in (1.2). Assume that q∗ is bounded from below
and above by two known positive constants q and q respectively. Since ϕ∗ solves
problem (2.1) with q∗ replacing p and Λ, which will be defined later in Lemma 4.1,
by replacing M , its C1(D) norm is bounded. We assume further that δ is small and
s∗ is smooth, with known bound on its C2(D) norm, to guarantee that ‖Δψ‖L∞(D)
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is bounded in the order of δ. The analysis allows us to recover q∗ in D by solving
the system of equations for the two unknowns ϕ and q:

(3.8)

{
−Δϕ+ qϕ = 0 in Ω,

∂νϕ+ ϕ = g on ∂Ω

and

(3.9)

{
−∇ · (ϕ2∇q) = Δψ in D,

q = q0 on ∂D,

where
|Δψ|L∞(Ω) = O(δ) as δ � 1.

This suggests the following algorithm:

(1) Define the initial guess q(0) = q0.
(2) Establish an iterating sequence {q(n)} as follows:

(a) For n ≥ 1, solve

(3.10)

{
−Δϕ(n) + q̂(n−1)ϕ(n) = 0 in Ω,

∂νϕ
(n) + ϕ(n) = g on ∂Ω,

where
p̂ := min{max{p, q}, q}.

(b) Find q(n) by solving

(3.11)

{
−∇ · ((ϕ(n))2∇q(n)) = Δψ in D,

q(n) = q0 on ∂D

and defining q(n) = q0 in Ω \D.
(3) The convergent function of {q(n)} is the true optical absorption coefficient

q∗.

Remark 3.2. The convergence of {q(n)}, mentioned in step 3, will be shown by the
Banach fixed point theorem in the next section. This also implies the well-posedness
of the system constituted by (3.8) and (3.9).

Remark 3.3. Problem (3.10) is uniquely solvable because we are able to avoid the
case that (ϕ(n))2 approaches 0 or ∞ somewhere inside D in the next section (see
Lemma 4.1).

Remark 3.4. We modify q(n−1) by q̂(n−1) in (3.10) because of the obvious inequality

|p̂− q∗| ≤ |p− q∗|,
which makes the proof of the algorithm easier and may increase the rate of conver-
gence.

4. The convergence of the iterative algorithm

Define the open set of L∞(Ω),

(4.1) Q = {p ∈ L∞(Ω) : q < p < q},
and the map

(4.2)
F1 : Q → H1(Ω)

q �→ F1[q] = ϕ, where ϕ is the solution of (3.8).

We have the following result.
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Lemma 4.1. For all q ∈ Q, F1[q] is in L∞(Ω). There exists a positive constant
Λ(q, q) such that

(4.3)
∣∣F1[q](x)

∣∣ ≤ Λ, ∀x ∈ Ω.

Moreover, for any D � Ω, there exists a positive constant λ(D, q, q) such that

(4.4) λ ≤ F1[q](x), ∀x ∈ D.

Proof. Let ϕq and ϕq be the solutions of (2.6) with c replaced by q and q, respec-
tively. It follows by Proposition 2.4 that

ϕq ≤ ϕ ≤ ϕq in Ω.

On the other hand, we can apply Proposition 2.5 to see that

ϕq > 0 in D.

The lemma is proved by letting λ = infD ϕq and Λ = supΩ ϕq. �

Lemma 4.2. The map F1 is Fréchet differentiable. Its derivative at q is given by

(4.5) DF1[q](h) = φ,

for h ∈ L∞(Ω), where φ solves

(4.6)

{
−Δφ+ qφ = −hϕ in Ω,

∂νφ+ φ = 0 on ∂Ω,

with ϕ = F1[q]. Moreover, DF1[q] can be continuously extended to the whole L2(Ω)
by the same formula in (4.6) with

(4.7) ‖DF1[q]‖L(L2(Ω),H1(Ω)) ≤ CΛ,

where Λ was defined in Lemma 4.1.

Proof. Let ϕ′ be the solution of (3.8) with q+h replacing q, assuming ‖h‖L∞(Ω) � 1
so that q + h ∈ Q a.e. in Ω. Note that ϕ′ − ϕ solves{

−Δ(ϕ′ − ϕ) + (q + h)(ϕ′ − ϕ) = −hϕ in Ω,
∂ν(ϕ

′ − ϕ) + (ϕ′ − ϕ) = 0 on ∂Ω.

Using ϕ′ −ϕ as a test function in the variational formulation of the problem above
gives

(4.8) ‖ϕ′ − ϕ‖H1(Ω) ≤ C‖h‖L∞(Ω)‖ϕ‖L2(Ω).

On the other hand, since ϕ′ − ϕ− φ solves{
−Δ(ϕ′ − ϕ− φ) + q(ϕ′ − ϕ− φ) = −h(ϕ′ − ϕ) in Ω,

∂ν(ϕ
′ − ϕ− φ) + (ϕ′ − ϕ− φ) = 0 on ∂Ω,

we can apply the argument above to obtain

(4.9) ‖ϕ′ − ϕ− φ‖H1(Ω) ≤ C‖h‖L∞(Ω)‖ϕ′ − ϕ‖L2(Ω).

Combining (4.8) and (4.9) shows that

‖ϕ′ − ϕ− φ‖H1(Ω) ≤ C‖h‖2L∞(Ω)‖ϕ‖L2(Ω),

which implies

lim
‖h‖L∞(Ω)→0

‖ϕ′ − ϕ− φ‖H1(Ω)

‖h‖L∞(Ω)
= 0.

The first part of the lemma follows.
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Because of Lemma 4.1 and Proposition 2.4, which shows that ϕ ∈ L∞(Ω),
problem (4.6) is uniquely solvable for all h ∈ L2(Ω), and therefore the extension
DF1[q] : L

2(Ω) → H1(Ω) is well-defined. Its continuity and (4.7) can be deduced,
using φ as a test function in the variational formulation of (4.6) and applying
Lemma 4.1:

‖φ‖H1(Ω) ≤ C‖h‖L2(Ω)‖ϕ‖L∞(Ω).

We next introduce another open set of L∞(Ω):

(4.10) P =

{
ρ ∈ L∞(Ω) :

λ

2
< ρ < 2Λ in D

}
.

Let

F2 : P → H1(Ω)

ϕ �→ F2[ϕ] = q, where q is the solution of (3.9) in D and q = q0 on Ω \D.

The following lemma can be proved in the same manner as Lemma 4.2.

Lemma 4.3. The map F2 is Fréchet differentiable. Its derivative at ϕ is given by

(4.11) DF2[ϕ](h) = Q,

for h ∈ L∞(Ω), where Q solves

(4.12)

{
−∇ · (ϕ2∇Q) = ∇ · (2ϕh∇q) in D,

Q = 0 on ∂D,

with q = F2[ϕ] being the solution of (3.9) and Q = 0 in Ω \D. Moreover, DF2[ϕ]
can be extended continuously to L2(Ω) and

(4.13) ‖DF2[ϕ]‖L(L2(Ω),H1(Ω)) ≤
2δΛq0
λ2

c2(λ,Λ,M),

where M is an upper bound of ‖∇ · (ϕ∗∇s∗)‖L∞(D).

Proof. Since evaluating the derivative of F2 at ϕ is similar to doing so in Lemma 4.2,
we only verify the well-definedness of the extension of DF2[ϕ] and (4.13). Since
ϕ ∈ P, we can apply Proposition 2.2 to see that the solution q of (3.9) is in C1(D)
and

‖q − q0‖C1(D) ≤ c2(λ,Λ, δM).

As a consequence, since q = q0 on Ω \D, we deduce that

(4.14) ‖∇q‖L∞(Ω) ≤ c2(λ,Λ, δM) ≤ δq0c2(λ,Λ,M).

Thus, (4.12) is uniquely solvable if h ∈ L2(Ω). This shows how to extend DF2[ϕ]
to L2(Ω).

In order to prove (4.13), we use Q as a test function in the variational formulation
of (4.12) and employ (4.14) to get

λ2

∫
D

|∇Q|2dx ≤
∫
D

ϕ2|∇Q|2dx

≤ 2Λ‖∇q‖L∞(D)

∫
D

|h||∇Q|dx

≤ 2δΛc2(λ,Λ,M)‖h‖L2(D)‖∇Q‖L2(D).
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Therefore,

‖Q‖H1
0 (D) ≤

2δΛq0
λ2

c2(λ,Λ,M),

and the proof is complete. �

Our main result in this section is the following.

Theorem 4.4. Assume that ‖s∗‖C2(D) ≤ M and q, q, and M are given. If δ is

sufficiently small, then the iteration sequence in the algorithm converges in L2(Ω)
to q∗, the unique solution of (3.8) and (3.9).

Proof. Introduce the map

F [q] = F2 ◦ F1[q]

defined on Q. Thanks to (4.3) and (4.4), the range of F1 is contained in the domain
of F2. This shows how the definition above makes sense. Considering F as the
map P → L2(Ω), using the standard chain rule in differentiation and the fact that
H1(Ω) ⊂ L2(Ω), we have

DF [q] : L∞(Ω) → L2(Ω)

given by

(4.15) DF [q](h) = DF2[F1[q]](DF1[q](h))

is the Fréchet derivative of F . Moreover, by Lemmas 4.2 and 4.3, DF [q] can be
extended continuously to L2(Ω) with

‖DF [q]‖L(L2(Ω),L2(Ω)) ≤ ‖DF1[q]‖L(L2(Ω),H1(Ω))‖DF2[q]‖L(L2(Ω),H1(Ω)) ≤ Cδ.

Recall from the algorithm that q(0) = q0 is the initial guess for the true coefficient
q∗, and for n ≥ 1, define

q(n) = F [Tq(n−1)] n ≥ 1,

where T (p) = min{max {p, q}, q}. Note that for all m,n ≥ 1,

‖F [Tq(n)]− F [Tq(m)]‖L2(Ω) =

∥∥∥∥
∫ 1

0

DF [(1− t)Tq(n) + tT q(m)](q(m) − q(n))dt

∥∥∥∥
L2(Ω)

≤ Cδ‖q(m) − q(n)‖L2(Ω).

Thus, if δ is small enough, then

F ◦ T : L2(Ω) → L2(Ω)

is a contraction map. Let q∗ denote the fixed point of F ◦T and hence the convergent
point of q(n). Since q∗, the true absorption coefficient, is a fixed point of F and is
in the interval [q, q], it is the fixed point of F ◦T . Therefore, q∗ = q∗ and the proof
is complete. �

Remark 4.5. Let Ωi be the support of q∗ − q0. It is easy to see that the result of
this paper holds when δ|Ωi| � |Ω|. In fact, if the support of q∗ − q0 is small, then
δ can be taken quite large.
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5. Numerical experiments

As a test case, we consider Ω = (−1, 1)2 and q0 = 1. We set

q∗(x) = 1 + (qi − 1)1Ωi
(x),

with Ωi � Ω and qi > 1 a constant. Here, 1Ωi
denotes the characteristic function

of Ωi. We take the dimensionless shape function w in (3.1) as follows:

w(α) = e1/(α
2−1), α ∈ [−1, 1].

We generate the cross-correlation between boundary measurements Nu given by
(3.4), with u = uy for sampling points y (such that q∗(y) = q0) on the unit circle
and sampling radii r ∈ (0, 2). Then, using Lemma 3.1 and adopting the same
numerical approach as in [4], we generate the data Ψ by inverting the spherical
Radon transform. In the case where the number of sampling points y is small, the
total variation regularization method developed in [4] can be used. Problems (3.10)
and (3.11) are solved iteratively using a finite element code. We use a structured
mesh with 104 vertices and P1 finite elements.

In order to measure the quality of the reconstruction, we introduce, as in [3], two
indicators of the errors made in the image. Let m = min(qmes) and M = max(qmes).
We compute the support of qmes − q0 by

Ωi,mes =

{
qmes − 1 >

M −m

2

}

and define a position error by

Epos =
|Ωi�Ωi,mes|

2|Ωi|
,

with Ωi being the correct support of q∗ − q0. Here, |Ωi�Ωi,mes| denotes the sym-
metric difference between Ωi and Ωi,mes. The second quantity we have to recover is
qi, the correct value of q∗ in the inclusion. For doing so, let us define an estimation
of qi by

qi,mes =
1

|Ωi,mes|

∫
Ωi,mes

qmes

and introduce the relative error for this estimation as follows:

Eval =
|qi,mes − qi|
|qi − 1| .

Finally, we introduce the relative L2-error,

‖ϕ(n) − ϕ∗‖L2(Ω)/‖ϕ∗‖L2(Ω),

where n is the number of iterations and ϕ∗ is the true energy density.
As illustrated in Figure 1, if |qi−1||Ωi| � |Ω|, then one iteration could be enough

to obtain a quite resolved image (i.e., with high resolution) since the relative L2-
error ‖ϕ(1) − ϕ∗‖L2(Ω)/‖ϕ∗‖L2(Ω) is very small (of order 10−10 in the example in
Figure 1).

In Figure 2 we consider the same example as in Figure 1. We plot the behaviors
of Eval and Epos as functions of η. It can be seen that the smaller η is, the better
the reconstruction. However, there is a saturation effect for very small η due to the
finite element discretization.
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Figure 1. Reconstruction after one iteration with η = 0.02, qi =
1.01, Ωi = (−0.25, 0.25)2, and the measurements Nu are for 50
sources on the unit circle and for r ∈ (0, 2).

Figure 2. Reconstruction errors Eval and Epos as functions of η.

Next, we show in Figure 3 that a few iterations are necessary to reconstruct a
resolved image if |qi − 1||Ωi|/|Ω| is not too small. In Figure 3, the reconstructed
images after one, two, and three iterations are given. In Figure 4 it can be seen that
while the support of the inclusion is quite well-reconstructed at the first iteration
(it is in fact the support of the data Ψ), a few iterations are needed in order to find
a good approximation of the value of the optical absorption parameter.

Finally, we illustrate the stability of the proposed algorithm. For doing so, we
add to the measurements a Gaussian white noise with standard deviation ranging
from 0% to 10% of the L∞ norm of Nu and compute the root mean square errors of
the optical absorption parameter, E(E2

val)
1/2, and the position, E(E2

pos)
1/2, as func-

tions of the noise level. Here E stands for the expectation (mean value). In Figure 5,
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Figure 3. Reconstruction after (from left to right) one, two, and
three iterations with η = 0.02, qi = 3 and Ωi = (−0.25, 0.25)2, and
the measurements Nu are for 50 sources on the unit circle and for
r ∈ (0, 2).

Figure 4. Left: Reconstruction errors Eval and Epos as functions

of the number of iterations. Right: Relative L2-error on ϕ(n),
where n is the number of iterations.

Figure 5. Root mean square errors of the position and the value
of qmeas for a noise level from 0% to 10%.
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we compute 100 realizations of the measurement noise and apply our algorithm for
estimating both the shape and the optical absorption of the inclusion. Figure 5
gives, for η = 0.02, E(E2

val)
1/2 and E(E2

pos)
1/2 as functions of the noise level. It

shows the robustness of the proposed approach. It also shows that finding the value
of the optical absorption parameter is more stable than locating the inclusion. This
seems to be due to the diffusion character of the problem satisfied by the optical
absorption distribution.

6. Conclusion

In this paper we have presented a new algorithm for ultrasound-modulated op-
tical diffuse tomography. The modulation of light is due to the propagation of
spherical acoustic waves. It leads to a coupled system of equations. Iteratively
solving such a system yields a resolved image for the optical absorption coefficient
under the Born approximation. The algorithm has good stability properties. Its
performance depends on the boundary data. In order to obtain optimal images in
the sense of resolution and stability, the boundary data has to be chosen in such
a way that the interior of the domain is illuminated. In the case when the Born
approximation is not valid, an optimal control approach can be designed and its
convergence can be proved if the initial guess is close enough to the true solution.
In a forthcoming work, we will present such an approach and quantify its sensitivity
to measurement noise and its resolution as a function of the signal-to-noise ratio.

The result of this paper can be extended to acousto-electromagnetic tomography
developed in [3]. In [3], the background solution, being a plane wave, has constant
amplitude. Even though there is no maximum principle for the Helmholtz equation,
the present approach applies to acousto-electromagnetic tomography if one can
explicitly check that the amplitude of the background solution has a positive lower
bound in the domain. This is the case, for example, when the background solution
is a spherical wave emitted at a point outside the domain or in its boundary.
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