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This paper aims at advancing the field of electro-sensing. It
exhibits physical mechanisms underlying shape perception for
weakly electric fish. These fish orient themselves at night in
complete darkness by using their active electrolocation system.
They generate a stable, relatively high-frequency, weak electric
field and perceive the transdermal potential modulations caused
by a nearby target with different electromagnetic properties than
the surrounding water. The main result of this paper is a scheme
that explains how weakly electric fish might identify and classify
a target, knowing in advance that the latter belongs to a certain
collection of shapes. The scheme is designed to recognize living
biological organisms. It exploits the frequency dependence of the
electromagnetic properties of living organisms, which comes from
the capacitive effects generated by the cell membrane structure.
When measurements are taken at multiple frequencies, the fish
might use the spectral content of the perceived transdermal
potential modulations to classify the living target.

inverse conductivity problem | polarization tensor | shape classification

In the turbid rivers of Africa and South America, some species
of fish generate a stable, relatively high-frequency (0.1–10

kHz), weakly electric (≤100 mV/cm) field that is not enough for
defense against predators. In 1958, Lissmann and Machin (1)
discovered that the emitted electrical signal is in fact used for
active electro-sensing. The weakly electric fish have thousands of
receptors at the surface of their skins. A nearby target with dif-
ferent admittivity than the surrounding water perturbs the trans-
dermal potential induced by the electric organ discharge (2, 3).
Targets with large permittivity cause appreciable phase shifts,
which can be measured by receptors called T-type units (4). It is an
important input for the fish, and thus it will be the central point in
this paper for shape classification.
Active electro-sensing has driven an increasing number of

experimental, behavioral, biological, and computational studies
since Lissmann and Machin’s work (5–12). Behavioral experi-
ments have shown that weakly electric fish are able to locate
a target (12) and discriminate between targets with different
shapes (13) or/and electric parameters (conductivity and per-
mittivity) (14). The growing interest in electro-sensing could be
explained not only by the curiosity of discovering a sixth sense,
electric perception, that is not accessible by our own senses, but
also by potential bio-inspired applications in underwater robot-
ics. It is challenging to equip robots with electric perception and
provide them, by mimicking weakly electric fish, with imaging
and classification capabilities in dark or turbid environments
(14–20).
Mathematically speaking, the problem is to locate the target

and identify its shape and material parameters given the current
distribution over the skin. Due to the fundamental ill-posedness
of this imaging problem, it is very intriguing to see how much
information weakly electric fish are able to recover. The electric
field perturbation due to the target is a complicated highly
nonlinear function of its shape, admittivity, and distance from
the fish. Thus, understanding analytically this electric sensing is
likely to give us insight in this regard (5–7, 9, 13, 18, 21). Al-
though locating targets from the electric field perturbations in-
duced on the skin of the fish is now understood (17, 22),
identifying and classifying their shapes are considered to be some
of the most challenging problems in electro-sensing. Although

the neuroethology of these fish has been significantly advanced
recently (see ref. 23 and references therein), the neural mecha-
nisms encoding the shape of a target are far beyond the scope of
our study. Rather, this work focuses on the physical feasibility of
such a process, which was not explained before.
In ref. 22, a rigorous model for the electro-location of a target

around the fish was derived. Using the fact that the electric
current produced by the electric organ is time harmonic with
a known fundamental frequency, a space-frequency location
search algorithm was introduced. Its robustness with respect to
measurement noise and its sensitivity with respect to the number
of frequencies, the number of sensors, and the distance to the
target were illustrated. In the case of disk- and ellipse-shaped
targets, the conductivity, the permittivity, and the size of the
targets can be reconstructed separately from multifrequency
measurements. Such measurements have been used successfully
in transadmittance scanners of breast tumors (24–26).
The main result of this paper is the presentation and analysis

of a scheme that allows to recognize and classify targets from
multifrequency measurements of the electric field perturbations
induced by the targets. To explain how the shape information is
encoded in measured data, we distinguish two cases: recognition
of nonbiological targets and recognition of living organisms.
Most of the nonbiological objects have very low permittivities,
and therefore, their electromagnetic parameters are frequency
independent. Living targets have frequency-dependent electro-
magnetic parameters because their cell membrane structures
induce capacitive effects (27), and therefore it is possible to
exploit the spectral content of the data. We will mostly focus our
attention on the second situation, but we first explain the strategy
for the first one. Our model in this paper of the weakly electric
fish relies on differential imaging, i.e., by forming an image from
the perturbations of the field due to the target. The method is
based on the multipole expansion for the perturbations of the
electric field induced by a nearby target in terms of the charac-
teristic size of the target. The asymptotic expansion derived in
refs. 22 and 28 generalizes Rasnow’s equation (29) in two
directions: (i) it is a higher-order approximation of the effect of
a nearby target, and it is valid for an arbitrary shape and
admittivity contrast; and (ii) it also takes into account the body
of the fish. As was first shown in ref. 22, one can reduce the
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multipole formula to the one in free space, i.e., without the fish.
In this paper we show how to identify and classify a target,
knowing in advance that the latter belongs to a dictionary of
precomputed shapes. The shapes considered in this paper have
been experimentally tested, and the results are reported in ref.
30. This idea comes naturally in mind when modeling behavioral
experiments such as in refs. 12–14. The precomputed shapes
would then be a model for the memory of the fish (trained to
recognize specific shapes), and the experience of recognition
discussed here would simulate the discrimination exercises that
are then carried out by them. We developed two algorithms for
shape classification: the first one is based on shape descriptors
for nonbiological targets and the second one is based on spectral-
induced polarizations that can be used to image living biological
targets. In the first one, we first extract, from the data, gener-
alized (or high-order) polarization tensors of the target (GPTs)
(28). These tensors, first introduced in ref. 31, are intrinsic
geometric quantities and constitute the right class of features to
represent the target shapes (32, 33). The shape features are
encoded in the polarization tensors. The extraction of the GPTs
can be achieved by a least-squares method. The noise level in the
reconstructed GPTs depends on the angle of view. The larger the
angle of view, the more stable the reconstruction. Then we com-
pute from the extracted features invariants under rigid motions
and scaling. Comparing these invariants with those in a dictionary
of precomputed shapes, we can successfully classify the non-
biological target. For living biological targets, because the mea-
surements are taken at multiple frequencies, we make use of the
spectral content of the data to improve considerably the stability
with respect to measurement noise of the physics-based classifi-
cation procedure. In fact, we show that the first-order polarization
tensors at multiple frequencies are sufficient for the purpose of
classification of living biological targets. This result is described in
detail in the following sections.

Feature Extraction from Induced Current Measurements
Electro-Sensing Model. Let us recall the model of electro-sensing:
the body of the fish is Ω, an open bounded set in R

d, d = 2, 3 with
smooth boundary, and with outward normal unit vector denoted
by ν (Fig. 1A). The electric organ is a time-harmonic dipole f(x)
exp(iωt) inside Ω or a sum of point sources inside Ω satisfying the
charge neutrality condition, where ω is the operating frequency.
The skin of the fish is very thin and highly resistive. Its effective

thickness, that is, the skin thickness times the contrast between
the water and the skin conductivities, is denoted by ξ, and it is of
the order of 1/10th of the fish size (5). We assume that the
permittivity «0 of the background medium is vanishing, and we
denote by σ0 its conductivity. We consider a target D = z + B,
where z is its location, and B is a smooth bounded domain
containing the origin (Fig. 1B). We assume that D is of complex
admittivity k = σ + i«ω, with ω being the operating frequency and
σ and « being, respectively, the conductivity and the permittivity
of the target.
It has been shown in ref. 22 that, in the presence of D, the

electric potential generated by the fish is of the form u(x)
exp(iωt) where u is the solution of the following equations:

∇ · σ0∇u= f in Ω
∇ · ½σ0 + ðk− σ0ÞχD�∇u= 0 in Rd∖Ω;

together with the boundary conditions

∂u
∂ν

����
−
= 0; uj+ − uj− = ξ

∂u
∂ν

����
+
  on ∂Ω;

and the behavior at infinity

juðxÞj=O
�
jxj−d+1

�
; jxj→∞:

Here, χD is the characteristic function of D, ∂/∂ν is the normal
derivative, and j± denotes the limits from, respectively, outside
and inside Ω. Fig. 2 shows isopotentials with and without a target
with zero permittivity but different conductivity from the sur-
rounding medium. In this figure, « = 0 so that the potential is
a real field that does not depend on the operating frequency. In
the same configuration, Fig. 3 shows contour lines of the poten-
tial perturbation, which is the difference of the potentials ob-
tained with and without the target plotted in Fig. 2 B and A,
respectively. One can clearly see that the potential within the fish
is not affected by the target. Indeed the potential inside the body
of the fish Ω is the solution to the interior problem with Neu-
mann boundary conditions at ∂Ω, and therefore it does not de-
pend on the target. The potential outside the body is affected by
the target, and the target seems to play the role of a dipole for
the potential perturbation (Fig. 3). This observation will be clar-
ified in the forthcoming asymptotic analysis. In practice, the
receptors at the surface of the skin of the fish perceive the trans-
dermal potential, that is, the jump of the potential uj+ − uj−.
Because the potential at the interior of the body of the fish is not
affected by the target, the perturbation of the transdermal po-
tential is equal to the potential perturbation at the exterior sur-
face of the skin. In the following, we will study the latter. It is also
worth emphasizing that if the admittivity k of the target depends

Fig. 1. Geometric setup without (A) and with (B) a target. The ellipse is the
fish body Ω. The blue domain in B is the target D.

Fig. 2. The isopotentials without (A) and with (B)
a target. The ellipse is the fish body Ω. The disk in B
is the target D. The source is a dipole inside Ω. Here,
σ0 = 1, σ = 5, « = 0, and ξ = 0.1.
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on the frequency (i.e., if the permittivity « is nonzero), then
a phase shift in the potential is induced, that is, u is complex-
valued and depends on the frequency.

Asymptotic Formalism. The first step is to compute the polariza-
tion tensors from the measurements. In this regard, the next
asymptotic result will be useful. Except when mentioned, we will
fix in this section the frequency ω, leading to a fixed complex
admittivity k. Let G(x) be the Green function of the Laplacian in
R
d, which satisfies ΔG = δ (where δ is the Dirac function at the

origin) and is given by

GðxÞ=

8>><
>>:

1
2π

lnjxj; d= 2

−
1
4π

1
jxj; d= 3:

We denote the single and double layer potentials of a function
ϕ ∈ L2(∂Ω) as SΩ½ϕ� and DΩ½ϕ�, where

SΩ½ϕ�ðxÞd
Z
∂Ω

Gðx− yÞϕðyÞdσðyÞ; x∈Rd; [1]

and

DΩ½ϕ�ðxÞd
Z
∂Ω

∂G
∂νðyÞ ðx− yÞϕðyÞdσðyÞ; x∈Rd∖∂Ω: [2]

We also define the Neumann-Poincaré operator KΩ
* by

K*
Ω½ϕ�ðxÞd

Z
∂Ω

∂G
∂νðxÞ ðx− yÞϕðyÞdσðyÞ; x∈∂Ω; [3]

for ϕ ∈ L2(∂Ω). We assume that the target is away from the fish,
i.e., the distance between the fish and the target is much larger
than the characteristic size of the target but smaller than the
range of the electrolocation, which does not exceed two fish body
lengths. The following dipole expansion for the potential at the
exterior surface of the skin of the fish holds when the volume of
the target becomes small.
Proposition 1. Let the source f be a dipole of moment p0 ∈ R

d

placed at z0. Let the function H: Rd → C be defined by

HðxÞ= 1
σ0

p0 ·∇Gðx− z0Þ+ ðSΩ − ξDΩÞ
�
∂u
∂ν

����
+

�
ðxÞ: [4]

Then the following approximation holds

uðxÞ=HðxÞ−
Xd
α;β=1

∂zαHðzÞMαβðλ;BÞ∂zβGðz− xÞ; [5]

uniformly for x ∈ ∂Ω, where z is the location of the target D and

Mαβðλ;BÞd
Z
∂B

�
λI −K*

B

�−1½να�ðyÞyβdσðyÞ;
is the first-order polarization tensor (PT) associated with domain B and
the contrast λ = (k + σ0)/[2(k − σ0)] (33). Here, KB

* is the Neumann-
Poincaré operator associated with B and I is the identity operator.
Let us make a few remarks. First, the definition of the PT still

holds for complex-valued λ. However, some properties are lost by
this change; thus, one has to study them more carefully in this
situation. Second, the function H, which is computed from the
boundary measurements, still depends on the target, but this is not
important for our present study. Indeed, Eq. 5 could have been
derived with U, the background solution in the absence of the tar-
get, instead of H and GR—the Green function associated to Robin
conditions on ∂Ω—instead of G, but it is much easier to compute
∂zαHðzÞ and ∂zβGðz− xÞ once z is known. This discussion leads us
to the third remark: the location z is supposed to be known from the
algorithm developed in ref. 22. Electrolocation algorithms are based
on a space-frequency approach in the case of multifrequency
measurements (or on the fish movement if only one frequency is
used) (17, 22). The fourth remark follows from the scaling relation

Mαβðλ; δBÞ= δdMαβðλ;BÞ;

which shows that, in the context of a small volume δ � 1, the
first-order correction in Eq. 5 is of the order of δd, whereas the
rest is of order δd+1.

Data Acquisition. Let us suppose that the fish is moving, and let us
take a sample of S ∈ N* different positions (Ωs)1≤s≤S. For a fixed
frequency, this gives us 2S different functions, (us)1≤s≤S and
(Hs)1≤s≤S, leading us to the following data matrix:

QdðQsrÞ1≤s≤S;1≤r≤R;
QsrdHs

�
xðsÞr

�
− us

�
xðsÞr

�
; 1≤ s≤ S; 1≤ r≤R;

[6]

where ðxðsÞr ∈ ∂ΩsÞ1≤r≤R are the receptors of the fish being in the
sth position. The choices of indices are motivated by the fact that
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Fig. 3. The contour lines of the potential perturbation, that is, the differ-
ence between the potentials with and without of the target. It is the same
configuration as in Fig. 2. The potential perturbation is zero inside the fish.
The potential perturbation at the exterior surface of the fish is not zero and
contains information about the target.
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the different positions play the role of sources. From Eq. 5,
one has

Qsr =
Xd
α;β=1

∂zαHsðzÞMαβðλ;BÞ∂zβG
�
z− xðsÞr

�
; [7]

up to a small error, and we can therefore extract the PTMðλ;BÞd
½Mαβðλ;BÞ�dα;β=1 by a standard least-squares procedure (28).
In the case of multifrequency measurements (ω1,. . .,ωF), we

can reconstruct (M(f))1≤f≤F from (Q(f))1≤f≤F analogously.
It is worth mentioning that the location of the target detected

by the fish may be different from the true one due to error in the
electrolocation procedure. Moreover, the target may be rotated,
and hence, the reconstructed PTs correspond to a translated,
scaled, and rotated target B. To recognize the shape B, it is
therefore fundamental for the recognition procedure to have size
invariance, rotational invariance, and translational invariance.
The schemes that we introduce below have these desirable prop-
erties, which makes them robust with respect to the electrolocation
procedure in particular.

Recognition and Classification
We focus on the first-order polarization tensors in the case d = 2,
that is, the 2 × 2 complex matrix M

(f)(D) associated with the
target D and frequency ωf

Mðf Þ
αβ ðDÞd

Z
∂D

"
σ + σ0 + iωf«

2
�
σ − σ0 + iωf«

� I −K*
D

#−1

½να�ðyÞyβdσðyÞ;

for f = 1,. . .,F, α, β = 1, 2. We will show that they are sufficient to
identify efficiently the targets provided that their electrical per-
mittivity is not small at low frequencies. Such an imaging ap-
proach exploits the capacitive effect induced by cell membranes
and is called capacitive imaging.

We use the spectral dependence of the first-order PTs for
recognition. We have the following properties (33).
Proposition 2. For any scaling parameter δ > 0, rotation angle

θ ∈ R, and translation vector z ∈ R
2, let us denote

D= z+ δRθBdfz+ δRθu; u∈Bg;

where

Rθd

	
cos θ −sin θ
sin θ cos θ



;

is the rotation matrix of angle θ. Then

Mðf ÞðDÞ= δ2RθM
ðf ÞðBÞRT

θ : [8]

Hence, if we denote by τðf Þ1 ðDÞ and τðf Þ2 ðDÞ the singular values of
M

(f)(D), we obtain τðf Þj ðDÞ= δ2τðf Þj ðBÞ; j= 1; 2:

Fig. 5. Two different kinds of experiences involve (Upper) a twisted-ellipse shape or (Lower) a straight ellipse shape. The real part of the electric field is
plotted for 3 of 20 positions that the fish takes around the target (placed at the origin).
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Fig. 6. Stability of classification based on differences between all singular
values of PTs, when the fish is a twisted ellipse. The characteristic size of the
target is supposed to be known.
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This proposition gives an idea for two algorithms:

i) The first one, matching the singular values of all the first-
order PTs (M(f))1≤f≤F, would be dependent of the character-
istic scale δ of the targets in the dictionary; and

ii) The second one, independent of the scale of the target,
would match the following quantities:

μðf Þj =
τðf Þj

τðFÞj

for j= 1; 2 and f = 1; . . . ;F − 1: [9]

Some comments are in order. First, the reason why we consider
the first one, even if it is scale dependent, is because it is far more
stable. Also, in some biological experiments, two targets of
different scales are considered as different (13). A question
raised was “how is it possible to discriminate between a nearby
small target and an extended one situated far away?” With the
second algorithm, we have an answer. The last remark concerns
Eq. 9. We could have also considered other scale-independent
ratios, such as

τðf Þj

τð1Þj

 or 
τðf ÞjPF
f ′=1τ

ðf ′Þ
j

;

but because τðFÞj happens to be the largest one (the frequencies
are sorted in increasing order), it is more stable to consider Eq. 9.
It is worth mentioning that if there exists an integer p > 2 such
that R2π/pD = D, then M

(f)(D) is isotropic.

Numerical Illustrations
In this section, we illustrate the performance of the algorithms
developed in the previous section. When, at multiple frequencies,
the first-order polarization tensors are used, we arrive at a very
robust and efficient classification procedure from spectral data.

Setup and Methods. We describe the dictionary and the mea-
surement systems. We consider two different shapes for the fish:
ellipses and twisted ellipses. This variety of shapes exists in na-
ture. On the one hand, twisted ellipses would represent electric eels
(Electrophorus electricus), whereas on the other hand, straight el-
lipses would look like Apteronotids (3). This simplified represen-
tation shows that the principle of our algorithms can be generalized
to any kind of fish shape (hence, modeling, for example, electro-
sensing for Mormyrids as well). It also enhances the fact that, for
bio-inspired engineering applications, the shape of the robot is not
a determining factor. Moreover, as we will see later, our simplified
representation is a good model to tackle aperture issues.

Dictionary. The dictionary D that we consider is composed by
eight different targets: a disk, an ellipse, the letter A, the letter
E, a rectangle, a square, a triangle, and an ellipse with different
electrical parameters (Fig. 4). Indeed, the first seven targets have
conductivity σ = 2 and permittivity « = 1, whereas the last one
has conductivity σ = 5 and permittivity « = 2.

Measurements. In each numerical experiment, one target of the
dictionary is placed at the origin while the fish swims around it.
We consider two different shapes for the body of the fish:
straight ellipses and twisted ellipses. The measured data are built
taking 20 positions of the fish around the target (Fig. 5).
The typical size of the target is δ = 0.3 (which means, the

target is one of the elements of the dictionary shown in Fig. 4
scaled by δ). The fish is turning around a disk of radius R = 1 and
center at 0; the semiaxes of the twisted ellipse are a = 1.8 and b =
0.2, whereas the ones of the straight ellipse are a = 1 and b = 0.2.
The effective thickness of the skin is set at ξ = 0. The fish has 64
receptors uniformly distributed on its skin, and the electric organ
emits F = 10 frequencies, equally distributed from ω0 d 1 to Fω0.
We refer to ref. 22 for nondimensionalization of the underlying
model equations with proper quantities and realistic values.

Classification. The recognition process is as follows. When meas-
urements are acquired, we perform least-square reconstruction of
the PTs of the targets. From these PTs, we compute quantities of
interest q (i.e., singular values or ratios of singular values). Then,
for each element Bn in the dictionary D, we compute jjq − q(Bn)jj,
where q(Bn) is the precomputed quantity of interest for the nth
shape, and we decide that the target is of type n̂ that achieves the
minimum of jjq − q(Bn)jj.
Framework for algorithms of multifrequency classification:

i) Input: the quantities of interest (q(f))1≤f≤F calculated from
the measurement of an unknown shape D;

ii) For Bn ∈D do;
iii) en ←

P
1≤f≤F

��qðBnÞðf Þ − qðf Þ
��2, where [q(Bn)

(f)]1≤f≤F is the

same type of quantity of interest of shape Bn;
iv) n ← n + 1;
v) End for
vi) Output: the estimated dictionary element n̂← argminnen.

Stability Analysis. First, let us explain what kind of noise is con-
sidered. We will add a random matrix (with Gaussian entries) to
the data matrixQ defined in Eq. 6. More precisely, we will consider
~QdQ+ «nW; whereW is a S × Rmatrix whose coefficients follow
a complex Gaussian distribution with mean 0 and variance 1. The
real number «n is the strength of the noise and will be given in
percentage of the fluctuations of Q (i.e., maxs,r Qsr − mins,r Qsr).
The recognition procedure remains the same. Stability analysis was
then carried out empirically: for each noise level, we performed
Nexp = 5 × 104 independent recognition processes and computed
the ratio of good detection. The computation ends when we reach
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Fig. 7. Same as in Fig. 6 when the fish is a straight ellipse.
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singular values, when the fish is a twisted ellipse.
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the threshold of 12.5% probability of detection that corresponds to
a uniform random choice of the object in the dictionary. The nu-
merical results are plotted in Figs. 6–9.

Results and Discussion. One can see that considering all singular
values (Figs. 6 and 7) is much more stable than considering ratios of
singular values (Figs. 8 and 9). Moreover, the aperture does not
change the stability very much. In this regard, the most stable al-
gorithm is to recognize all singular values when the fish is a twisted
ellipse (Fig. 6), leading us to a probability of detection superior to
90% with noise level of 125%. The noise level is computed with
respect to the perturbation in the measurementsQ given by Eq. 6,
which is of the order of the target volume as seen in Eqs. 7 and 8.
Hence, a noise level of 125% remains small compared with the
actual transdermal potential u.

Concluding Remarks
In this paper, we successfully exhibited some fundamental
physical mechanisms for possible shape recognition and classi-
fication in active electrolocation. When measurements at multiple
frequencies are used, the classification exploits the measured

frequency-dependent first-order polarization tensors. The result-
ing classification scheme is very robust with respect to additive
noise. However, it can only be used for imaging living biological
organisms, for which the permittivity is not zero.
In the case of nonbiological targets with very low electrical

permittivity, such as man-made conducting or insulating structures,
the data are frequency independent. It is then necessary to in-
troduce another scheme for classifying nonbiological targets. A
possible classification scheme is based on the measured generalized
(or high-order) polarization tensors of the target. The electric fish
could extract, from the measured perturbations of the transdermal
potential, such geometric features, and it could compute, from the
extracted features, invariants under rigid motions and scaling that
can be considered as shape descriptors. The weakly electric fish
might then classify a target by comparing its invariants with those of
a set of learned shapes. We showed in ref. 28 that extracting
generalized polarization tensors from the frequency-independent
data and comparing invariants with those of learned elements in
a dictionary yields a classification procedure with a good perfor-
mance in the full-view case and with small measurement noise
level. However, this shape descriptor-based classification is quite
instable in the limited-view case and for high noise level.
In conclusion, the recognition and classification procedure

that we provide in this paper is much more stable and easy to
implement for imaging living biological organisms than for im-
aging nonbiological targets with very low permittivity, for which
the proposed multifrequency approach cannot be applied.
The principle of our algorithms can be generalized to any kind

of fish shape. For bio-inspired engineering applications, the shape
of the autonomous robot is not determining. The results of this
paper could motivate the equipment of autonomous robots with
electro-sensing capabilities to image, recognize, and classify both
living organisms and nonbiological targets.
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Fig. 9. Same as in Fig. 8 when the fish is a straight ellipse.
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