DIVERSIFICATION IN FINANCIAL NETWORKS MAY INCREASE
SYSTEMIC RISK
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Abstract. It has been pointed out in the macroeconomics and financial risk literature that
risk-sharing by diversification in a financial network may increase the systemic risk. This means
roughly that while individual agents in the network, for example banks, perceive their risk of default
or insolvency decrease as a result of cooperation, the overall risk, that is, the risk that several agents
may default simultaneously, or nearly so, may in fact increase. We present the results of a recent
mathematical study that addresses this issue, relying on a mean-field model of interacting diffusions
and its large deviations behavior. We also review briefly some recent literature that addresses similar
issues.
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1. Introduction. Systemic risk is the risk that a large number of components
of an interconnected financial system fail within a short time thus leading to the over-
all failure of the financial system. What is particularly interesting is that the onset
of this overall failure can occur even when the individual agents in the system per-
ceive that their own individual risk of failure is diminished by diversification through
cooperation. This phenomenon is described and put into a broader perspective in
Haldane’s recent presentation [8], which was the starting point of our own work [7].
In this review we first introduce and describe our model for the role of cooperation in
determining systemic risk. It is a system of bistable diffusion processes that interact
through their mean field. Failure is formulated as dynamic phenomenon analogous to
a phase transition and it is analyzed using the theory of large deviations. We then
describe briefly some related recent literature on contagion and risk amplification that
give an idea of what mathematical models are being currently used to address such
systemic risk issues.

In section 2 we consider a simple model of interacting agents for which systemic
risk can be assessed analytically in some interesting cases [7]. Each agent can be in
one of two states, a normal and a failed one, and it can undergo transitions between
them. We assume that the dynamic evolution of each agent has the following features.
First, there is an intrinsic stabilization mechanism that tends to keep the agents near
the normal state. Second, there are external destabilizing forces that tend to push
away from the normal state and are modeled by Brownian motions. Third, there is
cooperation among the agents that acts as a stabilizer, modeled by a mean field. In
such a system there is a decrease in the risk of destabilization or ”failure” for each
agent because of the cooperation. However, the effect of cooperation on the overall or
system’s risk is to increase it. Systemic risk is defined here as the small probability of
an overall transition out of the normal state. We describe how for the models under
consideration, and in a certain regime of parameters, the systemic risk increases with
increasing cooperation. Our aim is to elucidate mathematically the tradeoff between
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individual risk and systemic risk for a class interacting systems subject to failure.

In section 3 we describe three mathematical models that consider overall or sys-
temic failure of financial systems. The first is the study of contagion in a random
network of interacting financial agents [11]. The main result is that the degree of
interconnectivity of the network determines if failure of one, or a few, components
will spread out to the whole system, that is, become a contagion. This is a form of
instability or dynamic phase transition that is different from what we consider and it
provides some perspective on the kind of mathematical models that can be used. The
second model [2] that we discuss briefly addresses roughly the same question that we
address, that is, how reducing individual risk by diversification can increase systemic
risk. A static model is used and systemic risk is defined through a cost function of
the size of the default. For convex cost functions it is shown that diversification is not
the best strategy for reducing systemic risk. Finally the third model [1] introduces a
feedback mechanism for default acceleration in a system of interacting diffusions. In
this model the effect of risk diversification by cooperation is counterbalanced by this
default acceleration mechanism.

2. A Bistable Mean-Field Model for Systemic Risk.

2.1. The Model. We consider a mean-field model of an interacting system of
diffusions in order to explain why the risk diversification may increase the systemic
risk. Consider a banking system with N banks. For j =1,..., N, we let 2;(t) denote
a risk index for bank j. We say that at time ¢, the bank j is in the safe or normal
state if () ~ —1 and in the failed state if z;(¢) = 1. We model the evolution of the
x;(t)’s as continuous-time processes satisfying the system of Itd stochastic differential
equations:

dz;(t) = —h(x?(t) —z;(t))dt + 0(Z(t) — z;(t))dt + odw;(t). (2.1)

Here U(y) := y* — y is the gradient of the two-well potential function V (y) := y*/4 —
y*/2. Without the last two terms in (2.1), z; = £1 are the stable states of (2.1),
and therefore we may call —1 the safe or normal state and +1 the failed state. The
positive constant h is a measure of intrinsic stability, indicating how difficult it is for
a bank to transit from one state to the other. In the second term, z(t) := >, z;(t)/N
is the empirical mean of the risks and is taken as the risk index of the whole system.
The parameter 6 > 0 quantifies the degree of cooperation between banks since when
this parameter is large the individual bank j tends to behave like the overall system.
More precisely, if the whole banking system is in the good state, any bank can share
its risk with the other banks so that it can reduce its own risk. On the other hand,
a well-behaved bank might also default because it shares risk with many ill-behaved
banks. The size of 6§ quantifies the strength of risk diversification. Finally w;(t) is
the external shock to the bank j and o is its amplitude. We model {wj(t)}jy:l as
independent Brownian motions.

2.2. The Mean-Field Limit. In order to analyze the systemic behavior we
need to consider the dynamical behavior of the empirical mean Z(t). However, the
system is nonlinear so there is no closed equation for Z(t). We therefore need to
consider the empirical density of the diffusions, not only the empirical mean, which
evolves in an infinitely dimensional space. Let Mj(R) be the space of probability
measures and C([0,T], M1 (R)) be the space of continuous M; (R)-valued processes on
[0, T; both spaces are endowed with the standard topologies. We define Xy (¢, dy) :=
~ Z;\Ll 0z, (t)(dy), and it is not difficult to see that Xn € C([0,T], M;(R)) and Z(t) =
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Fic. 2.1. Schematic of the bistable interacting diffusions system.

JyXn(t,dy). We cite the well-known mean-field limit theorem (proved by Dawson
[3]) where as N — 0o, X converges in law to a M;(R)-valued deterministic process
satisfying the Fokker-Planck equation

%u = haﬁy[(y?’ —y)u] — 0% { [/ yu(t, dy) — y] u} + ;UQaa;u. (2.2)

One can easily see the connection between (2.2) and (2.1), and indeed the proof is
based on It6’s formula and the martingale formulation of diffusions.

Because of the mean-field limit theorem, we can analyze u in (2.2) instead of the
empirical density X, which we can view as a perturbation of u for N large. Although
the full explicit solution of (2.2) is not known, equilibrium solutions can be found.
Assume that the first order moment of the equilibrium is &, and then the equilibrium
ug(y) satisfies

d 3 e d e 1 2 d2 e __
which implies that
1 — &) 2 1 1
ug(y) = ———=exp {—(y Uf) —h— (" - 23/2)} , (2.3)
Ze\)2m 0 2% 7

where Z is the normalization constant. Since the first order moment is &, we have
the compatibility condition:

€= m(e) = / Yl (y)dy. (2.4)

Clearly ¢ = 0 satisfies (2.4), but there may be other solutions as well. We refer
to [3] for the following general result: given h and 6, there exists a critical o, > 0
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such that (2.4) has two additional non-zero solutions £¢, if and only if o < o.. This
has a straightforward interpretation. When o > o, the randomness dominates the
interaction among the components, that is, 6(Z(t) —x;(t))dt is negligible. In this case,
the model behaves like a set of N independent diffusions and then roughly one half of
them stay around —1 and the rest stay around +1 so the average is 0. On the other
hand, when o < o, then the interactive and stabilizing forces are significantly larger
than the random disturbances. Therefore most particles stay around the same place
(=& or +&).

We can get a more explicit expression for o, when h is small. In that case, ug can
be viewed as a pertubation of the Gaussian density function and we can solve (2.4)
explicitly. It turns out that

o2 6 (02\1—2(c2/20) )
&=1/1-3% <1+h02 (20) T307720) +O(h?), (2.5)
and &, exists if and only if 302 < 26.

2.3. Large Deviations. For modeling systemic risk, we need to specify the
system’s safe (normal) and failed states. We assume that ¢ < o, throughout so that
there are two stable equilibria: ug,, . Let u® . denote the system’s safe state and ule,
denote the system’s failed state. If all agents are in the safe state initially, z;(0) = —1,
then we expect that for large N and large ¢, X () ~ ug, and Z(t) = —&,. We assume
that Xn(0) = u’,, and 2(0) — —& as N — oo. If so, one would think that for large
N, Xn(t) = ul,, and Z(t) ~ —& for all .

However, as long as N is large but finite, randomness still matters and given
a finite time horizon [0,7] the following event A happens with small but nonzero
probability:

A= {XN(t)70 <t< T: XN(O) ~ UigbaXN(T) ~ uigb}. (26)

The rare event A captures a phase transition, in the sense that the system moves from
the safe state to the failed state. Now the systemic risk in this framework is naturally
defined as P(A), the probability that the system transitions from the system’s safe
state “igb at time ¢ = 0 to the system’s failed state uifb at time t =T

We need, therefore, to compute P(A). Because A is a rare event we use large
deviations to compute it. The general large deviations principle and related studies for
similar interacting particle system has been carried out by Dawson and Gértuner [4, 5].
Although everything here can be proven rigorously, we ignore the technicalities so as
to give a simplified description of the results. The Dawson-Géartner large deviations
theory says that for IV large,

P(A) ~ exp (—N %Ielg Ih(A)) ,

where I}, (¢) is the rate function:

T
In(¢) = %/0 f:<;1}5>¢0<¢t_£2¢_h/\4*¢7f>2/<¢afy2>dt7 (1 f) =/_oo w(dy) f (),

£6 = 300n + 0 { [y - [t dy)} ¢>} L M= [ — )]



This result is an infinite dimensional analog of the Freidlin-Wentzell theorem for
finite dimensional SDEs with small noise (see [6]). To get a feeling for the Dawson-
Gértner theory we note that ¢y — L3¢ —hM™¢ is just the same differential operator in
(2.2) so Ip(u) = 0 if u solves (2.2) and P(A) = 1, provided we have u € A. Moreover,
if a path ¢ is far from u in the sense that ¢, — L3¢ — hM™¢ is significantly different
from zero, I (¢) is large, meaning that it is less likely to have Xy = ¢. In other
words, Iy (+) is a measure for how difficult it is for Xy to deviate from u. The higher
value I (¢) is, the less likely Xn =~ ¢.

Now the problem is that it is very hard to compute infyec 4 In(A) with the given
A in (2.6). It is an infinitely-dimensional, nonlinear variational problem. However,
for small h, we are can find a very good approximation for it [7]. More precisely, for
any € > 0, there are sufficiently small A > 0 such that

< inf I(¢) < 2, +
_ in S
€S geah o2T T ©

267
2T

where &, is given in (2.5).

One might ask, why this small-h assumption: is it realistic to take h small? In fact,
the small-h case is the only interesting one. Virtually all of the model-based studies
of systemic risk that we have found in the literature show that individual stability has
the monotone effect to the systemic stability, and systemic collapse happens extremely
rarely if there is strong or moderate individual stability. Our numerical simulations
also show that it is very unlikely to see a phase transition, within a reasonable time
horizon, even for moderate h. Thus we may conclude that indeed P(A) is nonzero for
h that are not small, but the expected time of the system failure might be hundreds
or thousands of years. Another rationale is that the only incentive for a bank to share
risk is that its capital reserves, roughly modeled by the parameter h, are relatively
lower than the uncertainty, o that it faces. In this case, the bank is concerned about
the risk it is taking and wants to diversify it. If its capital reserves are relatively high,
the bank has no incentive to share the risk.

2.4. Fluctuation Theory for Individuals. Before we go to the main result
that risk diversification may increase the systemic risk, we need to review briefly the
classical fluctuation theory for individual agents. Assume that all z; are in the vicinity
of —1 so that we can linearize them:

N
_ _ _ 1
3y(t) = L+ 02;(t), @(t) = —1+0%(t), ox(t) = - Zl&ﬂj(t).
=
Then dx;(t) and 6Z(t) satisfy the linear SDEs:
o N
déxj = —(0 + 2h)0w;dt + 00zdt + odw;,  doT = —2hdTdt + - > dw;,

j=1

with dx;(0) = dz(0) = 0. The processes dz;(t) and 6Z(t) are Gaussian and their
mean and variance are easily calculated. For all t > 0, Edz;(t) = Edéz(t) = 0 and

Variz(t) = %2(1 — e 4ht) In addition, Varéz;(t) — 2(#2%)(1 — 2020ty 59
N — oo, uniformly in ¢t > 0. Thus 0?/N and 02/2(0 + 2h) should be small so that
the linearizations are legitimate.



2.5. Why the Risk-Sharing May Increase the Systemic Risk. Now we
are ready to present the main result. Assume that 02/N and 02/2(6 + 2h) are suffi-
ciently small and N is large. From the above fluctuation theory, the risk index x;(t)
of the bank j is approximately a Gaussian process with the stationary distribution
N(=1,02/2(0 + 2h)). Suppose o2 is high. Such a 02 may mean that the economy is
more uncertain or the bank is more risk-prone. In this case, in order to keep the risk
index x;(t) at a safe level, the bank may increase its intrinsic stability (capital re-
serve), h, or share risk with the other banks, that is, increase §. Because increasing h
is generally much more costly (affects profits) than increasing 6, and at the individual
agent level there is no real difference to risk between increasing h or 6, the banks are
likely to increase 6 to diversify risk. Note that 02/2(0 + 2h) < 02/20 when o2 and 0
are significantly larger than h. Thus, the bank can maintain low individual risk even
with high external uncertainty by fixing a low ratio o2/26.

How does this risk-sharing (increase o but keep 02/20 low) impact the systemic
risk? From the large deviation section above we know that the systemic risk is

o 26
P(A) ~ exp ( N02T> ,

o? 6 (02\°1—2(c2/20) )
S=y1=35 <1+h02 (29) 1—3(02/26) +O(R).
We see that there are additional systemic-level 02’s in the exponent and &,, which
can not be observed by the individual agents, increasing the systemic risk, even if the
individual risk 02/26 is fixed and low. In other words, the individuals may believe
that they are able to take more external risk by diversifying it, but an increase of
external uncertainty still destabilizes the system.

3. Review of Some Models for Systemic Risk. We will review briefly three
models of systemic risk that we have selected from the recent literature on the subject.
We do this in order to give an idea of the type of mathematical models that are being
used and the results obtained.

3.1. The Bank of England Model. We review the systemic risk analysis con-
sidered in [11, 10, 9]. A banking system is modeled as a random network where the
nodes represent the banks and the edges represent the interbank relations (loans and
borrowing). Using the notation in [10, 9], each bank ¢ is characterized by four activ-
ities quantified by the external assets e;, the interbank loans [;, the deposits d; and
the interbank borrowing b;. The e; and [; are considered as assets for the bank i,
whereas b; and d; are its liabilities. Its net worth ~; is v; = (e; +1;) — (d; + b;). The
bank i is solvent if 7; > 0 and otherwise the bank ¢ defaults. The network is a random
Erdos-Rényi graph. This means that the directed edge from ¢ to j (that is, when the
bank 4 lends to the bank j) exists with probability p independently of the other edges.

Focus is on the default contagion due to the failure of a single bank. Assume
that there is an external shock to the bank ¢ so that it loses a fraction of its external
assets e; and the net worth 7; becomes negative. Therefore, by definition, the bank
i defaults (Phase I failure) and its creditors lose their loans because of the default of
i. If the loss of the creditor j is higher than its net worth «;, then the bank j also
defaults (Phase II failure) and j’s creditors lose their assets accordingly and so on
(Phase III failure and more).
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The main interest in this problem is in calculating how the parameters (e;, I;,
d;, b;, p and the number of banks N) affect the extent or spreading of defaults. For
simplicity the parameters are assumed to be uniform among all banks. This uniformity
also allows the asymptotic analysis by the mean-field approximation as N — oo and
the approximation is in excellent agreements with numerical simulation (see [10]).

We briefly explain the mean-field approximation in [10], which is different from
the mean-field model considered in the previous section. Since the edges in the Erdos-
Rényi network are independent identically distributed 0 — 1 random variables, in the
mean-field approximation we let the in/out degrees of each node be the deterministic
average number z = p(N — 1). Phase I failure is straightforward: a randomly chosen
bank fails when its loss is larger than the net worth 7. Note that the size of Phase
I failure is always one. Phase II failure is also clear: because the failed bank has z
creditors, there are z failed banks in Phase II if each creditor’s net worth v is lower
than the loss divided by z, or no banks fail in Phase II otherwise. We see here a
phase transition: as z increases, the size of Phase II failure also increases because the
failed bank propagates the shock to more neighbors. However, once z is higher than
a critical value, the neighbors can absorb the shock without defaulting. Phase III
failure is more complicated to describe and we refer to [10]. But we note that, as in
Phase II, Phase III failure occurs only for z smaller than a critical value.

In [11, 10] extensive numerical tests are carried out to assess the effect of the var-
ious parameters. Although the extent of the defaults is not linear in the parameters,
some of qualitative behavior agrees with what may be expected: the number of de-
faults monotonically decreases with the net worth v and monotonically increases with
the fraction of interbank assets. However, the most interesting effect is the impact
of the Erdos-Rényi probability p = (N — 1)/z, which can be viewed as the intercon-
nectivity of the network. Numerical studies show that the number of defaults is an
M-shaped curve of p. This can be explained by the mean-field approximation where
the number of the Phase II defaults is a linear function of p for p less than the critical
value pr; and vanishes for p > pr;. The number of the Phase III defaults is nonzero
only if p is smaller than the critical value pri; < pir. If additional failures (Phase IV,
V, ...) are negligible, the number of defaults is the sum of those in the first three
Phase failures, which gives an M-shape function of p (note that the Phase I failure is
always one).

3.2. Individual versus Systemic Risk. We explain here the general frame-
work, rather than a particular mathematical model, considered in [2] so as to argue
why the individual’s optimum policy could be very different from the system’s opti-
mum policy to minimize risk. Suppose that this system has N banks and M assets,
and at time ¢ = 0 each bank can invest these M assets. Let X;; denote the fixed
allocation of bank i to asset j at t = 0. If Vj is the loss of the asset j between ¢t = 0

and ¢ = 1, then the total loss of the bank ¢ at t = 1 is Zjle Xi;Vj, and ¢ defaults
when Zjle Xi;Vj > i, the capital reserve of 1.

For simplicity, we assume that for all i, ; = -, that Zjle X;; = 1 and that V},
7 =1,..., M are independent identically distributed random variables. Then clearly
the optimal strategy of each bank 7 is to take X;; = 1/M for j = 1,..., M. That is,
each individual should invest equally in all assets to diversify risk.

What is the optimal strategy for the system? This is a mainly question about
the way to define systemic risk. In [2], systemic risk is defined as a cost function
of the number of defaults. If the cost function is a linear function of the number of



defaults, then the system’s optimal is equal to the individual’s optimal because we
believe that the cost of two defaults at the same time equals twice the cost of a single
default. However, if the cost function is super-linear, more precisely convex, then the
system’s optimum is different because now we believe that simultaneous defaults are
much more expensive. In this situation, the best strategy for the system is that each
bank invests in a single but distinct asset, so that when some assets lose their values,
only a fraction of the banks default and the systemic risk is still low.

In this framework the result is based entirely on the form of the cost function.
In [2] it is argued that the cost function is indeed super-linear at the level of the
economy and the society in general. In this case the regulators face a dilemma since
the individual and system’s optima are very different. Reconciling these differences
becomes a challenge.

3.3. The Model of Financial Accelerators. Battiston et al. use the concept
of the financial accelerator to explain why risk diversification in fact increases the
individual as well as the systemic risk. The system is a k-regular graph and the set
k; are the edges of the bank i. Let p; indicate the robustness of the bank ¢ assumed
to satisfy the SDEs

o= 3 Wis(p3(0) = )t +-0 3 Wigdey 0+ (0. plt = ). (3.1

The bank ¢ defaults if p; < 0. The first term in (3.1) is the interbank cooperation and
W;; are non-negative weights with ) ; Wij = 1. Here &;(t) are independent Brownian
motions representing the random influences, and h(p;(t), p;(t — dt)) is the financial
accelerator defined as

h(pi(t), pi(t — dt)) = { o pill) .pl(t ) < —co/Vkdt,

0, otherwise.
The financial accelerator models a positive feedback to speed of the decline when it
is past a threshold. We also note that when the diversify k increases, it is easier to
trigger the financial accelerator, and therefore the diversification may destabilize the
individual risk. In order to obtain an analytical result, they replace h(p;(t), p;(t —dt))
by its expected value —ag (a constant), where q(k,o,«,¢€) is the probability that

hpilt), pilt — dt)) = —a

. a(—0)
1—®(avk/o—e€) + P(—e€)

where ® is the Gaussian cumulative distribution. Then they study the linearized SDE

dpi =Y Wij(pi(t) — pi(t))dt + o Y Wijdg;(t) — aq(k, o, a, €)dt. (3:2)

j€k; JEk;

Let P be the individual risk defined as Py = 1/Ty, where Ty is the mean first
passage time that a single bank defaults. Without the financial accelerator, Py (k) is
a monotonically decreasing function of the diversity k. However, with the financial
accelerator, Py(k) reaches a minimum at certain value k*. This is interpreted as an
indication that diversification is not always a good thing.
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4. Summary and Conclusion. We have described through a mathematical
model why risk-sharing may increase the systemic risk. We have used a classical model
of bistable diffusions with mean-field interactions for the analysis of dynamic phase
transitions that is widely studied in physics and other fields. The interpretation of our
analytical result in the systemic risk context is that an increase in the systemic risk
can come from a qualitative inconsistency between central and tail probabilities. This
means that the individual agents (central) and the overall system (large deviations)
perceive risk in different ways. On the one hand, the central probability analysis shows
that the individual agents can diversify their risks as long as the system is stable. On
the other hand, the system is not always stable: it may fail with a small probability
that in fact increases with o. From a physical point of view, {awj(t)}?/:l quantifies
the energy injected into the system. Because this system is closed, the overall energy
will not diminish by diversification. Eventually the high energy makes the system
more volatile and increases the probability of a systemic failure.
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