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Abstract

The goal of this paper is to contribute to the field of nondestructive testing by eddy currents. We provide a mathematical
analysis and a numerical framework for simulating the imaging of arbitrarily shaped small-volume conductive inclusions from
electromagnetic induction data. We derive, with proof, a small-volume expansion of the eddy current data measured away from
the conductive inclusion. The formula involves two polarization tensors: one associated with the magnetic contrast and the second
with the conductivity of the inclusion. Based on this new formula, we design a location search algorithm. We include in this paper
a discussion on data sampling, noise reduction, and probability of detection. We provide numerical examples that support our
findings.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

L’objet de cet article est de contribuer à l’imagerie non-destructive par courants de Foucault. On donne un cadre mathématique
et numérique pour l’imagerie de défauts conducteurs à partir de mesures d’induction. On établit une formule asymptotique qui
donne l’effet d’un défaut conducteur sur le champ magnétique. On développe également des méthodes de localisation du défaut,
de réduction de bruit et des tests statistiques de détection.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Nondestructive testing by eddy currents is a technology of choice in the assessment of the structural integrity of a
variety of materials such as, for instance, aircrafts or metal beams, see [12]. It is also of interest in technologies related
to safety of public arenas where a large number of people have to be screened.

We introduce in this paper a novel analysis pertaining to small-volume expansions for eddy current equations,
which we then apply to developing new imaging techniques. Our mathematical analysis extends recently established
results and methods for full Maxwell’s equations to the eddy current regime.

We propose a new eddy current reconstruction method relying on the assumption that the objects to be imaged are
small. This present study is related to the theory of small-volume perturbations of Maxwell’s equations, see [9–11].
We also refer the reader for instance to [7,8,5,16] for this asymptotic framework. It is, however, specific to eddy
currents and to the particular lengthscales relevant to that case.

We first note that in the eddy current regime a diffusion equation is used for modeling electromagnetic fields.
The characteristic length is the skin depth of the conductive object to be imaged [12]. We consider the regime where
the skin depth is comparable to the characteristic size of the conductive inclusion.

Using the E-formulation for the eddy current problem, we first establish energy estimates. We start from inte-
gral representation formulas for the electromagnetic fields arising in the presence of a small conductive inclusion to
rigorously derive an asymptotic expansion for the magnetic part of the field. The effect of the conductive target on
the magnetic field measured away from the target is expressed in terms of two polarization tensors: one associated
with the magnetic contrast (called magnetic polarization tensor) and the second with the conductivity of the target
(called conductivity polarization tensor). The magnetic polarization tensor has been first introduced in [10] in the zero
conductivity case while the concept of conductivity polarization tensor appears to be new.

Based on our asymptotic formula we are then able to construct a localization method for the conductive inclusion.
That method involves a response matrix data. A MUSIC (which stands for Multiple Signal Classification) imaging
functional is proposed for locating the target. It uses the projection of a magnetic dipole located at the search point
onto the image space of the response matrix. Once the location is found, geometric features of the inclusion may
be reconstructed using a least-squares method. These geometric features together with material parameters (electric
conductivity and magnetic permeability) are incorporated in the conductivity and magnetic polarization tensors. It is
worth emphasizing that, as will be shown by our asymptotic expansion, the perturbations in the magnetic field due to
the presence of the inclusion are complex-valued while the unperturbed field can be chosen to be real. As consequence,
we only process the imaginary part of the recorded perturbations. Doing so, we do not need to know the unperturbed
field with an order of accuracy higher than the order of magnitude of the perturbation. An approximation of lower
order of the unperturbed field is enough.

The so-called Hadamard measurement sampling technique is applied in order to reduce the impact of noise in
measurements. We briefly explain some underlying basic ideas. Moreover, we provide statistical distributions for the
singular values of the response matrix in the presence of measurement noise. An important strength of our analysis
is that it can be applied for rectangular response matrices. Finally, we simulate our localization technique on a test
example.

The paper is organized as follows. Section 2 is devoted to a variational formulation of the eddy current equations.
Section 3 contains the main contributions of this paper. It provides a rigorous derivation of the effect of a small con-
ductive inclusion on the magnetic field measured away from the inclusion. Section 4 extends MUSIC-type localization
proposed in [6] to the eddy current model. Section 5 discusses the effect of noise on the inclusion detection and pro-
poses a detection test based on the significant eigenvalues of the response matrix. Section 6 illustrates numerically on
test examples our main findings in this paper. A few concluding remarks are given in the last section.

2. Eddy current equations

Suppose that there is an electromagnetic inclusion in R
3 of the form Bα = z + αB , where B ⊂ R

3 is a bounded,
smooth domain containing the origin. Let Γ and Γα denote the boundaries of B and Bα . Let μ0 denote the magnetic
permeability of the free space. Let μ∗ and σ∗ denote the permeability and the conductivity of the inclusion which are
also assumed to be constant. We introduce the piecewise constant magnetic permeability and electric conductivity
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μα(x) =
{

μ∗ in Bα ,

μ0 in Bc
α =R

3\B̄α ,
σα(x) =

{
σ∗ in Bα ,

0 in Bc
α .

Let (Eα,H α) denote the eddy current fields in the presence of the electromagnetic inclusion Bα and a source
current J 0 located outside the inclusion. Moreover, we suppose that J 0 has a compact support and is divergence free:
∇ · J 0 = 0 in R

3. The fields Eα and Hα are the solutions of the following eddy current equations:⎧⎪⎨⎪⎩
∇×Eα = iωμαH α in R

3,

∇×Hα = σαEα + J 0 in R
3,

Eα(x) = O(|x|−1), H α(x) = O(|x|−1) as |x| → ∞.

(2.1)

By eliminating H α in (2.1) we obtain the following E-formulation of the eddy current problem (2.1):⎧⎪⎨⎪⎩
∇×μ−1

α ∇×Eα − iωσαEα = iωJ 0 in R
3,

∇·Eα = 0 in Bc
α,

Eα(x) = O(|x|−1) as |x| → ∞.

(2.2)

Throughout this paper, let u± denote the limit values of u(x ± tn) as t ↘ 0, where n is the outward normal to Γα ,
if they exist. We will use the function spaces

Xα

(
R

3) =
{
u:

u√
1 + |x|2 ∈ L2(

R
3)3

,∇×u ∈ L2(
R

3)3
, ∇·u = 0 in Bc

α

}
,

and

X̃α

(
R

3) =
{
u: u ∈ Xα

(
R

3), ∫
Γα

u+ · n = 0

}
,

and the sesquilinear form on X̃α(R3) × X̃α(R3)

aα(E,v) = (
μ−1

α ∇×E,∇×v
)
R3 − iωσ∗(E,v)Bα ,

where (·, ·)D stands for the L2 inner product on the domain D ⊆ R
3. The weak formulation of the E-formulation

(2.2) is: Find Eα ∈ X̃α(R3) such that

aα(Eα,v) = iω(J 0,v)Bc
α
, ∀v ∈ X̃α

(
R

3). (2.3)

The uniqueness and existence of solution of the problem (2.3) are known [3,19]. Note that the constraint
∫
Γα

u+ · n = 0

in X̃α(R3) only serves to enforce the uniqueness of Eα in Bc
α [19]. This is not essential for the validity of the

E-formulation of the eddy current model. We have

aα(Eα,v) = iω(J 0,v)Bc
α
, ∀v ∈ Xα

(
R

3). (2.4)

Throughout the paper we denote by E0 the unique solution of the problem⎧⎪⎨⎪⎩
∇×μ−1

0 ∇×E0 = iωJ 0 in R
3,

∇·E0 = 0 in R
3,

E0(x) = O(|x|−1) as |x| → ∞.

(2.5)

The field E0 satisfies (
μ−1

0 ∇×E0,∇×v
)
R3 = iω(J 0,v)R3, ∀v ∈ H−1

(
curl;R3), (2.6)

where H−1(curl;R3) = {u: u√
2

∈ L2(R3)3, ∇×u ∈ L2(R3)3}.

1+|x|
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3. Derivation of the asymptotic formulas

In this section we will derive the asymptotic formula for H α when the inclusion is small. Let k = ωμ0σ∗. We are
interested in the asymptotic regime when α → 0 and

ν = kα2 (3.1)

is of order one. Moreover, we assume that μ∗ and μ0 are of the same order.
In eddy current testing the wave equation is converted into the diffusion equation, where the characteristic length is

the skin depth δ, given by δ = √
2/k. Hence, in the regime ν = O(1), the skin depth δ is of order of the characteristic

size α of the inclusion.
We will always denote by C a generic constant which depends possibly on μ∗/μ0, the upper bound of ωμ0σ∗α2,

the domain B , but is independent of ω,σ∗,μ0,μ∗. Let μr = μ∗/μ0.

3.1. Energy estimates

We start with the following estimate:

Lemma 3.1. There exists a constant C such that∥∥∇×(Eα − E0)
∥∥

L2(R3)
+ √

k ‖Eα − E0‖L2(Bα) � Cα3/2(√k ‖E0‖L∞(Bα) + ‖∇×E0‖L∞(Bα)

)
.

Proof. By (2.4) and (2.6), we know that(
μ−1

α ∇×(Eα − E0),∇×v
)
R3 − iω

(
σα(Eα − E0),v

)
Bα

= (
μ−1

0 − μ−1∗
)
(∇×E0,∇×v)Bα + iω(σαE0,v)Bα , ∀v ∈ Xα

(
R

3). (3.2)

Since ∣∣(∇×E0,∇×v)Bα

∣∣ � Cα3/2‖∇×E0‖L∞(Bα)‖∇×v‖L2(Bα)

and ∣∣(σαE0,v)
∣∣ � Cα3/2σ∗‖E0‖L∞(Bα)‖v‖L2(Bα),

by taking v = Eα − E0 ∈ Xα(R3) in (3.2) and multiplying the obtained equation by μ0 we have that

μ−1
r

∥∥∇×(Eα − E0)
∥∥2

L2(R3)
+ k‖Eα − E0‖2

L2(Bα)

� Cα3/2(‖∇×E0‖L∞(Bα)

∥∥∇×(Eα − E0)
∥∥

L2(Bα)
+ k‖E0‖L∞(Bα)‖Eα − E0‖L2(Bα)

)
.

This completes the proof. �
Let H 1(Bα) = {ϕ ∈ L2(Bα),∇ϕ ∈ L2(Bα)3}. Let φ0 ∈ H 1(Bα) be the solution of the problem

−
φ0 = −∇ · F in Bα, −∂nφ0 = (
E0(x) − F (x)

) · n on Γα,

∫
Bα

φ0 dx = 0, (3.3)

where

F (x) = 1

2

[∇z × E0(z)
] × (x − z) + 1

3

[
Dz(∇z × E0)(z)

]
(x − z) × (x − z). (3.4)

Here [Dz(∇z × E0)(z)]ij = ∂zi
(∇z × E0(z))j is the (i, j)-th element of the gradient matrix Dz(∇z × E0)(z) of

∇z × E0(z). Let tr denote the trace. Since tr[D(∇ × E0)] = ∇ · (∇ × E0) = 0, we know that

∇ × F (x) = ∇z × E0(z) + [
Dz(∇z × E0)(z)

]
(x − z). (3.5)
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Note that since E0 is smooth in B̄α we have

‖∇ × E0 − ∇ × F‖L∞(Bα) � Cα2‖∇ × E0‖W 2,∞(Bα). (3.6)

Denote by H 0 = (iωμ0)
−1∇×E0 and introduce w ∈ X̃α(R3) as the solution of the problem

aα(w,v) = iωμ0
(
μ−1

0 − μ−1∗
)(

H 0(z) + DH 0(z)(x − z),∇×v
)
Bα

+ iω(σαF ,v)Bα , ∀v ∈ X̃α. (3.7)

The following lemma provides a higher-order correction of the error estimate in Lemma 3.1.

Lemma 3.2. Let w be defined by (3.7). There exists a constant C such that∥∥∇×(Eα − E0 − w)
∥∥

L2(R3)
� Cα7/2(∣∣1 − μ−1

r

∣∣ + ν
)‖∇ × E0‖W 2,∞(Bα), (3.8)

‖Eα − E0 − ∇φ0 − w‖L2(Bα) � Cα9/2(∣∣1 − μ−1
r

∣∣ + ν
)‖∇ × E0‖W 2,∞(Bα), (3.9)

where ν is given by (3.1).

Proof. First we set ψ ∈ H 1(Bα) and g be such that g = ψ on Γα , 
g = 0 in Bc
α , and g = O(|x|−1) at infinity. Let

v =
{∇ψ in Bα,

∇g in Bc
α.

Since v ∈ Xα , it follows from (2.4) that

iω(σαEα,∇ψ)Bα = 0, ∀ψ ∈ H 1(Bα).

This yields ∇·Eα = 0 in Bα and E−
α · n = 0 on Γα .

Similarly, we can show from (3.7) that w− · n = −F (x) · n on Γα and ∇·w = −∇ · F in Bα . From (3.3) we also
know that ∇·(E0 + ∇φ0) = ∇ · F in Bα and (E0 + ∇φ0)

− · n = F (x) · n on Γα . Thus

∇ · (Eα − E0 − ∇φ0 − w) = 0 in Bα, (Eα − E0 − ∇φ0 − w)− · n = 0 on Γα,

which implies by scaling argument and the embedding theorem that

‖Eα − E0 − ∇φ0 − w‖L2(Bα) � Cα
∥∥∇ × (Eα − E0 − ∇φ0 − w)

∥∥
L2(Bα)

= Cα
∥∥∇ × (Eα − E0 − w)

∥∥
L2(Bα)

,

for some constant C independent of α and σ∗. Therefore, (3.9) follows from (3.8).
To show (3.8), we define φ̃0 as the solution of the exterior problem

−
φ̃0 = 0 in Bc
α, φ̃0 = φ0 on Γα, φ̃0 → 0 as |x| → ∞.

The existence of φ̃0 in W 1,−1(Bc
α) = {ϕ : ϕ√

1+|x|2 ∈ L2(Bc
α),∇ϕ ∈ L2(Bc

α)3} is known [22].

Define Φ0 = ∇φ0 in Bα , Φ0 = ∇φ̃0 in Bc
α , then Φ0 ∈ Xα(R3). It follows from (3.2) and (3.7) that for all

v ∈ Xα(R3)(
μ−1

α ∇×(Eα − E0 − Φ0 − w),∇×v
)
R3 − iω

(
σα(Eα − E0 − Φ0 − w),v

)
Bα

= iωμ0
(
μ−1

0 − μ−1∗
)(

H 0 − H 0(z) − DH 0(z)(x − z),∇×v
)
Bα

+ iω
(
σα(E0 + Φ0 − F ),v

)
Bα

.

By multiplying the above equation by μ0 we have then(
μ0μ

−1
α ∇×(Eα − E0 − Φ0 − w),∇×v

)
R3 − ik(Eα − E0 − Φ0 − w,v)Bα

= iωμ0
(
1 − μ−1

r

)(
H 0 − H 0(z) − DH 0(z)(x − z),∇×v

)
Bα

+ ik(E0 + Φ0 − F ,v)Bα . (3.10)

It is easy to check that
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∣∣iωμ0
(
H 0 − H 0(z) − DH 0(z)(x − z),∇×v

)
Bα

∣∣ � Cα7/2‖iωμ0H 0‖W 2,∞(Bα)‖∇×v‖L2(Bα)

= Cα7/2‖∇ × E0‖W 2,∞(Bα)‖∇×v‖L2(Bα).

Now taking v = Eα − E0 − Φ0 − w ∈ Xα(R3) in (3.10), since ∇ × Φ0 = 0 in R
3 and Φ0 = ∇φ0 in Bα , we obtain

that ∥∥∇×(Eα − E0 − w)
∥∥2

L2(R3)
+ k‖Eα − E0 − ∇φ0 − w‖2

L2(Bα)

� Cα7/2
∣∣1 − μ−1

r

∣∣‖∇ × E0‖W 2,∞(Bα)‖∇×v‖L2(Bα) + k‖E0 − F + ∇φ0‖L2(Bα)‖v‖L2(Bα)

� Cα7/2(∣∣1 − μ−1
r

∣∣ + ν
)‖∇ × E0‖W 2,∞(Bα)‖∇×v‖L2(Bα).

Here, we have used

‖E0 − F + ∇φ0‖L2(Bα) � Cα
∥∥∇ × (E0 − F )

∥∥
L2(Bα)

� Cα9/2‖∇ × E0‖W 2,∞(Bα) (3.11)

and ‖v‖L2(Bα) � Cα‖∇ × v‖L2(Bα), since E0 − F + ∇φ0 and v are divergence free in Bα and have vanishing normal
traces on Γα . This shows (3.8) and completes the proof. �

We note that DH 0(z) is symmetric since ∇ × H 0(z) = 0. Hence, by Green’s formula,

(
μ−1

0 − μ−1∗
)(

H 0(z) + DH 0(z)(x − z),∇×v
)
Bα

= (
μ−1

0 − μ−1∗
)∫
Γα

((
H 0(z) + DH 0(z)(x − z)

) × n
) · v dx

=
∫
Γα

[
μ−1

α

(
H 0(z) + DH 0(z)(x − z)

) × n
]
Γα

· v dx,

where [·]Γα stands for the jump of the function across Γ . Let ŵ(ξ ) = w(z + αξ), we know from (3.7) that,
∀v ∈ X̃1(R

3),(
μ−1∇×ŵ,∇×v

)
R3 − iωα2(σ ŵ,v)B = iαωμ0

∫
Γ

[
μ−1(H 0(z) + αDH 0(z)ξ

) × n
]
Γ

· v dξ

+ iωα2(σF (z + αξ),v
)
B
,

where μ(ξ) = μ∗ if ξ ∈ B , μ(ξ) = μ0 if ξ ∈ Bc and σ(ξ) = σ∗ if ξ ∈ B , σ(ξ) = 0 if ξ ∈ Bc .
This motivates us to introduce the solution w0(ξ) of the interface problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇ξ × μ−1∇ξ × w0 − iωσα2w0 = iωσα2[α−1F (z + αξ)] in B ∪ Bc,

∇ξ · w0 = 0 in Bc,

[w0 × n]Γ = 0, [μ−1∇ξ × w0 × n]Γ = −iω(1 − μ−1
r )(H 0(z) + αDH 0(z)ξ) × n on Γ,

w0(ξ) = O(|ξ |−1) as |ξ | → ∞.

(3.12)

It is easy to check that w(x) = αw0(
x−z
α

).
The following theorem which is the main result of this section now follows directly from Lemma 3.2.

Theorem 3.1. There exists a constant C such that∥∥∥∥∇×
(

Eα − E0 − αw0

(
x − z

α

))∥∥∥∥
L2(Bα)

� Cα7/2(∣∣1 − μ−1
r

∣∣ + ν
)‖∇ × E0‖W 2,∞(Bα),∥∥∥∥Eα − E0 − ∇φ0 − αw0

(
x − z

α

)∥∥∥∥
L2(Bα)

� Cα9/2(∣∣1 − μ−1
r

∣∣ + ν
)‖∇ × E0‖W 2,∞(Bα).
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To conclude this section we remark that

α−1F (z + αξ) = iωμ0

(
1

2
H 0(z) × ξ + α

3
DH 0(z)ξ × ξ

)

= iωμ0

(
1

2

3∑
i=1

H 0(z)iei × ξ + α

3

3∑
i,j=1

DH 0(z)ijeie
T
j ξ × ξ

)
, (3.13)

where DH 0(z)ij is the (i, j)-th element of the matrix DH 0(z) and T denotes the transpose. Thus

w0(ξ) = iωμ0

(
1

2

3∑
i=1

H 0(z)iθ i (ξ) + α

3

3∑
i,j=1

DH 0(z)ijΨ ij (ξ)

)
, (3.14)

where θ i (ξ) is the solution of the following interface problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇ξ × μ−1∇ξ × θ i − iωσα2θ i = iωσα2ei × ξ in B ∪ Bc,

∇ξ · θ i = 0 in Bc,

[θ i × n]Γ = 0, [μ−1∇ξ × θ i × n]Γ = −2[μ−1]Γ ei × n on Γ,

θ i (ξ) = O(|ξ |−1) as |ξ | → ∞,

(3.15)

and Ψ ij (ξ) is the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇ξ × μ−1∇ξ × Ψ ij − iωσα2Ψ ij = iωσα2ξjei × ξ in B ∪ Bc,

∇ξ · Ψ ij = 0 in Bc,

[Ψ ij × n]Γ = 0, [μ−1∇ξ × Ψ ij × n]Γ = −3[μ−1]Γ ξjei × n on Γ,

Ψ ij (ξ) = O(|ξ |−1) as |ξ | → ∞.

(3.16)

Here ei is the unit vector in the xi direction. It is worth emphasizing that since ν = O(1), θ i and Ψ ij are uniformly
bounded in X1(R

3).
We impose ∇ · θ i = 0 outside B to make the solution θ i unique outside B . In this case by [3, Proposition 3.1] we

can show that θ i = O(|ξ |−2) and ∇ × θ i = O(|ξ |−3) as |ξ | → ∞, which implies by integrating (3.15) over B that

iωσ∗α2
∫
B

(θ i + ei × ξ) dξ =
∫
∂B

n × μ−1∇ × θ i dξ

=
∫

∂BR

n × μ−1∇ × θ i dξ

→ 0 as R → +∞,

where BR is a ball of radius R so that B ⊂ BR . Thus we obtain∫
B

(θ i + ei × ξ) dξ = 0. (3.17)

Similarly, by imposing ∇ · Ψ ij = 0 outside B we know that ∇ × Ψ ij = O(|ξ |−3). Moreover, integrating (3.16)
over B and using similar argument leading to (3.17) together with the symmetry of DH 0(z) yields

3∑
i,j=1

DH 0(z)ij

∫
B

(Ψ ij + ξjei × ξ) dξ = 0. (3.18)
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3.2. Integral representation formulas

The integral representation is similar to the Stratton–Chu formula for time-harmonic Maxwell equations [22].

Lemma 3.3. Let D be a bounded domain in R
3 with Lipschitz boundary ΓD whose unit outer normal is n. For any

E ∈ H−1(curl;R3\D̄) satisfying ∇×∇×E = 0, ∇·E = 0 in R
3\D̄, we have, for any x ∈ R

3\D̄,

E(x) = −∇x ×
∫
ΓD

(
E(y) × n

)
G(x,y) dy −

∫
ΓD

(∇y × E(y) × n
)
G(x,y) dy

− ∇x

∫
ΓD

(
E(y) · n)

G(x,y) dy,

where G(x,y) = 1
4π |x−y| is the fundamental solution of the Laplace equation.

Proof. For the sake of completeness we give a sketch of proof. Since E ∈ H−1(curl;R3\D̄), for any F such
that F (y) = O(|y|−1) and DF (y) = O(|y|−2) as |y| → ∞, we can obtain by integrating by parts, the conditions
∇ × ∇ × E = 0, ∇ · E = 0 in R

3\D̄, that

(E,−
F )
R3\D̄ = (E,∇×∇×F − ∇∇·F )

R3\D̄

= −
∫
ΓD

(E × n) · ∇×F dy −
∫
ΓD

∇×E × n · F dy +
∫
ΓD

(E · n)∇·F dy.

Now for x ∈R
3\D̄ and j ∈ {1,2,3}, we choose F (y) = G(x,y)ej and thus −
yF = δ(x,y)ej , where δ(x, ·) is the

Dirac mass at x. Then we have

Ej (x) = −
∫
ΓD

(
E(y) × n

) · ∇y × (
G(x,y)ej

)
dy −

∫
ΓD

(∇y × E(y) × n
)
j
G(x,y) dy

+
∫
ΓD

(
E(y) · n)∂G(x,y)

∂yj

dy

= −
(

∇x ×
∫
ΓD

(
E(y) × n

)
G(x,y) dy

)
j

−
∫
ΓD

(∇y × E(y) × n
)
j
G(x,y) dy

− ∂

∂xj

∫
ΓD

(
E(y) · n)

G(x,y) dy,

where we have used the fact that(
E(y) × n

) · ∇x × (
G(x,y)ej

) = −(∇x × (
G(x,y)E(y) × n

))
j
.

This completes the proof. �
The following lemma will be useful in deriving the asymptotic formula in the next subsection. Recall that

Hα = 1
iωμα

∇×Eα , H 0 = 1
iωμ0

∇×E0.

Lemma 3.4. Let H̃α = H α − H 0. Then we have, for x ∈ Bc
α ,

H̃α(x) =
∫
Bα

∇xG(x,y) × ∇y × H̃ α(y) dy +
(

1 − μ∗
μ0

)∫
Bα

(
H α(y) · ∇y

)∇xG(x,y) dy.
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Proof. It is easy to check that ∇×H̃α = 0 and ∇·H̃α = 0 in Bc
α . By the representation formula in Lemma 3.3 we

have

H̃α(x) = −∇x ×
∫
Γα

(
H̃

+
α (y) × n

)
G(x,y) dy − ∇x

∫
Γα

(
H̃

+
α (y) · n)

G(x,y) dy,

where H̃
+
α = H̃ α|Bc

α
. Denote H̃

−
α = H̃ α|Bα and let E±

α be defined likewise. By the interface condition [Ẽα ×n]Γα = 0,
we have

H̃
+
α · n = 1

iωμ0
∇ × E+

α · n − H 0 · n = 1

iωμ0
divΓα

(
E+

α × n
) − H 0 · n

= μ∗
μ0

H−
α · n − H 0 · n,

where divΓα denotes the surface divergence. Then since [H̃ α × n]Γα = 0, we have

H̃ α(x) = −∇x ×
∫
Γα

(
H̃

−
α (y) × n

)
G(x,y) dy − ∇x

∫
Γα

(
μ∗
μ0

H−
α (y) · n − H 0(y) · n

)
G(x,y) dy. (3.19)

For the first term,

−∇x ×
∫
Γα

(
H̃

−
α (y) × n

)
G(x,y) dy = ∇x

∫
Bα

∇y × (
H̃α(y)G(x,y)

)
dy

= ∇x

∫
Bα

(
G(x,y)∇y × H̃ α(y) + ∇yG(x,y) × H̃ α(y)

)
dy

=
∫
Bα

(∇xG(x,y) × ∇y × H̃α(y) + (H̃ α · ∇x)∇yG(x,y)
)
dy, (3.20)

where we have used the identity

∇×(u × v) = u(∇·v) − (u · ∇)v + (v · ∇)u − v(∇·u),

and the fact that ∇x · ∇yG(x,y) = −
yG(x,y) = 0. For the second term, we first notice that

−∇x

∫
Γα

(
μ∗
μ0

H−
α (y) · n − H 0(y) · n

)
G(x,y) dy = −μ∗

μ0
∇x

∫
Γα

H̃
−
α (y) · nG(x,y) dy

+
(

1 − μ∗
μ0

)
∇x

∫
Γα

H 0(y) · nG(x,y) dy.

By integration by parts we have

∇x

∫
Γα

H̃
−
α (y) · nG(x,y) dy = ∇x

∫
Bα

∇y · (G(x,y)H̃ α(y)
)
dy

= ∇x

∫
Bα

∇yG(x,y) · H̃α(y) + G(x,y)∇·H̃α(y) dy

=
∫
Bα

(
H̃ α(y) · ∇y

)∇xG(x,y) dy.

Similarly
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∇x

∫
Γα

(
H 0(y) · n)

G(x,y) dy =
∫
Bα

(
H 0(y) · ∇y

)∇xG(x,y) dy.

Thus

−∇x

∫
Γα

(
μ∗
μ0

H−
α (y) · n − H 0(y) · n

)
G(x,y) dy = −μ∗

μ0

∫
Bα

(
H̃ α(y) · ∇y

)∇xG(x,y) dy

+
(

1 − μ∗
μ0

)∫
Bα

(
H 0(y) · ∇y

)∇xG(x,y) dy. (3.21)

This completes the proof by substituting (3.20)–(3.21) into (3.19). �
3.3. Asymptotic formulas

In this subsection we prove the following theorem which is the main result of this section.

Theorem 3.2. Let ν be of order one and let α be small. For x away from the location z of the inclusion, we have

Hα(x) − H 0(x) = iνα3

[
1

2

3∑
i=1

H 0(z)i

∫
B

D2
xG(x,z)ξ × (θ i + ei × ξ) dξ

]

+ α3
(

1 − μ0

μ∗

)[
3∑

i=1

H 0(z)iD
2
xG(x,z)

∫
B

(
ei + 1

2
∇ × θ i

)
dξ

]
+ R(x),

where (D2
xG)ij = ∂2

xixj
G, θ i (ξ) is the solution of (3.15), and∣∣R(x)

∣∣� Cα4‖H 0‖W 2,∞(Bα),

uniformly in x in any compact set away from z.

Proof. The proof starts from the integral representation formula in Lemma 3.4. We first consider the first term in the
integral representation in Lemma 3.4. By Theorem 3.1 we know that∥∥∥∥Eα − E0 − ∇φ0 − αw0

(
x − z

α

)∥∥∥∥
L2(Bα)

� Cα9/2(∣∣1 − μ−1
r

∣∣ + ν
)‖∇ × E0‖W 2,∞(Bα). (3.22)

Since ∇×H 0 = 0 and ∇×H α = σEα in Bα , we have∫
Bα

∇xG(x,y) × ∇y × H̃α(y) dy = σ∗
∫
Bα

∇xG(x,y) × Eα(y) dy = I1 + · · · + I4,

where

I1 = σ∗
∫
Bα

∇xG(x,y) ×
(

Eα(y) − E0(y) − ∇φ0(y) − αw0

(
y − z

α

))
dy,

I2 = σ∗
∫
Bα

∇xG(x,y) × (
E0(y) + ∇φ0(y) − F (y)

)
dy,

I3 = σ∗
∫
Bα

(∇xG(x,y) − ∇xG(x,z) − D2
xG(x,z)(y − z)

) ×
(

F (y) + αw0

(
y − z

α

))
dy,

I4 = σ∗
∫ (∇xG(x,z) + D2

xG(x,z)(y − z)
) ×

(
F (y) + αw0

(
y − z

α

))
dy.
Bα
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By (3.22), we have

|I1| � Cα6(∣∣1 − μ−1
r

∣∣ + ν
)
σ∗‖∇ × E0‖W 2,∞(Bα)

� Ckα6
∣∣1 − μ−1

r

∣∣‖H 0‖W 2,∞(Bα)

� Cα4‖H 0‖W 2,∞(Bα).

By (3.13) we have | I2| � Cα6σ∗‖∇ ×E0‖W 2,∞(Bα) � Cα4‖H 0‖W 2,∞(Bα). Similarly, by using (3.4) and (3.14) we can
show |I3|� Cα4‖H 0‖W 2,∞(Bα). For the remaining term we first observe that

I4 = iα4σ∗
∫
B

(∇xG(x,z) + αD2
xG(x,z)ξ

) × (
α−1F (z + αξ) + w0(ξ)

)
dξ .

On the other hand,

α−1F (z + αξ) + w0(ξ ) = iωμ0

[
1

2

3∑
i=1

H 0(z)i
(
ei × ξ + θ i (ξ)

) + α

3

3∑
i,j=1

DH 0(z)ij
(
ξjei × ξ + Ψ ij (ξ)

)]
,

which implies after using (3.18)

I4 = ikα4

[
1

2

3∑
i=1

H 0(z)i

∫
B

∇xG(x,z) × (ei × ξ + θ i ) d ξ

]

+ ikα5

[
1

2

3∑
i=1

H 0(z)i

∫
B

D2
xG(x,z)ξ × (ei × ξ + θ i ) dξ

]
+ R1(x),

where |R1(x)| � Cα4‖H 0‖W 2,∞(Bα). Using (3.17), this shows that∫
Bα

∇xG(x,y) × ∇y × H̃ α(y) dy

= ikα5

[
1

2

3∑
i=1

H 0(z)i

∫
B

D2
xG(x,z)ξ × (ei × ξ + θ i ) dξ

]
+ R2(x), (3.23)

where ∣∣R2(x)
∣∣ � Ckα6

∣∣1 − μ−1
r

∣∣‖H 0‖W 2,∞(Bα) � Cα4‖H 0‖W 2,∞(Bα).

Now we turn to the second term in Lemma 3.4. From Theorem 3.1 we know that∥∥∥∥H α − μ0

μ∗
H 0 − α

iωμ∗
∇x × w0

(
x − z

α

)∥∥∥∥
L2(Bα)

� Cα7/2(∣∣1 − μ−1
r

∣∣ + ν
)‖H 0‖W 2,∞(Bα). (3.24)

Let

H ∗
0(ξ) = 1

iωμ0
∇ξ × w0(ξ).

Then ∫
Bα

(H α · ∇y)∇xG(x,y) dy = −
∫
Bα

D2
xG(x,y)H α(y) dy = II1 + · · · + II4,

where
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II1 = −
∫
Bα

D2
xG(x,y)

(
Hα(y) − μ0

μ∗
H 0(y) − μ0

μ∗
H ∗

0

(
y − z

α

))
dy,

II2 = −μ0

μ∗

∫
Bα

(
D2

xG(x,y) − D2
x(x,z)

)(
H 0(y) + H ∗

0

(
y − z

α

))
dy,

II3 = −μ0

μ∗

∫
Bα

D2
xG(x,z)

(
H 0(y) − H 0(z)

)
dy,

II4 = −μ0

μ∗

∫
Bα

D2
xG(x,z)

(
H 0(z) + H ∗

0

(
y − z

α

))
dy.

It is easy to see from (3.24) that | II1|� Cα4‖H 0‖W 1,∞(Bα). By (3.14) we know that∥∥∥∥H ∗
0

(
y − z

α

)∥∥∥∥
L2(Bα)

� Cα3/2‖H 0‖W 2,∞(Bα),

which implies | II2| � Cα4‖H 0‖W 2,∞(Bα). Similarly, we have | II3| � Cα4‖H 0‖W 1,∞(Bα). Finally, by (3.14), we have

II4 = −μ0

μ∗
α3

3∑
i=1

H 0(z)i

∫
B

D2
xG(x,z)

(
ei + 1

2
∇ × θ i

)
dξ + R3(x),

where |R3(x)| � Cα4‖H 0‖W 2,∞(Bα). Therefore,∫
Bα

(H α · ∇y)∇xG(x,y) dy = −μ0

μ∗
α3

3∑
i=1

H 0(z)i

∫
B

D2
xG(x,z)

(
ei + 1

2
∇ × θ i

)
dξ + R4(x) (3.25)

with |R4(x)| � Cα4‖H 0‖W 2,∞(Bα). This completes the proof by substituting (3.25) and (3.23) into the integral repre-
sentation formula in Lemma 3.4. �

It is worth emphasizing that the tensor whose column vectors are(
1 − μ0

μ∗

)∫
B

(
e1 + 1

2
∇ × θ1

)
dξ ,

(
1 − μ0

μ∗

)∫
B

(
e2 + 1

2
∇ × θ2

)
dξ , and

(
1 − μ0

μ∗

)∫
B

(
e3 + 1

2
∇ × θ3

)
dξ

is the so-called magnetic polarization tensor. It reduces in the zero conductivity case (σ = 0) to the one first introduced
in [10].

On the other hand, for an arbitrary shaped target, one introduces for l, l′ = 1,2,3, M(l,l′) to be the 3 × 3 matrix
whose i-th column is

1

2
el ×

∫
B

ξl′(θ i + ei × ξ) dξ .

One can easily show that

1

2

3∑
i=1

H 0(z)i

∫
B

D2
xG(x,z)ξ × (θ i + ei × ξ) dξ =

3∑
l,l′=1

D2
xG(x,z)ll′M

(l,l′)H 0(z). (3.26)

We call M(l,l′) the conductivity polarization tensors.
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We now consider the case of a spherical target. If B is a ball, then one can check that

1

2

3∑
i=1

H 0(z)i

∫
B

D2
xG(x,z)ξ × (θ i + ei × ξ) dξ =MD2

xG(x,z)H 0(z),

where

M = 1

2

∫
B

(
ξ1θ2(ξ) · e3 − ξ2

1

)
dξ , (3.27)

and therefore, the asymptotic formula derived in Theorem 3.2 reduces in the case μ0 = μ∗ to the following result.

Corollary 3.1. Assume that μ0 = μ∗ and B is a ball. Then we have

H α(x) − H 0(x) = ikα5MD2
xG(x,z)H 0(z) + R(x). (3.28)

The remainder satisfies |R(x)| � Cα4‖H 0‖W 2,∞(Bα) uniformly in x in any compact set away from z (remember that
kα5 = να3 = O(α3)).

Now we assume that J 0 is a dipole source whose position is denoted by s

J 0(x) = ∇×(
pδ(x, s)

)
, (3.29)

where δ(·, s) is the Dirac mass at s and the unit vector p is the direction of the magnetic dipole. The existence and
uniqueness of a solution to (2.1) follow from [26]. In the absence of any inclusion, the magnetic field H 0 due to J 0(x)

is given by

H 0(x) = ∇×∇×(
pG(x, s)

) = D2
xG(x, s)p. (3.30)

We note that J0 is not in the dual of Xα(R3), however we can form the difference Eα − E0 and solve for that
difference in X̃α(R3). That way we are able to recover Theorems 3.1 and 3.2.

The asymptotic formula (3.28) can be rewritten as

q · (H α − H 0)(x) � ikα5M
(
D2

xG(x,z)q
)T (

D2
xG(z, s)p

)
, (3.31)

where M is defined by (3.27). Note that, in view of (3.31), if the dipole J 0 is located at x, then the field p · H α at s

is the same as the one obtained if J 0 is located at s and p · Hα is measured at x.
Next, writing

M = �eM+ i�mM,

we obtain

�e
(
q · (H α − H 0)(x)

) � −kα5(�mM)
(
D2

xG(x,z)q
)T (

D2
xG(z, s)p

)
,

and

�m
(
q · (H α − H 0)(x)

) � kα5(�eM)
(
D2

xG(x,z)q
)T (

D2
xG(z, s)p

)
.

In view of (3.30), H 0 is real. Therefore, it follows that

�m
(
q · H α(x)

) � kα5(�eM)
(
D2

xG(x,z)q
)T (

D2
xG(z, s)p

)
. (3.32)

Formula (3.32) will be used in the section for locating and detecting a spherical target. For arbitrary shaped targets,
the formula derived in Theorem 3.2 together with (3.26) should be used.
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4. Localization and characterization

In this section we consider that there are M sources and N receivers. The m-th source is located at sm and it gen-
erates the magnetic dipole J

(m)
0 (r) = ∇ × (pδ(r, sm)). The n-th receiver is located at rn and it records the magnetic

field in the q direction. The (n,m)-th entry of the N × M response matrix A = (Anm)n=1,...,N,m=1,...,M is the signal
recorded by the n-th receiver when the m-th source is emitting:

Anm = H (m)
α (rn) · q.

The response matrix is the sum of the unperturbed field H
(m)
0 (rn) ·q and the perturbation H

(m)
α (rn) ·q −H

(m)
0 (rn) ·q .

This perturbation contains information about the inclusion but it is much smaller (of order α3) than the unperturbed
field. Consequently, it seems that we need to know the unperturbed field with great accuracy in order to be able to
extract the perturbation and to process it. In practice, such an accuracy may not be accessible. However, we know that
the unperturbed field is real while the perturbation is complex-valued, as shown by (3.32). The imaginary part of the
response matrix is therefore equal to the imaginary part of the perturbation and this is the data that we will process:

A0 = (A0,nm)n=1,...,N, m=1,...,M, A0,nm = �m(Anm) = �m
(
H (m)

α (rn) · q)
. (4.1)

We assume that N � M , that is, there are more receivers than sources. As in [6], in order to locate the conductive
inclusion z + αB we can use the MUSIC imaging functional. We focus on formula (3.32) and define the MUSIC
imaging functional for a search point zS by

IMU
(
zS

) =
[

1∑3
l=1 ‖(IN − P)(D2

xG(r1,zS)q · el , . . . ,D
2
xG(rN,zS)q · el)T ‖2

]1/2

, (4.2)

where P is the orthogonal projection on the range of the matrix A0 and (e1, e2, e3) is an orthonormal basis of R3.
From [6], it follows that the following proposition holds.

Proposition 4.1. In the presence of an inclusion located at z, the matrix A0 has three significant singular values
counted with their multiplicity. Moreover, the MUSIC imaging functional IMU attains its maximum approximately at
zS = z.

Once the inclusion is located we can compute by a least-squares method �eM associated with the inclusion from
the response matrix A0. Given the location of the inclusion, we minimize the discrepancy between the computed
and the measured response matrices. For a single frequency, knowing �eM may not be sufficient to separate the
conductivity of an inclusion from its size. However, �eM obtained for a few frequencies ω may be used to reconstruct
both the conductivity and the size of the target.

5. Noisy measurements

In this section we consider that there are M sources and N receivers. The measures are noisy, which means that
the magnetic field measured by a receiver is corrupted by an additive noise that can be described in terms of a real
Gaussian random variable with mean zero and variance σ 2

n . The recorded noises are independent from each other. In
Subsection 5.1 we describe the Hadamard acquisition technique (and extend the results presented in [17] which were
limited to complex-valued matrices while we address real-valued matrices). In Subsection 5.2 we give classical results
about the singular value distribution of a Gaussian rectangular real matrix. In Subsection 5.4 we give the singular value
distribution of the perturbed response matrix, which is the sum of a rank-three deterministic real matrix and a Gaussian
rectangular real matrix.

5.1. Hadamard technique

Standard acquisition. In the standard acquisition scheme, the response matrix is measured at each step of M con-
secutive experiments. In the m-th experience, m = 1, . . . ,M , the m-th source (located at sm) generates the magnetic
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dipole J
(m)
0 (r) = ∇ × (pδ(r, sm)) and the N receivers (located at rn, n = 1, . . . ,N ) record the magnetic field in the

q direction which means that they measure

Ameas,nm = A0,nm + Wnm, n = 1, . . . ,N, m = 1, . . . ,M,

which gives the matrix

Ameas = A0 + W, (5.1)

where A0 is the unperturbed response matrix (4.1) and Wnm are independent Gaussian random variables with mean
zero and variance σ 2

n . Here, H
(m)
α (rn) is the magnetic field generated by a magnetic dipole at sm and measured at the

receiver rn in the presence of the inclusion.
The so-called Hadamard noise reduction technique is valid in the presence of additive noise and uses the structure

of Hadamard matrices.

Definition 5.1. A Hadamard matrix H of order M is an M × M matrix whose elements are −1 or +1 and such that
HT H = MIM . Here IM is the M × M identity matrix.

Hadamard matrices do not exist for all M . A necessary condition for the existence is that M = 1,2 or a multiple
of 4. A sufficient condition is that M is a power of two. Explicit examples are known for all M multiple of 4 up to
M = 664 [25].

Hadamard acquisition. In the Hadamard acquisition scheme, the response matrix is measured during a sequence of
M experiments. In the m-th experience, m = 1, . . . ,M , all sources generate magnetic dipoles, the m′ source gener-

ating Hmm′J (m′)
0 (r). This means that we use all sources with the maximal transmission power (which is a physical

constraint) and with a specific coding of their signs. The N receivers record the magnetic field in the q direction,
which means that they measure

Bmeas,nm =
M∑

m′=1

Hmm′A0,nm′ + Wnm = (
A0HT

)
nm

+ Wnm, n = 1, . . . ,N, m = 1, . . . ,M,

which gives the matrix

Bmeas = A0HT + W,

where A0 is the unperturbed response matrix and Wnm are independent Gaussian random variables with mean zero
and variance σ 2

n . The measured response matrix Ameas is obtained by right multiplying the matrix Bmeas by the matrix
1
M

H:

Ameas = 1

M
BmeasH = 1

M
A0HT H + 1

M
WH,

which gives

Ameas = A0 + W̃, W̃ = 1

M
WH. (5.2)

The benefit of using Hadamard’s technique lies in the fact that the new noise matrix W̃ has independent entries with
Gaussian statistics, mean zero, and variance σ 2

n /M :

E[W̃nmW̃n′m′ ] = 1

M2

M∑
q,q ′=1

HqmHq ′m′E[WnqWn′q ′ ] = σ 2
n

M2

M∑
q,q ′=1

HqmHq ′m′δnn′δqq ′

= σ 2
n

M2

M∑
q=1

Hqm

(
HT

)
m′qδnn′ = σ 2

n

M2

(
HT H

)
m′mδnn′

= σ 2
n δmm′δnn′ ,
M
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where E stands for the expectation and δmn is the Kronecker symbol. This gain of a factor M in the signal-to-noise
ratio is called the Hadamard advantage.

5.2. Singular values of a noisy matrix

We consider in this subsection the case where there is measurement noise but no inclusion is present. We also
assume that the response matrix is acquired with the Hadamard technique. Therefore the measured response matrix is
the N × M matrix

Ameas = W, (5.3)

where W consists of independent noise coefficients with mean zero and variance σ 2
n /M . Finally we also assume that

the number of receivers is larger than the number of sources N � M (although the analysis could be carried out in the
opposite case as well).

We denote by σ
(M)
1 � σ

(M)
2 � σ

(M)
3 � · · · � σ

(M)
M the singular values of the response matrix Ameas sorted by

decreasing order and by Λ(M) the corresponding integrated density of states defined by

Λ(M)
([a, b]) = 1

M
Card

{
l = 1, . . . ,M, σ

(M)
l ∈ [a, b]}, for any a < b.

The density Λ(M) is a counting measure which consists of a sum of Dirac masses:

Λ(M) = 1

M

M∑
j=1

δ
σ

(M)
j

.

For large N and M with γ = N/M � 1 fixed we have the following results which are classical in random matrix
theory [21,20,18].

Proposition 5.1.

(a) When M → ∞ the random measure Λ(M) converges almost surely to the deterministic absolutely continuous
measure Λ with compact support:

Λ
([σu,σv]

) =
σv∫

σu

1

σn
ργ

(
σ

σn

)
dσ, 0 � σu � σv, (5.4)

where ργ is the deformed quarter-circle law given by

ργ (σ ) =
{

1
πσ

√
((γ 1/2 + 1)2 − σ 2)(σ 2 − (γ 1/2 − 1)2) if γ 1/2 − 1 < σ � γ 1/2 + 1,

0 otherwise.
(5.5)

(b) The normalized l2-norm of the singular values satisfies

M

[
1

M

M∑
j=1

(
σ

(M)
j

)2 − γ σ 2
n

]
M→∞−−−−→ √

2γ σ 2
n Z in distribution, (5.6)

where Z follows a Gaussian distribution with mean zero and variance one.
(c) The maximal singular value satisfies

M2/3[σ (M)
1 − σn

(
γ 1/2 + 1

)]
M→∞−−−−→ σn

2

(
1 + γ −1/2)1/3

Z1 in distribution, (5.7)

where Z1 follows a type-1 Tracy–Widom distribution.
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The type-1 Tracy–Widom distribution has the cumulative distribution function ΦTW1:

ΦTW1(z) = P(Z1 � z) = exp

(
−1

2

∞∫
z

ϕ(x) + (x − z)ϕ2(x) dx

)
, (5.8)

where ϕ is the solution of the Painlevé equation

ϕ′′(x) = xϕ(x) + 2ϕ(x)3, ϕ(x)
x→+∞� Ai(x), (5.9)

Ai being the Airy function. The expectation of Z1 is E[Z1] � −1.21 and its variance is Var(Z1) � 1.61.

5.3. Singular values of the unperturbed response matrix

We now turn to the case where there is one conductive inclusion in the medium and no measurement noise. The
measured response matrix is then the N × M matrix A0 defined by

A0,nm = kα5(�eM)
(
D2

xG(rn,z)q
)T (

D2
xG(z, sm)q

)
. (5.10)

The matrix A0 possesses three nonzero singular values given by

σ
A0
j = kα5|�eM|

[
M∑

m=1

∣∣(D2
xG(z, sm)q

)
j

∣∣2

]1/2[ N∑
n=1

∣∣(D2
xG(rn,z)q

)
j

∣∣2

]1/2

, j = 1,2,3.

5.4. Singular values of the perturbed response matrix

The measured response matrix using the Hadamard technique in the presence of an inclusion and in the presence
of measurement noise is

Ameas = A0 + W, (5.11)

where A0 is given by (5.10) and W has independent random entries with Gaussian statistics, mean zero and variance
σ 2

n /M .
We consider the critical and interesting regime in which the singular values of the unperturbed matrix are of the

same order as the singular values of the noise, that is to say, σ
A0
1 , the first singular value of A0, is of the same order of

magnitude as σn. The following proposition shows that there is a phase transition:

– Either the noise level σn is smaller than the critical value γ −1/4σ
A0
1 and then the maximal singular value of the

perturbed response matrix is a perturbation of the maximal singular value of the unperturbed response matrix A0;
this perturbation has Gaussian statistics with a mean of the order of σ

A0
1 and a standard deviation of the order of

σn/M
1/2.

– Or the noise level σn is larger than the critical value γ −1/4σ
A0
1 and then the maximal singular value of the

unperturbed response matrix is buried in the deformed quarter-circle distribution of the pure noise matrix. As
a consequence the maximal singular value of the perturbed response matrix has a behavior similar to the pure
noise case, with a mean of order σn and fluctuations of the order of σn/M

2/3 and a type-1 Tracy–Widom distri-
bution.

Proposition 5.2.

(a) The normalized l2-norm of the singular values satisfies

M

[
1

M

M∑
j=1

(
σ

(M)
j

)2 − γ σ 2
n

]
M→∞−−−−→ (

σ
A0
0

)2 + √
2γ σ 2

n Z in distribution, (5.12)

where Z follows a Gaussian distribution with mean zero and variance one and
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σ
A0
0 =

[
3∑

j=1

(
σ

A0
j

)2

]1/2

. (5.13)

(b1) If σ
A0
1 < γ 1/4σn, then the maximal singular value satisfies

σ
(M)
1

M→∞−−−−→ σn
(
γ 1/2 + 1

)
in probability. (5.14)

More exactly

M2/3[σ (M)
1 − σn

(
γ 1/2 + 1

)]
M→∞−−−−→ σn

2

(
1 + γ −1/2)1/3

Z1 in distribution, (5.15)

where Z1 follows a type-1 Tracy–Widom distribution.
(b2) If σ

A0
1 > γ 1/4σn, then

σ
(M)
1

M→∞−−−−→ σ
A0
1 E1 in probability, (5.16)

where

E1 =
(

1 + σ 2
n

(σ
A0
1 )2

)1/2(
1 + γ

σ 2
n

(σ
A0
1 )2

)1/2

. (5.17)

If, additionally, σ
A0
1 > σ

A0
2 , then

M1/2[σ (M)
1 − σ

A0
1 E1

]
M→∞−−−−→ σnV

1/2
1 Z in distribution, (5.18)

where Z follows a Gaussian distribution with mean zero and variance one and

V1 =
(
1 − γ

σ 4
n

(σ
A0
1 )4

)(
2 + (1 + γ )

σ 2
n

(σ
A0
1 )2

)
2
(
1 + σ 2

n

(σ
A0
1 )2

)(
1 + γ

σ 2
n

(σ
A0
1 )2

) . (5.19)

Proof. Point (a) follows from the explicit expression of the l2-norm of the singular values in terms of the entries of
the matrix. Point (b) in the case N = M is addressed in [15] and the extension to N � M can be obtained from the
method described in [14] (a similar result is given for complex-valued matrices in [18], for which the constants are
different). �

Note that, in the item (b2), if σ
A0
1 = σ

A0
2 � σ

A0
3 , then the fluctuations of the maximal singular value are still of order

M−1/2 but they are not Gaussian anymore (they can be characterized as shown in [15]). Note also that formula (5.19)
seems to predict that the variance of the maximal singular value cancels when σ

A0
1 ↘ γ 1/4σn, but this is true only to

the order M−1, and in fact it becomes of order M−4/3. Following [13] we can anticipate that there are interpolating
distributions which appear when σ

A0
1 = γ 1/4σn + wM−1/3 for some fixed w.

5.5. Detection test

The objective in this subsection is to design a detection method which comes with an estimate of the level of
confidence, in the presence of noise, in our ability to determine whether there actually is a conductive inclusion. The
statistical approach that we present follows the same lines as in [4].

Since we know that the presence of an inclusion is characterized by the existence of three significant singular
values for A0, we propose to use a test of the form R > r for the alarm corresponding to the presence of a conductive
inclusion. Here R is the quantity obtained from the measured response matrix defined by

R = σ
(M)
1

[ 1
−1/2 2

∑M
j=4(σ

(M)
)2]1/2

, (5.20)

M−3(1+γ ) j
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and the threshold value r has to be chosen by the user. This choice follows from the Neyman–Pearson theory as we
explain below. It requires the knowledge of the statistical distribution of R which we give in the following proposition
(which follows from Propositions 5.1 and 5.2, and Slutsky’s theorem).

Proposition 5.3. In the asymptotic regime M � 1 the following statements hold:

(a) In the absence of a conductive inclusion (Eq. (5.3)) or in the presence of a conductive inclusion (Eq. (5.11)) with
σ

A0
1 < γ 1/4σn, we have

R � 1 + γ −1/2 + 1

2M2/3
γ −1/2(1 + γ −1/2)1/3

Z1 + o

(
1

M2/3

)
, (5.21)

where Z1 follows a type-1 Tracy–Widom distribution.
(b) In the presence of a conductive inclusion (Eq. (5.11)) with σ

A0
1 > γ 1/4σn, we have

R � σ
A0
1

γ 1/2σn
E1 + V

1/2
1

γ 1/2M1/2
Z + o

(
1

M1/2

)
, (5.22)

where Z follows a Gaussian distribution with mean zero and variance one.

The data (i.e. the measured response matrix) gives the value of the ratio R. We propose to use a test of the form
R > r for the alarm corresponding to the presence of a conductive inclusion. The quality of this test can be quantified
by two coefficients:

– The false alarm rate (FAR) is the probability to sound the alarm while there is no inclusion:

FAR = P(R > r | no inclusion).

– The probability of detection (POD) is the probability to sound the alarm when there is an inclusion:

POD = P(R > r | inclusion).

It is not possible to find a test that minimizes the FAR and maximizes the POD. However, by the Neyman–Pearson
lemma, the decision rule of sounding the alarm if and only if R > rδ maximizes the POD for a given FAR δ with the
threshold

rδ = 1 + γ −1/2 + 1

2M2/3
γ −1/2(1 + γ −1/2)1/3

Φ−1
TW1(1 − δ), (5.23)

where ΦTW1 is the cumulative distribution function of the type-1 Tracy–Widom distribution (5.8). The computation
of the threshold rδ is easy since it depends only on the number of sensors N and M and on the FAR δ. Note that
we should use a Tracy–Widom distribution table. We have, for instance, Φ−1

TW1(0.9) � 0.45, Φ−1
TW1(0.95) � 0.98 and

Φ−1
TW1(0.99) � 2.02.

The POD of this optimal test (optimal amongst all tests with the FAR δ) depends on the value σ
A0
1 and on the noise

level σn. Here we find that the POD is

POD = Φ

(√
M

σ
A0
1
σn

E1 − γ 1/2rδ

V
1/2
1

)
,

where Φ is the cumulative distribution function of the normal distribution with mean zero and variance one. The
theoretical test performance improves very rapidly with M once σ

A0
1 > γ 1/4σn. This result is indeed valid as long

as σ
A0
1 > γ 1/4σn. When σ

A0
1 < γ 1/4σn, so that the inclusion is buried in noise (more exactly, the singular values

corresponding to the inclusion are buried into the deformed quarter-circle distribution of the other singular values),
then we have POD = 1 − ΦTW1(Φ

−1
TW1(1 − δ)) = δ. Therefore the probability of detection is given by

POD = max

{
Φ

(√
M

σ
A0
1
σn

E1 − γ 1/2rδ

V
1/2

)
, δ

}
. (5.24)
1
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Fig. 1. Distribution of singular values of A0 with M = N = 256 and the magnitude of IMU on plane z = 0.0.

The transition region σ
A0
1 � γ 1/4σn is only qualitatively characterized by our analysis, as it would require a detailed

study of the statistics of the maximal singular value when σ
A0
1 = γ 1/4σn + wM−1/3 for some fixed w.

Finally, the following remark is in order. The previous results were obtained by an asymptotic analysis assuming
that M is large and σ

A0
1 and σn are of the same order. In the case in which σ

A0
1 is much larger than σn, then the

proposed test has a POD of 100%. In the case in which σ
A0
1 is much smaller than σn, then it is not possible to detect

the inclusion from the singular values of the response matrix and the proposed test has a POD equal to the FAR
(as shown above, this is the case as soon as σ

A0
1 < γ 1/4σn).

6. Numerical experiments

In this section, we will give some numerical examples to illustrate the performance of the detection algorithm. The
unperturbed measurement is acquired synthetically by asymptotic formula (3.28) and noisy measurements are given
by (5.11). Assume that Bα is a ball described by

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 � α2,

where α is characteristic length of the inclusion measured in meters. Then the domain B is characterized by letting
α = 1 and (x0, y0, z0) to be origin. We assume that the inclusion Bα is also located at the origin, α = 0.01, μ∗ = μ0 =
1.2566 × 10−6 H/m and σ∗ = 5.96 × 107 S/m. We let ω = 133.5 rad to make kα2 = 1. We compute the solution of
(3.15) by an edge element code. The numerically computed M is given by

M = −0.4110 − 0.0387i. (6.1)

The configuration of the detection system includes coincident transmitter and receiver arrays uniformly distributed
on the square [−2,2] × [−2,2] × {1}, both consisting of 256 (M = N = 162) vertical dipoles (p = q = e3) emitting
or receiving with unit amplitude. The search domain is a box [−0.5,0.5]3 below the arrays. It is worth mentioning
here that the number of transducers should be a multiple of 4 in order to be able to implement the Hadamard technique
in a realistic situation.

In the above setting, we calculate the singular value decomposition of the unperturbed response matrix A0. Fig. 1
displays the logarithmic scale plot of the singular values of A0. We observe that our numerical results agree with our
previous theoretical analysis: there is a significant singular value with multiplicity three associated with the inclusion.
Then we can construct the projection P with the first three singular vectors corresponding to the first three significant
singular values. In the right part of Fig. 1, we also plot the magnitude of IMU on the cross section z = 0, which shows
that the MUSIC algorithm can detect the inclusion with high resolution.
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Fig. 2. Detecting results on cross sectional plane z = 0 (top) and x = 0 (bottom) for different noise level σn. σ
A0
1 /σn = 10,20,30 from left to right.

Fig. 3. POD with respect to σ
A0
1 /σn for different δ. δ = 0.01,0.05,0.10 from left to right.

We test the influence of the noisy measurements by adding a Gaussian noisy matrix with mean zero and variance
σ 2

n /M to unperturbed response matrix A0. In our tests, the Gaussian noise is generated by MATLAB function randn.
The imaging results shown in Fig. 2 indicate that the imaging results become sharper as the noise level is smaller.
Then we show the validity of (5.24). Noticing that M = N makes γ = 1 in our setting. By the analysis in Section 5,
for given FAR δ, POD depends on the ratio σ

A0
1 /σn. Here we only consider the critical regime in which σ

A0
1 is of

the same order of σn (specially σ
A0
1 > σn). Fixing FAR δ, for each ratio σ

A0
1 /σn, we generate 1000 Gaussian noisy

matrices with mean zero and variance σ 2
n /M and add them to A0 to get according noisy response matrices A. We

compute R with the help of the singular value decomposition for each A and count the times for R > rδ to get the
numerical POD. Fig. 3 shows the comparisons between numerical POD and (5.24) for each δ. We can conclude that
the numerical results are in good agreement with (5.24).
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7. Concluding remarks

In this paper we have provided an asymptotic expansion for the perturbations of the magnetic field due to the
presence of an arbitrary shaped small conductive inclusion with smooth boundary and constant permeability and
conductivity parameters. This was done under the assumption that the characteristic size of the inclusion is of the
same order of magnitude as the skin depth. Our analysis can be extended to the case of variable permeability and
conductivity distributions. We expect, however, that dealing with nonsmooth inclusions is challenging.

Our asymptotic formula was in turn used to construct a method for localizing conductive targets. We also presented
numerical simulations for illustration. Thinking ahead, it appears that it would be very interesting to apply the findings
from this paper to real-time target identification in eddy current imaging using the so-called dictionary matching
method [1,2]. We are also interested in investigating target tracking from induction data at multiple frequencies
[23,24]. In the presence of noise, another problem of interest is to study how to estimate resolution for the local-
ization of targets. This will be the subject of a forthcoming publication.
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