Stochastic Mechanics
Random Media
Signal Processing and Image Synthesis
Mathematical Economics and Finance
Stochastic Optimization
Stochastic Control
Stochastic Models in Life Sciences

Edited by
B. Rozovskii
G. Grimmett

Advisory Board
D. Dawson
D. Geman
I. Karatzas
F. Kelly
Y. Le Jan
B. Øksendal
G. Papanicolaou
E. Pardoux
Stochastic Modelling and Applied Probability
formerly: Applications of Mathematics

1. Fleming/Rishel, Deterministic and Stochastic Optimal Control (1975)
7. Vorob’ev, Game Theory: Lectures for Economists and Systems Scientists (1977)
11. Hida, Brownian Motion (1980)
34. Duflo, Random Iterative Models (1997)
40. Fayolle/Iasnogorodski/Malyshov, Random Walks in the Quarter-Plane (1999)
44. Serfozo, Introduction to Stochastic Networks (1999)
45. Steele, Stochastic Calculus and Financial Applications (2001)
46. Chen/Yao, Fundamentals of Queuing Networks: Performance, Asymptotics, and Optimization (2001)
47. Kushner, Heavy Traffic Analysis of Controlled Queueing and Communications Networks (2001)

(continued after index)
To our families
Preface

Our motivation for writing this book is twofold: First, the theory of waves propagating in randomly layered media has been studied extensively during the last thirty years but the results are scattered in many different papers. This theory is now in a mature state, especially in the very interesting regime of separation of scales as introduced by G. Papanicolaou and his coauthors and described in [8], which is a building block for this book. Second, we were motivated by the time-reversal experiments of M. Fink and his group in Paris. They were done with ultrasonic waves and have attracted considerable attention because of the surprising effects of enhanced spatial focusing and time compression in random media. An exposition of this work and its applications is presented in [56]. Time reversal experiments were also carried out with sonar arrays in shallow water by W. Kuperman [113] and his group in San Diego. The enhanced spatial focusing and time compression of signals in time reversal in random media have many diverse applications in detection and in focused energy delivery on small targets as, for example, in the destruction of kidney stones. Enhanced spatial focusing is also useful in sonar and wireless communications for reducing interference. Time reversal ideas have played an important role in the development of new methods for array imaging in random media as presented in [19]. A quantitative mathematical analysis is crucial in the understanding of these phenomena and for the development of new applications. In a series of recent papers by the authors and their coauthors, starting with [40] in the one-dimensional case and [16] in the multidimensional case, a complete analysis of time reversal in random media has been proposed in the two extreme cases of strongly scattering layered media, and weak fluctuations in the parabolic approximation regime. These results are important in the understanding of the intermediate situations and will contribute to future applications of time reversal.

Wave propagation in three-dimensional random media has been studied mostly by perturbation techniques when the random inhomogeneities are small. The main results are that the amplitude of the mean waves decreases with distance traveled, because coherent wave energy is converted into
incoherent fluctuations, while the mean energy propagates diffusively or by radiative transport. These phenomena are analyzed extensively from a physical and engineering point of view in the book of Ishimaru [90]. It was first noted by Anderson [5] that for electronic waves in strongly disordered materials there is wave localization. This means that wave energy does not propagate, because the random inhomogeneities trap it in finite regions. What is different and special in one-dimensional random media is that wave localization always occurs, even when the inhomogeneities are weak. This means that there is never a diffusive or transport regime in one-dimensional random media. This was first proved by Goldsheid, Molchanov, and Pastur in [79]. It is therefore natural that the analysis of waves in one-dimensional or strongly anisotropic layered media presented in this book should rely on methods and techniques that are different from those used in general, multidimensional random media.

The content of this book is multidisciplinary and presents many new physically interesting results about waves propagating in randomly layered media as well as applications in time reversal. It uses mathematical tools from probability and stochastic processes, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of time-reversal experiments. It addresses an interdisciplinary audience of students and researchers interested in the intriguing phenomena related to waves propagating in random media. We have tried to gradually bring together ideas and tools from all these areas so that no special background is required. The book can also be used as a textbook for advanced topics courses in which random media and related homogenization, averaging, and diffusion approximation methods are involved. The analytical results discussed here are proved in detail, but we have chosen to present them with a series of explanatory and motivating steps instead of a “theorem-proof” format. Most of the results in the book are illustrated with numerical simulations that are carefully calibrated to be in the regimes of the corresponding asymptotic analysis. At the end of each chapter we give references and additional comments related to the various results that are presented.

Acknowledgments

George Papanicolaou would like to thank his colleagues Joe Keller and Ragu Varadhan and his coauthors in the early work that is the basis of this book: Mark Asch, Bob Burridge, Werner Kohler, Pawel Lewicki, Marie Postel, Ping Sheng, Sophie Weinryb, and Ben White. The authors would like to thank their collaborators in developing the recent theory of time reversal presented in this book, in particular Jean-François Clouet, for early work on time reversal; André Nachbin, for numerous and fruitful recent collaborations on the subject; and Liliana Borcea and Chrysoula Tsogka for our extended collaboration on imaging. We also thank Mathias Fink and his group in Paris for many discussions of time-reversal experiments. We have benefited from numerous constructive discussions with our colleagues: Guillaume Bal, Peter Blomgren,
Grégoire Derèveaux, Albert Fannjiang, Marteen de Hoop, Arnold Kim, Roger Maynard, Miguel Moscoso, Arogyaswami Paulraj, Lenya Ryzhik, Bill Symes, Bart Van Tiggelen, and Hongkai Zhao. We also would like to thank our students and postdoctoral fellows who have read earlier versions of the book: Petr Glotov, Renaud Marty, and Oleg Poliannikov.

Most of this book was written while the authors were visiting the Departments of Mathematics at North Carolina State University, University of California Irvine, Stanford University, Toulouse University, University Denis Diderot in Paris, IHES in Bures-sur-Yvette, and IMPA in Rio de Janeiro. The authors would like to acknowledge the hospitality of these places.

Santa Barbara, California
Paris, France
Stanford, California
Irvine, California

Jean-Pierre Fouque
Josselin Garnier
George Papanicolaou
Knut Solna

December 19, 2006
Contents

1 Introduction and Overview of the Book ... 1

2 Waves in Homogeneous Media .. 9
 2.1 Acoustic Wave Equations .. 9
 2.1.1 Conservation Equations in Fluid Dynamics 9
 2.1.2 Linearization ... 10
 2.1.3 Hyperbolicity .. 11
 2.1.4 The One-Dimensional Wave Equation 12
 2.1.5 Solution of the Three-Dimensional Wave Equation by Spherical Means .. 14
 2.1.6 The Three-Dimensional Wave Equation With Source 17
 2.1.7 Green’s Function for the Acoustic Wave Equations 19
 2.1.8 Energy Density and Energy Flux 21
 2.2 Wave Decompositions in Three-Dimensional Media 22
 2.2.1 Time Harmonic Waves .. 22
 2.2.2 Plane Waves .. 23
 2.2.3 Spherical Waves ... 24
 2.2.4 Weyl’s Representation of Spherical Waves 25
 2.2.5 The Acoustic Wave Generated by a Point Source 27
 2.3 Appendix ... 29
 2.3.1 Gauss–Green Theorem .. 29
 2.3.2 Energy Conservation Equation 30

3 Waves in Layered Media ... 33
 3.1 Reduction to a One-Dimensional System 33
 3.2 Right- and Left-Going Waves ... 34
 3.3 Scattering by a Single Interface 36
 3.4 Single-Layer Case ... 39
 3.4.1 Mathematical Setup .. 39
 3.4.2 Reflection and Transmission Coefficient for a Single Layer .. 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3</td>
<td>Frequency-Dependent Reflectivity and Antireflection Layer</td>
<td>43</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Scattering by a Single Layer in the Time Domain</td>
<td>44</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Propagator and Scattering Matrices</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Multilayer Piecewise-Constant Media</td>
<td>48</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Propagation Equations</td>
<td>48</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Reflected and Transmitted Waves</td>
<td>51</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Reflectivity Pattern and Bragg Mirror for Periodic Layers</td>
<td>54</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Goupillaud Medium</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>Effective Properties of Randomly Layered Media</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Finely Layered Piecewise-Constant Media</td>
<td>62</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Periodic Case</td>
<td>63</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Random Case</td>
<td>65</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Conclusion</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Random Media Varying on a Fine Scale</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Boundary Conditions and Equations for Right- and Left-Going Modes</td>
<td>70</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Modes Along Local Characteristics</td>
<td>72</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Modes Along Constant Characteristics</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Centering the Modes and Propagator Equations</td>
<td>75</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Characteristic Lines</td>
<td>75</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Modes in the Fourier Domain</td>
<td>76</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Propagator</td>
<td>77</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The Riccati Equation for the Local Reflection Coefficient</td>
<td>79</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Reflection and Transmission in the Time Domain</td>
<td>81</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Matched Medium</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>Homogenization and the Law of Large Numbers</td>
<td>82</td>
</tr>
<tr>
<td>4.5.1</td>
<td>A Simple Discrete Random Medium</td>
<td>82</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Random Differential Equations</td>
<td>85</td>
</tr>
<tr>
<td>4.5.3</td>
<td>The Effective Medium</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Scaling Limits</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Identification of the Scaling Regimes</td>
<td>92</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Modeling of the Medium Fluctuations</td>
<td>92</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Modeling of the Source Term</td>
<td>94</td>
</tr>
<tr>
<td>5.1.3</td>
<td>The Dimensionless Wave Equations</td>
<td>95</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Scaling Limits</td>
<td>96</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Right- and Left-Going Waves</td>
<td>98</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Propagator and Reflection and Transmission Coefficients</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Diffusion Scaling</td>
<td>102</td>
</tr>
<tr>
<td>5.2.1</td>
<td>White-Noise Regime and Brownian Motion</td>
<td>103</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Diffusion Approximation</td>
<td>104</td>
</tr>
</tbody>
</table>
5.2.3 Finite-Dimensional Distributions of the Transmitted Wave .. 106

6 Asymptotics for Random Ordinary Differential Equations . 109
6.1 Markov Processes .. 110
 6.1.1 Semigroups .. 110
 6.1.2 Infinitesimal Generators .. 111
 6.1.3 Martingales and Martingale Problems 111
 6.1.4 Kolmogorov Backward and Forward Equations 113
 6.1.5 Ergodicity .. 115
6.2 Markovian Models of Random Media 116
 6.2.1 Two-Component Composite Media 116
 6.2.2 Multicomponent Composite Media 118
 6.2.3 A Continuous Random Medium 120
6.3 Diffusion Approximation Without Fast Oscillation 122
 6.3.1 Markov Property .. 123
 6.3.2 Perturbed Test Functions 124
 6.3.3 The Poisson Equation and the Fredholm Alternative 124
 6.3.4 Limiting Infinitesimal Generator 126
 6.3.5 Relative Compactness of the Laws of the Processes 131
 6.3.6 The Multiplicative-Noise Case 134
6.4 The Averaging and Fluctuation Theorems 135
 6.4.1 Averaging .. 135
 6.4.2 Fluctuation Theory .. 136
6.5 Diffusion Approximation with Fast Oscillations 139
 6.5.1 Semifast Oscillations 139
 6.5.2 Fast Oscillations .. 142
6.6 Stochastic Calculus ... 145
 6.6.1 Stochastic Integrals .. 147
 6.6.2 Itô’s Formula .. 150
 6.6.3 Stochastic Differential Equations 152
 6.6.4 Diffusions and Partial Differential Equations 153
 6.6.5 Feynman–Kac Representation Formula 155
6.7 Limits of Random Equations and Stochastic Equations 156
 6.7.1 Itô Form of the Limit Process 156
 6.7.2 Stratonovich Stochastic Integrals 158
 6.7.3 Limits of Random Matrix Equations 160
6.8 Lyapunov Exponent for Linear Random Differential Equations 161
 6.8.1 Lyapunov Exponent of the Random Differential Equation .. 162
 6.8.2 Lyapunov Exponent of the Limit Diffusion 169
6.9 Appendix .. 172
 6.9.1 Quadratic Variation of a Continuous Martingale 172
Contents

7 Transmission of Energy Through a Slab of Random Medium

7.1 Transmission of Monochromatic Waves

7.1.1 The Diffusion Limit for the Propagator

7.1.2 Polar Coordinates for the Propagator

7.1.3 Martingale Representation of the Transmission Coefficient

7.1.4 The Localization Length \(L_{\text{loc}}(\omega) \)

7.1.5 Mean and Fluctuations of the Power Transmission Coefficient

7.1.6 The Strongly Fluctuating Character of the Power Transmission Coefficient

7.2 Exponential Decay of the Transmitted Energy for a Pulse

7.2.1 Transmission of a Pulse Through a Slab of Random Medium

7.2.2 Self-Averaging Property of the Transmitted Energy

7.2.3 The Diffusion Limit for the Two-Frequency Propagator

7.3 Wave Localization in the Weakly Heterogeneous Regime

7.3.1 Determination of the Power Transmission Coefficient from a Random Harmonic Oscillator

7.3.2 Comparisons of Decay Rates

7.4 Wave Localization in the Strongly Heterogeneous White-Noise Regime

7.5 The Random Harmonic Oscillator

7.5.1 The Lyapunov Exponent of the Random Harmonic Oscillator

7.5.2 Expansion of the Lyapunov Exponent in the Strongly Heterogeneous Regime

7.5.3 Expansion of the Lyapunov Exponent in the Weakly Heterogeneous Regime

7.6 Appendix. Statistics of the Power Transmission Coefficient

7.6.1 The Probability Density of the Power Transmission Coefficient

7.6.2 Moments of the Power Transmission Coefficient

8 Wave-Front Propagation

8.1 The Transmitted Wave Front in the Weakly Heterogeneous Regime

8.1.1 Stabilization of the Transmitted Wave Front

8.1.2 The Integral Equation for the Transmitted Field

8.1.3 Asymptotic Analysis of the Transmitted Wave Front

8.2 The Transmitted Wave Front in the Strongly Heterogeneous Regime

8.2.1 Asymptotic Representation of the Transmitted Wave Front

8.2.2 The Energy of the Transmitted Wave
8.2.3 Numerical Illustration of Pulse Spreading 230
8.2.4 The Diffusion Limit for the Multifrequency Propagators 230
8.2.5 Martingale Representation of the Multifrequency
Transmission Coefficient 233
8.2.6 Identification of the Limit Wave Front 234
8.2.7 Asymptotic Analysis of Travel Times 236
8.3 The Reflected Front in Presence of an Interface 238
8.3.1 Integral Representation of the Reflected Pulse 238
8.3.2 The Limit for the Reflected Front 242
8.4 Appendix. Proof of the Averaging Theorem 245

9 Statistics of Incoherent Waves 249
9.1 The Reflected Wave .. 249
 9.1.1 Reformulation of the Reflection and Transmission
 Problem ... 249
 9.1.2 The Riccati Equation for the Reflection Coefficient 252
 9.1.3 Representation of the Reflected Field 253
9.2 Statistics of the Reflected Wave in the Frequency Domain ... 254
 9.2.1 Moments of the Reflection Coefficient 254
 9.2.2 Probabilistic Representation of the Transport Equations 258
 9.2.3 Explicit Solution for a Random Half-Space 261
 9.2.4 Multifrequency Moments 262
9.3 Statistics of the Reflected Wave in the Time Domain 266
 9.3.1 Mean Amplitude .. 266
 9.3.2 Mean Intensity .. 266
 9.3.3 Autocorrelation and Time-Domain Localization 267
 9.3.4 Gaussian Statistics 269
9.4 The Transmitted Wave .. 272
 9.4.1 Autocorrelation Function of the Transmission Coefficient 272
 9.4.2 Probabilistic Representation of the Transport Equations 274
 9.4.3 Statistics of the Transmitted Wave in the Time Domain 277

10 Time Reversal in Reflection and Spectral Estimation 281
10.1 Time Reversal in Reflection 283
 10.1.1 Time-Reversal Setup 283
 10.1.2 Time-Reversal Refocusing 285
 10.1.3 The Limiting Refocused Pulse 286
 10.1.4 Time-Reversal Mirror Versus Standard Mirror 290
10.2 Time Reversal Versus Cross Correlations 291
 10.2.1 The Empirical Correlation Function 292
 10.2.2 Measuring the Spectral Density 293
 10.2.3 Signal-to-Noise Ratio Comparison 294
10.3 Calibrating the Initial Pulse 302
11 Applications to Detection .. 305
 11.1 Detection of a Weak Reflector 306
 11.2 Detection of an Interface Between Media 311
 11.3 Waves in One-Dimensional Dissipative Random Media 313
 11.3.1 The Acoustic Model with Random Dissipation 313
 11.3.2 Propagator Formulation 314
 11.3.3 Transmitted Wave Front 317
 11.3.4 The Refocused Pulse for Time Reversal in Reflection 317
 11.4 Application to the Detection of a Dissipative Layer 320
 11.4.1 Constant Mean Dissipation 321
 11.4.2 Thin Dissipative Layer 321
 11.4.3 Thick Dissipative Layer 324

12 Time Reversal in Transmission 327
 12.1 Time Reversal of the Stable Front 328
 12.1.1 Time-Reversal Experiment 329
 12.1.2 The Refocused Pulse 331
 12.2 Time Reversal with Coda Waves 333
 12.2.1 Time-Reversal Experiment 333
 12.2.2 Decomposition of the Refocusing Kernel 335
 12.2.3 Midband Filtering by the Medium 336
 12.2.4 Low-Pass Filtering 337
 12.3 Discussion and Numerical Simulations 339

13 Application to Communications 343
 13.1 Review of Basic Communications Schemes 344
 13.1.1 Nyquist Pulse 344
 13.1.2 Signal-to-Interference Ratio 345
 13.1.3 Modulated Nyquist Pulse 346
 13.2 Communications in Random Media Using Nyquist Pulses 347
 13.2.1 Direct Transmission 350
 13.2.2 Communications Using Time Reversal 351
 13.2.3 SIRs for Coherent Pulses 353
 13.2.4 Influence of the Incoherent Waves 355
 13.2.5 Numerical Simulations 357
 13.3 Communications in Random Media Using Modulated Nyquist
 Pulses .. 358
 13.3.1 SIRs of Modulated Nyquist Pulses 359
 13.3.2 Numerical Simulations 362
 13.3.3 Discussion 363

14 Scattering by a Three-Dimensional Randomly Layered
 Medium .. 365
 14.1 Acoustic Waves in Three Dimensions 366
 14.1.1 Homogenization Regime 366
14.1.2 The Diffusion Approximation Regime 368
14.1.3 Plane-Wave Fourier Transform 369
14.1.4 One-Dimensional Mode Problems 370
14.1.5 Transmitted-Pressure Integral Representation 374
14.2 The Transmitted Wave Front 374
14.2.1 Characterization of Moments 374
14.2.2 Stationary-Phase Point 376
14.2.3 Characterization of the Transmitted Wave Front 378
14.3 The Mean Reflected Intensity Generated by a Point Source . 380
14.3.1 Reflected-Pressure Integral Representation 380
14.3.2 Autocorrelation Function of the Reflection Coefficient at Two Nearby Slownesses and Frequencies 381
14.3.3 Asymptotics of the Mean Intensity 385
14.4 Appendix: Stationary-Phase Method 389

15 Time Reversal in a Three-Dimensional Layered Medium 393
15.1 The Embedded-Source Problem 393
15.2 Time Reversal with Embedded Source 395
15.2.1 Emission from a Point Source 395
15.2.2 Recording, Time Reversal, and Reemission 401
15.2.3 The Time-Reversed Wave Field 403
15.3 Homogeneous Medium .. 405
15.3.1 The Field Recorded at the Surface 406
15.3.2 The Time-Reversed Field 407
15.4 Complete Description of the Time-Reversed Field in a Random Medium ... 411
15.4.1 Expectation of the Refocused Pulse 413
15.4.2 Refocusing of the Pulse 414
15.5 Refocusing Properties in a Random Medium 416
15.5.1 The Case $|z_s| \ll L_{\text{loc}}$ 416
15.5.2 Time Reversal of the Front 417
15.5.3 Time Reversal of the Incoherent Waves with Offset 417
15.5.4 Time Reversal of the Incoherent Waves Without Offset . 422
15.5.5 Record of the Pressure Signal 424
15.6 Appendix A: Moments of the Reflection and Transmission Coefficients ... 424
15.6.1 Autocorrelation Function of the Transmission Coefficient at Two Nearby Slownesses and Frequencies 424
15.6.2 Shift Properties .. 425
15.6.3 Generalized Coefficients 426
15.7 Appendix B: A Priori Estimates for the Generalized Coefficients .. 428
15.8 Appendix C: Derivation of (15.74) 430
Contents

16 Application to Echo-Mode Time Reversal

16.1 The Born Approximation for an Embedded Scatterer

16.1.1 Integral Expressions for the Wave Fields

16.2 Asymptotic Theory for the Scattered Field

16.2.1 The Primary Field

16.2.2 The Secondary Field

16.3 Time Reversal of the Recorded Wave

16.3.1 Integral Representation of the Time-Reversed Field

16.3.2 Refocusing in the Homogeneous Case

16.3.3 Refocusing of the Secondary Field in the Random Case

16.3.4 Contributions of the Other Wave Components

16.4 Time-Reversal Superresolution with a Passive Scatterer

16.4.1 The Refocused Pulse Shape

16.4.2 Superresolution with a Random Medium

17 Other Layered Media

17.1 Nonmatched Effective Medium

17.1.1 Boundary and Jump Conditions

17.1.2 Transmission of a Pulse through a Nonmatched Random Slab

17.1.3 Reflection by a Nonmatched Random Half-Space

17.2 General Background

17.2.1 Mode Decomposition

17.2.2 Transport Equations

17.2.3 Applications

17.3 Medium with Random Density Fluctuations

17.3.1 The Coupled-Propagator White-Noise Model

17.3.2 The Transmitted Field

17.3.3 Transport Equations

17.3.4 Reflection by a Random Half-Space

18 Other Regimes of Propagation

18.1 The Weakly Heterogeneous Regime in Randomly Layered Media

18.1.1 Mode Decomposition

18.1.2 Transport Equations

18.1.3 Applications

18.2 Dispersive Media

18.2.1 The Terrain-Following Boussinesq Model

18.2.2 The Propagating Modes of the Boussinesq Equation

18.2.3 Mode Propagation in a Dispersive Random Medium

18.2.4 Transport Equations

18.2.5 Time Reversal

18.3 Nonlinear Media

18.3.1 Shallow-Water Waves with Random Depth
18.3.2 The Linear Hyperbolic Approximation502
18.3.3 The Effective Equation for the Nonlinear Front Pulse . 504
18.3.4 Analysis of the Pseudospectral Operator508
18.3.5 Time Reversal509
18.4 Time Reversal with Changing Media510
18.4.1 The Experiment510
18.4.2 Convergence of the Finite-Dimensional Distributions ...511
18.4.3 Convergence of the Refocused Pulse515

19 The Random Schrödinger Model519
19.1 Linear Regime ...519
19.1.1 The Linear Schrödinger Equation519
19.1.2 Transmission of a Monochromatic Wave521
19.1.3 Transmission of a Pulse526
19.2 Nonlinear Regime528
19.2.1 Waves Called Solitons528
19.2.2 Dispersion and Nonlinearity531
19.2.3 The Nonlinear Schrödinger Equation532
19.2.4 Soliton Propagation in Random Media536
19.2.5 Reduction of Wave Localization by Nonlinearity540

20 Propagation in Random Waveguides545
20.1 Propagation in Homogeneous Waveguides547
20.1.1 Modeling of the Waveguide547
20.1.2 The Propagating and Evanescent Modes548
20.1.3 Excitation Conditions for an Incoming Wave550
20.1.4 Excitation Conditions for a Source550
20.2 Mode Coupling in Random Waveguides551
20.2.1 Coupled Amplitude Equations553
20.2.2 Conservation of Energy Flux554
20.2.3 Evanescent Modes in Terms of Propagating Modes ...556
20.2.4 Propagating-Mode-Amplitude Equations557
20.2.5 Propagator Matrices558
20.2.6 The Forward-Scattering Approximation561
20.3 The Time-Harmonic Problem562
20.3.1 The Coupled Mode Diffusion Process562
20.3.2 Mean Mode Amplitudes564
20.3.3 Coupled Power Equations564
20.3.4 Fluctuations Theory566
20.4 Broadband Pulse Propagation in Waveguides567
20.4.1 Integral Representation of the Transmitted Field567
20.4.2 Broadband Pulse Propagation in a Homogeneous Waveguide569
20.4.3 The Stable Wave Field in a Random Waveguide569
20.5 Time Reversal for a Broadband Pulse571