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1. INTRODUCTION 3

§1. Introduction

Solitons are now considered as one of the most important objects in nonlin-
ear physics. They can be found in many areas of physics including hydro-
dynamics, condensed matter, nonlinear optics, and atomic Bose-Einstein
condensates. Optical solitons in fibers and spatial solitons (self-supported
optical beams) in nonlinear media have attracted special attention. It is
widely believed that optical solitons will be key elements for the next gen-
eration of high speed optical communication systems and ultrafast optical
devices. Spatial solitons are considered as the base elements for all-optical
logical and switching devices.

The existence of solitons is connected with the balance between the fiber
dispersion or the linear diffraction and the medium nonlinearity. Optical
solitons in fibers have been predicted by Hasegawa and Tappert [1973] and
observed experimentally by Mollenauer, Stolen, and Gordon [1980]. Op-
tical fibers are media with cubic nonlinearity. Mathematically the optical
pulse propagation in a slowly varying amplitude approximation is described
by the nonlinear Schrodinger equation (NLSE) for the electric field. This
equation is integrable and can be solved by the use of the Inverse Scatter-
ing Transform (IST). Fortunately, many properties of real optical fiber sys-
tems such as dissipation, amplification, Raman processes, self-steepening,
and higher-order dispersion can be described as weak perturbations of the
NLSE. It is therefore possible to develop a perturbation theory in order
to explain many phenomena connected with optical solitons in fibers and
related devices, like soliton couplers, soliton laser etc. Finally, the propaga-
tion of short pulses in birefringent fibers was investigated. In these media
cross phase modulation processes play important roles. Mathematically
the pulse propagation can be described by the Manakov system and its
nearly integrable and nonintegrable modifications, which supports vector
optical solitons. Perturbations of the Manakov system can be dealt with
similar approaches as for the scalar NLSE.

The efficiency of using solitons in optical communication systems is lim-
ited by several factors. The most important ones are: amplifier noise,
inhomogeneities of the fiber material and the fiber transverse profile along
the propagation, and random birefringence. The nonlinear interaction
processes of trains of solitons are also factors of information loss in single-
mode fibers. As was shown by Gordon and Haus [1986] and by Elgin
[1985] the distributed noise leads to the soliton Gordon-Haus (GH) jitter
and to fundamental limits on the bit error rate in soliton communication
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systems. Some estimates of the effects of random variations of fibers on
soliton propagation were also obtained in this period, mainly using the
adiabatic approximation of the perturbation theory for solitons (see the
book by Abdullaev, Darmanyan, and Khabibullaev [1993]). More precise
results were derived later by Baker and Elgin [1998], Falkovich, Kolokolov,
Lebedev, and Turitsyn [2001], Biswas [2001]. Finally, optical soliton prop-
agation in fibers with random birefringence was investigated. It was shown
that the scale of variations of birefringence is much smaller that the char-
acteristic scales of the problem like dispersion and nonlinear lengths. As
was shown by Wai, Menyuk, and Chen [1991], Evangelides, Mollenauer,
Gordon, and Bergano [1992] the averaging over the fast variations can be
performed and the averaged dynamics is described by the Manakov sys-
tem. Using collective variable methods Ueda and Kath [1992] derived the
Fokker-Planck equation to find the probability densities for the polarization
state of a propagating vector soliton. Higher-order corrections to the aver-
aged Manakov system lead to random wave generation by the soliton that
limits the error free bit rate in optical communication systems as shown by
Lakoba and Kaup [1997], Chen and Haus [2000a], Chung, Chertkov, and
Lebedev [2004]. The investigation of this Polarization Mode Dispersion
(PMD) process requires to develop the perturbation theory for the Man-
akov system admitting the calculation of radiative effects. The analysis of
the perturbed Manakov system performed by Midrio, Wabnitz, and Franco
[1996], Shechnovich and Doktorov [1997] has deal with the adiabatic ap-
proximation. In the Appendix 2 we present our results for the calculation
of the radiation effects in the perturbed Manakov system, based on the
Gelfand-Levitan-Marchenko representation and the Hamiltonian formula-
tion.

Many stochastic problems are connected with the long-scale propagation
of optical solitons: generation of waves by picosecond and femtosecond soli-
tons in random fibers, interaction of solitons, existence of dissipative soli-
tons. Some of these problems were solved recently by Abdullaev, Caputo,
and Flytzanis [1994], Abdullaev and Baizakov [2000], Chertkov, Chung,
Dyachenko, Gabitov, Kolokolov, and Lebedev [2003], Abdullaev, Navotny,
and Baizakov [2004], Chung, Chertkov, and Lebedev [2004] and some other

remain open.

The discovery of dispersion-managed (DM) solitons by Smith, Knox, Do-
ran, Blow, and Bennion [1996], Gabitov and Turitsyn [1996] has opened new
possibilities for soliton optical communication. Periodic and strong modu-
lations of the fiber dispersion are used to generate a DM soliton. The DM
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soliton is breathing during propagation and has enhanced energy in com-
parison with the standard optical soliton. This type of pulse is more robust
against the action of the GH jitter. But since dispersion is modulated, new
types of stochastic problems appear. It is important to understand the
stability of the DM solitons against random variations of the chromatic
and waveguide dispersions existing in fibers. As measurements show, the
random variations of dispersion can be the order of the average disper-
sion value and so they play important role in the short pulse degradation.
Mathematically this problem is more complicated since we have to deal
with the NLSE with strongly periodically and randomly varying dispersion
coefficient. For the analysis of this problem, the variational method (used
by Abdullaev and Baizakov [2000], Malomed and Berntson [2001], Garnier
[2002], Schafer, Moore, and Jones [2002]) and a frequency domain approach
(used by Chertkov, Gabitov, Lushnikov, Moeser, and Toroczkai [2002]) are
effective. DM soliton evolution under PMD was considered recently by
Karlsson [1998], Chen and Haus [2000b], Abdullaev, Umarov, Wahiddin,
and Navotny [2000] and experimentally by Xie, Sunnerud, Karlsson, and
Andrekson [2001].

Other areas of optical solitons are connected with the self-supported op-
tical beams (spatial solitons) and spatio-temporal pulses (optical bullets).
In media supporting such structures the nonlinearity can be much larger
than in optical fibers and so the effective scales are much shorter. Optical
solitons become important as they are used as elements of all-optical logical
devices and switchers.

Only cubic nonlinearity has been discussed in the previous paragraphs,
but quadratic nonlinear media are also important for theoretical and prac-
tical purposes. The quadratic soliton formation in such media is possible
due to the balance between the linear diffraction (dispersion) and nonlin-
ear terms involving phase mismatchs. The soliton has a more complicated
form than in the fiber case and it involves in general the interaction be-
tween three waves. An important partial case which is considered in this
review is a fundamental wave (FW) and a second harmonic (SH) wave
interaction. The system of equations describing this process is not inte-
grable in general. One-dimensional (1D) solitons have been predicted by
Karamzin and Sukhorukov [1974] and experimentally observed in a planar
nonlinear waveguide by Baek, Schiek, Stegeman, and Sohler [1997] (see
also the reviews by Buryak, Di Trapani, Skryabin, and Trillo [2002] and
by Etrich, Lederer, Malomed, Peschel, and Peschel [2000]). The question
of the stability of such solitons in random media is still uninvestigated. In
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distinction with the solitons in cubic nonlinear media, quadratic solitons
are very sensitive to the phase matching condition. The randomness of the
medium should lead to the distortion of the phase matching and to the
quadratic soliton degradation. Since the equations are nonintegrable ex-
act analytical methods are absent. Numerical simulations for the random
mismatch and quadratic nonlinearity performed by Torner and Stegeman
[1997], Clausen, Bang, Kivshar, and Christiansen [1997], Abdullaev, Dar-
manyan, Kobyakov, Schmidt, and Lederer [1999] show the pure dissipative
nature of the soliton decay.

The problems mentioned here above involve the pulse dynamics driven
by perturbations which are random in the evolutional variable. In the case
of spatial solitons it is important to consider the propagation in a medium
which 1s randomly varying with the spatial transverse variable. It corre-
sponds to the random linear V;(z) and/or nonlinear potentials Va(z)|u|?
in the NLSE. This problem is also important for many areas of physics. It
was investigated by many authors Gredeskul and Kivshar [1992], Bronski
[1998], Knapp [1995], but recently it was solved using the IST approach for
nonlinear and dispersive perturbations Garnier [1998], Garnier [2001].

Practically the evolution of optical bullets in random media remains un-
investigated. Some results were obtained recently by Gaididei and Chris-
tiansen [1998], Fibich and Papanicolaou [1999], Abdullaev, Bronski, and
Galimzyanov [2003], Yannacopoulos, Frantzeskakis, Polymilis; and Hizani-
dis [2002]. The dynamics of discrete optical solitons in disordered 1D ar-
rays of planar waveguides and 2D arrays of fibers has recently attracted
attention - see the experiments performed by Pertsch, Peschel, Kobelke,
Schuster, Bartelt, Nolte, Tunnermann, and Lederer [2004]. But the the-
ory of wave phenomena in such structures is absent. Only some numerical
simulations for 1D nonlinear disordered arrays have been performed by

Kopidakis and Aubry [2000].

In this review we intend to give a description of the modern status of
the theory and experiment about propagation and interaction of optical
solitons in random media. We start from a short derivation of the main
equations used for the description of optical soliton evolution in presence
of cubic or quadratic nonlinearity (Section 2). The first part of the review
1s devoted to the dynamics of solitonic pulses in fibers with random para-
meters. The propagation of standard optical solitons (Section 3) as well
as dispersion-managed solitons (Section 4) under random fluctuations of
dispersion and nonlinearity (amplification) is considered. The inverse scat-
tering transform, the variational approach, and the averaging of the NLSE
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in the frequency domain are applied for the investigation of the solitonic
processes in fibers with such types of inhomogeneities. Other related issues
are addressed: interaction of solitons in single-mode fibers with fluctuat-
ing parameters and propagation of femtosecond pulses using the randomly
perturbed modified NLSE. In Section 5 we study the influence of random
birefringence on the optical soliton propagation. PMD is a limiting factor
for long distance optical fiber communication systems. It can be over-
come by solitonic propagation. The propagation can be analyzed using the
averaging of the original system of coupled NLSEs over the rapid varia-
tions of the birefringence. The resulting system is the randomly perturbed
Manakov system. The propagation of the vector optical solitons, radiative
effects, internal motion, etc, are described using the IST approach. The
influence of PMD on dispersion-managed solitons is studied at the end of
this section. In Section 6 we address the propagation of optical solitons in
quadratic random media. Analytical and numerical results are described
for two types of fluctuations along the propagation direction: random mis-
match or fluctuating nonlinearity. Section 7 is devoted to the propagation
of spatial solitons (beams) in media with spatially varying parameters. We
first address the propagation of a soliton in a long slab with an index of
refraction which 1s random in the transverse direction. The problem is
treated analytically and numerically. The role of random dispersive per-
turbations in the propagation of solitons is studied through the example of
an array of planar waveguides with random tunnel coupling. The results of
recent experiments in 2D disordered fiber arrays are discussed. The case of
an index of refraction randomly varying in the transverse and longitudinal
directions is considered using the moments method. In the final section
the evolution of 2D solitons under fluctuations of the medium parameters
is investigated. The analysis is based on the modulation theory for the
Townes soliton. In Appendices the IST approachs for the scalar and vector
NLSEs are given.

Throughout the study we present different approaches (inverse scattering
transform, moments approach, variational approach, averaging of partial
differential equations). We discuss their respective domains of applicability
from a theoretical point of view.
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§2. The main equations

2.1. DERIVATION OF THE NONLINEAR SCHRODINGER EQUA-
TION

In this section we reproduce standard arguments that can be found for
instance in [Haus and Wong [1996]]. The transverse profile of the index of
refraction of an optical fiber can be designed so that the fiber supports only
one electromagnetic mode, with two possible polarizations. Field patterns
of greater transverse variation are not guided but are lost to radiation.
A single-mode fiber propagates modes of two polarizations. Polarization-
maintaining fibers are sufficiently birefringent that a mode launched in one
linear polarization along one of the axes of birefringence remains polarized
along this axis. However, polarization-maintaining fibers are expensive
and have higher losses than regular fibers, and hence are not used in long-
distance fiber communications. Regular fibers still possess birefringence of
the order of 107 . This means that within 107 wavelengths, i.e., about
10 m, the polarization changes uncontrollably. The depolarization length
is much shorter than the dispersion length, and the length within which
the optical Kerr effect produces self-phase modulation. On these larger
distance scales, the mode can be treated in a first approximation as a
mode of a single average polarization.

A pulse propagating along the fiber experiences dispersion and the optical
Kerr effect. Dispersion is called normal, or positive, if the group velocity
decreases with increasing frequency; it is anomalous, or negative, if the
change is in the opposite direction. Dispersion acting alone is a linear
effect that does not change the spectrum of the pulse. Different frequencies
travel with different group velocities and thus a pulse spreads in time. The
optical Kerr effect is an intensity-induced refractive index change. The
Kerr coefficient is defined to be positive if the refractive index increases
with increasing intensity. This index change leads to a time-dependent
phase shift. Since the time derivative of phase is related to the frequency,
the optical Kerr effect usually produces a change of the pulse spectrum.
The combination of positive dispersion and a positive Kerr coefficient leads
to temporal and spectral broadening of the pulse. A fiber with negative
dispersion and a positive Kerr coefficient can propagate a pulse with no
distortion. This may be surprising, at first, since dispersion affects the
pulse in the time domain, the Kerr effect in the frequency domain. However,
a small time-dependent phase shift added to a Fourier transform-limited
pulse does not change the spectrum to first order. If this phase shift is
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canceled by dispersion in the same fiber, the pulse does not change its
shape or its spectrum as it propagates. This propagation of an optical
soliton is governed by the nonlinear Schrodinger equation (NLSE), which
we now derive.

Consider the propagation of an electromagnetic mode of one polarization
along a single-mode optical fiber. The fact that the polarization varies along
the fiber due to the natural birefringence of the fiber will be taken up in
Section 5. In the frequency domain, the amplitude a(z,w) of the mode
obeys the differential equation a,(z,w) = if(w)a(z,w) where F(w) is the
propagation constant. The spectrum of a(z,w) is assumed to be confined
to a frequency regime around wq. A Taylor expansion of §(wg) in frequency
around the carrier frequency wy gives B(w) ~ B(wo) + B Aw + 3" Aw? /2,
where Aw = w — wg. If we introduce the new envelope variable a(z,w) =
exp(if(wo)z — iwot)o(z, Aw), we obtain the equation for ¢: v, = i(#'Aw +
B"Aw?/2)o. In the time domain this equation reads

1
Vy = —5/% - 55//1%

Transformation of the independent variables z and ¢ into a frame repre-
sented by 2/ = z, t/ =t — 'z comoving with the group velocity 1/4,
removes the first-order time derivative. To keep the notation simple, we
shall drop the primes on z and ¢, getting the simple equation as the result

v, = _%ﬁ“v” (2.1)

This is the linear Schrodinger equation for a free particle in one dimension
(with z and ¢ interchanged).

If the fiber is nonlinear, the propagation constant acquires an intensity-
dependent contribution; and G(w) has to be supplemented by the Kerr
contribution, which is a change of the refractive index proportional to the
optical intensity. The process is known as four-wave mixing, since Fourier
components at wy and ws mix with a Fourier component at ws to produce a
phase shift at w = wg —ws +w1. If a distribution of frequencies is involved,
a convolution has to be carried out in the frequency domain. The nonlinear
index ns produces a phase shift proportional to

nz/dwl/dwzv(z,wl)v*(z,wz)v(z,w + wy —wq)
When transformed back into the time domain, this integral becomes

n20:[|v(z, ) ["Ju(z, 1)
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Thus, the Kerr effect is expressed much more simply in the time domain,
as long as the Kerr coefficient is frequency independent. The change of
amplitude Av of the pulse propagating through a differential length of
fiber Az can be derived from standard perturbation theory:

wo - |v(z 1)

Av=1—n, v(z,t)Az
c

Aety
Here ny is the Kerr coefficient (na ~ 3 1072° m?/W for silica fiber), Acsf
is the effective mode area, obtained by averaging the phase shift using the
mode profile e(x, y) over the fiber, that is, by integrating over the transverse
dimensions x and y:

| [ flela,y)ldzdy
Actr [ [le(e, y)|?dedy

We have assumed that |v(z,¢)|? is normalized to the power and the mode
pattern e(xz,y) has been so normalized that [ [ |e(z,y)|?dzdy is dimen-
sionless. When Eq. (2.1) is supplemented by the Kerr effect, we obtain the
NLSE

i /!

v, = —%vn + iklv|*v (2.2)
where kK = wony/(cAcrr). The nonlinearity in this equation can compen-
sate for the dispersion: a pulse need not disperse since it can dig its own
potential well, which provides confinement. This happens when 3’ < 0.
Indeed, a solitary-wave solution of Eq. (2.2) is

t— 73" Aal? 1, 2
US(Z,t) - AQSeCh (#) exp (Zw#z)

where 1/72 = —k|Ag|?/B". This constraint shows that dispersion has to be
indeed negative. We next introduce a reference time ¢y (of the order of the
pulse width) and we define the dimensionless time T = ¢/¢; and distance
7 = z/zg where zg = t2/|3"| is the dispersion distance. The dimensionless
field

uw(T, Z) = /ezou(Tto, Zz)

satisfies the normalized NLSE

1
g + JuTT + Jul*u =0 (2.3)

The NLSE is integrable (see Appendix 1) and supports soliton solutions
with a sech envelop.
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2.2. DERIVATION OF (¥ SYSTEM

The induced polarization of the medium P can be expanded as powers of
the electric field amplitude

P=c[xV E4+x?:(EE)+--], (2.4)

where € is the vacuum permittivity and y(¥), i = 1,2, ... is the i—th order
susceptibility. The second order susceptibility is responsible for the second-
harmonic generation. Let us derive the equations for the fundamental waves
(FW) and second harmonic (SH) fields. The light wave with the frequency
w can feel the nonlinear response of the x? terms through the interaction
of w and 2w components. In a film waveguide geometry we can look for

fields of the form
E(X,Y,Z;t) ZeZE + c.c.,

E\(X,Y, Z;t) = A1 (X, Z) f4(Y)eiFrZ—wnt),
Eo(X,Y, Z;t) = As(X, Z) fp(V)elh22- wﬂ) (2.5)

where c.c. stands for “complex conjugate”. Here e; are unit polarization
vectors, ki » = wna o/c are the propagation constants, nq 5 are the effective
mode indices, f4(Y), fe(Y) are the propagating modes in the transverse
Y direction, and A; 5 are the slowly varying envelopes for FW and SH
fields, respectively. It is assumed that the frequencies of the interacting
waves are exactly matched (2w; = w3) and wavevectors are almost matched
(2k1(w1) — ka(we) = Ak, Ak < k;). Substituting this expansion into the
Maxwell equation
1 62 _

AE—C—Q@(X*E)—V(V'E)—O’ (2.6)

and averaging over the transverse profile we obtain the system of equations

for the FW (A4;) and SH (Az) fields,

A1z + ﬁz‘hxx + T(X, Z) A Age ™8R2 = (2.7)

iAaz + ﬁAzxx + (X, Z)Ale' 7 = 0. (2.8)

The effective nonlinear coefficient T'(X, 7Z) has the form
9 2

2

woesnins = I2dY\/f_ Fn(Y)[2dY
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where dcf; is an effective component of the nonlinear susceptibility tensor
x® and fa,B(Y) are dimensionless mode profiles. Eqgs. (2.7-2.8) can be
recast into the convenient dimensionless form with the following transfor-
mation

P, .
Al = —LEy, Ay = PyBEse®?2 7 =1Lpz, X = Xz,

V2

where Py = (['Lq)™t, Lp = wn, XZ/c is the diffraction length, and X, is
the initial beam width. Then Eqgs. (2.7-2.8) take the form

1
iElz + §E1xx + ETEZ = Oa

, 1 1,
ZEZZ + ZEZxx + §E1 - qEz = 0, (210)

where ¢ = AkLp is the dimensionless mismatch. The total energy
8:/00(|E1|2—|—2|E2|2)dx, (2.11)
and the Hamiltonian
H= /_O; [%|E1x|2 + %|sz|2 - %(Ei‘zEz + EYES) 4 q|Bo]?| dz. (2.12)

are two conserved quantities. The equations of motion can be written in
the form

OH . OH
T e =
LT LS
Although the system is not integrable, it has different types of solitonic

solutions. A bright soliton solution known for the phase mismatch ¢ = —3
has the form

Fi(z, %) = 3sech?(x)e??,  Fy(z,2) = 3sech?(x)e*?. (2.14)

iBy, = (2.13)

The solution will be used in section 6 in the numerical simulations of the
stochastic version of the x(2) system. This analytical solution holds only
for negative mismatch ¢ < 0, whereas the whole family of one-parametric
solitons can be found by numerical means. For details we refer to the
reviews by Buryak, Di Trapani, Skryabin, and Trillo [2002], Etrich, Lederer,
Malomed, Peschel, and Peschel [2000]. We can obtain moving solutions

U2Z

. o
Ey = 3sech?(x — vz)e2?Tive—it"

By = 3sech2(x — vz)e4iz+2i”_”2z. (2.15)
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This transformation to moving solutions is valid only for this system, de-
scribing spatial x(2) solitons.

When the mismatch is positive and ¢ > 1, we obtain from the second
equation in the system (2.10) that F3 ~ E?/(2q). Substituting this result
into the first equation we get the NLSE for E;:

1 1
E —Fipe + —|E1|2E; = 0. 2.16
? 1,2-1-2 1 +2q| 1| 1 ( )

Thus the solutions in this limit are
FEy = 2\/2qusech(2vx)e'®s,  Fy = 41/286Ch2(21/l‘)62i¢5. (2.17)

It 1s seen that the amplitude of the SH soliton is smaller than the amplitude
of the FW soliton.

§3. Solitons in random single-mode fibers

Let us consider an optical pulse propagating in a single-mode optical fiber
with randomly varying nonlinear and dispersion parameters. The dimen-
sionless envelope of the electric field obeys the modified NLSE

d
wy + Z)Utt+C(Z)|u|2u: 0, (3.1)
where d(z) = 1 + m(z) and ¢(z) = 1 + n(z) model the fluctuations of the
dispersion and nonlinearity, and m and n are assumed to be zero-mean
random processes. We address the propagation of a soliton or a train of
solitons governed by (3.1).

3.1. DIFFERENT APPROACHES

In the present time a universal approach to describe pulse propagation in
random medium 1s absent. For randomly perturbed nonintegrable systems
we can use the variational approach. For systems close to integrable a
perturbation technique based on the IST can be applied. The expansion
of the solution over a basis of eigenfunctions of the unperturbed system is
also possible. We review these techniques in this section.
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3.1.1. The variational approach

Let us consider the propagation of a single soliton in a random optical
medium. The Lagrangian density for (3.1) is

d(z)

5 c(2)
el + % ul (32)

E:%(u*uz—uuz)— —~
The key to what follows is the choice of the trial function for u to substitute
into the Lagrangian [Anderson [1983]]. As pointed out in different papers,

the chirped soliton trial function turns out to give good predictions:

i
u(z,t) = A(z)sech [ ] explib(2)t?], (3.3)
a(z)
where A(z), a(z), b(z) describe the complex amplitude, the width, and the
chirp of the soliton, respectively. When substituting this ansatz into the

Lagrangian density, the averaged is

00 2
/ dLdt = —%|A|2a3bz—2|A|2a(Arg(A))z

AP a2 2
—d(z) |3—C|L + %|A|2a3b2 + 5e(z)lAl'a

oQ

When equating to zero the variations of fOL dz | - dtL, the equations for

the soliton parameters A, a, b are obtained

az

b(z) = 2ad(2)’ (3.4)

(alA]*), =0, N?=alAl]? (3.5)
B 4d*(z)  ANZd(2)e(z)  a,d,(2)

ez = 2a3 m2q? + d(z) (3.6)

(arg(A)). = —C;(:Z) + 5%% (3.7)

As can be seen from (3.6), the evolution of the soliton width under random
perturbations i1s described by the motion equation of a unit-mass particle
in a nonstationary anharmonic potential. We shall see that this analogy
opens ways to investigate the soliton dynamics.

It is well-known that the validity of the variational approach is limited.
Its main drawback is the same as its main advantage: inserting a trial
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function into the Lagrangian dramatically reduces the number of degrees
of freedom of the system. This simplifies the problem, but this may lead
to wrong predictions as the trajectories of the system are forced to follow
the constraints imposed by the choice of the trial function. In the case
of the random NLSE the variational approach can be improved by taking
a trial function which consists of a soliton-like pulse with variable para-
meters plus a linear dispersive term taking into account the generation of
dispersive radiation upon pulse evolution [Kath and Smith [1995]]. In any
case the predictions of the variational approach should be confirmed by full
numerical simulations of the random NLSE.

3.1.2. Inverse Scattering Transform

We now study the propagation of a single soliton in a random medium by
applying a perturbation theory of the IST (see Appendix 1). The propa-
gating soliton emits radiation due to scattering with the random medium
so the total field can be decomposed as the sum of a localized soliton part
us (associated to the discrete eigenvalue Ag = u + iv) and delocalized
radiation (associated to the continuous spectrum). ug is of the form

us(z,t) = 2usech[2v(t — ts(2))] expligs(2)],

where the amplitude 2v is slowly varying. The total energy & is preserved
by the perturbed equation (3.1) and it can be written as the sum of the
soliton energy and the radiative energy:

&= / |u|?dt = 4v — %/ In[1 — [b(z, \)|!]dA, (3.8)
where X is the spectral parameter and b 1s the Jost coefficient introduced in
the IST theory (see Appendix 1). The space evolution of the Jost coefficient
is b, = —2i\?b for the unperturbed NLSE, which shows that the radiative
energy, and consequently the soliton energy, are preserved. In the case
of the random NLSE (3.1) the evolution of the Jost coefficient can be
found from the perturbation theory based on the IST [see Eq. (10.10)].
Qualitatively, the energy of the radiation increases which involves a decay
of the soliton energy. Quantitatively, in the first approximation the right-
hand-side of Eq. (10.10) can be computed by substituting the corresponding
expressions for the soliton part:

2rv[(A = ) + v7]

cosh(%A;“)

b, = —2i\%b — expligs(z) — 2iAtg(7)]

[m(z) = n(2)],
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From (3.8) the mean emittted spectral power is P(A) = 2Re (b*b,) /7 and
we find the evolution equation

v = _%/w PO (3.9)

In the white noise case {(m —n)(z)(m —n)(z')) = Di(z — 2'), the mean

emitted spectral power is

_ Drl(A— 2 4 v’

v
27 A
cosh (g V“)

P(A)

(3.10)

Substituting into (3.9) and integrating with respect to A gives a power
law for the soliton decay. This decay will be analyzed in detail in the
forthcoming sections.

3.1.3. Kaup perturbation technique

Motivated by the weakness of the disorder we can write the solution as
u = ug + ur where ug is the soliton (or multi-soliton) part and uy, the ra-
diative part. We can expand the radiative part ur over the eigenfunctions
of the operator describing the evolution of a linear perturbation about the
single-soliton profile of the unperturbed NLSE. This is possible because the
complete system of eigenfunctions was found by Kaup [1990]. In the pres-
ence of random perturbations the coefficients of the decomposition of uy, are
slowly varying, and using the orthogonality properties of the eigenfunctions
it 1s possible to write the evolution equations of these coefficients by a pro-
jection technique. Chertkov, Chung, Dyachenko, Gabitov, Kolokolov, and
Lebedev [2003] apply this method for the study of the impact of random
dispersion, and moreover extend the technique for addressing the evolution
of a multi-soliton solution.

3.2. SINGLE-SOLITON DRIVEN BY RANDOM PERTURBATIONS
3.2.1. Random dispersion

Random fluctuations of dispersion may occur as shown by Kodama, Maruta,
and Hasegawa [1994], Wabnitz, Kodama, and Aceves [1995]. A general
theory is presented by Lin and Agrawal [2002] to describe the effects of dis-
persion fluctuations on optical pulses propagating inside single-mode fibers
modeled as a linear dispersive medium. Random dispersion has been shown
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by Abdullaev, Darmanyan, Kobyakov, and Lederer [1996] to involve dra-
matic effects on the modulational instability of stationary waves because
of a stochastic parametric resonance phenomenon. In this section we shall
analyze the stability of the soliton with respect to random fluctuations of
the dispersion.

Approximate scale characteristics of the dispersion noise present in real
fibers can be extracted from experimental results [Mollenauer, Mamyshev,
and Neubelt [1996], Nakajima, Ohashi, and Tateda [1997], Mollenauer and
Gripp [1998]]. These results show that the typical distance of noticeable
change in the dispersion value is shorter than 100 m (The resolution of the
experimental methods vary from 100 m to 1 km, whereas one expects that
the typical scale of the variations is actually 10-100 m, which is the size
of the production facility). For constant-dispersion fibers, the amplifier
spacing is of the order of 50 km, and for dispersion-managed fibers, the
period of a typical dispersion map is also of the order of 50 km. These scales
are much longer than that of the dispersion variation. Therefore, according
to the approximation-diffusion theory [Papanicolaou and Kohler [1974]],
the natural m at the larger scales can be treated as a homogeneous Gaussian
random process with zero mean and delta-correlated correlation function
(m(z)m(z")) = D3(2—=z"), where D = [ (m(z)m(z + h)) dh. Measurements
show that fluctuations of the dispersion coefficient in dispersion shifted
fibers are of the order of its averaged value dB32 ~ 0.5 ps?/km. Therefore,
for the pulse duration ~ 7 ps with the nonlinear length z,; = 1/£Py ~ 250
km, the noise intensity in dimensionless variables is estimated as D ~
[4Ad? ~ 1072 — 102, The scale when the solitons interaction feel the
noise effect is ~ 1/\/5 ~ 10z,; ~ 2500 km.

A soliton, propagating through a fiber, emits radiation due to disorder
and, consequently, loses its energy. However, in the case of weak disorder
(weakness of disorder is actually required for successful fiber performance)
the destruction of the soliton is slow, thus making an adiabatic description
of this problem possible. The adiabaticity implies separation of dynamical
degrees of freedom into slow and fast modes.

Slow modes describe evolution of the soliton itself while the fast modes
correspond to the radiation. The soliton keeps 1ts shape so that, at each
instant, the soliton is close to a stationary solution of the noiseless NLSE
with the soliton parameters (position, width, phase, and phase velocity)
evolving slowly. Waves shed by a soliton are moving away from it. One
finds that at any z, however large, the radiation in an immediate vicinity
of the soliton 1s much less intense than the soliton itself, i.e., the soliton
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Figure 1: Dependence of the soliton amplitude = 2v, measured in units
of its initial value, on the dimensionless coordinate along the fiber z, is
shown for disorder strength D = 0.18. Solid and dashed curves represent
theory, resulted in Eq. (3.11), and numerics for a representative realization
of the disorder, respectively [reprinted from Chertkov, Chung, Dyachenko,
Gabitov, Kolokolov, and Lebedev (2003)].

is always distinguishable from the radiation. Since the soliton energy is
converted into radiation, its amplitude 2 decays with z. The degradation
law 1s deterministic in spite of the original stochastic setting. This is due to
the fact that the variation of v is determined by an integral over z, which
is a self-averaged quantity at large z. The soliton degradation law is

v(z) = vo(1 4 12802 Dz /15) /4 (3.11)

This formula was derived with the perturbed IST approach by Abdul-
laev, Caputo, and Flytzanis [1994], by the variational approach by Ab-
dullaev, Bronski, and Papanicolaou [2000] and by the Kaup perturbation
technique by Chertkov, Chung, Dyachenko, Gabitov, Kolokolov, and Lebe-
dev [2003]. Tt was confirmed by numerical simulations carried out by
Chertkov, Gabitov, Lushnikov, Moeser, and Toroczkai [2002] and by Ab-
dullaev, Navotny, and Baizakov [2004]. Equation (3.11) shows that the
soliton starts to degrade essentially at z ~ 1/(Dvg)(see Figure 1).
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3.2.2. Random nonlinearity

Random fluctuations of the nonlinear coefficient can have several origins.
The nonlinear index of refraction of the fiber may be varying, but this is
not generally the main factor. Imperfections of the geometry of the fiber
core may cause variations of the transverse profile of the mode of the fiber,
which in turn induce fluctuations of the nonlinear coefficient of the NLSE
because the effective core area plays a role in this coefficient [Bauer and
Melnikov [1995]]. Finally, losses in the fiber are usually compensated by a
series of amplifiers. As a result a z-varying damping term appears in the
right-hand side of the NLSE, which is equivalent after a change of variable
to a z-varying nonlinear coefficient [Gordon [1992]]. The purpose of this
section is the study of the propagation of optical solitons in fibers with a
randomly modulated nonlinear parameter.

In the framework of the variational approach this problem can be re-
duced to the dynamics of a unit-mass particle in a randomly perturbed
central potential. In this case the governing equation for the soliton width
coincides with the Kepler problem in a randomly perturbed potential. Us-
ing this analogy we obtain a system of equations in action-angle variables
which describes the behavior of a chirped pulse in a randomly inhomoge-
neous fiber. In Abdullaev, Abdumalikov, and Baizakov [1997], Abdullaev,
Bronski, and Papanicolaou [2000] the behavior of soliton-like pulses in long
distance optical lines i1s studied on the basis of asymptotic properties of
the soliton width evolution. Analytic estimations for the decay length of
solitons propagating in randomly inhomogeneous fibers are derived in the
case where n is assumed to be a zero mean Gaussian random function with
correlation function {(n(z)n(z")) = Dd(z — z'). The obtained formulas were
confirmed first by numerical simulations, and also by the perturbed IST.
Indeed, there exists a point at which the results obtained by the variational
approach and the IST coincide. In the effective particle model this point
corresponds to the minimum of the potential well, i.e. the single-soliton
initial state. Then the estimation of the decay length can be deduced by
the IST and it is found that the soliton amplitude decay has exactly the
same rate (3.11) as the one triggered by random dispersion.

3.2.3. A random Kepler problem

The variational approach shows that the soliton width dynamics under ran-
dom perturbations can be represented as a particle dynamics in a random
anharmonic potential. This is useful to study the oscillations of the soliton
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width, but also the soliton disintegration distance that can be expressed
in terms of the mean exit time of the equivalent particle from the Kepler
potential [Abdullaev, Bronski, and Papanicolaou [2000]].

The resulting equation for the soliton width a is the randomly perturbed
Kepler problem

a; = =U'(a) —v(z)V'(a), (3.12)
where U(a) is the Kepler potential
2 4N?
U(Cl) = 71'2a2 — m (313)

¥(#) is assumed to be a Gaussian white noise with noise level D, and V is
the perturbation potential which is equal to a? for fluctuating quadratic po-
tential and 4N?/(r?a) for a fluctuating nonlinearity. The Hamiltonian for
the unperturbed Kepler problem is Hy = %(az)2 + U(a). The Hamiltonian
for the perturbed Kepler problem (3.12) is

2
H=Hy+(2)V = (“;) +U(a) +7(2)V. (3.14)

In order to continue the analysis of the random Kepler problem, we must
first transform the unperturbed Kepler problem to action-angle variables.
We summarize here the relevant facts that we need, with details given in
the texts by Landau and Lifshitz [1974].

The minimum of the potential U (a) occurs at a. = 1/N? and it is equal to
Uy = —2N*/m2. The frequency wy of small oscillations about the minimum
is given by wg = 2N*/x. This is the frequency of the width oscillations of
an unperturbed soliton as it propagates down a homogeneous fiber.

For large oscillations the qualitative behavior of the orbits of the Kepler
problem is determined by the energy

2 4N?

m2al  wlag’

Ey = 2a2b2 +

where by i1s the initial chirp and ag is the initial width. When Ey < 0
(i.e 1+ 72agb? < 2N%ag, corresponding to a sufficiently weak initial chirp)
the orbits are closed, corresponding to oscillatory motion. In the the case
Ey > 0, corresponding to sufficiently large initial chirp, the orbits are
unbounded, and the asymptotic motion is qualitatively like the motion of
a free particle. In this regime the soliton does not persist, but instead
spreads out and is lost (¢ — o0). The interesting questions in soliton
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propagation arise when the unperturbed motion is oscillatory, and so we
consider the regime Ey < 0.

We now make a change to action-angle variables. For the Kepler problem,
where the phase space is two dimensional, there is one action variable J
and the conjugate angle variable ©. The action variable is given by

1 2V/2N? 2
J j{azda:\/_i

~ o m2/—E 7
Solving for the total energy E in terms of the action J gives the unperturbed
Hamiltonian

8N*
H=F=—-—7-—1- 3.15
0 2 (rJ +2)% ( )
which 1s a function of J only. The change of variables to action-angle
variables is canonical, so that Hamilton’s equations retain their form

d_J _ _3H0(J) —0
dz e
de IHo(J) B
= - o e
where
dHy 16 N4 w2

= = = —E)3/2, 3.16
dJ n(nJ +2)3 \/§N2( ) ( )
The following implicit representation for the orbits is useful in the per-
turbation calculations. The position a and the “time” z can be expressed
parametrically in terms of a variable £ (called the Kepler parameter) by

a=>b(1—egcos), O =w(J)z =& —egsiné, (3.17)
where the eccentricity ey > 0 and the semi-major axis b are given in terms
of the constant £ as follows

62:1_7r2|E|:1_ 4 b — 2N (n +2)°
0 2N4 (mJ +2)%’ m2|E| 4N?

This parametric representation determines a implicitly as a function of z.
Note that as © varies over (0, 27), £ also varies over (0, 27). From equation
(3.17) it follows that the soliton width oscillates between the minimum
value apm;n = b(1—eg) and the maximum value @y ey = b(14¢€g). The value
of the action J varies from 0, for oscillations near the bottom of potential
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well, to oo for oscillations near the separatrix % = 0. The frequency w(J)
varies from 2N*/x for oscillations near the bottom of the potential well to
0 for oscillations near the separatrix.

It is also useful to relate the initial action Jy to the initial chirp by and
mitial width ag:

2N?

\/2(11\22 — al—g — w2bZal

Let us address the case where the coefficients of the NLSE vary ran-
domly. In this case the soliton parameters evolve according to a set of
random ODE’s, and we can derive a Fokker-Planck equation for the evolu-
tion of the probability distribution for the soliton parameters. The fluctu-
ating quadratic potential perturbation and the fluctuating nonlinear term
perturbation can be analyzed with the white noise model directly, using
the Stratonovich interpretation. In the case of fluctuating dispersion the
treatment is slightly more subtle (see for detail Abdullaev, Bronski, and
Papanicolaou [2000]). In action-angle variables, the perturbed Hamiltonian
has the form

7TJO—|—2:

(3.18)

H = Ho(J) ++4(:)V(J,0), (3.19)

where V(J,0) is obtained from (3.14). In general V', while simple in the
original variables, is quite complicated in the action-angle variables. How-
ever for weak disorder we do not need the explicit form of V', but only
averages over ©. These averages are simple to calculate using the implicit
representation given in (3.17).

In the presence of weak disorder the action-angle variables for the un-
perturbed Kepler problem are a convenient framework for the analysis of
the perturbed problem because the change in the action is proportional to
the small parameter. Since the change to action-angle variables is canon-
ical the Hamiltonian structure is preserved, and the perturbed equations
become

dJ av
o = W3 (3.20)
do av
= - “UHEET

The Fokker-Planck equation for the evolution of the probability distribution
function P(z,J) of J(z), after averaging over O, is given by

%_f - % (A(J)g—];) LA = %/0 (Vol(/,0))2d0,  (3.21)
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with P(0,.J) = §(J — Jy). We note that this averaging calculation breaks
down very near the separatrix, since w(.J) vanishes there, and the pertur-
bations can no longer be considered small.

The mean exit time (distance) to reach oo starting from Jy is

/ o JdJ

T= _—

Jo A(‘])

For the fluctuating nonlinearity, the perturbation of the Hamiltonian is
V = (4N?)/[x%a(J, )] and, starting from a single-state soliton state J =
0, the mean disintegration distance is proportional to ag/D ~ 1/(Dvy).
The same result holds true for the fluctuating dispersion, and different

quantitative estimates of the soliton disintegration distance can be found
in [Abdullaev, Bronski, and Papanicolaou [2000]].

3.3. INTERACTION OF SOLITONS IN RANDOM MEDIUM
3.3.1. Interaction induced by radiation shedding

Using the Kaup perturbation technique Chertkov, Chung, Dyachenko, Gabitov,
Kolokolov, and Lebedev [2003] study the interaction of solitons when suc-
cessive solitons are far from each other so that the interaction through the
tails can be considered as negligible. Radiation emitted by a soliton acts as
a multiplicative noise on another soliton. The interaction is extremely long
range, due to the one-dimensional nature of the system and also because of
the reflectionless feature of the radiation. At any z all solitons separated
from a given one by |{| < z act on this soliton with a force, which is zero on
average. Fluctuations of the force result in a Gaussian jitter of the soliton
position. We find that in the two soliton case ji.e. for the pattern consist-
ing of two solitons only, so that no other solitons are present anywhere in
the |¢| < z vicinity of the pair fluctuations in their relative position dy is a
zero-mean Gaussian random variable with the variance

(0y*) ~ 1.5u3[1 + cos(2A¢)] D?2°, (3.22)

where A¢ is the intersoliton phase mismatch (see Figure 2). In the general
multi-soliton case intersoliton interaction caused by radiation leads to an
essential shift of the solitons at the distance z ~ N=2/3D=2/3 where N is
the number of solitons in the channel. The interaction causes the soliton
to jitter randomly. The soliton displacement dy is a zero-mean Gaussian
random variable, with the variance <(5y2> ~ D?23N. If N does not grow
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Figure 2: Dependence of the mean square value of the intersoliton sep-
aration <(5y2> measured in units of the soliton width square, on the di-
mensionless position along the fiber z is shown. The disorder strength is
D = 0.00125. Three different sets of curves for the three different val-
ues of the intersoliton phase mismatch A¢ = 0, 7/4, m/2 are presented.
Dashed curves represent the analytical result given by Eq. (3.22). Solid
curves represent results of numerics. Each curve is the result of averaging
over 15 different realizations of disorder. [reprinted from Chertkov, Chung,

Dyachenko, Gabitov, Kolokolov, and Lebedev (2003)].

with z (e.g., there are only finite number of solitons propagating in the
channel) the z-dependence of the jitter is the same as the one given by the
Elgin-Gordon-Haus jitter [Elgin [1985], Gordon and Haus [1986], Falkovich,
Kolokolov, Lebedev, and Turitsyn [2001]] developed under the action of
random additive noise (short-correlated both in ¢ and z noise of amplifiers
in the fiber system). However, if the flow of information is continuous, i.e.,
if the front of radiation shed by the given soliton sweeps more and more
solitons with increasing z, N ~ z, the efficiency of the interaction grows
with z in a faster way, Jy ~ 22, thus overwhelming the Elgin-Gordon-Haus
Jitter in long-haul transmission.
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3.3.2. Interaction induced by tail overlap

Using the perturbation theory for soliton interaction Karpman and Solov’ev
[1981] study the interaction of solitons when this interaction is induced by
the overlap of soliton tails. The soliton separation should be sufficiently
large so that the interaction is weak and can be treated by expansion meth-
ods, but it should not be so large otherwise the interaction with the induced
radiation dominates the interaction through the tails. The analysis per-
formed by Abdullaev, Hensen, Bischoff, Sorensen, and Smeltink [1998b]
for a two-soliton configuration with a random nonlinearity exhibits compli-
cated phenomena. When the solitons have the same phase and amplitude
2v, the same result as in the unperturbed NLSE is found, that is to say soli-
tons experience small oscillations with the period ~ exp(—2vAtg), where
Atg 1s the 1nitial soliton separation. If the solitons have not the same
amplitude initially, the mean square of the amplitude difference Av grows
diffusively during propagation Av — Avy ~ Avgexp(—(v1 + I/z)AtS)\/E.
The asymmetry in the two soliton shapes in media with random fluctua-
tions has also been observed numerically.

3.4. BEYOND THE WHITE NOISE MODEL
3.4.1. Pinning schemes

Periodic pinning of disorder was suggested recently to compensate for
the random dispersion by Chertkov, Gabitov, Lushnikov, Moeser, and
Toroczkai [2002]. This method comes in two modifications of distributed
and point pinning. Distributed pinning applies to new fiber lines (not yet
installed in the ground). The method requires controlling the integral dis-
persion (its fluctuating part) of a fiber piece prior to its connection to the
line. A profile of the integral of the fluctuating part of the dispersion co-
efficient should be found, first, and then the suggestion is to cut this fiber
at a zero point for the fluctuating part of the integral dispersion (closest
to the end of the fiber piece). The other type of pinning, point pinning,
was suggested for implementation in already installed fiber optics lines.
At the points of access to the fiber optics line (e.g. at amplifier stations
placed periodically along the fiber) it is suggested to measure the inte-
gral of the fluctuating part of dispersion, and then to compensate it to
zero by inserting a small peace of a fiber with a very well controlled inte-
gral dispersion. If the pinning period, [, is short (i.e., if it is the shortest
scale in the problem), the noise term m can be replaced by m described
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by (m(z)m(z)) = —(DI*/12)§"(z — z') (m actually corresponds to the
“distributed pinning” case, while in the case of the “point pinning” the
replacement should be m — 2m). Recalculation of all the major results for
the pinned noise is straightforward. First of all, one gets the decay rate of
a single soliton:

v(z) = vo(1 + 2Y4EDI? 2 /315)~1/® (3.23)

This expression, contrasted against Eq. (3.11), shows an essential reduc-
tion in the soliton decay since the critical propagation distance becomes
z ~ 1/[(viD)(v21)?] > 1/(viD). Second, in the multi-soliton case, the
radiation mediated jitter can be estimated by dy ~ v/Nz, which becomes
less important asymptotically than the Elgin-Gordon-Hauss jitter.

3.4.2. Colored noise

It may happen that the correlation length of the fluctuations of the medium
parameters is not the smallest length scale present in the problem. A more
careful analysis taking into account the noise spectrum is then necessary.
Let us consider a random dispersion or nonlinearity with autocorrelation

function
|z — 2|

<m(z)m(z’)>=2%exp[‘ Lo ]

The mean emitted spectral power is then [Abdullaev, Hensen, Bischoff,

Sorensen, and Smeltink [1998b]]

_ Dr[(A = p)? + v’
{1+ 1612[(A — 1)? + v7]7} cosh® (F25E)

14

P()) (3.24)

When 412, < 1 we recover the white noise model. When 4%, >> 1 we
get by integrating (3.9) that the decay rate of the soliton amplitude is

Dz )
162

v(z) = vpexp(—

which shows that increasing the correlation length leads to less damping.
The difference between radiative emission in media with white and colored
noise fluctuations can be explained as follows. In a periodically perturbed
fiber there exists a resonance between the characteristic frequencies of the
soliton and the modulation frequency of the medium, leading to the emis-
sion of waves generated by the soliton [Hasegawa and Kodama [1991]]. The
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associated resonance condition is 2n7/L = 42 n € IN, where L is the mod-
ulation period. When the soliton amplitude decays, the soliton parameters
detune from resonance, leading to the stabilization of soliton. In the case
of a white-noise perturbation, all frequencies are present in the spectrum.
Therefore the soliton cannot detune from resonance and it is continuously
damped. In the case of a colored-noise perturbation, the spectrum has a
cut-off frequency corresponding to the correlation length I.. If the soliton
phase velocity 202 is smaller than [.., the soliton is detuned from resonance.

3.4.3. Dissipation and filters

The influence of dissipation and amplification on soliton propagation under
random perturbations can be analyzed. Malomed [1996] considers the ef-
fects of weak amplification and filtering. The unchirped autosoliton under
noise has been studied by Hasegawa and Kodama [1995]. The governing
equation in presence of weak amplification, filtering, and noise is

u, + d(z) wg + c(2) Julfu = iFo(%u + ugt). (3.25)
When d is constant the chirped autosoliton solution exists. The evolution of
the width of the chirped soliton is described by the random Kepler problem
with a damping term proportional to a,, which in turn implies the addition
of a linear damping term in the right-hand side of Eq. (3.20) equal to —T'J,
I' ~ 4.3y [Abdullaev, Bronski, and Papanicolaou [2000]]. As a result the
following expression for the mean exit time (distance) is

/°° 1 /J Iy 45% gydg
= _ e’y z Y
Jo A(‘]) 0

This expression shows that the exit time is increasing with I', which means
that the interplay of noise and dissipation can lead to the stabilization of
soliton. This is also a confirmation of the stabilizing role of filters.

The existence of autosoliton in random media can be shown by the IST
approach. In a fiber with fluctuating dispersion the soliton radiative de-
cay can be compensated by the linear/nonlinear amplifiers. The action of
the distributed gain can be described by the terms id;u + i(5m|u|2u in the
right-hand side of Eq. (3.1). A distinctive property of created solitons is
that they recover the stable waveform when deformed. Numerical simu-
lations show that the linear amplification gives rise to more pronounced
oscillations around the fixed point during the transient period compared
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to nonlinear amplification. At longer propagation distances the oscillations
are damped out and a stable dissipative soliton 1s formed. The amplitude
of the autosoliton at the fixed point vs; can be found from the balance
equation for the soliton energy

d * 4
% = _/ P(A)dX + 86w + %6nlv3, (3.26)
z

— 00

Taking the right-hand side equal to zero we get

50, 36, D
Vlz,Zst = E (1 :l: 1 —|— &T) . (327)
nl

Two types of fixed points exist. The first type v, 1s defined by the com-
petition between the dissipation (induced by the randomness of the fiber
dispersion) and the linear/nonlinear amplifications. For §; = 0, §,,; > 0
(the nonlinear amplification dominates) we find vi;, = (56,;)/(2D), and
similarly for 6,y = 0, § > 0 (linear amplification dominates) vi,, =
\/(153;)/(8D). The second type of fixed points is defined by the com-
petition between the linear dissipation d; < 0 and nonlinear amplification
8ni > 0. For small D we can expand v3,, & (3|6;])/(86n:)+D(967)/(16082,),
which shows that the fluctuations increase the value of autosoliton ampli-
tude in this case.

Simulations of the stochastic NLSE with nonconservative terms have
been performed by Abdullaev, Navotny, and Baizakov [2004] and confirm
the theoretical predictions. However, it should be pointed out that for
the linear amplification case the stable pulse propagation is limited by
the growth of the zero mode under amplification. When the initial pulse
amplitude is close to this solution the instability growth becomes noticeable
at distances z ~ 1/8,; (see for instance Akhmediev and Ankiewicz [2000]).

3.5. FEMTOSECOND SOLITONS IN RANDOM FIBERS

The previous analysis based on the randomly perturbed NLSE shows that
the influence of the random dispersion is very strong for very short pulses.
For solitons with durations < 100 fs it is necessary to consider the modi-
fied NLSE, taking into account the finite time of the response of the Kerr
nonlinearity, the Raman effect, and third and higher-order dispersion. Be-
low we consider a simplified model taking into account only the dispersion,
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nonlinearity, and self-steepening. The governing equation is

iu, + %u” + Jul?u + ia(ul?u), = €(z,t) R(u), (3.28)
where €(z,t) is a random process. When ¢ = 0 this equation is integrable for
any « by means of the IST and the spectral information can be processed
to study the soliton dynamics. It is important to notice that the addi-
tional term in o can be large, which allows us to work beyond the per-
turbation theory. A nontrivial example of application is the soliton jitter
driven by distributed amplifier noise [Doktorov and Kuten [2001]]. In dis-
tinction from the Elgin-Gordon-Haus (EGH) effect which is based on the
standard NLSE for picosecond pulses, the jitter can be suppressed by a
proper choice of the pulse and fiber parameters. The distributed ampli-
fier noise is represented by the additive white noise source in the right-
hand side of Eq. (3.28) eR(u) = s(z,t), with the autocorrelation function
(s*(z,t)s(#",t")) = Dé(z — 2')d(t — t'). The soliton solution of Eq. (3.28)
with s = 0 is - .

i e 4 * e v

wlher 5 k*e—x)ze , (3.29)
where & = q(z) — t/w, ¥ = vt + ¢(2), ¢(z) = (to + vz)/w, and ¢(z) =
b0 — %(vz — #)z Here tg and ¢g determines the initial position and phase
of the soliton, v and w are the soliton velocity and width

u(z,t) =

1 2(k 4+ k%) R

a o 2(k? — k%)

v =

k=¢—ip.  (3.30)

The behaviors of integrals of motion are quite different from the standard
NLSE case. For example the soliton power is

S:/|u|2dt:%, y=Arg(k*), 0<~v< g (3.31)
We recover the standard IST for the NLS equation by taking the limit
o — 0; ko~ 1/2 - a/\nlse/Qa /\nlse = Hnlse + ianse; SO v — 2ﬂnlsea w —
1/(2anse)~
Using the perturbation theory for the IST of the modified NLSE, Dok-
torov and Kuten [2001] find the expression of the soliton jitter

Dz3

(a()") = == F(o,v,9), (3.32)
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Other contributions exist but they are proportional to z so they can be
neglected for large propagation distances. The EGH theory gives the same
formula for the jitter with F = 1. If v < 1/«, then v can be chosen so
that F' < 1. So by the proper choice of parameters the EGH jitter can be
essentially reduced. Many problems for ultrashort pulses on the base of
Eq. (3.28) are still unsolved. One of them is the radiation of femtosecond
soliton under fluctuations of dispersion. We should note that the interesting
effects in this model are observed for non small values of «. But in this
case the validity of the model is questionable, since it is necessary to take
into account higher-order dispersion of nonlinearity as well.

§4. Dispersion-managed solitons under random perturbations

The modified NLSE is of the form

%+ o) |uffu =0 (4.1)

) d
1y +

where d and ¢ possess periodic modulations d, and ¢, with the period L
(the so-called dispersion map) as well as random fluctuations modeled by
zero-mean random processes d,. and c,:

A=) = dy2) + o), e(2) = eul2) + s (2)

The amplitudes of the periodic modulations can be large, while we consider
small-amplitude random fluctuations.

4.1.  PERIODIC AND RANDOM DISPERSION MODULATIONS

In dimensional units, the optical pulse propagation in a system with varying
dispersion is governed by the NLSE (2.2)

. 1
vy — 552(Z)UTT + &lv|*v =0,

where 7 is the propagation distance (in km), 7' is the time in the frame mov-
ing with the group velocity (in ps), P = |v|? is the optical power (in W), 82
is the group velocity dispersion coefficient (in ps?/km). The coefficient S is
related to the usual dispersion parameter D by 32 = —A2D/(2nc) where ¢ =
0.3 mm/ps is the speed of light, Ay is the carrier wavelength (in pm), and
D is measured in ps/nm/km. The pulse energy Epuse = [ |v|*(Z,T)DT.
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is independent of Z. The carrier wavelength is Ag = 1.55 pum for telecom-
munication applications. The nonlinear coefficient x = 27na/(AgAes) (in
W~tm~1) where ns is the nonlinear refractive index (nz ~ 3 1072 nm?/W
in glass) and A.g is the effective fiber area (in pm?). Typically Aeg ~ 60
pum?,
We then introduce the typical nonlinear length Zy := 1/(xPy) where P
1s the typical pulse power. In most practical applications Py is equal to a
few milliwatts. Say Py = 2 1073W, so that Z; = 250 km. We normalize
the coordinate along the fiber 2 = Z/Z; and the envelope of the electric
field u = F/\/Py. We also normalize the time t = T/Ty where Tp is the
typical pulse width Ty, say Ty = b ps, so that the propagation is governed
by the dimensionless NLSE (4.1) with ¢ = 1 and

d(2) = =B2(Z02) 20 ) T3 = NeD(Z02) Z0 [ (27cTE).

Let us first describe the periodic dispersion management. We assume
that the fiber consists in the periodic concatenation of segments of alternate
normal and anomalous fibers, so that the physical dispersion management
is of the type:

Dy if Z mod Lyap € [0, L1/2),
D(Z) ={ D_if Z mod Liap € [L4/2, Lmap — L4/2),
Dy if Z mod Luap € [Lmap — Lt /2, Linap),

The map period is Lmap = L_ 4Ly (see Figure 3). The multi-scale analysis
that is used in the next sections is based on the separation of the scales
Lmap € Zp. In dimensionless units the GVD coefficient d, is of the form
dp(z) = cip(z) + dy where

R dy if 7 mod lmap € [0,14/2),
dp(z) =< d- if z mod lyap € [I4/2, lmap — 14/2),
dy if z mod lmap € [lmap — {4/2, lmap),

lmap = Lmap/ZOa l:t = Li/Zo, di = Ag(D:t — Dm)Zo/(Qﬂ'CTOz), and do =
A2 Dp Zo/(27cTE) is the residual dispersion. Typical values are |Dy| =
2 — 20 ps/nm/km, Ly = 20 — 200 km, and Dy = 0 — 0.1 ps/nm/km. In
dimensionless units, |dx| = 20 — 200, {x = 0.1 — 1, and dp = 0 — 1. The
so-called dispersion management (DM) strength is Dy :=dyl; = —d_1_.

In this chapter we address the influence of small random dispersive fluc-
tuations on the pulse propagation in DM systems. Considering the same
type of fluctuations as in Section 3.2.1, we have the white noise model

(d,(2)d,(2')) = Dd(z — z') with D ~ 1072 —1073.
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Figure 3: Two-step dispersion map.

4.2. DIFFERENT APPROACHES

A reduction of the NLSE to simpler equations is important for two rea-
sons. First, to generate reliable statistics quantifying the effect of random
coeflicients on pulse evolution requires a large number of simulations. This
is particularly true if the most relevant occurrences are exactly those that
are least likely to occur in a straightforward Monte-Carlo approach, such
as bit errors. It is therefore of obvious benefit to reduce the computational
time for each simulation to produce meaningful results in a minimum of
time. The second argument in favor of finding a reduction to the NLSE
is that it 1s often difficult to obtain much insight from a partial differ-
ential equation. A reduction to a finite-dimensional system is generally
more conducive to obtaining an analytical description of the pulse behav-
ior. The resulting ordinary differential equations can be linearized about
the dispersion-managed soliton for approximations valid over short dis-
tances, or they can be averaged over the dispersion map period to capture
the behavior over longer scales [Turitsyn, Aceves, Jones, and Zharnitsky
[1998]].

In this section we present a review of different methods used to reduce
the NLSE. The first two approaches consist in reducing the partial differen-
tial equation to a finite-dimensional problem by deriving a set of ordinary
differential equations for the pulse parameters. The last two approaches
derive effective partial differential equations after an averaging of the NLSE
over one map.

4.2.1. The variational approach

Employing the variational approach, the underlying NLSE can be reduced
to a system of ordinary differential equations for the DM soliton parame-
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ters. The trial localized waveform is taken as

t b(z) 2
t)=A — —— 4.2
o) = 000 75 ] e 1355 2
where A, a, and b/(2a) are the complex amplitude, width, and chirp,
respectively, and @ is the localized function specifying the pulse profile.
Substituting the ansatz (4.2) into the average Lagrangian of Eq. (4.1) and
equating to zero its variations, we arrive at the following variational equa-
tions:

_ C1d(z) B 2058 ¢(z)

3 2 ?

a; = d(z2)b, b,

(4.3)

a a

where the conserved quantity is the pulse energy & = [ |ul*dt = Co|A|*(z)a(z)
and the constants C; depend only on the shape function Q:

o [ 1Qu s [ 1Qltds
CO‘/'Q' S TSI (J521QPds) - (J1Q[%ds)

For the Gaussian approximation of the pulse function @Q(s) = exp(—s?) we

have Cy = \/7/2, C1 =4, and Cy = 1//7.

02:4

4.2.2. Moment equations

Following Turitsyn, Aceves, Jones, and Zharnitsky [1998] we introduce the
rms pulse width and the rms chirp of the pulse:

S (ft2|u|2dt)1/2 Myps 1 [ t(uu] — utug)dt

It is easy to check that the evolution of T}.,,s and R,.,s are

TTmS z = 2d Z Mrmsa TrmsMrms z = d(Z) Q7‘ms z C(Z) Prms
2 4
where I 24 / y
us|“dt u|*dt
Q7‘ms = T o Prms = 1 e 1.
() T Jul2dt () [ ul2dt

We thus get exact but not-closed equations. To close this system, we can
1) assume that the pulse has the self-similar structure (4.2). Tt is then
possible to derive a closed-form system of ordinary differential equations
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for Trms and My.,s, or alternatively a and b since both pairs are related
to each other through the identities a(z)/a(0) = Trms(2)/Trms(0) and
b(2)/a(z) = Myms(2)/Trms(z). The system that is derived is the same
as the one obtained with the variational approach.

2) write the differential equations satisfied by Qs and Prp,s and make
use of higher-order momentum equations. It is not possible to close the
equations, but Turitsyn [1998] has succeeded in finding a five-dimensional
system with five momenta (including Trms, Mrms, Qrms, and Prps) that
can be closed by using only one assumption (a parabolic approximation of
the phase near the pulse peak power location). After integration, it turns
out that this system is exactly (4.3). This theoretical analysis and subse-
quent numerical simulations show that system (4.3) describes with good
accuracy the DM soliton dynamics.

4.2.3. Path-averaged theory in the time domain

This method aims at estimating the deviations of a true DM soliton from
the self-similar structure assumed in the variational or moment approaches.
The large variation of the dispersion coefficient within one map does not
allow a direct averaging of (4.1). The main idea is to use first a transforma-
tion that accounts for the fast pulse dynamics and to apply an averaging
procedure to the transformed equation. Let us apply the following trans-
formation

0= N(Z)Q [Z’ apiZ)] P [Z 25 ﬁ] ' 44)

Qap ap(z) 2

The rapid oscillations of pulse width and chirp are accounted for by the
functions a, and b, satisfying

() = (b, (1) = 2 2EGEL g

where N is a constant to be determined by the requirement that a, and b,
are periodic functions. Note that we only take the periodic components of
the dispersion and nonlinear coefficients in the system (4.5). Substituting

(4.4) and (4.5) into (4.1) gives the modified NLSE

2
cp N

TE RN

) d
ZQz + é(@xw - $2Q) +
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b2 1 ib ib N2

= d, | L2°Q = —Que — 22Q — “L2Q.| — o | —|QIQ|(4.6)
2 2a12, 2a, ap ap

We can expand the function @Q(z,z) over the system of Gauss-Hermite
functions Q(z, %) = " ¢n(2) fa(x). Multiplying (4.6) by f,, and integrat-
ing with respect to x, one obtains a system of coupled nonlinear ordinary
differential equations for the coefficients ¢, of the form

Q |%&

"3

(2)Fu(q) + E(2)Galq) = dr(2)Ha(g,2) + er(2)Ia(g.2) (4.7)

(¢n): + 0
where dp/azz,(z), epfap(z), Hn(g,2), and I,(q, z) are z-periodic functions.
In absence of random perturbations, it is possible to average this system
over a map and to exhibit a stationary solution which is a pure DM soliton
[Turitsyn, Schifer, Spatschek, and Mezentzev [1999]]. In presence of pertur-
bations, we can apply an adiabatic approach and write the slow evolutions
of the coefficients ¢,, by averaging the right-hand side of (4.7) over a map.
Note that, in practice, the system (4.7) is simplified by neglecting modes
n > ng for a given ng. If only the highest mode of this Gauss-Hermite
expansion 1is considered, the resulting ordinary differential equations are
the same as those found previously by the variational or moment approach
[Schafer, Mezentsev, Spatschek, and Turitsyn [2001]].

4.2.4. Path-averaged theory in the frequency domain

If we neglect the nonlinear term in Eq. (4.1) we get that, in the spectral
domain, the pulse phase experiences rapid oscillations during a map period.
Nonlinear effects can be accounted for as a modification of this quasi-linear
dynamics, and the parameters of the quasi-linear solution play the role of
adiabatic invariants of the system. For simplicity we consider a version
of (4.1) where the nonlinear coefficient is constant ¢(z) = ¢g. We expand
the periodic component of the dispersion coefficient as d, (%) = do + cip(z),
where cip has zero-mean. We introduce the accumulated dispersion function
associated to the zero-mean periodic component and the (statistically) zero-
mean random component d,:
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Chertkov, Gabitov, Lushnikov, Moeser, and Toroczkai [2002] apply a Fourier-
like transform taking into account the zero-mean dispersion fluctuations

T

u(z,t) = %/&(z,w) exp [—iwt - isz(z)] dw

The resulting equation can be averaged by splitting @ into a small-amplitude
fast-varying part and a large-amplitude slowly varying component v which
satisfies an integro-differential equation:

i, — widot + co L1 =0 (4.8)
L= /(5((.01 + wo —w — wg) exp [—IAD(2)] ¥ (w1)0(w2) 0 (w3) " dwi dwadws

where A = w? + w? —w? — w2, In the absence of random fluctuations this

path-averaged equation was first obtained by Gabitov and Turitsyn [1996],
Gabitov, Shapiro, and Turitsyn [1996].

4.3. RANDOM DISPERSION
4.3.1. Pulse Broadening Induced by Random Dispersion

Particular configurations have first been addressed leading to simplified
problems. Abdullaev and Baizakov [2000] assume that the DM strength is
weak so that the averaged dynamics approach developed by Kutz, Holmes,
Evangelidis, and Gordon [1998] is valid. In this approach a real map with
fiber segments of alternating anomalous and normal dispersion is replaced
with a uniform fiber with path-averaged dispersion dg,,. The problem can
be reduced to a randomly perturbed NLSE and using the same approach
as in Section 3.2.3 it can be considered as a particular case of the random
Kepler problem in the context of optical solitons. An explicit analyti-
cal expression is derived for the expected distance that a soliton propa-
gates along a fiber with randomly varying dispersion before it disintegrates
Lgis = aé/D where ag is the initial pulse width. Numerical simulations also
show that the fluctuations of dispersion magnitudes of spans have more
dramatic effects on DM solitons than the fluctuations of spans lengths (see
figure 4). This observation has been confirmed by Xie, Mollenauer, and
Mamysheva [2003].

Abdullaev and Navotny [2002] develop a mean field theory which is valid
for very weak nonlinearity, as the averaging (|u|?u) = [(u)|?(u) is per-
formed, so that the interplay between random dispersion and nonlinearity
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Time (ps)

Figure 4: Disintegration of a soliton propagating in a DM line with ran-
domly varying dispersion magnitudes of spans. The dispersion map corre-
sponds to the concatenation of two segments of different fibers with disper-
sion Dy and lengths Li. The map parameters are Dy = 2.446 ps/nm/km,
D_ = 2.258 ps/nm/km, and Ly = L_ = 50 km. The initial pulse width
i1s 10 ps. In dimensionless units the parameters are dy = 26, d_ = —24,
Iy =1_ = 0.14 and the initial pulse is u(0,¢) = 2.45 exp(—0.427¢?). The
magnitudes of the spans are randomly varying with <5d2/d2i> = 0.085%

1s not perfectly captured. In the case of a white noise model for the disper-
sion fluctuations the effect of the dispersion fluctuations can be described
within the framework of a modified nonlinear Schrodinger equation with a
frequency-dependent damping term (~ éuzee). The presence of randomly
modulated dispersion leads to the damping of optical pulses.

A second generation of work consists in reducing the problem using one
of the approaches developed in Section 4.2, and then to carry out numerical
simulations of the reduced problems. Malomed and Berntson [2001] con-
sider a model of a long optical communication line consisting of alternating
segments with anomalous and normal dispersion, whose lengths are picked
randomly from a certain interval. As the first stage of the analysis, small
changes in parameters of a quasi-Gaussian pulse passing a double-segment
cell are calculated by means of the variational approximation. The evolu-
tion of the pulse passing many cells is approximated by smoothed ordinary
differential equations with random coefficients, which are solved numeri-
cally. Simulations reveal slow long-scale dynamics of the pulse, frequently
in the form of long-period oscillations of its width. It is found that the
soliton is most stable in the case of zero path-average dispersion (PAD),
less stable in the case of anomalous PAD, and least stable in the case of
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normal PAD. The soliton’s stability also strongly depends on its energy,
the soliton with low energy being much more robust than its high energy
counterpart. This result has been confirmed by numerical simulations per-
formed by Poutrina and Agrawal [2003]. Chertkov, Gabitov, Lushnikov,
Moeser, and Toroczkai [2002] use the approach developed in Section 4.2.4
in the white noise case (d,(z)d,(z")) = D§(z — z'). They show that the so-
lution is not a self-averaging quantity so that a deterministic path-averaged
approach is not applicable. They also predict that the length of the pulse
destruction i1s Ly, ~ aé/D and they perform full numerical simulations of
the path-averaged equation (4.8) to confirm the theoretical predictions.

These results based on numerical simulations have been confirmed by
further work addressing the problem from a full theoretical point of view
[Garnier [2002], Schafer, Moore, and Jones [2002]]. For short distances,
a quasi-linear approach in the form of a simple perturbation expansion is
sufficient to capture the broadening for each realization of the random dis-
persion. For intermediate distances, over which the noise and nonlinearity
interact, the partial differential equation can be reduced to a relatively sim-
ple system of nonlinear stochastic ordinary differential equations. Finally,
over long distances, the slow evolution of the pulse width can be obtained
by applying an appropriate multiple-scales averaging procedure to yield a
new, scaled noise process effecting pulse broadening. The main features ex-
hibited by this analysis are the following ones. A low-energy soliton is more
robust than a high-energy soliton with equivalent characteristics. The soli-
ton robustness 1s also enhanced by strong dispersion management. More
quantitatively, the impact of the random dispersion is proportional to the
strength of disorder D and inversely proportional to the fourth power of the
pulse width ag. The mean pulse broadening grows like Dz/ag, while the
standard deviation of the pulse broadening grows like \/Dz/ag. Therefore
the noise in dispersion presents a potential source of serious limitation for
the next generation of high-speed communications.

4.3.2. Separation of Scales Technique

We present in more detail the results obtained by the application of the
variational or moment approach and a technique of separation of scales
which is valid for strong DM. We denote D,(z) = foz cip(s)ds (which is a
periodic function with period lmap) and we introduce the periodic orbits

Alag, by, z) = at + 2a0bol~)p(z) + (bg + 4a52) Dp(z)z,
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aobo + (b3 +4a5”) D, (2)

B(ao,bo,z) = — = .
ag + 2a0bo Dy (2) + (b5 + 4ag?) Dy (2)?

If c =0,dy =0, and d, = 0, then a(z) = A(z) and b(z) = B(z) are
the solutions of system 4.3 starting from (ag, bg). If the variations of the
coefficients a@ and b over a period [y, involved by the nonlinearity ¢, the
residual dispersion dy and the random dispersion d, are small, then 1) the
short scale dynamics of the parameters (a, b) is driven by cip and follows
the periodic orbits (A, B). 2) the long-scale dynamics of the parameters
(a,b) are driven by an effective system where the fast periodic oscillations
have been averaged. The derivation of this effective system is performed

by Garnier [2002]:
a(z) = A(a(z),b(2), 2), b(z) = Bla(z),b(2), 2), (4.9)
where (@, b) obeys the effective system:

% = f(a,b) + [do + dy(2)]b, % = 9(a,b) +4[dy + d,(2)]a”?, (4.10)

and the explicit expressions of the functions f and ¢ are

3
fla,b) = %ln(d)(a,b))
L ACkd ( a—bDr ~ a+bDy )
Dr(4+a®b?) \ \/(2a —bDr)2a2 +4D?  /(2a +bDr)2a2 +4D?
910.0) = e g (40, 0)
L ACk ( ba® — 4Dy, - ba® + 4Dy )
Dr(4+a*0?) \ \/(2a+bDp)2a?2 +4D;  /(2a —bDr)%a® +4D?
bab) = 2a%b + /4 + a2b%\/(2a + bDp)2a? + 4D? + D (4 + a?b?)

 2a3b+ V4 + a?b?\/(2a — bD1)%a® + 4DZ — Dy (4 4 a2b?)

Here Cg = £/\/m and Dy = d4ly = —d_I_ is the DM strength. The
pair (a, 13) is a diffusion Markov process whose probability density function
satisfies a Fokker-Planck equation. These equations can only be integrated
numerically due to the complexity of the functions f and g, but expansions
for small or large DM strengths can be performed. Also, a linear stability
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Figure 5: Pulse broadening in dimensionless units. The normalized first,
second and fourth moments of the pulse width increments are plotted

N\ 1/7
DT; = <(TTms(z) — Trmso)‘7> ., J = 1,2,4. The solid lines stand for
the theoretical values, the dotted lines represent the numerical values av-

eraged over 10% realizations. Here dy = —d_ =100,dy = 1,1, =1_ = 0.1,
D =0.033, Tpns0 = 1.68.

analysis @ = a; + a; can be applied around the stable point (a = a5,b = 0)
that corresponds to a DM soliton solution of (4.10) with d, = 0. All
moments have be computed by Garnier [2002] and we report the expression
of the second moment of the pulse broadening

o o Douf sin(2,/72)
() =8 g (- 27 ) 1)

where v = =0y fJ,9 > 0 and the partial derivatives are computed at the
stable point (a = as,b = 0) (see Garnier [2002] for closed-form formulas).
Comparisons of these theoretical predictions with full numerical simulations
of the random NLSE are shown in Figure 5.

4.4. PINNING SCHEMES

The pinning method for a DM system consists of periodic compensation
of accumulated fiber dispersion by insertion of an additional piece of fiber
with a well controlled length and dispersion value. All components required
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for implementation of this method, including measurements of accumulated
dispersion of a fiber span, are standard and well established in optical fiber
communications. The pinning method can be implemented both for the
upgrading of existing links and for the production of new optical cables.
The pinning method is found to prevent from pulse deterioration and is ca-
pable of improving performance of high-speed optical fiber links [Chertkov,
Gabitov, Lushnikov, Moeser, and Toroczkai [2002]]. The effect is even more
dramatic than in the case of the standard soliton. Indeed, for a pinning
period below some critical value, one observes a tendency toward statis-
tically steady behavior: the average pulse width does not decay and the
probability density function of the pulse width and amplitude does not
change shape with z. This critical period is increasing with the noise level
D. These theoretical findings are verified by direct numerical simulation,
where no emission of radiation by the DM soliton can be observed. An
independent set of numerical simulations performed by Xie, Mollenauer,
and Mamysheva [2003] has recently confirmed these results. Thus, the
pinning method is effective in optical fibers with and without dispersion
management.

§5. Randomly birefringent fibers

Experiments have shown that Polarization Mode Dispersion (PMD) is one
of the main limitations on fiber transmission links [Gisin, Pellaux, and Von
der Weid [1991]]. PMD has its origin in the birefringence, i.e. the fact that
the electric field is a vector field and the index of refraction of the medium
depends on the polarization state (i.e. the unit vector pointing in the direc-
tion of the electric vector field). For a fixed position in the fiber, there are
two orthogonal polarization eigenstates which correspond to the maximum
and the minimum of the index of refraction. These two polarization states
are parameterized by an angle with respect to a fixed pair of axes that is
called the birefringence angle. The difference between the maximum and
the minimum of the index of refraction is the birefringence strength. If
the birefringence angle and strength were constant along the fiber, then a
pulse polarized along one of the eigenstates would travel at constant ve-
locity. However the birefringence angle is randomly varying which involves
coupling between the two polarized modes. The modes travel with differ-
ent velocities, which involves pulse spreading. Random birefringence results
from variations of the fiber parameters such as the core radius or geome-
try. There exist various physical reasons for the fluctuations of the fiber
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parameters. They may be induced by mechanical distortions on fibers in
practical use, such as point-like pressures or twists [Rasleigh [1983]]. They
may also result from variations of ambient temperature or other environ-
mental parameters [Biondini, Kath, and Menyuk [2002]]. In linear media
PMD causes a separation between the two components of the pulse into the
two principal polarizations. In nonlinear media a soliton may counteract
this separation through the effective potential well produced by the local
Kerr index. As a consequence it is expected that solitons could withstand

PMD [Menyuk [1988], Mollenauer, Smith, Gordon, and Menyuk [1989]].

5.1. DERIVATION OF THE PERTURBED MANAKOV SYSTEM

The evolution of polarized fields in randomly birefringent fibers is governed
by the coupled nonlinear Schrodinger equations with random PMD between
two modes (polarizations) [Menyuk [1989]]:

11

iA, + KoA 4+ iK Ay — %A” + &N =0 (5.1)

where A is the column vector (Ax,Ay)T that denotes the envelopes of
the electric field in the two eigenmodes. The z-dependent 2 x 2 matrices
Ky and K, describe random fiber birefringence. The dispersion coefficient
3" is the second derivative of the propagation constant with respect to
frequency, which is negative (resp. positive) for anomalous (resp. normal)
dispersion. In this section we assume that 3” < 0. Finally x is the Kerr
coefficient. The N term stands for the nonlinear terms:

N — ( (|Ae]? + Ay Ay + S AYAT )

(A2 + al A, 2)A, + 2454 (5.2)

Y
where the cross-phase modulation is & = 2/3 for linearly birefringent fiber.
As shown by Menyuk and Wai [1994], Wai and Menyuk [1996], one can

eliminate the fast random birefringence variations that appear in Eq. (5.1)
by means of a change of variables, that leads to the new vector equation:

11

. 8 .
ZAlz — %Altt —|— §K§N1 = ZRlAlt —|— Rnl(Al) (53)

where Ay = M~1A, Ay = (A1, Aly)T represents the slow evolution of the
field envelopes in the reference frame of the local polarization eigenmodes,
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and the matrix M obeys the equation iM, + KoM = 0. The nonlinear

term Ny 1s
(A + 1Ay P) A
N = (ki ) 54)

The left-hand side of (5.3) is known as the Manakov system which is an
integrable system supporting soliton solutions (see Appendix 2). The first
(resp. second) term of the right-hand side is the linear (resp. nonlinear)
PMD. They are corrections to the Manakov system involving high order
PMD and they have mean zero. In absence of losses M is unitary and R;
is a combination of three Pauli matrices

Ri(z) = mi(2)Z1 + ma(2)Xa + m3(2) X3, (5.5)

0 1 0 —i 1 0
El—<10)a EZ_(Z O)a 23_<0 _1)’

and m; are real-valued random processes. R; is associated with the linear
coupling between the modes, as well as an accumulation of a phase mis-
match. Ry is the nonlinear PMD exhibited by Wai and Menyuk [1996].
As shown in Lakoba and Kaup [1997] it is usually smaller than the linear
PMD.

The white noise model. Different PMD models have been developed
by Menyuk and Wai [1994], Wai and Menyuk [1996], Lakoba and Kaup
[1997]. These models become equivalent as soon as the correlation length
of the random fluctuations of birefringence parameters is much smaller than
the other characteristic lengths of the problem. The processes m; can then
be described by independent white random processes with zero-mean and
autocorrelation functions (m; (2)m;(2')) = 0246;;6(z — ).

The retarded-plate model. For numerical simulations, we may think
at the commonly used retarded-plate model Marcuse, Menyuk, and Wai
[1997]. The birefringence strength A5 and its derivative A3’ are constant;
the birefringence angle is constant over elementary intervals with length
Az; at junctions between the fiber pieces with length Az, random axial
rotations are incorporated as well as additions of random phase differences
between the two field components, so that the Stokes vector obeys a random
walk over the Poincaré sphere. If Az is small enough we can model this
configuration by the white noise model with o2 = AF?Az/12. In this
model the so-called polarization mode dispersion parameter is given by

where
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D, = \/8/(31)AF'\/Az [Poole and Wagner [1986]]. The parameter o° is
simply related to D, through: ¢* = 7D /32. Chen and Haus [2000a] study
the system (5.3) with a white noise model for PMD excitation m; in order
to obtain the analytical expression for the jitter due to the interaction with
continuum component. Analogies with the noise driven harmonic oscillator
was observed and confirmed by the numerical simulations of (5.3) with
white noise perturbations. We shall focus our attention in the next section
to the radiative soliton decay.

Dimensionless form. We introduce a reference time ¢y (of the order
of the pulse width) and we define the dimensionless time T" = t/ty and
distance Z = z/zg where zo = ¢3/|3"] is the dispersion distance. The

dimensionless field
U(T,2) = ,/ST;OAl(TtO, Z2)

satisfies the normalized equation:

1
iUz + 5Urr + |UI*U = ieR(Z)Uyp (5.6)

where ¢ = o/+/|8"|,
R(Z) = m(Z2)X1 + n2(2) X + 13(2) X3,

and the normalized processes 1;(Z) = /z0/0?m;(20Z) are white noises
with autocorrelation function (m;(Z)m;(Z")) = §;;6(Z — Z'). For consis-
tency, note that the usual GVD parameter is D = 2mc|3”|/A? where A
is the carrier wavelength of the pulse (1.55 ym for standard optical fiber
applications). Thus ¢ = F\/EDP/(4/\\/E). If D, is expressed in ps/vVkm
and D is in ps/nm/km then ¢ = 0.28D,/v/D for A = 1.55 ym. The GVD
parameter D is usually between 1-20 ps/nm/km. Typical values of the
PMD parameter D, have been measured in the range 0.1-1 ps/vkm [de
Lignie, Nagel, and van Deventer [1994]]. Dispersion shifted fibers (which
are of particular interest for soliton transmission) have been found to have
particular high values Galtarossa, Gianello, Someda, and Schiano [1996].
The correlation length Az of PMD varies around 0.1-1 km, which shows
that the white noise model is valid.

5.2. RADIATIVE DAMPING OF SOLITONS

A perturbation theory of the IST for the Manakov system is presented in
Appendix 2. This theory 1s valid for a large class of perturbations as soon
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as the total energy is preserved. It is formally equivalent to the method
presented in Section 3.1.2 for the perturbed NLSE. It can applied to the
analysis of soliton propagation driven by random PMD. It is found that
the mean emitted spectral power is PMD is

= e

2 v

The conservation of the total energy allows us to find the soliton decay
22 —-1/2
v(Z) =vo (14 16e°v52/3) , (5.7)

which shows that the amplitude of the soliton decays as z~/2. Besides the
momentum of the soliton is not affected at the leading order. This formula
can also be obtained by means of the perturbation theory of the IST for the
scalar NLSE [Lakoba and Kaup [1997]]. In the dimensional variables, we
can consider an optical soliton with rms pulse width 75. The time jitter is
the prevailing phenomenon if the propagation distance is short z < TOZ/D;.
For long propagation distances z > TOZ/DZZ, the radiative soliton decay is of
order 1. As a consequence the inverse of the rms pulse width (proportional
to the soliton energy) for long propagation distances is given by

T?(z) =T5 + 7°D2z/288 = T + 7°072/9 (5.8)

This formula confirms the results obtained by a direct expansion technique
by Matsumoto, Akagi, and Hasegawa [1997]. If we compare this expres-
sion with the one that describes the growth of the width of a linear pulse
[Karlsson and Brentel [1999]]

02,2<<TD2
(T?) =15 + 3072 — T§ (,/4 + 02z /T3 — 2) ~ " T4 2072

we get that the soliton is more stable with respect to PMD fluctuations.
Besides, the variance of the soliton width is also smaller than the variance
of the linear pulse width (see Figure 6).

5.3. DISPERSION MANAGED SOLITONS AND PMD EFFECTS

DM solitons propagate along segments of fiber that are alternately posi-
tively and negatively dispersive. The scale of the dispersion management
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Figure 6: Normalized pulse width versus distance for a soliton and a linear
pulse (i.e. asech pulse in absence of dispersion and nonlinearity). Here D =
0.25 ps/nm/km and D, = 0.2062 ps/+v/km. The distance is normalized by
the dispersion distance [reprinted from Matsumoto, Akagi, and Hasegawa

(1997)].

i1s usually much shorter than the soliton period. The scale of PMD is
much shorter than that. PMD induced broadening and outage probabil-
ity have been investigated by means of intensive numerical simulations.
The qualitative picture is that the DM soliton system can achieve better
performance than both the conventional soliton system and the linear sys-
tem with respect to PMD [Xie, Sunnerud, Karlsson, and Andrekson [2001],
Kylemark, Sunnerud, Karlsson, and Andrekson [2003]]. The quantitative
picture is complicated as, apart from the PMD itself and the pulse energy
and width, the performance of the conventional system depends on the av-
erage dispersion while the performance of the DM system also depends on
the dispersion map strength [Sunnerud, Li, Xie, and Andrekson [2001]].
A complete analytical picture of the DM soliton dynamics under PMD
1s still lacking. Partial theoretical results are available. The DM soliton is
treated as an average Manakov soliton by Chen and Haus [2000b]. Abdul-
laev, Umarov, Wahiddin, and Navotny [2000] apply a variational approach
to describe the dynamics of vector solitons in dispersion-managed optical
fiber with periodically and randomly inhomogeneous birefringence. With
the help of a Lagrangian formalism an approximate system of equations is
derived for the soliton parameters. The predictions for the evolution of the
vector soliton parameters from variational equations have been compared
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with the results of numerical modeling of the governing coupled nonlinear
Schrodinger equations, and the variational approach has been shown to give
reliable results. Inhomogeneous birefringence affects primarily the relative
distance and frequency of solitons, whereas chirp and intensity are slightly
affected. Randomly inhomogeneous birefringence leads to diffusion growth
of the mean square of the relative distance and may split vector solitons
into their constitutional components. The dependence of the mean decay
length L4 of the vector soliton on the strength of random birefringence and
on the energy of the initial pulse is obtained numerically. There exists a
threshold value of the soliton energy below which the dependence of L4 on
the energy is weak and above which L; decreases quickly.

§6. Solitons in random quadratic media

In the previous sections we considered the propagation of solitons in Kerr
nonlinear media with random parameters. From the theoretical and ex-
perimental point of view it is important to study the dynamics of optical
solitons in quadratic media with fluctuating parameters. Spatial solitons in
quadratic (or X(Z)) media were studied for the first time two decades ago by
Karamzin and Sukhorukov [1974]. They came again under intensive investi-
gations recently [Kanashov and Rubenchik [1984], Torner [1995]]. The first
observations of x(?) solitons in bulk media [Torruelas, Wang, Hagan, Van
Stryland, Stegeman, Torner, and Menyuk [1995]] and in film waveguides
[Schiek, Baek, and Stegeman [1996]] have triggered further experimental
efforts. Exciting effects such as various scenarios of soliton interaction
and switching operations have been observed by Constantini, De Angelis,
Barthelemy, Bourliaguet, and Kermene [1998], Fuerst, Lawrence, Torru-
elas, and Stegeman [1997], Baek, Schiek, Stegeman, and Sohler [1997].
It should be mentioned, however, that these experiments have been per-
formed in samples where the wave vector mismatch as well as the effective
nonlinear coefficient can vary due to fluctuations of the impurity density
of the material, the temperature, the effective mode area, etc. Although
spatial x(? solitons have been proven to be stable both in bulk medium
and in waveguides, they may be unstable under some perturbations, es-
pecially phase sensitive ones. This feature distinguishes y(?) solitons from
their Kerr-like counterparts that are not sensitive to random variations of
the phase. Thus the dynamics of xy(2) solitons under random, in particular
phase sensitive, perturbations needs to be investigated.

In general, random variations of the linear dielectric constant lead to
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fluctuations of the wave vector mismatch. In addition, if the orientation
of the crystallographic axes in a bulk medium or the effective mode area
in planar waveguides vary with propagation distance, then the effective
quadratic nonlinear coefficient is randomly modulated. Stochastic effects
become even more pronounced when quasi-phase-matched (QPM) geome-
tries are used. In QPM geometries a periodic modulation of the quadratic
nonlinearity is used to compensate for the large mismatch. Randomly
varying domain lengths contribute to the deviations of the phase mismatch
and/or the effective quadratic nonlinearity from their mean values [Torner
and Stegeman [1997]]. Thus, it is important to understand the effect of such
fluctuations on nonlinear waves and, in particular, on quadratic solitons.
The x(?) soliton dynamics in media with fluctuating parameters is very
complicated and it has been mainly numerically studied. Numerical simu-
lations of soliton propagation in quadratic media with a fluctuating phase
mismatch were carried out by by Torner and Stegeman [1997], Clausen,
Bang, Kivshar, and Christiansen [1997], Abdullaev, Darmanyan, Kobyakov,
Schmidt, and Lederer [1999]. Tt was observed that such fluctuations lead
to a soliton decay which has a dissipative nature. Qualitatively, the effect
of fluctuating parameters on the soliton propagation can be intuitively un-
derstood. Indeed, an important prerequisite for soliton formation in (2
media is a balanced phase between the fundamental wave (FW) and the
the second harmonic (SH). The medium fluctuations distort the phase bal-
ance and cause a net flow of energy between harmonics. As a result the
soliton emits radiation and decays upon propagation. These quantitative
arguments, however, have to be supported by theoretical estimations.

6.1. MEAN FIELD METHOD

In what follows we deal with one-dimensional spatial solitons thus assum-
ing a film waveguide geometry. Beam propagation in quadratic nonlinear
waveguides with variable parameters is described by two coupled equations
for the FW (FE,) and SH (F5) fields and in dimensionless variables has the
form

. 1 «
ZE1,2+ §E1M—|—d(m,z)E1E2—|—ﬁ1(l‘,z)E1 :Oa (61)

. 1 d(x, z)
E z -E T
v, + PR + 7

where ¢ and (12 are the deterministic and stochastic parts of the mis-
match, respectively, and d = 1 4 ¢(z,z) denotes the randomly varying

Ef 4 (B2(z,2) — q) B2 = 0, (6.2)
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nonlinearity. We assume that ¢(z, z) and 3;(z, z), j = 1,2 are indepen-
dent white noise random processes. The correlation function for §;(z) is

assumed to be (5;(2)5;(2')) = 0']2»(5(,2 — 2'), where 0']2» =1, <(5n§> /n? and
l;c, 7 = 1,2, are the correlation lengths of the linear refraction indices.

The correlation function for £(z) is assumed to be {e(z)e(z')) = o?6(x),
with ¢® = I, <6d§ff> /dsz, l. 1s the correlation length of fluctuations of

the quadratic nonlinearity.

The x(®) system is not integrable even without fluctuating parameters.
Therefore some special, approximate methods, as e.g. the mean field
method (MFM) has to be applied. Although the applicability of MFM
is only justified for linear wave propagating in random media [Klyatzkin
[1980]], recent studies have evidenced that this method can be successfully
extended toward nonlinear problems as e.g. the dynamics of excitations in
the disordered condensed matter [Zaiman [1980]] and of nonlinear waves in
random weakly dispersive media [Abdullaev, Abdumalikov, and Baizakov
[1997]]. Because under some circumstances the MFM results can be incor-
rect, they have to be double-checked by numerical means (see Figure 7).
Typically, MFM provides correct results with regard to damping and its
accuracy compares to that of the Born approximation as shown by Konotop
and Vasquez [1994] and Abdullaev, Darmanyan, and Khabibullaev [1993].

Averaging the system Eqgs. (6.1-6.2) over all realizations of the stochastic
process and using MFM we obtain a system of equations for the mean fields

<E1> and <E2>
(Er)ya + (BV) (B2 + 0% (1) +

ot (SHEOE ~ ) ) (1) =0,

i(E1), +

M| e DN —

2 505 (Ea) +
So? KEDI (Ez) = 0. (6.3)

(Bx)o + 5 (E1) +

(B, — () + 5

This shows that, in the MFM approximation, the influence of fluctuations is
described by the effective linear and nonlinear losses acting on propagating
solitons. Using these results it is possible to develop an analytical model
describing the soliton evolution in quadratic media with fluctuating para-
meters based on the MFM equations (6.3) [Torner and Stegeman [1997]].
Numerical observations performed by Abdullaev, Darmanyan, Kobyakov,
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Figure 7: Typical evolution of the initial profile F1(0,2) = E2(0,2) =
3sech2(x) in a quadratic medium with fluctuating nonlinearity. Intensities
of the FW and SH components are shown. Here o = 0.042, 1 » = 0.
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Schmidt, and Lederer [1999] indicate that the mean amplitudes decrease
significantly but the mean widths of solitons change only slightly. Moti-
vated by these observations we introduce the following ansatz to be substi-
tuted into (6.3)

(F1) = a(z)As(z, ), (F2) = b(2)Bs(z, ), (6.4)

where A;(z,#) and B;(z, ) are the soliton solutions of the unperturbed
system. The complex functions a(z) = ag(2)e’??) and b(z) = bo(z)e™¥(?)
describe the changes of the soliton’s amplitudes and phases caused by the
perturbation.

6.2. NONLINEAR DAMPING

Substituting Eqs. (6.4) into Egs. (6.3) and performing an averaging over
the transverse variable we get the following equations for the complex am-
plitudes

fag —a+a*b+ iy (|a|2 -2 |b|2) a

0,

. 1 1 2 . 2

ibe — §b—|— 70+ 2ivlal”b = 0, (6.5)
where & = 4A,2/5, v = 3A¢0%/14. The corresponding initial conditions
(at z = & = 0) for the system (6.5) read as ag = by = 1, ¢ = ¢y = 0. An

approximate solution to the system (6.5) for v <« 1 can be written in the
form [Abdullaev, Darmanyan, Kobyakov, Schmidt, and Lederer [1999]]

g = 2(/)—1/)%—8% (1—COS%),

2
1 —oe 8y . 3¢
by w 3(2—1—6 ) 5 S
3¢ 1/2
ag A (4[)% — 3bg + 8vbg sin 7) ) (6.6)

The comparison of the solution (6.6) with numerical results shows good
agreement.

6.3. LINEAR DAMPING

Additionally we briefly discuss the behavior of x(2) solitons for fluctuations
of the phase mismatch. As shown in the previous section in the framework
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of MFM this influence 1s described by the linear effective damping acting
on both components. Applying the analytical approach described above,
we obtain the system of ODE’s for the functions a and b

iag —a+a’b= —ivyia,
b a®
b0 .
¢ 5 2 + 2 172 ) (6 7)
where & = 44¢z/5, 71,2 = 507 5/(8Ap). The approximate solutions to this
system are

2
0 =~ 5(271 — 5v2) (1 — cos %) ,

2 2(2y1 —5v2) . 3

by ~ exp (—5(71 + 2v2) + %Sm ;) ’
9 9 1/2

ap AN <4b§ — 3bg — g1)0(2~y1 — by9) sin é) : (6.8)

Note that @ = 0 is not a solution to the system (6.7), therefore for 2v; = 5y,
higher order terms should be taken into account. The details of the the-
ory of quadratic soliton propagation in lossy media can be found in [Dar-
manyan, Kobyakov, and Lederer [1999]]. Tt should be noted that for the
mean fields the total energy decreases, while the original system (6.1-
6.2) conserves the total energy. This discrepancy can be explained by
the fact that the conserved total energy is the sum of the solitonic (the
mean field) and random linear radiation parts. The decreasing soliton en-
ergy in MFM reflects a decreasing soliton content of the field. Numerical
simulations for the fluctuating phase mismatch [Clausen, Bang, Kivshar,
and Christiansen [1997]] and nonlinearity fluctuations [Abdullaev [1999]]
confirm qualitatively this picture. However, in the case of fluctuating
mismatch, MFM and numerics agree only qualitatively in the sense that
MFM overestimates damping. The reason for this is that the stochasti-
cally varying mismatch enters into Egs. (6.1-6.2) via the Brownian motion
W(z) = f;(?ﬁl(z’) — f2(%"))dz" in the exponent. Thus the effective nonlin-
earity is d = exp(—i(W(z) + ¢). A characteristic feature of the Brownian
motion is that the deviations grow with distance. For the randomly mod-
ulated nonlinearity considered above this deviation is constant. Thus the
fluctuations of the phase mismatch can be predicted by the MFM method
less accurately compared to the case of randomly varying nonlinearity.



7. RANDOM NONLINEAR WAVEGUIDES 53
§ 7. Spatial solitons in random waveguides

In this section we consider the propagation of stable self-focused beams
(called spatial solitons) in media with random parameters. We mainly deal
with planar beams propagation in nonlinear waveguides with random para-
meters, since the governing equation 1s equivalent to the perturbed NLSE.
As 1s well known the spatial soliton is unstable in free space with respect
to perturbations in the transverse direction (see the discussion in the book
Hasegawa and Kodama [1995] and in the review Kuznetzov, Rubenchik,
and Zakharov [1986]). The case of propagation in planar waveguides is
free from these difficulties. The beam is constrained in the transverse (say
y-)direction by the profile of the linear refraction index, while the nonlinear
refraction index defines a field distribution in the (say x-)direction.

7.1. SPATIAL SOLITONS IN PLANAR WAVEGUIDES WITH RAN-
DOM PARAMETERS

The electromagnetic field in a planar waveguide can be represented as
Elx,z,t) = F(x, z)A(y)e Foz—wot) (7.1)

where A is the transverse profile of the propagating mode. In thin film this
mode 1s described by the linear equation

Ay + K2 (y) = 5514 =0, (7.2)

where f?(y) describes the profile of refraction index in the y-direction, 8y
is the propagation constant that corresponds to the ground state A. Here
it is assumed that the waveguide supports only one propagating mode.
Substituting this expression into the equation for the electric field

2
AE + ‘Z—Z(noin2|E|2)E: 0, (7.3)

and averaging the wave equation over the transverse distribution we get
the nonlinear Schrédinger equation for F(x, z) of the form

2ikoF, + Fup + 2k20S|F|?F = 0, (7.4)

where F = Fexp(ifiz/(2ko)), S = [ A(y)*dy/ [ A%dy and ¢ = +1, resp.
—1, corresponds to a focusing and defocusing Kerr nonlinearity, respec-
tively. Here the second derivative corresponds to spatial diffraction.
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Introducing the dimensionless variables z = 2/z4, # = @ /xp, where z4 =
k’oxg is the diffraction length and @ is the characteristic size of the beam,

and introducing the normalized amplitude u(z,z) = k’ozdnzS/noF we
obtain )
u, + §um—|—0'|u|2u: Vi (@)u + Va(x)|ul?u. (7.5)

The unperturbed equation (7.5) (with zero right-hand side) supports soliton
solutions in the focusing case ¢ = +1. The single spatial soliton solution
describing the self-focused beam in the waveguide is

us(z, x) = 2wsech(2v(z — Quz)eZi“(x_2“2)+2i(”2+“2)Z. (7.6)

The velocity 2u is related to the angle 6 in the (z,z)-plane of the beam
propagation in the waveguide by the identity 2/ = tan(6).

We now address the effects of random fluctuations of the waveguide para-
meters on the soliton dynamics. We add in the right-hand side of Eq. (7.5)
the functions Vi (2) and Va(x) which describe transverse random inhomo-
geneities in the linear ng and nonlinear n» refractive indices. It is assumed
that (V;(z)) = 0 and (Vi (2)Vi(y)) = Dsd(x—y), ¢ = 1,2. In general the spa-
tial random fluctuations could be dependent on both the x and z variables.
The analysis of such fluctuations on pulse propagation will be presented in
Subsection 7.3. In this section we consider in detail the simplified model
when the random processes V; depend only on the transverse variable z,
since 1t 18 a fundamental model for many branches of physics. In distinction
from the soliton propagation problem in optical fibers; where fluctuations
were dependent on the evolutional variable (the time in standard NLSE),
fluctuations in the transverse direction x correspond to the spatial variable
in the standard NLSE and so the soliton dynamics is very different.

For the case of wave propagation in disordered 1D linear media the solu-
tion of the problem for the white noise disorder model is well known: the
Anderson localization occurs with the localization length of the order of
Lige ~ Skz/Dl for a pulse with carrier wavenumber k& . The application of
the IST approach to the randomly perturbed NLSE (see Appendix 1) gives
equations for the evolution of soliton amplitude and velocity

d_y
dz

dp
= F(v, p), d_:G(V’N)’ (7.7)
z
with the initial conditions v(z = 0) = vy, p(z = 0) = pp corresponding
to the input soliton. These equations take into account the emission of



7. RANDOM NONLINEAR WAVEGUIDES 55

radiative waves. The expressions for F', (G are complicated and are not
shown here. The analysis performed by Garnier [1998] shows that two
regimes exist:

1. For small-amplitude solitons vy < pg, the soliton velocity 1s almost
constant and the soliton amplitude decays exponentially

—L/L, L, = 312;‘%
1

in the case of random linear refraction index V7, and algebraically

Vo 3ud

Ly ———— Ly =
v(L) (1+ L)L)+ 27 AD

in the case of random nonlinear refraction index V5.

2. 1If the soliton amplitude is large enough vy > pg, then the soliton
amplitude is almost constant and the soliton velocity decays to zero. The
decay rate of the velocity is almost logarithmic.

It can be noted, that in the limit vo/up — 0, the incoming soliton can
be approximated by a linear wavepacket

ug(z, ) ~ / dkf(k)eikx_ik2z/2, with f(k) = %cosh_l(g_(k — 24t0) ),

o0 vy

whose spectrum is narrow around the carrier wavenumber k = 2pt9. The
result for the small-amplitude soliton decay is in agreement with the linear
approximation, since the length 7; corresponding to a perturbation of the
linear potential can be written in terms of the carrier wavenumber k as
L= 8]:72/D1. It is equal to the localization length of a narrowband pulse
with carrier wavenumber k scattered by a random slab.

Garnier [1998] also compares the predictions of the effective system (7.7)
with full numerical simulations of the random NLSE. As shown by Figures
8,9 the agreement is very good.

The existence of two regimes in the soliton propagation in disordered
media can be understood by comparing the different length scales existing
in this problem. The characteristic length scales are the localization length
Lioc and the nonlinear length Ly;. If the pulse energy is small (weak nonlin-
ear regime), then the nonlinear length is larger then the localization length
Lpi > Lioe, so that the exponential decay of the amplitude dominates. If
the pulse energy 1s large, then L,; < Li,, and the disorder intensity is not
enough to produce the localization and the decay of pulse is much weaker
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Figure 8: Picture a: Envelope of the initial soliton (solid line) whose initial
coefficients are vy = 0.5, g = 0.4. In dashed line is plotted a realization of
the random potential V. Picture b: Soliton envelops when its center crosses
different depth lines [ for one of the realization of the random potential.
The coordinate z is normalized around the depth line [.
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Figure 9: Evolution of the soliton whose initial coefficients are vy = 0.5,
po = 0.4. The mass N = 4v (resp. the velocity v = 2u) is plotted in picture
a (resp. b). The thick solid lines represent the theoretical predictions. In
thin dashed and dotted lines are plotted the simulated masses and velocities
for 7 different realizations of the random potential.
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then the exponential decay. If L,; ~ L, then for short propagation dis-
tances the soliton amplitude decay is moderate and for large propagation
distances the exponential decay takes place.

7.2. SPATIAL SOLITONS UNDER RANDOM DISPERSIVE PERTUR-
BATIONS

Spatial random dispersive perturbations naturally arise when the electro-
manetic beam propagation in planar waveguide arrays with randomly vary-
ing tunnel-coupling term is considered. The evolution of the amplitude of
the complex electromagnetic field is described by the equation

iun,z + Vn,n+1un+1 + Vn,n—lun—l + |un|2un = 0; (78)

where V), 41 are the linear tunnel coupling coefficients. Here two types of
disorder are possible.

If we have disorder in the z-direction (i.e. Vi nt1 = Vi nx1(2)) then we
deal with the discrete analog of dispersion management in optical fibers -
the so-called diffraction management for spatial solitons. It was studied
recently by Ablowitz and Musslimani [2001].

If we have disorder in the z-direction (# = nh), then we deal with the
spatial soliton evolution under spatial diffractive perturbations. If the evel-
ope occupies a sufficiently large number of waveguides (typically > 6), then
we can apply a continuum limit and obtain the equation

iy 4 U + 2|ul?u = aV (2 gy + BVpuy + yVepu, (7.9)

with o = § = 1, ¥ = 2 (see Mischall, Schmidt-Hattenberger, and Lederer
[1994]). V(«) is now assumed to be a coloured noise with the correlation
function

(V(z)V(y)) = R(x —y;Lc), (7.10)
where [. 1s the correlation length. To fix the 1deas we can assume a noise
with Gaussian autocorrelation function R(z) = o?exp(—2?/I%), whose

power spectral density is R(k’) = /m(c?l. exp(—k?12/4). For long prop-
agation distances z ~ 1/(c?l.) the IST analysis performed by Abdullaev
and Garnier [1999] again predicts two regimes:

1. In the small soliton amplitude case vy € pg, the soliton velocity is
almost constant and the decay law for the soliton amplitude is exponential
le.

v(L) ~ vgexp(—L/L1), LTY = p2 R(4p0) (o + 49)2 +45%).  (7.11)
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Two peaks exist in the spectrum of scattered radiation: a main peak at
kr1 = —2p0 and a secondary peak at ks, = 2uo with the energy ~ 1/3R(0).
If the carrier wavenumber of the soliton lies in the tail of the spectrum of
perturbation then the contribution of the second peak dominates and the
decay rate of the soliton amplitude is

8 .
Lyt = ﬁR(O)ygoﬂ. (7.12)

Vo
I/(L) ~ (1 + L/Lz)l/z’
The appearance of this law is connected with the random perturbation of
the dispersion term V(z)ugz,. When v becomes small enough the decay
rate is again exponential.

2. In the large soliton amplitude case, vy > pgp, the soliton amplitude
remains almost constant during the propagation, but the velocity decays

according to the law
TV

L)~ ——. 7.13
ML) it (7.13)
If the spectrum of the noise decays faster than the Gaussian, then the
velocity decays as
vél,

2v/In(L)
Recently experimental beam propagation in a disordered 2D tunnel-coupled
fiber array has been performed by Pertsch, Peschel, Kobelke, Schuster,
Bartelt, Nolte, Tunnermann, and Lederer [2004]. The light dynamics in
the hexagonal lattice is described by the coupled mode equations

u(L) ~ (7.14)

(Zaz + 6mn + X((jf)f |umn|2)umn + Vn(»blyzlum+1,n

+V(1)um—1,num—1,n + Vn(@zglum,n+1 + Vn(@zygl_lum,n—l

)

+V,,(1?:21Um+1,n+1 + V(S)um—l,n—lum—l,n—l =0.

where Y3 =55 km~! W1, The coupling coefficient fluctuates around
the mean value Vo = 46 m~! with /{(6V)2?) = 26.7 m~!. The stochas-
tic variations of the core diameter across the fiber array leads to random
variations of the propagation coefficients with /((642) = 140 m~! s 3V}.
Although these fluctuations are 5 orders of magnitude smaller than the
mean value, they have a dramatic influence on the field evolution. Indeed
the standard deviation is of the order of the width of the band of the homo-
geneous array 9Vy. The mean value 3y = 11.4 10° m~! can be removed by
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a simple transformation of the field in the equations, but the fluctuations
cannot.

It was observed that the linear modes become localized with a strong
enough disorder - the Anderson localization phenomenon, predicted for
random arrays by Abdullaev and Abdullaev [1980]. When the input power
increases the linearly localized states evolves in two different ways. Some
linear modes first expand and later contract when the power is increased.
Other modes immediately contract. The behavior actually depends on the
wavenumber of the localized state. If it in the upper part of the linear
band, then the increasing power shifts the wavenumber out of the linear
spectrum. If the initial wave number is at the lower edge of the linear
band, then the nonlinearity shifts the wavenumber inside the the band.
The influence of nonlinearity on the delocalized state leads initially to a
slight expansion of the beam with the rapid collapsing to a single guide and
as a result to the formation of a discrete optical soliton. The explanation
of this experiment requires the theoretical investigation of the dynamics of
discrete solitons in disordered lattices. Some results in this direction have

been obtained by Garnier [2001], Kopidakis and Aubry [2000].

7.3. PULSE PROPAGATION IN NONLINEAR WAVEGUIDES WITH
FLUCTUATING REFRACTION INDEX

In this section we consider the influence of the fluctuations of the medium
parameters on the dynamics of intense optical pulses in nonlinear waveguides.
We address the case of the spatio-temporal evolution of intense optical
pulses in nonlinear waveguides with a randomly varying linear refraction
index [Gaididei and Christiansen [1998]]. The pulse propagation is de-
scribed by the 2D nonlinear Schrodinger equation

iu, + Au A+ |u|*u 4 n(x, 2)u = 0, (7.15)

where A = 92 4+ 97 and n(z, z) models the fluctuations of the linear re-
fraction index. It is well known that, when the fluctuations are absent,
solutions of 2D NLSE (7.15) become singular if the initial energy excesses
some critical value i.e. & > & = 11.7, where & = [dx [dtp, p = |u|?. The
unperturbed Hamiltonian A is

(o] (o] 1
H :/ dx/ dt[ue|* + |uz)® — §|u|4]. (7.16)

It is interesting to investigate the influence of noise in n(x, z) on the col-
lapse of intense optical pulses. In the case where the random process is
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d-correlated with respect to z it is possible to obtain exact results by apply-
ing the virial theorem. We assume that 7 is a zero-mean Gaussian random
process with autocorrelation function (n(z, 2), n(z’, z')) = C(z—2")§(z—=").
The analysis is based on the equation satisfied by the second virial integral

1 oQ oQ
I(z) =3 / dx/ dt(z? +t%)p (7.17)
which is the pulse width. Together with H it obeys the differential equation
£d’T e e
dH 1 [ e

Applying the Furutsu-Novikov formulae to perform averaging over fluctu-
ations [Klyatzkin [1980]]

o) = [ o) (o). (7.19)

and using the principle of causality, we get the system of equations for the

averaged values (Z) (z) and (H) (=)

) d(#H)
- = 2
& 7.7 8(H) (2), P KE, (7.20)
where k = —C"(0) > 0. By integrating equation (7.20) we get that the
influence of fluctuations on the pulse width is described by

4
(T)(2) = I +4ez? + gm?’, (7.21)

where Z(0) = Iy, Z,(0) = 0, and H(0) = ¢£. If kK = 0 (no fluctuations) and
€ < 0, then Z(z) = Ip(1 — 2?/z2), which shows that collapse occurs before
the critical propagation distance 2. = v/To/(21/]¢]). Fluctuations leads to
the increase of this distance. In particular, if K > k., with

(7.22)

then (Z) (z) > 0 for all z > 0, and the collapse on average is arrested. As
a result the pulse will spread instead of collapsing.
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§8. Two-dimensional solitons in random media

In this section we consider the influence of random fluctuations of the
transverse profile of the waveguide on the dynamics of 2D solitons. The
governing equation is the randomly perturbed 2D NLSE

i, + Apu+ |ulfu+ elg(z)(xz + yz)u — eolulu =0, (8.1)

where A = 92 + 35 is the transverse Laplacian, ¢(z) = go(1 + n(2)) is
the amplitude of the quadratic potential imposed by the waveguide and
n(z) is a random process that models the fluctuations of the waveguide.
The quintic nonlinear term can appear for example by expanding a sat-
urable nonlinearity. A modulation theory has been proposed by Fibich
and Papanicolaou [1999] for the analysis of the 2D soliton dynamics. The
unperturbed 2D NLS equation (e; = €2 = 0) has waveguide solutions of the
form wu(r, z) = ¢ Ry (r), where the function Ry (r) satisfies the boundary
value problem

R +r 'Rp— Rp 4+ R} =0, Ryp(0)=0, Rp(cc)=0. (8.2)

The solution of this equation with the lowest energy (power) is called
Townes soliton. It plays an important role in self-focusing theory and it
has exactly the critical power for self-focusing:

Er 5/ R (r)rdr = £. = 1.862, (8.3)
0
while its Hamiltonian is equal to 0
e 1
Hp = / [(R’T)2 — 5 Ri(r)| rdr = 0. (8.4)
0

The solution of the perturbed 2D NLSE is searched for in the form of a
modulated Townes soliton

1 r . a,r?
~N—DRp | —)eS  S§= : =a % (85
u(r, 2) 07 T (a(z)) e o+ a o, =a (8.5)
If the initial power is just above the critical value, then it is possible to
derive an evolution equation for the function a(z) starting from the ap-
proximation (8.5). The equation of modulation theory for the width a(z)
is

1
2My

a3azz = _60 -

fi(z), (8.6)
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where By = 3(0)—f1(0)/(2My), B(0) = (E=&.)/ My, and My = (1/4) fooo r3drR% ~
0.55. The auxiliary function is given by

R(e) = 2a(e)te [ [ dodyr @S (Re+ T Rr()] . 57

where F(u) = —e1g(2)(2? + y*)u+ ea]u|*u. In the lowest order approxima-
tion, the equation for the width takes the form

az; + 4e1g(z)a + U'(a) = 0, (8.8)

where the potential U is

U(a) o €28 Bo

= Mot 2 (8.9)

Similar equations appear during the study of 2D and 3D Bose-Einstein
condensates (BECs) with time-varying trap potential [Abdullaev, Baiza-
kov, and Konotop [2001], Abdullaev, Bronski, and Galimzyanov [2003],
Garnier, Abdullaev and Baizakov [2004]]. Random modulations impose
a distortion of the BEC due to the growths of focusing-defocusing oscil-
lations. This destabilizing mechanism 1s similar to the random Kepler
problem studied in the previous sections.

§9. Conclusion

In this review we have considered the propagation and interaction of optical
solitons in random media. The dynamics of optical solitons in optical
fibers with randomly varying dispersion, amplification and birefringence
has been studied. The propagation of dispersion managed solitons in fiber
links with random dispersion maps has been investigated. The influence of
the fluctuations on the transverse variables has been considered for spatial
solitons in waveguides and 2D optical bullets.

Some problems have been not addressed in the review. First, we have
not considered the evolution of dark solitons in random fibers and bulk
media. While recently some numerical results for dark solitons in the ran-
dom dispersion-managed regime has been obtained by Hong and De-Xiu
[2003], this class of problems is still mainly uninvestigated. Second, we
have not considered the dynamics of partially coherent solitons, which has
been intensively investigated recently, in particular in photorefractive crys-
tals (see the recent review by Chen, Segev, and Christodoulides [2000b]).
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However this problem involves the evolution of initial random conditions
in nonlinear media and it is out of scope of this review.

It should be noted that we have mainly modeled the soliton propagation
in random media by stochastic perturbations of integrable nonlinear wave
equations such as the NLSE and the Manakov system. Fortunately many
physical problems are described by these equations. The case of stochastic
perturbations of nonintegrable wave equations, such as the system for FW
and SH waves, random dispersion-managed solitons, and multidimensional
solitons is still under investigation.

It should be of great interest to extend the approaches described in this
review to the propagation of dissipative optical solitons in random media.
Early work based on the adiabatic approximation show that for such soli-
tons the noise effects are essentially suppressed ( see the book by Hasegawa
and Kodama [1995] and a recent work by Abdullaev, Navotny, and Baiza-
kov [2004]). Tt should be also interesting to investigate the properties of
discrete optical solitons in disordered arrays of planar waveguides and 2D
fiber arrays. Such investigations are important for studying the interplay
between nonlinearity, disorder, and discreteness. The theory of discrete
optical solitons for the deterministic systems of fiber arrays has been de-
veloped by Aceves, Luther, De Angelis, Rubenchik, and Turitsyn [1995].
We should also note the recent experiments performed by Pertsch, Peschel,
Kobelke, Schuster, Bartelt, Nolte, Tunnermann, and Lederer [2004] where
properties of discrete solitons in disordered 2D fiber arrays have been stud-

1ed.
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§10. Appendix 1. The Inverse Scattering Transform for the
Nonlinear Schrédinger equation

10.1. THE UNPERTURBED NONLINEAR SCHRODINGER EQUATION

For more detail about the following statements and their proofs we refer to
[Ablowitz and Segur [1981], Manakov, Novikov, Pitaevskii, and Zakharov
[1984]]. Let us consider the unperturbed NLSE:

1
s + S + lu|?u = 0. (10.1)
The inverse scattering transform consists in a linearization of this nonlinear
equation. Tt is based on the fact that u(z,.) can be characterized by a set
of spectral data of the operator L(u(z,.)) in which u plays the role of a
potential:

0 . 10 0 wu*
L(u) —ZPE—I—Q(U), with P = ( 0 -1 ) and Q(u) = ( w0 )
Essential spectrum of the operator L(u). Let us consider the spec-
tral problem associated with the operator L(u):

L(u)y = A, Y=1r1e1+ ez, e1= ( é ), ey = ( ? ) .(10.2)

We introduce the so-called Jost functions f and g, defined as the eigen-
functions of L(u) associated with the real eigenvalue A which satisfy the
following boundary conditions:

F(t,A) F2H° o0t g(t,A) F225° e,
If we denote by 1 the vector (Y3, —v7) associated with a vector 4 solution of
(10.2), then ¢/ is a solution of Ly = A"+ In the case of a real eigenvalue, v/

and i are linearly independent and form a base of the space of the solutions
of (10.2). Tt can then be proved that the Jost functions are related by:

g(t, A) = a6, A) + 0N f(6,A), F(E,A) = —a(Ng(t,A) +b7(M)g(L, A).

Multiplying the first identity by the vector f*, we get an explicit represen-
tation of the coefficient a as the Wronskian of f and g¢:

a(/\) = gl(t, A)fz(t, A) — gz(t, A)fl(t, A)
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Substituting the second identity into the first one we also get the conser-
vation relation |a|? + [b]? = 1.

Point spectrum of the operator L(u). It is possible to define an ana-
lytic continuation of a(A) over the upper complex half-plane. A noticeable
feature then appears. If A, is a zero of a(A), then f and g are linearly depen-
dent, so there exists a coefficient p, such that g(¢, Ar) = p, (¢, Ar). The cor-
responding eigenfunction is bounded and decays exponentially as ¢t — 400
(because |f| ~ e~!m*?) and as t — —co (because |g| ~ et!mArt) Thus A,
is an element of the point spectrum of L(u). Tt can then be proved that the
set (a(A),b(A), A, pr, a’(N)) characterizes the Jost functions f and g as well
as the solution u. The inverse transform is essentially based on the reso-
lution of the linear integro-differential Gelfand-Levitan-Marchenko (GLM)
equation, whose entries are constituted by the set (a,b, Ay, pr, @' (Ar)):

Ki(s,t) = " (s + 1) —/ Kl(s,t”)/ O (t +t)D(t 4 ¢")dt'dt(10.3)

_ ipr _ixe LT BN
where ®(t) = —ZT: a’(/\r)e tor —eo @A)

M. (10.4)

We then obtain u by the formula u(t) = —2iK7(¢,t). The study of the
inverse problem associated with the operator L(u) has not yet been com-
pletely achieved. In particular the precise characterization of the spectral
data which lead to well-defined potentials u has not yet been completed.
However, in the case where the initial condition ug 1s rapidly decaying so
that it satisfies ¢ — [¢|"|ug|(t) € L' for any n, the inverse scattering can be
rigorously achieved [Ablowitz and Segur [1981]].

Evolution of the scattering data. The evolution equations of the
scattering data are simple and uncoupled for the unperturbed NLSE:

D.a(z,N) =0,  0,b(2,A) = =2iA%b(2,A),  O.pr(2) = —2iA2p,.
To sum up, the scattering transform involves the following operations:

direct tt.
U(ZOat) lre(ifa (aabaATapTaa/(AT)) (ZO)
NLSE | J uncoupled evolution equations

u(z,t) VIR (4 b A pe,d/ (M) (2)
Soliton. The soliton solution of the NLSE is:

expi (2u(t — 2uz) + 2(v? + p?)2)

us(z,t) = 2v cosh (2v(t — 2uz))

(10.5)
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The scattering coefficients are: a(X) = (A—=As)/(A—A%), where Ay = p+iv
is the unique zero of a in the upper complex half-plane, while b = 0.

Conserved quantities. There exists an infinite number of quanti-
ties which are preserved by the unperturbed NLSE [Manakov, Novikov,
Pitaevskii, and Zakharov [1984]]. They can be represented as functionals
of the solution u or in terms of the scattering data. We present only two
of them. The energy of the wave & = [ |u|?d¢t can be written as

£= 21 = \) + /n(/\)d/\, (10.6)

where n(A) = —7~!In|a(A)|?. The Hamiltonian % = (1/2) [ |u]* — |u|*dt

can also be expressed as

H=> %(/\:3 — A7)+ 2//\2n(/\)d/\. (10.7)

10.2. PERTURBATION THEORY FOR THE NLSE

We consider a perturbed NLSE that reads in dimensionless units as:
. 1 9
s + St + |ul]u = eR(u). (10.8)

In the framework described in Section 3 u represents the complex envelope
of the electromagnetic field in a cubic nonlinear medium. The initial condi-
tion corresponds to a single-soliton state. If ¢ is small we can assume that
the propagating wave consists of one soliton plus radiation. The random
perturbation R(u) induces variations of the spectral data. The evolution
of the continuous component corresponding to radiation can be found from
the evolution equations of the Jost coefficients [Karpman [1979]]:

MaAz’Z) = == (aX)7(h 2) +5(A 2)r(, ) (10.9)
81)(8/\2,,2) = 2iA%B(N, 2) e (a(A, )7 (A, 2) + b(A, 2)7 (A, 2)[10.10)

where (A, z) = [dtR(u)"f3 + R(u)f} and ¥(\,z) = [dtR(u)f1f>" —
R(u)” f1" f2. The evolutions of the soliton parameters can then be derived
from the conservation of some integrals of motion, such as the energy.
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We can obtain the expression of the total wave by the following way.
The function ® which appears in (10.4) is equal to the sum ®g + &1 with:

. + oo
—5  ixst 1 b(z,A) ine
s(1) a’(/\g)e ’ (1) 271'/ a(z,/\)e

— 00

®; plays the role of a perturbation of ®. The kernel K associated with the
total wave u(z,-) can be represented as the sum Kg + K, where:

vexp ((v+ip)(s — 1)) ( —iexpi(2u(ts — s) — ¢g) )
cosh (2v(s —tg)) —exp (2v(ts — s)) ’

[(5 (S,t) =

where Ag = p + v,

Ps
a'(As)

1 1 Ps
ts=—1In| — = — 2uts. 10.11
s =g In (21/ ) , s arg (a’(/\s)) + 2puls (10.11)

Neglecting the terms of higher order, Ky is solution of:

KLl(s,t)—i—/ KLl(s,t”)/ Q% (t+ )P (' +")dt'dt" = W(s,t),

5

(s, t) :<I>*L(s+t)—/ Kgl(s,t”)/ (D5t +t)Pp (' +¢")
) ) +®7 (¢ + ) Ps (¢ +t")] dt'dt”.

Following the IST method, we obtain the transmitted wave by the formula
u(z,t) = —2¢K7{(t,t), which establishes that the total wave is given by the
sum u(z,?) = ug(z,t) + up(z,1t), where ug is a soliton of energy 4v and
velocity 4pu:

expi(2u(t —ts) + ¢g)

us(= ) = 2 = 1s))

(10.12)

which shows that ts and ¢g are respectively the position and the phase of
the soliton. uy admits the following expression:
1 [ b, (A= p+ivtanh (2v(t —ts)))” o
UL(Z,t): — _(/\)( p 2w tan (V( 5))) 62Mtd/\,

T J_o (A—p+iv)?
e TERE K TN N

im  cosh® (2v(t —tg)) oo @ T (A= —iv)?
(10.13)
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§11. Appendix 2. The Inverse Scattering Transform for the
Manakov system

11.1. THE UNPERTURBED MANAKOV SYSTEM

We consider the Manakov system that reads in dimensionless units as:

) 1
zuz+§utt+(|u|2—|—|v|2)u:0, (11.1)
) 1

w; + e + (Ju)* + |v|*) v = 0. (11.2)

This model can be derived from the Hamiltonian:
1
2= 5/(|ut|2—|— o) = (Juf® + Jo]?)? dt. (11.3)

Direct transform: the scattering problem. The scattering problem
associated with the Manakov system 1s the following eigenvalue problem

[Manakov [1974]]:
—tA dut ot
o) =L, L£:= w A 0 . (11.4)
iv 0 i
If A € R then we can construct two sets of special solutions of (11.4), de-
noted by |¢; (¢, A)) and [¢; (¢, A)) (¢ = 1,2, 3) with the asymptotic behavior:

|¢z>] = (Sij eXp(—in/\t), t— —0o0, |1/)Z>] = (Sij eXp(—in/\t), t— o0,

with I; = 1 and Is = I3 = —1. The kets |¢;) and |¢;) are known as the Jost
functions. They both represent a complete set of solutions to the problem
(11.4) for the eigenvalue A € R. Hence we may write the elements of one
basis in terms of the other basis:

|6:(t,A)) = Z%(A)I%(t, A))-

From the equivalence «;; () = (1;]¢;) we derive the conservation relations
fori=1,2,3: Zle li|? = 1, while for i # j Zle afay =0.

The functions |¢1), |t2), and |¢3) can be analytically continued in the
upper complex half-plane Tm(A) > 0, whereas the same holds true in the
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lower half-plane for the functions |¢2), |3), and |¢1). The analyticity of
the Jost functions implies the analyticity of a11(A) = (¥1]¢1) in Im(A) > 0.
Let us denote by Az, & = 1,..., N the zeros of the function «y;. For such
an eigenvalue Ag we have:

|$1(t, A)) = pralvalt, ) + pralis(t, Ak)).

Since |¢1(t, As)) decays exponentially to 0 as t = —oo and [¢;(¢, Ax)),
!l = 2,3, both decay exponentially to 0 as ¢ — oo, we get that the zeros
of the function aq; correspond to the discrete eigenvalues of the problem
(11.4).

The main point of the IST method 1s that the solutions u and v that
play the roles of potentials in the eigenvalue problem are completely char-
acterized by the set of scattering data:

S= {(Aka72ka73k)ak = 1a aNa&(A)a E(A)aA € R}a

a1 a1

where v = pi /o1 (Ak), { = 2,3. As in the case of the scalar NLSE, the
evolution equations of the scattering data are uncoupled:

820z11(A) = 0, A€ R, (115)
d,au()) = —2iNay()), AER, =23, (11.6)
Oy = —2iNivn (11.7)

The inverse transform: the GLM equation. The inverse transform
proposed by Manakov [1974] is based on concepts used to solve standard
Riemann-Hilbert problems. Since global results are often difficult to obtain
from such equations, we prefer to go to a Gel’fand-Levitan-Marchenko rep-
resentation. The inverse problem then reads as the resolution of a system
of linear integro-differential equations, whose entries are constituted by the
set § of scattering data:

K™ (s,1) :ZFj(ert)ejJr/ K (s,t")Fj(t' +t)dt’, (11.8)
j=2 s

KU (s,t) = F} (s +t)es _/ KW (s, ) Fr (' +t)dt!, j=2,81.9)

o L[ ay()
Fi(t) = — Leirrt 4 — T A 11.1
1) Zz'ye +27T/—oo Oé11(/\)e , ( 0)

r
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where e; = (d;;),_, 5 5- We can get the Jost functions [¢;) from the kernels

K ) solutions of the GLM equations:
[0) (¢, A) = eje= 1M +/Oo KU(t,s)e"lirds,  j=1,2,3.
¢
with I; = 1 and Io = I3 = —1. We then obtain (u, v) by the formula
u(t) = —2KP 1), o) = -2k (¢, 1)". (11.11)

Accordingly it is sufficient to solve the two following equations:

3 oQ

K (s,1) = F;(s+t)—2/ KD (s,tYGij(s,t, 1) dt!,  j=12,3,
=2 7%

Giu(s,t,t') = / Fi(t' + ") F (" +t)dt". (11.12)

Soliton. The soliton solution of the Manakov system is:

us \ _ cos(f) '\ expi (2/1(15 —2uz) + 2(v? + uz)z)
( vg ) = ( sin(f) ) cosh (2v(t — 2p2)) - (11.13)

The scattering coefficients are: a11(A) = (A — As)/(A — A%), where Ag =
i =+ iv is the unique zero of «q; in the upper complex half-plane, while
ajg = a3 = 0.

Conserved quantities. Conserved quantities can be worked out as
in any integrable system. The total energy and Hamiltonian [defined by
(11.3)], and more generally all conserved quantities, can be expressed in
terms of scattering data. Let us define

(A) =

a3

a1

(e W]

a1

n(A) := %log (1 - 2 (/\)) , (11.14)

for A € R. The energy and Hamiltonian can be decomposed into the sums
of continuous parts and discrete parts:

J
/|u|2—|—|v|2dt:/n(/\)d/\—|—421/j, (11.15)
R J=1

J 3

Vs
= 2/ Xnp\)d\+8 - L. 11.16
! /}R n(A) E (Vyﬂy 3) ( )

j=1

&
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11.2.  PERTURBATION THEORY FOR THE MANAKOV SYSTEM

We consider a perturbed Manakov system that reads in dimensionless units
as:

1

, —|—§utt—|— (Jul* 4+ [v]*) u = e Ry (u, v), (11.17)
1

w; + 51)”—1— (Jul* + [v]*) v = e Ry (u, v). (11.18)

In the framework described in Section 5.1 u and v represent the complex en-
velopes of the two orthogonal polarizations of a transverse electromagnetic
field in a cubic nonlinear medium.

The evolution equations of the Jost coefficients are (n = 1,2, 3):

do n . * * * * * *
d—; — Z/uz¢111/)n2 + uz¢121/)n1 + v2¢111/)n3 + vz¢131/)n1dt' (1119)
Assume that the total wave consists of one soliton Ag = p + v plus

radiation. The functions Fy and Fs which appear in (11.12) are equal to
the sum Fls; + Fr; with:

. 1 [T a0
Foilt) = —i tAst Fr.(t) = — J Mtd/\.
55(t) VIsie T 1;(t) o /_Oo Oé11(/\)e

Assume also that the radiation is small enough so that Fr;(¢) is small. As
a consequence Fr; plays the role of a perturbation of Fs;. The kernels

K{z) and K{S) associated with the total wave u, v can be represented as
the sum K9 = K% 4+ K and k¥ = K& 4 k¥ where:

KO (s,4) = —2iv cos(0)ei(~nlstt=2t5)=0s0) EXP (V{5 1 = s
1+ exp(—4dv(s—1tg

exp (—v(s+t—2tg
1+ exp(—4dv(s—1tg

)
)’

Kgg)(s’ t) = =2iv Sin(@)ei(_“(s+t—2t5)—¢sa)

)
)
where @ = arctan (|yss/vs2|) is the soliton angle,
1 [ys2]” + |vss|?
tg = E In (T , (f)Sj = —arg (’ij) + 2uTs

are the soliton center and phases, respectively. Neglecting the terms of
higher order, Kéz) and Kf’) are solutions of:

3 o0 )
EJ(s,t) = w(Lj)(s,t)—Z/ KW (s,tYGW) (5., ¢)dt! j=2,3,
=275
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where

s =re+0 =Y [ KOG + 6 e, j=2,
(=2 V%

and

GOV (s,t,1") :/ Fxj(t' +t")Fy (8" + t)dt".
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