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Abstract

This paper investigates the deformation of the field transmitted through a square law medium waveguide. We consider
the situation where the center of the waveguide randomly oscillates around the optical axis or the radius of the waveguide
randomly pulsates. The random perturbations are small, but the waveguide is long, which gives rise to a macroscopic effect of
the inhomogeneities. This effect is characterized by coupling mechanisms between optical modes, which tend to strengthen
high order modes. Precise expressions for the transmitted wave are derived which exhibit remarkable regimes, where behaviors
such as shift, spreading or even focusing of the field can be observed. Numerical simulations are in good agreement with the
theoretical results. ©2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The design of devices capable of guiding light over large distances is of current interest in optics, especially for
telecommunications purposes [1]. Indeed, because of diffraction, any light beam spreads out while it propagates
in homogeneous medium. It is therefore necessary to compensate for this natural mechanism. The main idea of a
waveguide is to guide a beam of light by employing a variation of the index of refraction in the transverse direction
S0 as to cause the light to travel along a well-defined channel. The dependence of the index of refraction on the
transverse direction may be continuous or discontinuous, but the essential element is that the index of refraction is
maximal in the channel along which one wishes to guide the light. As the name indicates, a square law medium
waveguide achieves the guidance effect by a continuous variation of the index of refraction, which is maximal at the
center of the guide and decreases quadratically with increasing vbvb distance from the center. These waveguides
describe with very good accuracy the modern optical glass fibers with graded index of refraction [2]. The perfect
waveguide has been extensively studied [2,3]. The study of random waveguide has become an essential need because
such problems naturally arise in many configurations [3]. The perturbations may originate from different physical
reasons: misalignments, geometrical imperfections, impurities and so on. In most cases they are small but their
cumulative effects may become important after a long propagation length. Furthermore, they are unpredictable so
that the statistical approach is convenient to study their effects. Literature contains a lot of papers and reviews
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which deal with the transmittivity of random waveguides. They are mainly concerned with the mean power content
in the propagating modes. The most common method vbvb consists in deriving and solving effective coupled
modes equations [3—6]. McLaughlin considers in [7] the propagation of a Gaussian beam in a strongly focusing
medium, which is subject to random deformations of the beam axis. He derives the average intensity and the
intensity fluctuations on the beam axis. Other methods such as ray-mode analysis [8], path-integration analysis [9]
or random matrix theory [10] can also be applied to this problem. Besides, different questions have been addressed:
statistical properties of the cumulative phase [11], influence of absorption [12], or else the degree of polarization
[13]. Influence of backscattering is also examined vbvb in [14] in a particular case (rectangular waveguide with
two propagating modes). In our paper we shall give a mathematical approach of the propagation of light through
a random square law medium. We aim at deriving precise expressions for both the modal representation and the
wave itself at the output of the random waveguide for any input wave. Furthermore, the complete distribution is
sought, and we shall see that the mean behavior may be very different from the typical behavior of the wave, since
the mean is imposed by exceptional but remarkable realizations. The analysis puts into evidence the usual scales
[15]: wavelength, amplitude and correlation radius of the random perturbations, length and radius of the waveguide.
We study the asymptotic behavior of the transmitted wave in the framework introduced by Papanicolaou and its
co-authors based on the separation of these scales. Our main aim is to exhibit vbvb the asymptotic regime which
corresponds to the case where the amplitudes of the random fluctuations go to zero and the size of the system goes
to infinity. We then describe explicitly the effective random evolution of the field. The paper is organized as follows.
Section 2 with the wave description of light inside the perfect waveguide, while we state our main convergence
result about the transmitted field through a random waveguide in Sections 3 and 4, devoted respectively to the study
of random perturbations of the axis and of the core radius of the waveguide. We finally compare the theoretical
asymptotic results with numerical simulations of the perturbed propagation equation in Section 5.

2. Light propagation in a perfect waveguide
2.1. Propagation equation

Physically speaking we are dealing in this paper with the square law medium in paraxial approximation. The
square law medium is a medium with an index of refraction of the form:

n?(x,y) = n§ — non1(x* + y?), (1)

whereng > 0 is the maximal index at the center of the waveguide and> O is the quadratic decrease rate

of the index per unit length. For sufficiently largé + y?, the squared index? becomes negative, which can

occur for instance in ionized gases. Although this is not the case for waveguides, Eq. (1) is considered as a good
first approximation for graded index waveguides, as long as the field distribution is close to the optical axis [2].
Furthermore, square law media have the physically relevant property that the center of intensity of paraxial light
moves according to the law of geometrical optics (see Section 3.6 of [3]). We shall also recall that the normal
modes of such media are the well-known Gauss—Hermite functions (see Section 7.2 of [3]), which will appear very
convenient for our purpose. Within the parabolic approximation, the propagation of the field is governed by the
following Schrédinger equation, sometimes called Fock equation [3]:

IE 3°E  3°E
—2ikng— — k? 2 HNE+—+ — =0, 2
no- nony(x“ + y)E + 912 + 32 )

wherek is the free space wavenumber. In order to transform this equation into a standard and adimensional form,
we multiply the spatial coordinatesandy by k%/2(ngn1)Y/* andz by n(l)/znil/z, so that (2) now reads:
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2.2. Normal modes of square law media

Eq. (3) admits a family of normal modes indexed by two integeandq:
fp,q(x,}’)zfp(x)fq(Y), (4)

where the real-valued functionf$ are the so-called Hermite—Gaussian functions:
1 2 2 dP 2
= —_— —x°/2 — (—1)? _— a X
Fr(x) \/ZIJ—JEp!Hp (x)e "’ Hp(x) = (=DPe’ e (6)
The family (f,.4) ».gen is complete in the following sense ([16], Prop. 1.5.7).

Proposition 2.1.
1. The normalized Hermite—Gaussian functi@ifg) ,en (resp.(fp.q)p.qen) are a complete orthonormal set in
the physical spacé&?(R, C) (resp.L?(R?, C)).

/prfp’(x) dx = 38ppr, /szp,qu/,q/(x, y)dxdy = 8,844

2. (x,y,2) > PTatDig (x,y) is a solution of3).

Furthermore, by applying the recursion relations amongst the Hermite polynomials ([17], Eqg. (8.952)), we get
relations between the Hermite—Gaussian functions that will be useful in the following:

0 vp+1 vp+1
£= Ij/_ Jpr1t gfplv xfp = [j/— fp+1t ://—zf -1 ©)

We define the eigenstate decomposition as the @aE € L3(R, C) (¢p) pen, Wherec, is defined by
OE), =cp= Afp(x)E(x) dx. @)

By Proposition 2.10 is an isometry fron.2(R, C) ontol?, the space of all the sequences) ,cn from Ninto C
which are square integrable.

3. Square law media with randomly perturbed axis
3.1. Formulation of the problem

In this section we look for the evolution of the fididn a waveguide whose quadratic varying index of refraction
is affected by small perturbations. More exactly we assume that the center of the waveguide oscillates around the
optical axis according tem(z), whereg is a small parameter which characterizes the amplitudes of the fluctuations
andm = (my, m,) is aR2-valued random process (see Fig. 1). The perturbed equation which governs the evolution
of the field is
3°E  3°E

+-= =0 8)

OE 2 2
_2lg —(—emyQ))°E — (y —emy(@)°E+ 7 dy?
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Fig. 1. Perturbation of the center of the waveguide.

3.2. Scales and hypotheses

We assume that the amplitudes of the fluctuations are of arder 1, and that the perturbed region, i.e. the
support of the functiom, is of orders=2. The functionm = (m,, my) is assumed to be almost surely bounded,
zero-mean, stationary and ergodic process. In order to simplify the presentation of the forthcoming results, we shall
assume that the real processesandm, are independent and identically distributed. However, this hypothesis
does not alter qualitatively the results nor the corresponding arguments. The rigorous proof actually requires that
the random procesn has “enough decorrelation”, more exactly that it fulfills the technical mixing conditiois*
#-mixing, with ¢ € LY2(R*)” (see [18], Section 4.6.2). The functi@(z) is roughly the normalized correlation
functionE[m (0)m(z)]/E[m (0)2].

In order to simplify the presentation of the main results, we shall first assume that only one transversal coordinate
is present, sax. We shall then present and discuss the results of the physically relevant problem with the two
transversal coordinatesandy in Section 3.6. Accordingly we first consider the equation:

2

OFE 0°E
—2i— — (x —em,(2))%E + — = 0. (9)
9z Ix2

3.3. Evolution of the modal decomposition
We aim at studying the evolution of the normalized fi&(x, z) := E(x, z/¢?). Since® is an isometry from

L? onto/?, it is equivalent to study the evolution of its modal decomposition, i.e. the corresponding normalized
coefficientsc®:

¢ (2) 1= O(E* (., 2)) e P Y2/, (10)
Ef(x,2) = ) ¢ (P27 ), (11)
p=0

Substituting the expression (11) into Eqg. (9), and using the relations (6), we get that the equation which governs the
evolution ofc? is

def, 1 Z\ ie2 i e2 Z\ |
A € —iz/e £ iz/¢e 2 PR
s S (—82) _«/é (ﬁcp_le +vp+1lc, 1€ ) + ms (—82) 5P (12)

We consider also the infinite-dimensional system of linear differential equations starting@pea co:
dep = /¥1x <\/5Cp—1 —Vr+ 1Cp+1> AW, +iy71x (ﬁcp—l +vp+ 1Cp+1) dw?
i
+ (onz —11.x@p+ 1)> cpdz, (13)

whereWw?! and W2 are independent standard Brownian motierfis the variance of the random varialtg and
¥j.x is the integrated covariance:
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axz = E[mx(O)z], Vix = 5/0 E[my (0)my(z)] cos(jz) dz. (14)

vj.x IS nonnegative because it is proportional to j#ieequency evaluation of the spectral density function by the
Wiener—Khintchine theorem [19]. We can now state our main convergence result.

Proposition 3.1.
1. There exists a unique solutierof Eq. (13).
2. The processes converge in distribution as continuous functions frffimoo) into /2 to the diffusion Markov
process ¢ solution dfLl3)ass — 0.

This proposition was established in the framework of the quantum harmonic oscillator in [20]. The interested

reader can find in this paper the complete proof. It consists essentially in justifying the substitutions of independent
Brownian motions for the processesim, (z/s2) cogz/?) and s~ 1m,(z/¢?) sin(z/e%) when taking the limit

¢ — 0in Eq. (12). Taking into account Stratonovitch corrections we then get Eq. (13). These techniques based
on a martingale approach to some limit theorems in the diffusion-approximation regime are now well known and

extensively reviewed in literature [15,18]. Eq. (13) consists of a closed-form but complicated description of the

asymptotic evolution of the modal decomposition of the field. In the framework of randomly perturbed square law

media, we are concerned with the description of the wave at the output of the waveguide. From this viewpoint
Proposition 3.1 is the starting point of our study.

3.4. Asymptotic evolution of the field

We now give remarkable properties of the asymptotic system (13). First we want to emphasize that the assertion
“ E¢ converge as a continuous function frg@ oo) into L2” does not hold true, because of the fast varying phases
of the modes ex@)(p + %)812). However, the field presents the remarkable property that it reproduces itself in the
perfect waveguide in regularly spaced planes. The interval between the planes is of length&consequence
the corresponding discontinuous field in the plaBes= {(27k, x), x € R}, k € N, defined by

~ z
& —
E*(r,0) = E (v, 27 [27182]) (15)
possesses nice convergence properties in the space of the cad-lag fub&eprpped with the Skorohod topology

(D is the space of the so-called right-continuous functions with left limits. See [21] (Ch. 3) for an introduction to
this space and its properties).

Proposition 3.2. Ef converges in distribution iD([0, 00), L?) to E(x,2) = Z;’,":oc,, (2) fp(x) which is the unique
solution of

~ oE . ~ o2 . ~ 92E
dE = _,/2yl,xadwz1 +iy2y1x EAW2 + (.7% — y1,X%E + yl,xﬁ) dz (16)

starting fromE (x, 0) = Eg(x).

If we get rid off the linear phase and sdt(x,z) = E(x, z)exp(—iofz/Z), then we come to the surprising
conclusion that the mean fielinean := E[£] satisfies a diffusion equation (of the type heat flow with cooling),
while we have started with a Schrédinger equation:

oE ?
an;ean = —Vl,xszmean"‘ Vl,xﬁEmean Emear(x, 0) = Eo(x).

1[z] stands for the integral part of a real number
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But the more striking point is that we can give a closed-form expression for the solution of Eq. (16). lieed
found to be

~ . z 02z
E(x,z) = Eg (x - \/2y1,xWZ1> expi (x,/ZylngZZ — 2;/1))6/0 WZZ,szl, + ’é ) . a7)

In particular, the intensity profile in the plane at normalized distarafé¢he input plane is simply the initial profile

- 2
shifted by/2y1 W2 : |E(x, 2| = o (x — V21 W2)[.

More generally, leg [0, 2r]. If we denote byPs «, k € N, the sequence of plan®s x = {(x, § + 27k), x € R}
and byEj§ the corresponding fields which lie in these planes:

Ej(r,0)=E (x.6+ 27 [2;82]), (18)

then £¢ converges in distributio([0, 00), L?) to Ej:
o0 .
Es(x,z) = Zcp(z)e'(p+12)3f,,(x).
p=0
The asymptotic fieldZ; can be derived fronk through the following equation, in whichis frozen:

8E~'3 25 32E~'5 ~ ~
—2i— — x“E =0, Es(x, = E(x, 2). 19
as N Est = s(x,2)| _ = E@.2) 19)

The general solutiots (x, z) is found to be

Es(x,2) = Eos (x — x5(2)) exp(igs(x, 2)) . (20)
where
x5(2) = csy/2y1 W — 553/2p1 W2, ¢s(x,2) = x(55y/2y1x W + c53/2y1.. W2)
2
O'x Z

—cs85v1x (W — W5) + 2¢5 1. / WadW3 — 252y . / Widw3 + >
0 0

andc¢s = cogd) andss = sin(8). BesidesEg s stands for the field in the plar®;s o which results from the

propagation of the initial fieldq in the perfect waveguide from 0 o

o
EO,S(X) — ZCO])el([’+1/2)3fp(x).
p=0

Eq. (20) gives the complete description in the full space of the field in the asymptotic framewerk0. The
longitudinal coordinate divides into two parts: the macroscopic scatel the microscopic scabe Note also that

for any$, the random process (z) which represents the position of the center of the field obeys the distribution of
a Brownian motion with variance)2 .

3.5. The Hamiltonian of the field

We have already seen that the fiélél does not converge as a process with respect to the longitudinal coordinate,
but only a stroboscopic versiof? or Eg, does. However we can explicitly compute the variations of an infinity of
guantities which are constants of motion for the unperturbed waveguide. We deal in the following proposition with
the most important of them.
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Proposition 3.3. Let us denote the Hamiltonian by
IE |2
H, = / ‘a_‘ +x2|E 2 dx, 1)
X

where E is the solution ¢8) starting from £|,_q = Eo. The quantityH, (./e2) converges as a continuous function
from [0, oo) into R™ to the processi, given by

_ 2 2
Ay(@) = HO + 201, No (WE + W) + JBys, (N W+ No W), (22)
whose mean value is
E[H,(z)] = H? + 4y1.,zNo, (23)

where H? corresponds taEo, No is the squared.?-norm || Eq||? which is conservedNVy, = | x|Eo|?dx and
Nox = Im ([ 32 E5 dx).
Proof. The proces#{, can be expressed in terms of the modal coefficiepias

He(2) =) (2p + Dle,p*(2). (24)
p

After some algebra using Eq. (13) we get the expression of the Hamiltonian in terms of the Brownian mgtions
O

3.6. Interpretation of the results with two transversal coordinates

Let us consider the physically relevant problem with the two transversal coordinately. The corresponding
solution is a direct product of two solutions derived here aboves Lef0, 27 ]. If we denote byP; x, k € N, the
sequence of planeBs x = {(x, y, 8 + 27k), (x, y) € R?} and byE the corresponding fields which lie in these
planes:

ES(x.y.0) = E (x,y,a +on [ﬁ]) (25)

then E¢ converges in distribution t&;:

Es(x,y.2) = Eos (x — x5(2), y — y5(2)) exp(igs(x, y. 2)) . (26)
where
xs(2) =c¢s Zyl,szl—SamWZZ, y5(2) =CamWZ3—S3\/%WZ4,
Bs(x, ¥, 2) = X (5532112 W2 + c5/211.:W2) + ¥(s5y/2y1y W3 + 53/ 21, W)
—csss (rLaWE = W2 4y, (WE = w)) + 23 (yl,x /O W2l -y, fo W dwjt)
(O‘Xz + af)z

Z Z
Py (m [wiawz o, [ Wf,de)—irT,

Wi, j =1,...,4 are four independent standard Brownian motions,@ne cog8) andss = sin(s). Besides
Eo s stands for the field in the plarf@; o which results from the propagation of the initial fiel in the perfect
waveguide from O t@:
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o0
Eos(x,y) = Y co,,@PT 0 £, (x, y).
r.q=0

Eq. (26) gives the complete description of the field in the asymptotic framewerl0. The longitudinal coordinate
is divided into two parts: the macroscopic scaland the microscopic scalke Note also that for any, the
random proceséx;(z), vs(z)) which represents the position of the center of the field obeys the distribution of a
two-dimensional Brownian motion with varian¢2yy ., 2y1,y).

In [7] the very same problem we consider in this section is addressed. By choosing as an initial wave the
fundamental mode exp-(x2 + y2)/2) and substituting the ansatz:

2+y2

exp(iz)exp(—x +ie%(Ax(@)x + Ay(2)y) + iA(z)) ,

into Eq. (8) McLaughin obtains a closed form equation for the set of parametersh,, A). He then computes

the mean intensity on the beam axis= y = 0 and the corresponding fluctuations. Here we have proven that the
same kind of results can be obtained for any initial wave: the output wave can be described by a finite number of
random parameters. We are able to describe explicitly the statistical distribution of the output wave. We exhibit that
the primary effect of the random fluctuations of the axis is to involve a random shift of the initial intensity profile,
and this shift behaves like a Brownian motion. This result is useful for telecommunication applications, since square
law media are a good first approximation for graded index fibers. The explicit formulae that we have obtained allow
to predict for instance the random propagation distance at which the incoming localized profile will collide with
the cladding of the fiber. Over an elementary interval[[2/ (27 £2)], 2n[z/(2ne2)] + 2r) the farthest point that

the maximum of the intensity profile visits is at distam¢e) from the fiber axis:

r(z)>= sup (x(s(z)2 + ya(z)z)
5€[0,2r)

and a straightforward calculation shows that it is equal to

211/2
r(2)? =ro(2)? + [VO(Z)4 —dysavny (W2WE - wiwy) } ’

2 2 2 2
10(2)? =y (WE + W2) +y1, (WS + W),

The radius (z) is bounded above biy(z) and below byo(z)/2, so we can claim that it behaves like the modulus
of a four-dimensional Brownian motion.

4. Square law media with randomly perturbed radius
4.1. Formulation of the problem

We assume in this section that the center of the waveguide is perfect and coincides with the optichlatie
radius of the waveguide oscillates around its mean value accordig 9, wheree is a small parameter which
characterizes the amplitudes of the fluctuations @ne: (m,, my) is aR?-valued random process (see Fig. 2).
The random procegs satisfies the same hypothesis as in Section 3.2. The perturbed equation which governs the
evolution of the field is
3°E  9°E

OF
—2i== —x*(Atem @)E = Y L+ emyE + o5 +

— =0. 27
dx2 9y? @7)
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Fig. 2. Perturbation of the radius of the waveguide.

The strategy is the same as in Section 3, and the proofs are very similar. The derivations of the results is carried out
with one transversal dimension. We shall then make a direct product to compute the solution with two transversal
dimensions in Section 4.5. Accordingly we consider the problem:

2

O0FE 0°E
—2i— —x*(1+em,(2)E+ — =0. (28)
a4z 0x

Denoting byc? the normalized modal decomposition (10) of the field, the equation which governs their coupled
evolutions is obtained by substituting the expression (11) into Eq. (28):

dc? 1 zZ\ | . ;
d—; = m, (8—2) 2 (\/p(p - 1)cj,_2e—2'2/82 +@2p+ e, +(p+D(p+2 c;+2e2'z/82) ) (29)

4.2. Statement of the convergence result

We consider the infinite-dimensional system of linear differential equations starting:f@ne= co:

de, = Y12 e (Vo DG+ ep2 ~Vp(p ~Dep) awl + N (S D+ Deps2

202
+/p(p— 1)c,,_2> dw2 + W(Zp + e, dW3 — ”0" YOx (ap? 4 4p + 1c, dz
”2" P22 (02 4 p 4+ Depdz, (30)
whereW/, j = 1,...,3 are independent standard Brownian motions, is the integrated covariance of the

processn, defined by (14). We denote b (x, z) the field in the plane2[z/(27¢2)] defined by (15).

Proposition 4.1.
1. There exists a unique solution cB§. (30).
2. The processes’ converge in distribution as continuous functions frfimeo) into /2 to the diffusion Markov
process c solution d80)ase — 0.
3. E* converges in distribution i ([0, 0o), L?) to E which is the unique solution of

T 9\ - i/ 0
dE = Y22 (14 2c 2 ) Eawl 4 220 (k24 2 ) Fdw?
2./2 0x ’ 22 dx2
1+dx—+2°— — — —x") Ed
16 ( * Yo + ox2 x4 ¢
52 9 92 9t -
gO,x ( + 8_) E dVV3 chx (2 + 4)Ca + szﬁ — W — x4> Edz, (31)

starting fromE (x, 0) = Eg(x).
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4.3. Asymptotic evolution of the field

Very fortunately Eq. (31) can be solved for any initial conditiém e L2. Indeed, still denoting byg the modal
decomposition ofp, we have

o
E(zx) = Vay@e Oy co, fylan@me @rvn©, (32)

p=0

where the coefficients,, b,, andy,, obey the following stochastic differential equations:

72, 1
da, = 2x axszl + 2y2,xaxbxdW12 + 2, /y(),,ccle),chZ3 + Yo.x (Zaxbf — Zaf) dz

1 1
+y0.x <§ax + 4axb§ — 5af) dz, (33)

2, 1
by = /2y25bsdW2 — P25 4+ 4% — ap2)dw? + SN a* + 4p2)dw3

8
1 3 34 3 4
+)/2,x be + be — Eaxbx dZ + Y0,x (bx + 4bx - 3axbx) dZ, (34)
1
dyr, =,/ Vgx a?dw? + >+ froxa?dw3 + Vz,x aZby dz + V;x a?by dz, (35)

starting froma, (0) = 1, b,(0) = 0, ¥ (0) = 0. In particular, ifEg is a single-mode bearyj,, then the intensity
profile at the normalized distaneés simply:| E(z, x)|2 = a.(z)| Eo(ax (z)x)|2, which is the initial profile rescaled
by the factora, (z).

Furthermore, the field§§ in the intermediate planes+ 27 [z/(27£?)] defined by (18) converge in distribution
in D([0, 00), L?) to Es, whose expression can be derived fraéhthrough Eq. (19). The general solutiéi (x, z)
is found to be

ENV(3 (Z, x) — /ax (8, Z)efibx(a,z)xzzc()p fp(ax (8, Z)x)efl(2]74’].)'(//)((5,1)7 (36)
p=0
where
a:(8,2) = @) : 37)
V/(co8) + 2b,(2) SiN(8))2 + a, ()% sin(5)2
b (2) €OS(28) + (4by (2)% + a, (2)* — 1)(SIN(25) /4)
bx(8:2) = T 0d8) + 20 (2) SN L ar (P Sn®2 (38)
§
Vx(8,2) = Yx(2) — z (39)

Giving an explicit representation in terms of the Brownian motigtisof the joint distributions of all the coefficients
a., by andvyr, is a difficult problem. Nevertheless we can give simple representations of the distributions of the
variablesa, (8, z) andb, (8, z) in terms of two auxiliary Brownian motions.

Proposition 4.2.
1. The processeg, (3, .), by (8, .)) obey the same distribution &s, (.), by (.)).
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2. For anyé andz, the variables(af(é, 2), by (8, z)) obey the distributions of

a?(z) = exp(\/ 2y0  WH — VZ,XZ) , (40)

2. ) z
by(z) = /y—zxexp(,/Zyz,x whe — yz,xz) X /0 exp(—,/Zyz,,C Wzl,’x + yz,xz’) dWZZ,’x, (41)

wherew1* and Wl are independent standard Brownian motions
3. The probability that at a given point z the valuemﬁ(z) excesses the valug > 0O is

P(a2@) = M) = erfc<w>

vV ZVZ,XZ

1 —s2/2
whereerfc(r) = NG [oes"/2ds.
Proof. The first and second points are technical and referred to the Appendix A. The third point is then a straight-
forward corollary. O

An exponential martingale such as (40) presents very special properties. Let us discuss one of them, which concerns
the fundamental difference between its long-range mean behavior and long-range typical behavior. Edritarge

well known that the typical value oWZl’x is of the order of,/z, so that the typical value of the random variable

a?(z) is of the order of ex{f—y2 vz £ /2y2.4z). In this exponential the first term prevails for lamyeso thata?(z)

is exponentially small. Nevertheless, the mean vﬂl[uf(z)] = 1, whateverz. This means that thmeanvalue

does not correspond at all tatypical value that can be reached by the random variaﬁ{e). The mean value is

actually imposed by very few events which represent large deviations of the Brownian motion. These exceptional
events are enhanced by the exponential, which dgdfesp,/2y> « Wzl”“] = exp(y2.x2).

4.4. The Hamiltonian of the field

Proposition 4.3. Let us consider the Hamiltonia®/; defined by(21). The quantityH, (./¢%) converges as a
continuous function frorf0, co) into R to the processd, given by

- a(z)  1+4b%(z)
H,(z) = HY [ = X 42
(@) ( 2+ ) (42)
wherer corresponds tdp. Its mean value and second moment are
_ _ 2 1
E[A, ()] = HO??%,  E[H.()Y] = H® (ée‘”&ﬂ + 5) : (43)

Proof. The mean oH, can be computed directly since we get from the expression (24) that it satisfies a closed-form
differential equation@([,%l = 2y,,E[H,]. The expression ofd, in terms ofa,, b, can be obtained from the
expression (32). We then are able to comfi{td, (z)”] for any p by I1té’s formula (see also Egs. ((A.5))-(A.7) in
Appendix A). |

The Hamiltonian has a very large variance, much larger than the square of its mean, which shows that it
has very large fluctuations with respect to its mean value. This can be also put into evidence by comparing
the typical value of the Hamiltonian with its mean valué(z) is an exponential martingale which decays as
exp(—y2,xz) forz > 1, sinceWZl’x ~ J/z <« z with very high probability. Furthermorg, (z) is roughly equal
to ,/yz,x/2exr(—y2,xz)féexp(yz,xz’)de/x which obeys a normal distribution with mean 0 and variange for



12 J. Garnier/ Wave Motion 31 (2000) 1-19

z > 1. By substituting these approximations into Eq. (42), we get that the typical behavior of the Hamikgnian
is for largez:

1 _
z|n Ho(z) ~y2, forz>» 1 (44)

The typical exponential behavior (44) is different from the exponential behavior of the mean Hamiltonian (43), and
the departure originates from large deviations of the Brownian matién.

4.5. Interpretation of the results with two transversal coordinates

Let us consider the physically relevant problem with two transversal coordixatedy. If we denote byE§ the
fields which lie in the plane®;s ; and which are defined by (25), theiij converges in distribution t&:

Ea(Z, x,y)=,/ax(8, 2)ay (8, Z)e—ibx(5,z)x2_ib)v(5,z)y2

o
x Z €0, Fp.q(ax(8, 2)x, ay(8, Z)y)e—l(2[7+l)1//x(&Z)—I(ZQ-i-l)I//y(ts,Z)7 (45)
p.q=0

where(ay, by, ¥y) and(ay, by, ¥,) are independent and identically distributed. They obey the same distributions
as the ones described by Egs. (37)—(39). In particuldpifs a single-mode bearyi, ,, then the intensity profile
at the normalized distanads simply

|Es(z. x, y)I* = ax (8. 2)ay (8, 2)| Eo(ax (8. 2)x, ay (8. 2)y)I%,
which is the initial profile rescaled by the two-dimensional fa¢tqrs, z), a, (8, z)). From Proposition 4.2 we can
deduce the statistical distribution of the (local) maximal intensity of the field:

~ 2
Imax(8, 2) = sup| s (x, v, 2)
x,y

which simply reads anax(8, z) = ax(8, 2)a, (8, z) Io,max, Wherelp max := sup, , | Eo(x, y)|2.

This also shows that the distribution Bfiax(3, z) depends only og, and we shall denotgnax(z) := Imax(0, z).
Since the sum of two independent standard Brownian motions is a Brownian motion with variance 2, we get
immediately the following corollary.

Corollary 4.4. Let us assume that the incident wave is a single-mode beam.
1. The normalized maximal intensifyax(z) := Imax(z)/Io.max Of the field in the plane z obeys the distribution of

Imax(z) = exp(MWz - VZZ) ) (46)

where W is a standard one-dimensional Brownian motion,ang (y2.« + 2,y) /2.
2. The probability that at a given point z the valuelgfx excesses the valug > 0 is

- In(M) + yzz)
P (1 > M) =erfc] ———),
( max(z) > ) ( \/ﬁ
g2
whereerfc(t) = \/%ft"oe /2gs.

Note that/max is not an exponential martingale, and in particular Bftnad = exp(—y2z/2). Note also that the
typical value ofihay, Obtained by neglecting the contributions of the Brownian motions in the exponential term in
Eq. (46), is of order exp-y2z). However, it is possible that the intensity profile becomes at some distance very
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narrow and very high. This anomalous focusing is quite surprising. In our framework the propagation is linear and
no pathology occurs, since the variations of the radius of the core of the waveguide are very smooth and weak.
This is a purely random phenomenon due to large deviations of the Brownian motions, which is canceled if the
output field is averaged over many realizations. The averaged valyg,0f) shows indeed that the mean maximal
intensity decays exponentially at rate éx{p»z/2).

In Ref. [22] a situation mathematically similar to Eq. (27) is considered. The initial state is assumed to be
Gaussian and adopting a Gaussian-like ansatz Bulatov et al. exhibit a closed-form set of differential equations for
the parameters of the ansatz. Here we have proven that the output wave can be described by a finite number of
random parameters whatever the initial wave. We exhibit that the primary effect of random fluctuations of the radius
of the waveguide is to involve a random focusing or defocusing of the initial intensity profile, and the inverse square
radius behaves like an exponential martingale which goes to zero with high probability, but whose mean value is
constant. The quantitative results we have derived here above are of interest for telecommunication purposes, since
they allow to predict the spreading of localized pulses in graded index fibers.

5. Numerical simulations

The results in the previous sections are theoretically valid in the limit case0, where the amplitudes of the
perturbations go to zero and the length of the random waveguide goes to infinity. In this section we aim at showing
that the asymptotic behaviors of the field can be easily observed in numerical simulations in the caseisvhere
small, more precisely smaller than any other characteristic scale of the problem. In order to simplify the problem
we shall consider in this section that the transverse space has dimension 1, which corresponds to neglecting the
y-direction. It involves no loss of generality, since the phenomena we have put into evidence in the above sections
can be divided into independent phenomena in both orthogonal directions. We use a fourth-order split-step method
to simulate the one-dimensional perturbed linear Schrédinger equations:

3°E

E
—2i— —x’E—-V®(x,2)E+ —5 =0. (47)
9z dx2

We choose the following models for the perturbatiéf(x, z) which correspond respectively to Egs. (9) and (28):
Random axis case :VE(x, z) = —2emy(2)x + £2my(2)2,
Random radius case :V®(x, z) = em, (z)x°.

This numerical algorithm provides accurate and stable solutions to a large class of linear and nonlinear partial
differential equations [23].

Let Az be the elementary length step ahdbe the elementary transverse spatial step. We denote by
(Eo(jh)) j=—k,... k—1theinitialwave solution. By induction we compuig+! := (E(jh, (n+1)A2) =k, k-1
from E" 1= (E(jh,nAz2))j—_k, . k-1

firststep : E"TY3 = A(Az/2)E",
second step : E"t?%/3 = B(z, A7) E"TY3,
thirdstep : E"*1 = A(Az/2)E"H2/3,

whereA (Az/2)isthe linear operator generatedieg %22 andBis simply a scalar multiplication in the physical space
by exp'z (x2 + Vé(x, z)) Az. The first and third steps can be solved using a Fourier transform. Indeed, in Fourier

space the effect of the exponential operaton z/2) is a scalar multiplication by expi2 Az /4). To sum up, the split
step algorithm involves a sequence of steps that include free-space propagation over a half-step, then the ‘perturbed’
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guiding correction, and free space propagation over the final half-step. Practically, it is easy to see that the two
back-to-back free-space half-steps can be combined into a single free-space step dVer error of the split-step
algorithm comes from the splitting process, because the opefstmdB do not commute. It is well known that the
method vbvb described here above is of second-order [24]. However, we can use a standard method which transforms
a second-order method into a fourth-order method [25]. Inde€d Afz) E (x, z) is a second-order approximation

to E(x, z + Az), thenC(eAz)C(—BAz)C(aAz)E(x, z) is a fourth-order approximation tB(x, z + Az), if we

take care to choose = 1/(2 — 2/3) andg = 21/3/(2 — 21/3). The drawback of this method is that we implicitly
impose periodicity on the solutions because of the Fourier transform that is used on a finite interval. We can control
it by imposing boundaries of the computational domain which absorb outgoing waves. This can be readily achieved
by adding a complex potential which is smooth so as to reduce reflections. We choose to substitute the complex
potential vbvbV (x, z) = Vé(x, z) + i Vapgx) for the random potentidl® (x, z), where

. T Xp—X i
Vabsmaxs"'I2 <— ‘ > if X¢ <x <ux,

2)Cg —Xg
Vaps(x) = 0 if xe <x <axr,
. T X—X .
Vabs masSin? (E X, —;r) if xr <x < X,

where X, (resp.X;) is the left (resp. right) end of the computational domain, pXid x,] (resp.[x;, X(]) is the

left (resp. right) absorbing slab. THeé-norm of the field is theoretically preserved by the split-step method up to

the machine accuracy in case of a truly periodic situation without absorption. The domain that we consider is not
periodic, and the outgoing wave is absorbed by an imaginary potential at the boundaries of the domain. However
the size of the shifting domain is taken so that the distortion imposed by the non-periodicity has a negligible effect.

We adopt in this section the following model for the perturbation:

- z
my(z) = up if l+Zo§r—<l+zo+1,
c

yeee

butions over the intervaH1/2, 1/2], andzg is a random variable independentofwhich also obeys an uniform
distribution over 1/2, 1/2]. r¢ is the so-called correlation radius of the random procesthe autocorrelation

function of the ergodic process is equal toE[m, (0)m,(z)] = liz (1 —z/rc)1;<, SO that the power spectral
density defined by (14) is

11— coqjre)
Vix =547 2y,
andyg , = r¢/48. The quantityZ/rc which is equal to the length of the random waveguide will be chosen so
large that we can observe the effect of the small perturbation We measure th&2-norm, the Hamiltonian and
the intensity profile of the transmitted solution, that we can compare with the corresponding data of the incident
field. We present results corresponding to simulations where the initial wave &tis the fundamental Gaussian
mode Eo(x) = =~ Y/4e**/2, whoseL2-norm Né/z and Hamiltonian#? are equal to 1. We have first simulated
the homogeneous Schrédinger equation (Eq. (47) Witk= 0) which admits as an exact solutidiy(x)e%/2. We
can therefore check the accuracy of the numerical method, since we can see that the computed solution maintains
a very close resemblance to the initial field (data not shown), whilé.theorm and the Hamiltonian are almost
constant.
The other simulations are carried out with different realizations of the random perturbation with1. Fig.
3 plots the evolutions of the Hamiltonians for different values of the correlation raglinsthe cases of random
axis or random radius and for one particular realization of the random perturbation. As predicted by the asymptotic
theory, the effect of the perturbation feg = 27 in the random axis case and fay = = in the random radius
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Fig. 3. Evolutions of the Hamiltonian of the field for different correlation radii. The left figure corresponds to the random axis case:
VE(x, z) = —2em(z)x + £2m(z)% with ¢ = 0.1. The right figure corresponds to the random radius casex, z) = em(z)x2 with ¢ = 0.1.
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Fig. 4. Evolutions of the Hamiltonian of the field averaged over 100 realizations of the random perturbatien=withl (solid line) and
theoretical behaviors for the corresponding asymptotic situations. Random axisVégsez) = —2em(z)x + e2m(z)%. Forre = 7 we
havey, = 1/(127) and the theoretical mean HamiltonianBgH, (z)] = HC + 4y1.,Noe?z ~ 1+ 1.06 x 102 z Forr, = 37 we have
y1.» = 1/(36m) and the theoretical mean HamiltoniarfEH, (z)] ~ 14+ 3.54 x 104 z

case is almost zero. Indeed these particular values for the correlation radius correspope=t® andy, , = 0,
respectively.

In Figs. 4 and 5 we present the simulated evolutions of the Hamiltonian of the field averaged over 100 realizations
and compare them with the mean theoretical evolutions given by (23) (random axis case) and (43) (random radius
case) in the scalg/2. It thus appears that the numerical simulations are in very good agreement with the theoretical
results.

Fig. 6 plots the intensity profiles of the solutions at different depths corresponding to one of the simulations,
which shows that the wave keeps the basic form of the fundamental mode although it is shifted in some ran-
dom direction in the random axis case and it is re-scaled by some random factor in the random radius case. As
predicted by the asymptotic results, we sometimes observe that the intensity profile in the random radius case is
narrower and higher than the fundamental mode. All these observations confirm that the asymptotic theory de-
scribes with accuracy the propagation of the field through a random waveguide for small perturbations and large
length.
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Fig. 5. Evolutions of the Hamiltonian of the field averaged over 100 realizations of the random perturbatiosvith (solid line) and theoretical
behaviors for the corresponding asymptotic situations. Random radiusWasez) = em(z)x2. Forre = w/2 we havey, . = 1/(24r) and
the theoretical mean Hamiltonian B A, (z)] = HOexp(2y2.,£%z) ~ exp(2.66 x 10%z). Forre = 37/2 we havey;, = 1/(727) and the
theoretical mean Hamiltonian B A, (z)] ~ exp(8.84 x 1075z).
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Fig. 6. Intensity profile of the incident field (solid line) and at different depths (dotted and dashed lines). The left figure corresponds to the
random axis casé/ (x, z) = —2em(2)x + £2m(z)? with ¢ = 0.1 andrc = 7. The profiles have the same Gaussian shape with the same radius,
but the centers randomly oscillate aroune: 0. The right figure corresponds to the random radius dasex, z) = em(z)x? with ¢ = 0.1 and

rc = /2. The profiles have the same Gaussian shape with centet &, but the radius randomly oscillates. At lengths 100 and; = 400,

the profiles have spread out, at length= 300 the profile is almost exactly the initial one, and at length 200 the profile is narrower and

higher.

6. Conclusion

We have analyzed in this paper the effects of different kinds of random perturbations on the propagation of waves
in square law media which involve specific alterations of the wave. Random misalignments of the waveguide give
rise to shifts of the wave with respect to the optical axis, and the shifts obey the statistical distributions of Brownian
motions. Random perturbations of the radius of the core make the field pulsate. The intensity profile tends to spread
out, but large deviations of the governing spreading process may involve a local focusing of the profile and an
enhancement of the maximal intensity. The precise results we have derived are a priori limited to square law media.
For such media the normal modes are explicit and tabulated formulae are available, so that we are able to perform
exact calculations and compute closed-form expressions for the outgoing waves. Nevertheless we feel that the results
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demonstrated in this paper could be generalized to most of the graded index fibers. Indeed the basic assumption
which requires the existence of a complete set of normal modes for the unperturbed waveguide holds true for most
of them. The remainder of the study then consists in technical developments to exhibit and analyze the coupling
mechanisms between the modes during the propagation of the wave in the perturbed waveguide.

Appendix A

We aim atidentifying the distributions of the variables(z), b, (z)) which satisfy the system of coupled stochastic
differential equations (33),(34). We first apply 1té’s formula ([21], Theorem V-2-,1@)" b, (z)” and take the
expectation:

dE[ab!]

+2
— o A+ P+ p+ DE[? Y — (24 M2y PP D) prniaypy
dz 4" 2 2
nn—1 p?> np s P(P—1) b2
- — | E n i E n J
< 7 + > + 5 [alb ]+—16 [alby ]

+y2.x

(-1 2 pp—1) _
2. %E[aﬁ“bf 2]+%E[a§5+8b£ 2]}

70 {200+ p)1 + p+ DE[@L6! ] = (5 +np + p? + 2p ) Ela 601}
n p(p—1)
ﬂ@x(z+np+p§EMﬂﬁ+ﬂ—?r—

_rp—Dp p(p—1)
4 8

E[ab} 7] }

+V0,x

[a"t4pP %) + E[a;;+8b§;‘2]} . (A.1)
A first method to comput&|[a, (z)" b, (z)”] consists in studying carefully the system (A.1), but we can avoid these
technical developments and find a way to simplify (A.1) by using the following trick. We compute in the asymptotic
frameworke — O the evolution of the fundamental Gaussian modé @ from the initial plane; = O to the plane
27[z/(2me?)] + & by two ways.

1. The first way consists in going first from 0 ta /(27 ¢2)]. We then find the field:

2.2
E“gausix’ y,2) = Mexp<_ax(zz) Xt ibx(Z)xz _ i‘(//‘x(z)> .

The processe&,, b,) are solutions of (33) and (34), with Brownian motioWs’ which correspond to the
limit configuration associated with the random processver the intervak0, 2z[z/(27¢2)]). We then get
the expression of the field in the plane labeleds), whose macroscopic longitudinal coordinateziand
microscopic one ig, by solving

~gauss
LOE];

92 foauss
—2i 8

2 ~gauss
—x°E +
a8 8

=0 EMo| = B, (A2)

2. The second way consists in going first from @ tdVe then find the field €*/2+19/2. Then we go frons to the
plane(z, §) and find that the field is

2.2
s Wexp(—% (8, 3% — 1 (2) + .%) . (A3)
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The processeg, (8, .), by (8, .)) are solutions of (33) and (34), with Brownian motioWs:/ which correspond
for eachs to the limit configuration associated with the random processer the intervals, § + 27 [z/(27¢2)]).
Substituting (A.3) into (A.2), we get th&t, , b,) satisfy the equations:

dax(8,2) by (8,z) 1

—_2ax 53 bx 8’ ) — &5
55 (3, 2)bx (8, 2) 5% >

which implies in particular that, for any integetrandp’:

(@6, 9" = 4be(3, 22 — 1),

’ ’ / 4 / ’ /I 7 /. / /
al' by (8,2) —al bY (0.2) = /0 (%(a::*“bf Yoa bl h — 20 + phyal bf“) (5. 2) ds. (A.2)

The Brownian motiondv?®-/ depend ors, since they correspond to the limit configuration associated with the
random procesm over the intervals, § + 2r[z/(27¢2)]). Nevertheless, the distribution of is translationally
invariant, so that th&%-/ and consequently:, (8, .), b, (8, .)) obey the same distributions 8/ and(a,(.), b, (.)),
respectively, for every. Taking the expectation in (A.4) witth' =n, p' = p—-Dandn' =n+4,p ' =p—-1)
yields that the integrands have mean zero and consequently:

-1 _ -1 -
E [pTa;""‘bf 2:| =E |:2(n +p—Dalby + P > alb? 2:| ,

—1 B —1 B
E [p—a;+8b§ 2} —E |:2(n + p+3a" 4l + L gntapp 2} .

2 2
By inserting into (A.1) we get a simplified version of the system satisfied by the momets(of, b, (z)):

dE[ax(2)"bx(2)?]
dz B

-2
Y2,x (rl(nfﬁ +np+ p(p — 1)) E[ax(Z)nbx (Z)p]

(p—1 n _
%E[ax (2)"by(2)P72). (A.5)
On the other hand, one can check by direct computation that the processes defined by (40) and (41) satisfy Eq. (A.5)
for everyn and p. Consequently they obey the same distributiongaa$z), b, (z)), which proves the result. In
practiceE[ay (z)" by (z)P] is computed recursively with respectpoOne finds in particular th&[a, (z)" b, (z)"] =
0 for any odd integep and

+Y2.x

Elay (z)"] = e2+[1n=2/4k (A.6)
er2x2n+hz _ 9
]E ﬂb 2 — eJ/Z.x[n(n_z)/4]Z_ A?
[Clx(Z) v (2) ] 4n+ 1) ( )
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