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Light propagation in square law media with random imperfections
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Abstract

This paper investigates the deformation of the field transmitted through a square law medium waveguide. We consider
the situation where the center of the waveguide randomly oscillates around the optical axis or the radius of the waveguide
randomly pulsates. The random perturbations are small, but the waveguide is long, which gives rise to a macroscopic effect of
the inhomogeneities. This effect is characterized by coupling mechanisms between optical modes, which tend to strengthen
high order modes. Precise expressions for the transmitted wave are derived which exhibit remarkable regimes, where behaviors
such as shift, spreading or even focusing of the field can be observed. Numerical simulations are in good agreement with the
theoretical results. ©2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The design of devices capable of guiding light over large distances is of current interest in optics, especially for
telecommunications purposes [1]. Indeed, because of diffraction, any light beam spreads out while it propagates
in homogeneous medium. It is therefore necessary to compensate for this natural mechanism. The main idea of a
waveguide is to guide a beam of light by employing a variation of the index of refraction in the transverse direction
so as to cause the light to travel along a well-defined channel. The dependence of the index of refraction on the
transverse direction may be continuous or discontinuous, but the essential element is that the index of refraction is
maximal in the channel along which one wishes to guide the light. As the name indicates, a square law medium
waveguide achieves the guidance effect by a continuous variation of the index of refraction, which is maximal at the
center of the guide and decreases quadratically with increasing vbvb distance from the center. These waveguides
describe with very good accuracy the modern optical glass fibers with graded index of refraction [2]. The perfect
waveguide has been extensively studied [2,3]. The study of random waveguide has become an essential need because
such problems naturally arise in many configurations [3]. The perturbations may originate from different physical
reasons: misalignments, geometrical imperfections, impurities and so on. In most cases they are small but their
cumulative effects may become important after a long propagation length. Furthermore, they are unpredictable so
that the statistical approach is convenient to study their effects. Literature contains a lot of papers and reviews
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which deal with the transmittivity of random waveguides. They are mainly concerned with the mean power content
in the propagating modes. The most common method vbvb consists in deriving and solving effective coupled
modes equations [3–6]. McLaughlin considers in [7] the propagation of a Gaussian beam in a strongly focusing
medium, which is subject to random deformations of the beam axis. He derives the average intensity and the
intensity fluctuations on the beam axis. Other methods such as ray-mode analysis [8], path-integration analysis [9]
or random matrix theory [10] can also be applied to this problem. Besides, different questions have been addressed:
statistical properties of the cumulative phase [11], influence of absorption [12], or else the degree of polarization
[13]. Influence of backscattering is also examined vbvb in [14] in a particular case (rectangular waveguide with
two propagating modes). In our paper we shall give a mathematical approach of the propagation of light through
a random square law medium. We aim at deriving precise expressions for both the modal representation and the
wave itself at the output of the random waveguide for any input wave. Furthermore, the complete distribution is
sought, and we shall see that the mean behavior may be very different from the typical behavior of the wave, since
the mean is imposed by exceptional but remarkable realizations. The analysis puts into evidence the usual scales
[15]: wavelength, amplitude and correlation radius of the random perturbations, length and radius of the waveguide.
We study the asymptotic behavior of the transmitted wave in the framework introduced by Papanicolaou and its
co-authors based on the separation of these scales. Our main aim is to exhibit vbvb the asymptotic regime which
corresponds to the case where the amplitudes of the random fluctuations go to zero and the size of the system goes
to infinity. We then describe explicitly the effective random evolution of the field. The paper is organized as follows.
Section 2 with the wave description of light inside the perfect waveguide, while we state our main convergence
result about the transmitted field through a random waveguide in Sections 3 and 4, devoted respectively to the study
of random perturbations of the axis and of the core radius of the waveguide. We finally compare the theoretical
asymptotic results with numerical simulations of the perturbed propagation equation in Section 5.

2. Light propagation in a perfect waveguide

2.1. Propagation equation

Physically speaking we are dealing in this paper with the square law medium in paraxial approximation. The
square law medium is a medium with an index of refraction of the form:

n2(x, y) = n2
0 − n0n1(x

2 + y2), (1)

wheren0 > 0 is the maximal index at the center of the waveguide andn1 > 0 is the quadratic decrease rate
of the index per unit length. For sufficiently largex2 + y2, the squared indexn2 becomes negative, which can
occur for instance in ionized gases. Although this is not the case for waveguides, Eq. (1) is considered as a good
first approximation for graded index waveguides, as long as the field distribution is close to the optical axis [2].
Furthermore, square law media have the physically relevant property that the center of intensity of paraxial light
moves according to the law of geometrical optics (see Section 3.6 of [3]). We shall also recall that the normal
modes of such media are the well-known Gauss–Hermite functions (see Section 7.2 of [3]), which will appear very
convenient for our purpose. Within the parabolic approximation, the propagation of the field is governed by the
following Schrödinger equation, sometimes called Fock equation [3]:

−2ikn0
∂E

∂z
− k2n0n1(x

2 + y2)E + ∂2E

∂x2
+ ∂2E

∂y2
= 0, (2)

wherek is the free space wavenumber. In order to transform this equation into a standard and adimensional form,
we multiply the spatial coordinatesx andy by k1/2(n0n1)

1/4 andz by n1/2
0 n

−1/2
1 , so that (2) now reads:
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−2i
∂E

∂z
− (x2 + y2)E + ∂2E

∂x2
+ ∂2E

∂y2
= 0. (3)

2.2. Normal modes of square law media

Eq. (3) admits a family of normal modes indexed by two integersp andq:

fp,q(x, y) = fp(x)fq(y), (4)

where the real-valued functionsfp are the so-called Hermite–Gaussian functions:

fp(x) = 1√
2p

√
πp!

Hp (x)e−x2/2, Hp(x) = (−1)pex
2 dp

dxp
e−x2

. (5)

The family(fp,q)p,q∈N is complete in the following sense ([16], Prop. 1.5.7).

Proposition 2.1.
1. The normalized Hermite–Gaussian functions(fp)p∈N (resp.(fp,q)p,q∈N) are a complete orthonormal set in

the physical spaceL2(R,C) (resp.L2(R2,C)).∫
R

fpfp′(x)dx = δpp′ ,

∫
R2
fp,qfp′,q ′(x, y)dx dy = δpp′δqq ′ .

2. (x, y, z) 7→ ei(p+q+1)zfp,q(x, y) is a solution of(3).

Furthermore, by applying the recursion relations amongst the Hermite polynomials ([17], Eq. (8.952)), we get
relations between the Hermite–Gaussian functions that will be useful in the following:

∂fp

∂x
= −

√
p + 1√

2
fp+1 +

√
p√
2
fp−1, xfp =

√
p + 1√

2
fp+1 +

√
p√
2
fp−1. (6)

We define the eigenstate decomposition as the map2 : E ∈ L2(R,C) 7→ (cp)p∈N , wherecp is defined by

2(E)p := cp =
∫
R

fp(x)E(x)dx. (7)

By Proposition 2.1,2 is an isometry fromL2(R,C) ontol2, the space of all the sequences(cp)p∈N fromN intoC
which are square integrable.

3. Square law media with randomly perturbed axis

3.1. Formulation of the problem

In this section we look for the evolution of the fieldE in a waveguide whose quadratic varying index of refraction
is affected by small perturbations. More exactly we assume that the center of the waveguide oscillates around the
optical axis according toεm(z), whereε is a small parameter which characterizes the amplitudes of the fluctuations
andm = (mx,my) is aR2-valued random process (see Fig. 1). The perturbed equation which governs the evolution
of the field is

−2i
∂E

∂z
− (x − εmx(z))

2E − (y − εmy(z))
2E + ∂2E

∂x2
+ ∂2E

∂y2
= 0. (8)



4 J. Garnier / Wave Motion 31 (2000) 1–19

Fig. 1. Perturbation of the center of the waveguide.

3.2. Scales and hypotheses

We assume that the amplitudes of the fluctuations are of orderε � 1, and that the perturbed region, i.e. the
support of the functionm, is of orderε−2. The functionm = (mx,my) is assumed to be almost surely bounded,
zero-mean, stationary and ergodic process. In order to simplify the presentation of the forthcoming results, we shall
assume that the real processesmx andmy are independent and identically distributed. However, this hypothesis
does not alter qualitatively the results nor the corresponding arguments. The rigorous proof actually requires that
the random processm has “enough decorrelation”, more exactly that it fulfills the technical mixing condition “m is
φ-mixing, with φ ∈ L1/2(R+)” (see [18], Section 4.6.2). The functionφ(z) is roughly the normalized correlation
functionE[m(0)m(z)]/E[m(0)2].

In order to simplify the presentation of the main results, we shall first assume that only one transversal coordinate
is present, sayx. We shall then present and discuss the results of the physically relevant problem with the two
transversal coordinatesx andy in Section 3.6. Accordingly we first consider the equation:

−2i
∂E

∂z
− (x − εmx(z))

2E + ∂2E

∂x2
= 0. (9)

3.3. Evolution of the modal decomposition

We aim at studying the evolution of the normalized fieldEε(x, z) := E(x, z/ε2). Since2 is an isometry from
L2 onto l2, it is equivalent to study the evolution of its modal decomposition, i.e. the corresponding normalized
coefficientscε:

cεp(z) := 2(Eε(., z))pe−i(p+1/2)z/ε2
, (10)

Eε(x, z) =
∞∑
p=0

cεp(z)e
i(p+1/2)z/ε2

fp(x). (11)

Substituting the expression (11) into Eq. (9), and using the relations (6), we get that the equation which governs the
evolution ofcε is

dcεp
dz

= 1

ε
mx

( z
ε2

) i√
2

(√
pcεp−1e−iz/ε2 +

√
p + 1cεp+1eiz/ε2

)
+m2

x

( z
ε2

) i

2
cεp. (12)

We consider also the infinite-dimensional system of linear differential equations starting fromc(0) = c0:

dcp = √
γ1,x

(√
pcp−1 −

√
p + 1cp+1

)
dW1

z + i
√
γ1,x

(√
pcp−1 +

√
p + 1cp+1

)
dW2

z

+
(

i

2
σ 2
x − γ1,x(2p + 1)

)
cpdz, (13)

whereW1 andW2 are independent standard Brownian motions,σ 2
x is the variance of the random variablemx and

γj,x is the integrated covariance:
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σ 2
x = E[mx(0)

2], γj,x = 1

2

∫ ∞

0
E[mx(0)mx(z)] cos(jz)dz. (14)

γj,x is nonnegative because it is proportional to thej-frequency evaluation of the spectral density function by the
Wiener–Khintchine theorem [19]. We can now state our main convergence result.

Proposition 3.1.
1. There exists a unique solutionc of Eq. (13).
2. The processescε converge in distribution as continuous functions from[0,∞) into l2 to the diffusion Markov

process c solution of(13)asε → 0.

This proposition was established in the framework of the quantum harmonic oscillator in [20]. The interested
reader can find in this paper the complete proof. It consists essentially in justifying the substitutions of independent
Brownian motions for the processesε−1mx(z/ε

2) cos(z/ε2) and ε−1mx(z/ε
2) sin(z/ε2) when taking the limit

ε → 0 in Eq. (12). Taking into account Stratonovitch corrections we then get Eq. (13). These techniques based
on a martingale approach to some limit theorems in the diffusion-approximation regime are now well known and
extensively reviewed in literature [15,18]. Eq. (13) consists of a closed-form but complicated description of the
asymptotic evolution of the modal decomposition of the field. In the framework of randomly perturbed square law
media, we are concerned with the description of the wave at the output of the waveguide. From this viewpoint
Proposition 3.1 is the starting point of our study.

3.4. Asymptotic evolution of the field

We now give remarkable properties of the asymptotic system (13). First we want to emphasize that the assertion
“Eε converge as a continuous function from[0,∞) intoL2” does not hold true, because of the fast varying phases
of the modes exp(i(p + 1

2)
z

ε2 ). However, the field presents the remarkable property that it reproduces itself in the
perfect waveguide in regularly spaced planes. The interval between the planes is of length 2π . As a consequence
the corresponding discontinuous field in the planesPk = {(2πk, x), x ∈ R}, k ∈ N, defined by1

Ẽε(x, z) = E
(
x,2π

[ z

2πε2

])
(15)

possesses nice convergence properties in the space of the càd-làg functionsD equipped with the Skorohod topology
(D is the space of the so-called right-continuous functions with left limits. See [21] (Ch. 3) for an introduction to
this space and its properties).

Proposition 3.2. Ẽε converges in distribution inD([0,∞), L2) to Ẽ(x, z) = ∑∞
p=0cp(z)fp(x)which is the unique

solution of

dẼ = −√2γ1,x
∂Ẽ

∂x
dW1

z + i
√

2γ1,xxẼdW2
z +

(
i
σ 2
x

2
Ẽ − γ1,xx

2Ẽ + γ1,x
∂2Ẽ

∂x2

)
dz (16)

starting fromẼ(x,0) = E0(x).

If we get rid off the linear phase and set:Ê(x, z) = Ẽ(x, z)exp(−iσ 2
x z/2), then we come to the surprising

conclusion that the mean fieldEmean := E[Ê] satisfies a diffusion equation (of the type heat flow with cooling),
while we have started with a Schrödinger equation:

∂Emean

∂z
= −γ1,xx

2Emean+ γ1,x
∂2

∂x2
Emean, Emean(x,0) = E0(x).

1 [τ ] stands for the integral part of a real numberτ .
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But the more striking point is that we can give a closed-form expression for the solution of Eq. (16). IndeedẼ is
found to be

Ẽ(x, z) = E0

(
x −√

2γ1,xW
1
z

)
expi

(
x
√

2γ1,xW
2
z − 2γ1,x

∫ z

0
W2
z′dW

1
z′ + σ 2

x z

2

)
. (17)

In particular, the intensity profile in the plane at normalized distancezof the input plane is simply the initial profile

shifted by
√

2γ1,xW
1
z :

∣∣∣Ẽ(x, z)∣∣∣2 = ∣∣E0
(
x −√

2γ1,xW
1
z

)∣∣2.

More generally, letδ ∈ [0,2π ]. If we denote byPδ,k, k ∈ N, the sequence of planesPδ,k = {(x, δ + 2πk), x ∈ R}
and byẼεδ the corresponding fields which lie in these planes:

Ẽεδ (x, z) = E
(
x, δ + 2π

[ z

2πε2

])
, (18)

thenẼεδ converges in distributionD([0,∞), L2) to Ẽδ:

Ẽδ(x, z) =
∞∑
p=0

cp(z)e
i(p+12)δfp(x).

The asymptotic fieldẼδ can be derived from̃E through the following equation, in whichz is frozen:

−2i
∂Ẽδ

∂δ
− x2Ẽδ + ∂2Ẽδ

∂x2
= 0, Ẽδ(x, z)

∣∣∣
δ=0

= Ẽ(x, z). (19)

The general solutioñEδ(x, z) is found to be

Ẽδ(x, z) = E0,δ (x − xδ(z))exp(iφδ(x, z)) , (20)

where

xδ(z)= cδ
√

2γ1,xW
1
z − sδ

√
2γ1,xW

2
z , φδ(x, z) = x(sδ

√
2γ1,xW

1
z + cδ

√
2γ1,xW

2
z )

−cδsδγ1,x(W
1
z2 −W2

z2)+ 2c2
δ γ1,x

∫ z

0
W2
z′dW

1
z′ − 2s2

δ γ1,x

∫ z

0
W1
z′dW

2
z′ + σ 2

x z

2
,

and cδ = cos(δ) and sδ = sin(δ). BesidesE0,δ stands for the field in the planePδ,0 which results from the
propagation of the initial fieldE0 in the perfect waveguide from 0 toδ:

E0,δ(x) =
∞∑
p=0

c0pei(p+1/2)δfp(x).

Eq. (20) gives the complete description in the full space of the field in the asymptotic frameworkε → 0. The
longitudinal coordinate divides into two parts: the macroscopic scalez and the microscopic scaleδ. Note also that
for anyδ, the random processxδ(z) which represents the position of the center of the field obeys the distribution of
a Brownian motion with variance 2γ1,x .

3.5. The Hamiltonian of the field

We have already seen that the fieldEε does not converge as a process with respect to the longitudinal coordinate,
but only a stroboscopic version,Ẽε or Ẽεδ , does. However we can explicitly compute the variations of an infinity of
quantities which are constants of motion for the unperturbed waveguide. We deal in the following proposition with
the most important of them.
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Proposition 3.3. Let us denote the Hamiltonian by

Hx =
∫ ∣∣∣∣∂E∂x

∣∣∣∣
2

+ x2|E|2 dx, (21)

where E is the solution of(8) starting fromE|z=0 = E0. The quantityHx(./ε2) converges as a continuous function
from [0,∞) intoR+ to the processH̄x given by

H̄x(z) = H 0
x + 2γ1,xN0

(
W12

z +W22

z

)
+√

8γ1,x

(
N1,xW

1
z +N2,xW

2
z

)
, (22)

whose mean value is

E[H̄x(z)] = H 0
x + 4γ1,xzN0, (23)

whereH 0
x corresponds toE0, N0 is the squaredL2-norm ‖E0‖2 which is conserved, N1,x = ∫

x|E0|2dx and

N2,x = Im
(∫

∂E0
∂x
E∗

0 dx
)
.

Proof. The processH̄x can be expressed in terms of the modal coefficientscp as

H̄x(z) =
∑
p

(2p + 1)|cp|2(z). (24)

After some algebra using Eq. (13) we get the expression of the Hamiltonian in terms of the Brownian motionsWj .
�

3.6. Interpretation of the results with two transversal coordinates

Let us consider the physically relevant problem with the two transversal coordinatesx andy. The corresponding
solution is a direct product of two solutions derived here above. Letδ ∈ [0,2π ]. If we denote byPδ,k, k ∈ N, the
sequence of planesPδ,k = {

(x, y, δ + 2πk), (x, y) ∈ R2
}

and byẼεδ the corresponding fields which lie in these
planes:

Ẽεδ (x, y, z) = E
(
x, y, δ + 2π

[ z

2πε2

])
, (25)

thenẼεδ converges in distribution tõEδ:

Ẽδ(x, y, z) = E0,δ (x − xδ(z), y − yδ(z))exp(iφδ(x, y, z)) , (26)

where

xδ(z)= cδ
√

2γ1,xW
1
z − sδ

√
2γ1,xW

2
z , yδ(z) = cδ

√
2γ1,yW

3
z − sδ

√
2γ1,yW

4
z ,

φδ(x, y, z)= x(sδ
√

2γ1,xW
1
z + cδ

√
2γ1,xW

2
z )+ y(sδ

√
2γ1,yW

3
z + cδ

√
2γ1,yW

4
z )

−cδsδ
(
γ1,x(W

12

z −W22

z )+ γ1,y(W
32

z −W42

z )
)

+ 2c2
δ

(
γ1,x

∫ z

0
W2
z′ dW1

z′ − γ1,y

∫ z

0
W4
z′ dW3

z′

)

−2s2
δ

(
γ1,x

∫ z

0
W1
z′ dW2

z′ − γ1,y

∫ z

0
W3
z′ dW4

z′

)
+ (σ 2

x + σ 2
y )z

2
,

Wj , j = 1, . . . ,4 are four independent standard Brownian motions, andcδ = cos(δ) andsδ = sin(δ). Besides
E0,δ stands for the field in the planePδ,0 which results from the propagation of the initial fieldE0 in the perfect
waveguide from 0 toδ:
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E0,δ(x, y) =
∞∑

p,q=0

c0p,qe
i(p+q+1)δfp,q(x, y).

Eq. (26) gives the complete description of the field in the asymptotic frameworkε → 0. The longitudinal coordinate
is divided into two parts: the macroscopic scalez and the microscopic scaleδ. Note also that for anyδ, the
random process(xδ(z), yδ(z)) which represents the position of the center of the field obeys the distribution of a
two-dimensional Brownian motion with variance(2γ1,x,2γ1,y).

In [7] the very same problem we consider in this section is addressed. By choosing as an initial wave the
fundamental mode exp(−(x2 + y2)/2) and substituting the ansatz:

exp(iz)exp

(
−x

2 + y2

2
+ ieiz(1x(z)x +1y(z)y)+ i1(z)

)
,

into Eq. (8) McLaughin obtains a closed form equation for the set of parameters(1x,1y,1). He then computes
the mean intensity on the beam axisx = y = 0 and the corresponding fluctuations. Here we have proven that the
same kind of results can be obtained for any initial wave: the output wave can be described by a finite number of
random parameters. We are able to describe explicitly the statistical distribution of the output wave. We exhibit that
the primary effect of the random fluctuations of the axis is to involve a random shift of the initial intensity profile,
and this shift behaves like a Brownian motion. This result is useful for telecommunication applications, since square
law media are a good first approximation for graded index fibers. The explicit formulae that we have obtained allow
to predict for instance the random propagation distance at which the incoming localized profile will collide with
the cladding of the fiber. Over an elementary interval [2π [z/(2πε2)],2π [z/(2πε2)] + 2π) the farthest point that
the maximum of the intensity profile visits is at distancer(z) from the fiber axis:

r(z)2 = sup
δ∈[0,2π)

(
xδ(z)

2 + yδ(z)
2
)

and a straightforward calculation shows that it is equal to

r(z)2 = r0(z)
2 +

[
r0(z)

4 − 4γ1,xγ1,y

(
W2
z W

3
z −W1

z W
4
z

)2
]1/2

,

r0(z)
2 = γ1,x(W

12

z +W22

z )+ γ1,y(W
32

z +W42

z ).

The radiusr(z) is bounded above byr0(z) and below byr0(z)/2, so we can claim that it behaves like the modulus
of a four-dimensional Brownian motion.

4. Square law media with randomly perturbed radius

4.1. Formulation of the problem

We assume in this section that the center of the waveguide is perfect and coincides with the optical axisz, but the
radius of the waveguide oscillates around its mean value according toεm(z), whereε is a small parameter which
characterizes the amplitudes of the fluctuations andm = (mx,my) is aR2-valued random process (see Fig. 2).
The random processm satisfies the same hypothesis as in Section 3.2. The perturbed equation which governs the
evolution of the field is

−2i
∂E

∂z
− x2(1 + εmx(z))E − y2(1 + εmy(z))E + ∂2E

∂x2
+ ∂2E

∂y2
= 0. (27)
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Fig. 2. Perturbation of the radius of the waveguide.

The strategy is the same as in Section 3, and the proofs are very similar. The derivations of the results is carried out
with one transversal dimension. We shall then make a direct product to compute the solution with two transversal
dimensions in Section 4.5. Accordingly we consider the problem:

−2i
∂E

∂z
− x2(1 + εmx(z))E + ∂2E

∂x2
= 0. (28)

Denoting bycε the normalized modal decomposition (10) of the field, the equation which governs their coupled
evolutions is obtained by substituting the expression (11) into Eq. (28):

dcεp
dz

= 1

ε
mx

( z
ε2

) i

4

(√
p(p − 1)cεp−2e−2iz/ε2 + (2p + 1)cεp +

√
(p + 1)(p + 2)cεp+2e2iz/ε2

)
. (29)

4.2. Statement of the convergence result

We consider the infinite-dimensional system of linear differential equations starting fromc(0) = c0:

dcp =
√
γ2,x

2
√

2

(√
(p + 1)(p + 2)cp+2 −

√
p(p − 1)cp−2

)
dW1

z + i
√
γ2,x

2
√

2

(√
(p + 1)(p + 2)cp+2

+
√
p(p − 1)cp−2

)
dW2

z + i
√
γ0,x

2
(2p + 1)cp dW3

z − γ0,x

8
(4p2 + 4p + 1)cp dz

−γ2,x

4
(p2 + p + 1)cp dz, (30)

whereWj , j = 1, . . . ,3 are independent standard Brownian motions.γj,x is the integrated covariance of the
processmx defined by (14). We denote bỹEε(x, z) the field in the plane 2π [z/(2πε2)] defined by (15).

Proposition 4.1.
1. There exists a unique solution c ofEq. (30).
2. The processescε converge in distribution as continuous functions from[0,∞) into l2 to the diffusion Markov

process c solution of(30)asε → 0.
3. Ẽε converges in distribution inD([0,∞), L2) to Ẽ which is the unique solution of

dẼ =
√
γ2,x

2
√

2

(
1 + 2x

∂

∂x

)
Ẽ dW1

z + i
√
γ2,x

2
√

2

(
x2 + ∂2

∂x2

)
Ẽ dW2

z

+γ2,x

16

(
−1 + 4x

∂

∂x
+ 2x2 ∂

2

∂x2
− ∂4

∂x4
− x4

)
Ẽ dz

+ i
√
γ0,x

2

(
−x2 + ∂2

∂x2

)
Ẽ dW3

z + γ0,x

8

(
2 + 4x

∂

∂x
+ 2x2 ∂

2

∂x2
− ∂4

∂x4
− x4

)
Ẽ dz, (31)

starting fromẼ(x,0) = E0(x).
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4.3. Asymptotic evolution of the field

Very fortunately Eq. (31) can be solved for any initial conditionE0 ∈ L2. Indeed, still denoting byc0 the modal
decomposition ofE0, we have

Ẽ(z, x) =
√
ax(z)e

−ibx(z)x2
∞∑
p=0

c0pfp(ax(z)x)e
−i(2p+1)ψx(z), (32)

where the coefficientsax , bx , andψx , obey the following stochastic differential equations:

dax =
√
γ2,x

2
axdW

1
z +√

2γ2,xaxbxdW
2
z + 2

√
γ0,xaxbxdW

3
z + γ2,x

(
2axb

2
x − 1

4
a5
x

)
dz

+γ0,x

(
1

2
ax + 4axb

2
x − 1

2
a5
x

)
dz, (33)

dbx =√
2γ2,xbxdW

1
z −

√
γ2,x

8
(1 + a4

x − 4b2
x)dW

2
z + 1

2
√
γ0,x(1 − a4

x + 4b2
x)dW

3
z

+γ2,x

(
1

2
bx + 2b3

x − 3

2
a4
xbx

)
dz+ γ0,x

(
bx + 4b3

x − 3a4
xbx

)
dz, (34)

dψx =
√
γ2,x

8
a2
x dW2

z + 1

2
√
γ0,xa

2
x dW3

z + γ2,x

4
a2
xbx dz+ γ0,x

2
a2
xbx dz, (35)

starting fromax(0) = 1, bx(0) = 0,ψx(0) = 0. In particular, ifE0 is a single-mode beamfp, then the intensity
profile at the normalized distancez is simply:|Ẽ(z, x)|2 = ax(z)|E0(ax(z)x)|2, which is the initial profile rescaled
by the factorax(z).

Furthermore, the fields̃Eεδ in the intermediate planesδ + 2π [z/(2πε2)] defined by (18) converge in distribution
in D([0,∞), L2) to Ẽδ, whose expression can be derived fromẼ through Eq. (19). The general solutioñEδ(x, z)
is found to be

Ẽδ(z, x) =
√
ax(δ, z)e

−ibx(δ,z)x2
∞∑
p=0

c0pfp(ax(δ, z)x)e
−i(2p+1)ψx(δ,z), (36)

where

ax(δ, z) = ax(z)√
(cos(δ)+ 2bx(z) sin(δ))2 + ax(z)4 sin(δ)2

, (37)

bx(δ, z) = bx(z) cos(2δ)+ (4bx(z)2 + ax(z)
4 − 1)(sin(2δ)/4)

(cos(δ)+ 2bx(z) sin(δ))2 + ax(z)4 sin(δ)2
, (38)

ψx(δ, z) = ψx(z)− δ

2
. (39)

Giving an explicit representation in terms of the Brownian motionsWj of the joint distributions of all the coefficients
ax , bx andψx is a difficult problem. Nevertheless we can give simple representations of the distributions of the
variablesax(δ, z) andbx(δ, z) in terms of two auxiliary Brownian motions.

Proposition 4.2.
1. The processes(ax(δ, .), bx(δ, .)) obey the same distribution as(ax(.), bx(.)).
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2. For anyδ andz, the variables(a2
x(δ, z), bx(δ, z)) obey the distributions of

a2
x(z) = exp

(√
2γ2,xW

1,x
z − γ2,xz

)
, (40)

bx(z) =
√
γ2,x

2
exp

(√
2γ2,xW

1,x
z − γ2,xz

)
×
∫ z

0
exp

(
−√2γ2,xW

1,x
z′ + γ2,xz

′
)

dW2,x
z′ , (41)

whereW1,x andW1,y are independent standard Brownian motions.
3. The probability that at a given point z the value ofa2

x(z) excesses the valueM ≥ 0 is

P

(
a2
x(z) ≥ M

)
= erfc

(
ln(M)+ γ2,xz√

2γ2,xz

)
,

whereerfc(t) = 1√
2π

∫∞
t

e−s2/2ds.

Proof. The first and second points are technical and referred to the Appendix A. The third point is then a straight-
forward corollary. �
An exponential martingale such as (40) presents very special properties. Let us discuss one of them, which concerns
the fundamental difference between its long-range mean behavior and long-range typical behavior. For largez it is
well known that the typical value ofW1,x

z is of the order of
√
z, so that the typical value of the random variable

a2
x(z) is of the order of exp

(−γ2,xz±√
2γ2,xz

)
. In this exponential the first term prevails for largez, so thata2

x(z)

is exponentially small. Nevertheless, the mean valueE[a2
x(z)] = 1, whateverz. This means that themeanvalue

does not correspond at all to atypical value that can be reached by the random variablea2
x(z). The mean value is

actually imposed by very few events which represent large deviations of the Brownian motion. These exceptional
events are enhanced by the exponential, which givesE[exp

√
2γ2,xW

1,x
z ] = exp(γ2,xz).

4.4. The Hamiltonian of the field

Proposition 4.3. Let us consider the HamiltonianHx defined by(21). The quantityHx(./ε2) converges as a
continuous function from[0,∞) intoR+ to the processH̄x given by

H̄x(z) = H 0
x

(
a2
x(z)

2
+ 1 + 4b2

x(z)

2a2
x(z)

)
, (42)

whereH 0
x corresponds toE0. Its mean value and second moment are

E[H̄x(z)] = H 0
x e2γ2,xz, E[H̄x(z)

2] = H 02

x

(
2

3
e6γ2,xz + 1

3

)
. (43)

Proof. The mean ofH̄x can be computed directly since we get from the expression (24) that it satisfies a closed-form

differential equationdE[H̄x ]
dz = 2γ2,xE[H̄x ]. The expression ofH̄x in terms ofax , bx can be obtained from the

expression (32). We then are able to computeE[Hx(z)p] for any p by Itô’s formula (see also Eqs. ((A.5))-(A.7) in
Appendix A). �

The Hamiltonian has a very large variance, much larger than the square of its mean, which shows that it
has very large fluctuations with respect to its mean value. This can be also put into evidence by comparing
the typical value of the Hamiltonian with its mean value.a2

x(z) is an exponential martingale which decays as
exp(−γ2,xz) for z � 1, sinceW1,x

z ∼ √
z � z with very high probability. Furthermorebx(z) is roughly equal

to
√
γ2,x/2exp(−γ2,xz)

∫ z
0 exp(γ2,xz

′)dW2,x
z′ which obeys a normal distribution with mean 0 and variance 1/4 for
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z � 1. By substituting these approximations into Eq. (42), we get that the typical behavior of the HamiltonianH̄x
is for largez:

1

z
ln H̄x(z) ' γ2,x for z � 1. (44)

The typical exponential behavior (44) is different from the exponential behavior of the mean Hamiltonian (43), and
the departure originates from large deviations of the Brownian motionW1,x .

4.5. Interpretation of the results with two transversal coordinates

Let us consider the physically relevant problem with two transversal coordinatesx andy. If we denote byẼεδ the
fields which lie in the planesPδ,k and which are defined by (25), theñEεδ converges in distribution tõEδ:

Ẽδ(z, x, y)=
√
ax(δ, z)ay(δ, z)e

−ibx(δ,z)x2−iby(δ,z)y2

×
∞∑

p,q=0

c0p,q fp,q(ax(δ, z)x, ay(δ, z)y)e
−i(2p+1)ψx(δ,z)−i(2q+1)ψy(δ,z), (45)

where(ax, bx, ψx) and(ay, by, ψy) are independent and identically distributed. They obey the same distributions
as the ones described by Eqs. (37)–(39). In particular, ifE0 is a single-mode beamfp,q , then the intensity profile
at the normalized distancez is simply

|Ẽδ(z, x, y)|2 = ax(δ, z)ay(δ, z)|E0(ax(δ, z)x, ay(δ, z)y)|2,
which is the initial profile rescaled by the two-dimensional factor(ax(δ, z), ay(δ, z)). From Proposition 4.2 we can
deduce the statistical distribution of the (local) maximal intensity of the field:

Imax(δ, z) := sup
x,y

∣∣∣Ẽδ(x, y, z)∣∣∣2

which simply reads asImax(δ, z) = ax(δ, z)ay(δ, z)I0,max, whereI0,max := supx,y |E0(x, y)|2.
This also shows that the distribution ofImax(δ, z) depends only onz, and we shall denoteImax(z) := Imax(0, z).

Since the sum of two independent standard Brownian motions is a Brownian motion with variance 2, we get
immediately the following corollary.

Corollary 4.4. Let us assume that the incident wave is a single-mode beam.
1. The normalized maximal intensitȳImax(z) := Imax(z)/I0,max of the field in the plane z obeys the distribution of

Īmax(z) = exp
(√
γ2Wz − γ2z

)
, (46)

where W is a standard one-dimensional Brownian motion, andγ2 = (
γ2,x + γ2,y

)
/2.

2. The probability that at a given point z the value ofĪmax excesses the valueM ≥ 0 is

P
(
Īmax(z) ≥ M

) = erfc

(
ln(M)+ γ2z√

γ2z

)
,

whereerfc(t) = 1√
2π

∫∞
t

e−s2/2ds.

Note thatĪmax is not an exponential martingale, and in particular thatE[Īmax] = exp(−γ2z/2). Note also that the
typical value ofĪmax, obtained by neglecting the contributions of the Brownian motions in the exponential term in
Eq. (46), is of order exp(−γ2z). However, it is possible that the intensity profile becomes at some distance very
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narrow and very high. This anomalous focusing is quite surprising. In our framework the propagation is linear and
no pathology occurs, since the variations of the radius of the core of the waveguide are very smooth and weak.
This is a purely random phenomenon due to large deviations of the Brownian motions, which is canceled if the
output field is averaged over many realizations. The averaged value ofĪmax(z) shows indeed that the mean maximal
intensity decays exponentially at rate exp(−γ2z/2).

In Ref. [22] a situation mathematically similar to Eq. (27) is considered. The initial state is assumed to be
Gaussian and adopting a Gaussian-like ansatz Bulatov et al. exhibit a closed-form set of differential equations for
the parameters of the ansatz. Here we have proven that the output wave can be described by a finite number of
random parameters whatever the initial wave. We exhibit that the primary effect of random fluctuations of the radius
of the waveguide is to involve a random focusing or defocusing of the initial intensity profile, and the inverse square
radius behaves like an exponential martingale which goes to zero with high probability, but whose mean value is
constant. The quantitative results we have derived here above are of interest for telecommunication purposes, since
they allow to predict the spreading of localized pulses in graded index fibers.

5. Numerical simulations

The results in the previous sections are theoretically valid in the limit caseε → 0, where the amplitudes of the
perturbations go to zero and the length of the random waveguide goes to infinity. In this section we aim at showing
that the asymptotic behaviors of the field can be easily observed in numerical simulations in the case whereε is
small, more precisely smaller than any other characteristic scale of the problem. In order to simplify the problem
we shall consider in this section that the transverse space has dimension 1, which corresponds to neglecting the
y-direction. It involves no loss of generality, since the phenomena we have put into evidence in the above sections
can be divided into independent phenomena in both orthogonal directions. We use a fourth-order split-step method
to simulate the one-dimensional perturbed linear Schrödinger equations:

−2i
∂E

∂z
− x2E − V ε(x, z)E + ∂2E

∂x2
= 0. (47)

We choose the following models for the perturbationV ε(x, z) which correspond respectively to Eqs. (9) and (28):

Random axis case :V ε(x, z) = −2εmx(z)x + ε2mx(z)
2,

Random radius case :V ε(x, z) = εmx(z)x
2.

This numerical algorithm provides accurate and stable solutions to a large class of linear and nonlinear partial
differential equations [23].

Let 1z be the elementary length step andh be the elementary transverse spatial step. We denote by
(E0(jh))j=−K,... ,K−1 the initial wave solution. By induction we computeEn+1 := (E(jh, (n+1)1z))j=−K,... ,K−1
fromEn := (E(jh, n1z))j=−K,... ,K−1:

first step : En+1/3 = A(1z/2)En,

second step : En+2/3 = B(z,1z)En+1/3,

third step : En+1 = A(1z/2)En+2/3,

whereA(1z/2) is the linear operator generated by− i
2
∂2

∂x2 andB is simply a scalar multiplication in the physical space

by expi
2

(
x2 + V ε(x, z)

)
1z. The first and third steps can be solved using a Fourier transform. Indeed, in Fourier

space the effect of the exponential operatorA(1z/2) is a scalar multiplication by exp i(k21z/4). To sum up, the split
step algorithm involves a sequence of steps that include free-space propagation over a half-step, then the ‘perturbed’
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guiding correction, and free space propagation over the final half-step. Practically, it is easy to see that the two
back-to-back free-space half-steps can be combined into a single free-space step over1z. The error of the split-step
algorithm comes from the splitting process, because the operatorsA andB do not commute. It is well known that the
method vbvb described here above is of second-order [24]. However, we can use a standard method which transforms
a second-order method into a fourth-order method [25]. Indeed, ifC(1z)E(x, z) is a second-order approximation
to E(x, z + 1z), thenC(α1z)C(−β1z)C(α1z)E(x, z) is a fourth-order approximation toE(x, z + 1z), if we
take care to chooseα = 1/(2 − 21/3) andβ = 21/3/(2 − 21/3). The drawback of this method is that we implicitly
impose periodicity on the solutions because of the Fourier transform that is used on a finite interval. We can control
it by imposing boundaries of the computational domain which absorb outgoing waves. This can be readily achieved
by adding a complex potential which is smooth so as to reduce reflections. We choose to substitute the complex
potential vbvbṼ (x, z) = V ε(x, z)+ iVabs(x) for the random potentialV ε(x, z), where

Vabs(x) =




Vabs maxsin2
(
π

2

x` − x

x` −X`

)
if X` ≤ x < x`,

0 if x` ≤ x < xr,

Vabs maxsin2
(
π

2

x − xr

Xr − xr

)
if xr ≤ x < Xr,

whereX` (resp.Xr) is the left (resp. right) end of the computational domain, and[X`, x`] (resp.[xr, Xr]) is the
left (resp. right) absorbing slab. TheL2-norm of the field is theoretically preserved by the split-step method up to
the machine accuracy in case of a truly periodic situation without absorption. The domain that we consider is not
periodic, and the outgoing wave is absorbed by an imaginary potential at the boundaries of the domain. However
the size of the shifting domain is taken so that the distortion imposed by the non-periodicity has a negligible effect.
We adopt in this section the following model for the perturbation:

mx(z) = ul if l + z0 ≤ z

rc
< l + z0 + 1,

where(ul)l=0,... ,Z−1 is a sequence of independent and identically distributed variables, which obey uniform distri-
butions over the interval [−1/2,1/2], andz0 is a random variable independent ofu. which also obeys an uniform
distribution over [−1/2,1/2]. rc is the so-called correlation radius of the random processm. The autocorrelation
function of the ergodic processm is equal toE[mx(0)mx(z)] = 1

12 (1 − z/rc)1z≤rc, so that the power spectral
density defined by (14) is

γj,x = 1

24

1 − cos(jrc)

j2rc
,

andγ0,x = rc/48. The quantityZ/rc which is equal to the length of the random waveguide will be chosen so
large that we can observe the effect of the small perturbationεmx . We measure theL2-norm, the Hamiltonian and
the intensity profile of the transmitted solution, that we can compare with the corresponding data of the incident
field. We present results corresponding to simulations where the initial wave atz = 0 is the fundamental Gaussian
modeE0(x) = π−1/4e−x2/2, whoseL2-normN

1/2
0 and HamiltonianH 0

x are equal to 1. We have first simulated
the homogeneous Schrödinger equation (Eq. (47) withV ε ≡ 0) which admits as an exact solutionE0(x)eiz/2. We
can therefore check the accuracy of the numerical method, since we can see that the computed solution maintains
a very close resemblance to the initial field (data not shown), while theL2-norm and the Hamiltonian are almost
constant.

The other simulations are carried out with different realizations of the random perturbation withε = 0.1. Fig.
3 plots the evolutions of the Hamiltonians for different values of the correlation radiusrc in the cases of random
axis or random radius and for one particular realization of the random perturbation. As predicted by the asymptotic
theory, the effect of the perturbation forrc = 2π in the random axis case and forrc = π in the random radius
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Fig. 3. Evolutions of the Hamiltonian of the field for different correlation radii. The left figure corresponds to the random axis case:
V ε(x, z) = −2εm(z)x + ε2m(z)2 with ε = 0.1. The right figure corresponds to the random radius case:V ε(x, z) = εm(z)x2 with ε = 0.1.

Fig. 4. Evolutions of the Hamiltonian of the field averaged over 100 realizations of the random perturbation withε = 0.1 (solid line) and
theoretical behaviors for the corresponding asymptotic situations. Random axis case:V ε(x, z) = −2εm(z)x + ε2m(z)2. For rc = π we
haveγ1,x = 1/(12π) and the theoretical mean Hamiltonian isE[H̄x(z)] = H 0

x + 4γ1,xN0ε
2z ' 1 + 1.06 × 10−3 z. For rc = 3π we have

γ1,x = 1/(36π) and the theoretical mean Hamiltonian isE[H̄x(z)] ' 1 + 3.54× 10−4 z.

case is almost zero. Indeed these particular values for the correlation radius correspond toγ1,x = 0 andγ2,x = 0,
respectively.

In Figs. 4 and 5 we present the simulated evolutions of the Hamiltonian of the field averaged over 100 realizations
and compare them with the mean theoretical evolutions given by (23) (random axis case) and (43) (random radius
case) in the scalez/ε2. It thus appears that the numerical simulations are in very good agreement with the theoretical
results.

Fig. 6 plots the intensity profiles of the solutions at different depths corresponding to one of the simulations,
which shows that the wave keeps the basic form of the fundamental mode although it is shifted in some ran-
dom direction in the random axis case and it is re-scaled by some random factor in the random radius case. As
predicted by the asymptotic results, we sometimes observe that the intensity profile in the random radius case is
narrower and higher than the fundamental mode. All these observations confirm that the asymptotic theory de-
scribes with accuracy the propagation of the field through a random waveguide for small perturbations and large
length.
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Fig. 5. Evolutions of the Hamiltonian of the field averaged over 100 realizations of the random perturbation withε = 0.1 (solid line) and theoretical
behaviors for the corresponding asymptotic situations. Random radius case:V ε(x, z) = εm(z)x2. For rc = π/2 we haveγ2,x = 1/(24π) and
the theoretical mean Hamiltonian isE[H̄x(z)] = H 0

x exp(2γ2,xε
2z) ' exp(2.66× 10−4z). For rc = 3π/2 we haveγ1,x = 1/(72π) and the

theoretical mean Hamiltonian isE[H̄x(z)] ' exp(8.84× 10−5z).

Fig. 6. Intensity profile of the incident field (solid line) and at different depths (dotted and dashed lines). The left figure corresponds to the
random axis case:V ε(x, z) = −2εm(z)x+ ε2m(z)2 with ε = 0.1 andrc = π . The profiles have the same Gaussian shape with the same radius,
but the centers randomly oscillate aroundx = 0. The right figure corresponds to the random radius case:V ε(x, z) = εm(z)x2 with ε = 0.1 and
rc = π/2. The profiles have the same Gaussian shape with center atx = 0, but the radius randomly oscillates. At lengthsz = 100 andz = 400,
the profiles have spread out, at lengthz = 300 the profile is almost exactly the initial one, and at lengthz = 200 the profile is narrower and
higher.

6. Conclusion

We have analyzed in this paper the effects of different kinds of random perturbations on the propagation of waves
in square law media which involve specific alterations of the wave. Random misalignments of the waveguide give
rise to shifts of the wave with respect to the optical axis, and the shifts obey the statistical distributions of Brownian
motions. Random perturbations of the radius of the core make the field pulsate. The intensity profile tends to spread
out, but large deviations of the governing spreading process may involve a local focusing of the profile and an
enhancement of the maximal intensity. The precise results we have derived are a priori limited to square law media.
For such media the normal modes are explicit and tabulated formulae are available, so that we are able to perform
exact calculations and compute closed-form expressions for the outgoing waves. Nevertheless we feel that the results
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demonstrated in this paper could be generalized to most of the graded index fibers. Indeed the basic assumption
which requires the existence of a complete set of normal modes for the unperturbed waveguide holds true for most
of them. The remainder of the study then consists in technical developments to exhibit and analyze the coupling
mechanisms between the modes during the propagation of the wave in the perturbed waveguide.

Appendix A

We aim at identifying the distributions of the variables(ax(z), bx(z))which satisfy the system of coupled stochastic
differential equations (33),(34). We first apply Itô’s formula ([21], Theorem V-2-9) toax(z)

nbx(z)
p and take the

expectation:

dE[anxb
p
x ]

dz
= γ2,x

{
(n+ p)(n+ p + 1)E[anxb

p+2
x ] −

(
n

4
+ np

2
+ p(p + 2)

2

)
E[an+4

x b
p
x ]

}

+γ2,x

{(
n(n− 1)

4
+ p2

2
+ np

2

)
E[anxb

p
x ] + p(p − 1)

16
E[anxb

p−2
x ]

}

+γ2,x

{
p(p − 1)

8
E[an+4

x b
p−2
x ] + p(p − 1)

16
E[an+8

x b
p−2
x ]

}

+γ0,x

{
2(n+ p)(n+ p + 1)E[anxb

p+2
x ] −

(n
2

+ np + p2 + 2p
)
E[an+4

x b
p
x ]
}

+γ0,x

{(n
4

+ np + p2
)
E[anxb

p
x ] + p(p − 1)

8
E[anxb

p−2
x ]

}

+γ0,x

{
−p(p − 1)

4
E[an+4

x b
p−2
x ] + p(p − 1)

8
E[an+8

x b
p−2
x ]

}
. (A.1)

A first method to computeE[ax(z)nbx(z)p] consists in studying carefully the system (A.1), but we can avoid these
technical developments and find a way to simplify (A.1) by using the following trick. We compute in the asymptotic
frameworkε → 0 the evolution of the fundamental Gaussian mode e−x2/2 from the initial planez = 0 to the plane
2π [z/(2πε2)] + δ by two ways.
1. The first way consists in going first from 0 to 2π [z/(2πε2)]. We then find the field:

Ẽgauss(x, y, z) =
√
ax(z)exp

(
−ax(z)

2x2

2
− ibx(z)x

2 − iψx(z)

)
.

The processes(ax, bx) are solutions of (33) and (34), with Brownian motionsWj which correspond to the
limit configuration associated with the random processm over the interval(0,2π [z/(2πε2)]). We then get
the expression of the field in the plane labeled(z, δ), whose macroscopic longitudinal coordinate isz and
microscopic one isδ, by solving

−2i
∂Ẽ

gauss
δ

∂δ
− x2Ẽ

gauss
δ + ∂2Ẽ

gauss
δ

∂x2
= 0, Ẽ

gauss
δ (x, z)

∣∣∣
δ=0

= Ẽgauss(x, z). (A.2)

2. The second way consists in going first from 0 toδ. We then find the field e−x2/2+iδ/2. Then we go fromδ to the
plane(z, δ) and find that the field is

Ẽ
gauss
δ (x, z) =

√
ax(δ, z)exp

(
−ax(δ, z)

2x2

2
− ibx(δ, z)x

2 − iψx(z)+ i
δ

2

)
. (A.3)
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The processes(ax(δ, .), bx(δ, .)) are solutions of (33) and (34), with Brownian motionsWδ,j which correspond
for eachδ to the limit configuration associated with the random processm over the interval(δ, δ+ 2π [z/(2πε2)]).
Substituting (A.3) into (A.2), we get that(ax, bx) satisfy the equations:

∂ax(δ, z)

∂δ
= −2ax(δ, z)bx(δ, z),

∂bx(δ, z)

∂δ
= 1

2

(
ax(δ, z)

4 − 4bx(δ, z)
2 − 1

)
,

which implies in particular that, for any integern′ andp′:

an
′
x b

p′
x (δ, z)− an

′
x b

p′
x (0, z) =

∫ δ

0

(
p′

2
(an

′+4
x b

p′−1
x − an

′
x b

p′−1
x )− 2(n′ + p′)an

′
x b

p′+1
x

)
(s, z)ds. (A.4)

The Brownian motionsWδ,j depend onδ, since they correspond to the limit configuration associated with the
random processm over the interval(δ, δ + 2π [z/(2πε2)]). Nevertheless, the distribution ofm is translationally
invariant, so that theWδ,j and consequently(ax(δ, .), bx(δ, .)) obey the same distributions asWj and(ax(.), bx(.)),
respectively, for everyδ. Taking the expectation in (A.4) with(n′ = n, p′ = p − 1) and(n′ = n+ 4, p′ = p − 1)
yields that the integrands have mean zero and consequently:

E

[
p − 1

2
an+4
x b

p−2
x

]
=E

[
2(n+ p − 1)anxb

p
x + p − 1

2
anxb

p−2
x

]
,

E

[
p − 1

2
an+8
x b

p−2
x

]
=E

[
2(n+ p + 3)an+4

x b
p
x + p − 1

2
an+4
x b

p−2
x

]
.

By inserting into (A.1) we get a simplified version of the system satisfied by the moments of(ax(z), bx(z)):

dE[ax(z)nbx(z)p]

dz
= γ2,x

(
n(n− 2)

4
+ np + p(p − 1)

)
E[ax(z)

nbx(z)
p]

+γ2,x
p(p − 1)

4
E[ax(z)

nbx(z)
p−2]. (A.5)

On the other hand, one can check by direct computation that the processes defined by (40) and (41) satisfy Eq. (A.5)
for everyn andp. Consequently they obey the same distributions as(ax(z), bx(z)), which proves the result. In
practiceE[ax(z)nbx(z)p] is computed recursively with respect top. One finds in particular thatE[ax(z)nbx(z)p] =
0 for any odd integerp and

E[ax(z)
n] = eγ2,x [n(n−2)/4]z, (A.6)

E[ax(z)
nbx(z)

2] = eγ2,x2(n+1)z − 1

4(n+ 1)
eγ2,x [n(n−2)/4]z. (A.7)
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