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When a broadband pulse penetrates into a dissipative and dispersive
medium, phase dispersion and frequency-dependent attenuation alter the
pulse in a way that results in the appearance of a precursor field with an
algebraic decay.We derive here the existence of precursors in non-dispersive,
non-dissipative, but randomly heterogeneous and multiscale media.
The shape of the precursor and its fractional power law decay with
propagation distance depend on the random medium class. Three principal
scattering precursor classes can be identified: (i) in exponentially decorrelat-
ing random media, and more generally in mixing random media, the
precursor has a Gaussian shape and a peak amplitude that decays as
the square root of the inverse of the propagation distance. (ii) In short-range
correlationmedia, with rough multiscale medium fluctuations, the precursor
has a skewed shape with a tail that exhibits an anomalous power law decay in
time and a peak amplitude that exhibits an anomalous power law decay with
propagation distance, both of which depend on the Hurst exponent that
characterizes the roughness of the medium. (iii) In long-range correlation
media with long-range memory, the situation mimics that of class (ii), but
with modified power laws.

1. Introduction

Heterogeneous and multiscale media play an important role in many different
application areas, such as in geophysics [1] or in laser beam propagation through
the atmosphere [2,3]. Due to multiple scattering pulse propagation is then
characterized by a random time shift described in terms of a fractional Brownian
motion and a deterministic spreading described by a pseudo-differential operator.
This operator is characterized by a frequency-dependent attenuation that obeys a
power law with an exponent ranging from 0 to 2 that is related to the fractal
(or Hurst) parameter of the multiscale medium. This frequency-dependent
attenuation is associated with a special frequency-dependent phase, which ensures
that causality and Kramers–Kronig relations are respected. Note that we here
consider non-lossy media and that the frequency-dependent ‘attenuation’ comes
from the scattering that spreads out the wave as it propagates into the medium.
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In the time domain the effective wave equation has the form of a linear
integro-differential equation with a fractional derivative. These results are derived
in [4]. Related results for particular situations, respectively paraxial propagation,
strongly heterogeneous media with long-range correlations and Goupillaud media
can be found in [5–7]. In [8] the transmitted pulse in locally layered media was
considered and it was shown that central results on the pulse deformation are
robust with respect to such medium perturbations, while in [9] solitons in random
media with long-range perturbations was considered and it was shown that
aspects of the pulse deformation theory that predicts power law rather than
exponential decay generalizes to nonlinear situations.

On the other hand, it is known [10] that, ‘when a broadband pulse penetrates
into a causally dispersive medium, the interrelated effects of phase dispersion and
frequency-dependent attenuation alter the pulse in a fundamental way that results
in the appearance of so-called precursor fields’, with a non-exponential decay.
Precursors have been studied for a long time in homogeneous media [11–13], in
which the amplitude of the precursor decays as the square root of the inverse of
the propagation distance. Early experimental observations of ‘Brillouin’ pre-
cursors involved microwaves in waveguides [14]. Experimental studies have been
carried out also in the optical regime exploring the prospect of utilizing them for
study of materials and biological systems [15,16]. Motivated in part by potential
applications to for instance radar technology, remote sensing, communications
and information technology researchers continue to explore the role of precursors
[10,17–21]. In the context of microwave exposure of tissue the role of
precursors has been studied in [22,23]. In [24] the potential presence of a
precursor in a heterogeneous propagation environment is discussed, however,
scattering is not taken into account A central motivation in these studies is the
algebraic and slow decay of the precursor, as the square root of the inverse of the
propagation distance in the classic case.

In this paper we study the long-distance propagation of a step-function
modulated sine wave in a multiscale medium and the emergence of a special
precursor from the effective fractional wave equation. We will in particular see that
the precursor has a power law decay rate, with a fractional exponent that is related to
the Hurst parameter of the multiscale random medium. Thus, we shall refer to these
precursors occurring in ‘fractal’ like or multiscale media as fractional precursors.
Their behaviors are similar to the classic precursors of homogeneous dispersive
media, however, they occur under very different circumstances since effective
dispersion and attenuation result from multiple scattering in a medium
whose components are not dissipative neither dispersive.

The outline of the paper is as follows. First, we give some background on the
analytic framework for analysis of waves in one-dimensional random media in
Sections 2–4. The analysis of the precursor will be based on a fractional effective
equation for the transmitted wave in multiscale media that we recapitulate in
Section 4. Then we discuss the results regarding the fractional precursor in Section 5
and we derive these results in Section 6. Technical parts of the proofs are given in the
appendices.
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2. Modeling of waves in complex environments

We consider the one-dimensional wave equation in the presence of random
fluctuations of the medium:

@2p

@z2
! n2ðzÞ

c20

@2p

@t2
¼ Fðt, zÞ: ð1Þ

Here p(t, z) is the pressure field in acoustics or the electric field in electromagnetics
and in optics. The speed of propagation in the homogeneous background medium is
c0 and the index of refraction of the medium n(z) is assumed to be randomly varying.
We assume that the source F(t, z) is located at 0 and emits a right-going signal
starting at time 0.

We consider the weakly heterogeneous regime [25] in which the index of
refraction has small and rapid fluctuations (compared to the propagation distance).
We write it in the form

n2ðzÞ ¼ 1þ !ðzÞ:

The random process !(z) is assumed to be stationary and to have mean zero.
Its autocorrelation function is denoted by

"ðzÞ :¼ E½!ðxÞ!ðxþ zÞ', ð2Þ

where E stands for the expectation with respect to the distribution of the random
medium. The function "(z) is bounded, even, and maximal at zero ("(0) is the
variance of the fluctuations). Its local properties at zero and its asymptotic behavior
at infinity characterize the short- and long-range correlations of the random
medium, as we discuss in the next section.

3. Regimes of clutter

Wave propagation in random media is usually studied with a driving process ! that
has mixing properties. This means that the random values !(xþ z) and !(x) taken at
two points separated by the distance z become rapidly uncorrelated when z!1.
In other words the autocorrelation function "(z) decays rapidly to zero as z!1.
More precisely we say that the random process ! is mixing if its autocorrelation
function decays fast enough at infinity so that it is absolutely integrable:

Z 1

0
j"ðzÞjdz51: ð3Þ

This is the usual assumption for random media, under which the theory is well
established. In this case the correlation length can be defined as
lc ¼ 2

R1
0 "ðzÞdz="ð0Þ. The O’Doherty–Anstey theory describes the propagating

pulse in this regime. The effective equation for the wavefront has been obtained by
several authors [25–28]. The pulse propagation is characterized by a random time
shift and a deterministic spreading. The random time shift is described in terms of a
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standard Brownian motion, while the deterministic spreading is described by a
pseudo-differential operator that we will discuss in Section 4.

Wave propagation in multiscale and rough media, with short- or long-range
fluctuations, has recently attracted a lot of attention (as mentioned in the
introduction). Examples are given in [4] and the effective pulse propagation in
multiscale and rough media is described in Section 4.

Qualitatively, the long-range correlation property means that the random process
has long memory (in contrast to a mixing process). This means that the correlation
degree between the random values !(xþ z) and !(x) taken at two points separated by
the distance z is not completely negligible when z!1. It corresponds to the fact
that the autocorrelation function has a slow decay at infinity. More precisely we say
that the random process ! has the H-long-range correlation property if its
autocorrelation function satisfies:

"ðzÞ ’
jzj!1

rH
!!!
z

lc

!!!
2H!2

þ o
!!!
z

lc

!!!
2H!2

" #
, ð4Þ

where rH40 and theHurst parameter H2 (1/2, 1). Here the correlation length lc is the
critical length scale beyond which the power law behavior (4) is valid. Note that the
autocorrelation function is not integrable since 2H! 22 (!1, 0), which means that a
random process with the H-long-range correlation property is not mixing.
Additional technical hypotheses on the random process ! are required for the
derivation of the effective fractional wave equation and they are given in [4].

Qualitatively the short-range correlation property means that the random process
is rough at small scales. This means that the correlation degree between the random
values !(xþ z) and !(x) taken at two points separated by the distance z has a sharp
decay at zero. It corresponds to the fact that the autocorrelation function decays
faster than an affine function at zero. More precisely we say that the random process
! has the H-short-range correlation property if its autocorrelation function satisfies:

"ðzÞ ’
jzj!0

"ð0Þ 1! dH
!!!
z

lc

!!!
2H

þO
!!!
z

lc

!!!
" #" #

, ð5Þ

where dH40 and H2 (0, 1/2). Here the correlation length lc is the critical length scale
below which the power law behavior (5) is valid.

4. Random effective propagation model

In [4] we studied pulse propagation through random media with mixing, long-range,
and short-range correlation properties, in the weakly scattering regime
(small-amplitude medium fluctuations and large propagation distance). We have
found in [4] that the right-going pulse

að#, zÞ ¼ p
$
#0ðzÞ þ #, z

%

in the frame moving with the random travel time

#0ðzÞ ¼
z

c0
þ 1

2c0

Z z

0
!ðxÞdx
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(whose statistics for large propagation distances can be described in terms of a
fractional Brownian motion in the long- and short-range cases) has the
deterministic form

að#, zÞ ¼ 1

2$

Z
exp !i!# ! %cð!Þ!2

8c20
z! i

%sð!Þ!2

8c20
z

" #
f̂ð!Þd!, ð6Þ

where f̂ ð!Þ is the Fourier transform of the initial pulse and

%cð!Þ :¼ 2

Z 1

0
"ðzÞ cos 2!z

c0

" #
dz, ð7Þ

%sð!Þ :¼ 2

Z 1

0
"ðzÞ sin 2!z

c0

" #
dz: ð8Þ

The pulse profile a(#, z) satisfies the partial differential equation (PDE):

@a

@z
¼ La, ð9Þ

where L is a pseudo-differential operator that describes the deterministic pulse
deformation:

L ¼ Lc þ Ls, ð10Þ

Z 1

!1
Lcað#Þei!#d# ¼ ! %cð!Þ!2

8c20

Z 1

!1
að#Þei!#d#, ð11Þ

Z 1

!1
Lsað#Þei!#d# ¼ ! i%sð!Þ!2

8c20

Z 1

!1
að#Þei!#d#: ð12Þ

The PDE (9) is completed with the initial condition a(#, z¼ 0)¼ f (#) corresponding
to the initial pulse profile. The above results derive from averaging in certain
integro-differential equations that describes the evolution of the front shape with the
propagation distance z and is based on an asymptotic scaling mentioned above,
see [4] for the details. We remark here that the pulse a(#, z) corresponds to observing
the wave field at position z when centered in time at a random time #0(z). We stress
that in this random frame the pulse shape itself is to leading order deterministic and
characterized by a. In other words, we will observe this shape in every realization of
the random medium in the asymptotic regime considered. The random centering of
the observation window can be described precisely. Let #(z) be the first arrival time at
position z, that is, the integral of the reciprocal of the local speed of sound in between
the surface z¼ 0 and the observation point z. Then we have in the asymptotic
framework presented in [4]:

#0ðzÞ ! #ðzÞ ’ z"ð0Þ
8c0

: ð13Þ
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Note therefore that to leading order we have a deterministic delay relative to the first
arrival time, the scattering gradually delays the pulse, while the random arrival time
#0 itself can be described in distribution in terms of a zero-mean standard or
fractional Brownian motion process with respect to the spatial variable.

The first qualitative property satisfied by the pseudo-differential operator L is
that it is non-local (in the time domain) but it preserves the causality. Indeed we can
write

Lað#Þ ¼ 1

8c0

Z 1

0
"

c0s

2

& ' @2a
@#2

ð# ! sÞds: ð14Þ

Equation (9) gives the effective evolution of the front wave a(#, z) in the frame
moving with the random travel time #0(z). If we ignore the small random time shift
and focus our attention to the deterministic pulse deformation, then we can write the
effective equation in the form of a wave equation for the wave field in the original
frame as:

@p

@z
þ 1

c0

@p

@t
¼ Lp,

pðt, z ¼ 0Þ ¼ f ðtÞ: ð15Þ
This PDE is equivalent to the following effective wave equation

@2p

@z2
! 1

c20

@2p

@t2
¼ 2

c0

$
@tL

%
p,

pðt, z ¼ 0Þ ¼ f ðtÞ, @zpðt, z ¼ 0Þ ¼ ! 1

c0
f 0ðtÞ: ð16Þ

4.1. Mixing random media

In this subsection we consider the case of a mixing random medium. We first assume
that the typical wavenumber !/c0 of the input pulse is such that j!jlc/c0( 1.
This condition means that the typical wavelength is longer than lc and in this case we
find that

%cð!Þ!2

c20
¼ %cð0Þ!2

c20
, ð17Þ

%sð!Þ!2

c20
¼ 0, ð18Þ

which shows that we have an effective second-order diffusion and no effective
dispersion.

We next consider the case of a mixing random medium with the linear decay
behavior at zero:

"ðzÞ ¼ "ð0Þ 1! d1=2
jzj
lc

þ o
jzj
lc

" #" #
, ð19Þ
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with d1/2) 0. The linear decay of the autocorrelation function is typical of a Markov
process, such as the standard Orstein–Uhlenbeck process or the binary
(two-component) medium process in the case in which the lengths of the intervals
have an exponential distribution. This behavior is in fact very general. For instance
the linear decay rate (19) holds for the binary medium process in the case in which
the lengths of the intervals have an arbitrary distribution with positive finite
expectation. If we assume that the typical wavenumber !/c0 of the input pulse is such
that j!jlc/c0* 1, which means that the typical wavelength is smaller than lc, then
we have

%cð!Þ!2

c20
¼ "ð0Þd1=2

2lc
, ð20Þ

%sð!Þ!2

c20
¼ "ð0Þ!

c0
, ð21Þ

which shows that we have an effective constant attenuation and no effective
dispersion. In Appendix 1 we shall discuss the case with an exponentially
decorrelating random medium, corresponding to linear decay, without making the
high-frequency approximation. We remark that if the medium fluctuations are
smooth, corresponding to for instance a Gaussian correlation function, then
the wave travels undistorted in this high-frequency regime to leading order. Thus,
indeed the medium roughness affects the type of wave deformation one would
observe.

4.2. Random media with short-range correlations

This is the regime in which the random medium possesses the H-short-range
correlation property,H2 (0, 1/2), and the typical wavenumber !/c0 of the input pulse
is such that

j!jlc
c0

* 1:

This second condition means that the typical wavelength is smaller than lc and
therefore the pulse probes the short-range properties of the medium. In this case we
find by using (5), see [4], that

%cð!Þ!2

c20
¼ "ð0ÞdH

!ð1þ 2H Þ
22H

sinðH$Þ 1
lc

j!jlc
c0

" #1!2H

, ð22Þ

%sð!Þ!2

c20
¼ "ð0Þ !

c0
! "ð0ÞdH

!ð1þ 2H Þ
22H

cosðH$Þ j!jlc
c0

" #!2H!

c0
: ð23Þ

This result shows that wave propagation in random media with short-range
correlations exhibits frequency-dependent attenuation that is characterized by a
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power law with the exponent 1! 2H ranging from 0 to 1. This exponent is related to
the power decay rate at zero of the autocorrelation function of the medium
fluctuations.

In the time domain, we can write

Lað#Þ ¼ "ð0Þ
8c0

@a

@#
! "ð0ÞdH
23þ2Hc1!2H

0 l 2Hc

Z 1

0
s2H

@2a

@#2
ð# ! sÞds

¼ "ð0Þ
8c0

@a

@#
þ "ð0ÞHdH
22þ2Hc1!2H

0 l 2Hc

Z 1

0

1

s1!2H

@a

@#
ð# ! sÞds: ð24Þ

If we go back to the original frame, neglect the random time shift, and substitute the
expression (24) of the pseudo-differential operator into (15), we obtain the form of
the integro-differential wave equation proposed by Hanyga [29]:

@p

@z
þ 1

c0

@p

@t
¼ "ð0Þ

8c0

@p

@t
þ "ð0ÞHdH
22þ2Hc1!2H

0 l 2Hc

Z 1

0

1

s1!2H

@p

@t
ðt! sÞds: ð25Þ

If we substitute the expression (24) into (16) we obtain the effective fractional wave
equation

@2p

@z2
! 1

c20
1þ "ð0Þ

4

" #
@2p

@t2
¼ "ð0ÞHdH

21þ2Hc2!2H
0 l 2Hc

Z 1

0

1

s1!2H

@2p

@t2
ðt! sÞds: ð26Þ

4.3. Random media with long-range correlations

This is the regime in which the random medium has the H-long-range correlation
property, H2 (1/2, 1) and the typical wavenumber !/c0 of the input pulse is such that

j!jlc
c0

( 1:

This second condition means that the typical wavelength is longer than lc and
therefore the pulse probes the long-range properties of the medium. In this case we
find by using (4), see [4], that

%cð!Þ!2

c20
¼ rH

!ð2H! 1Þ
22H!2

cos H! 1

2

" #
$

" #
1

lc

j!jlc
c0

" #3!2H

, ð27Þ

%sð!Þ!2

c20
¼ rH

!ð2H! 1Þ
22H!2

sin H! 1

2

" #
$

" #
j!jlc
c0

" #2!2H!

c0
: ð28Þ

This shows that the wave propagation in random media with long-range correlations
exhibits frequency-dependent attenuation that is characterized by a power law with
the exponent 3! 2H ranging from 1 to 2. This exponent is related to the power decay
rate at infinity of the autocorrelation function of the medium fluctuations.

In the time domain, we can write

Lað#Þ ¼ rHl 2!2H
c

21þ2Hc3!2H
0

Z 1

0

1

s2!2H

@2a

@#2
ð# ! sÞds: ð29Þ
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If we go back to the original frame and substitute the expression (29) of the
pseudo-differential operator into (16) we obtain the effective fractional wave
equation

@2p

@z2
! 1

c20

@2p

@t2
¼ rHl 2!2H

c

22Hc4!2H
0

Z 1

0

1

s2!2H

@3p

@t3
ðt! sÞds: ð30Þ

In the next sections we discuss how the precursor emerges as a consequence of the
above descriptions.

5. Fractional precursors

Following [12] we consider in this paper a source function of the form of a step
function modulated sine wave

f ð#Þ ¼ sinð!c#ÞI #40: ð31Þ

The centered transmitted pulse introduced in Section 4 is then given by

að#, zÞ ¼ ! 1

2$
Re

Z 1

!1

1

!! !c
exp

z

c0
"ð!, &Þ

" #
d!

( )
, ð32Þ

for

"ð!, &Þ ¼ ! !2

8c0
%cð!Þ þ i%sð!Þð Þ ! i!&, & ¼ #c0

z
: ð33Þ

The transmitted pulse a(#, z) satisfies

að#, zÞ ’ sinð!c#ÞI #40, ð34Þ

for small propagation distances or in the case with no medium clutter. Our interest is
in the case of relatively long propagation distances. The wave is then affected by the
random medium. In fact the wave signal in (34) is exponentially damped. However,
as the wave penetrates deep into the medium another signal emerges at the wavefront
that is not exponentially damped, rather exhibits algebraic decay. This signal is a
localized pulse that may serve as a medium probe. Its shape is generic in the sense
that it only depends on the medium regime and the associated model parameters
discussed above. This means that for long propagation distances we will see a
probing pulse whose shape does not depend on the realization, it is self-averaging and
attains an invariant shape up to scaling. The shape of this function depends on the
Hurst parameter in the case of random media with long- and short-range
correlations and it spreads out and decays as a fractional power of propagation
distance. In analogy with the emergence of precursors in the case of homogeneous
dispersive media we refer to the wave that emerges at the front as the fractional
precursor. We present next the detailed results regarding the random precursors and
give the derivation of the results in Section 6.
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5.1. Mixing media

We consider the case of a mixing random medium. We discuss in this subsection the
low-frequency and the high-frequency regimes, !clc/c0( 1 and !c lc/c0* 1, respec-
tively. For consistency we address in Appendix 1 the intermediate case !c lc/c0+ 1.

In the low-frequency regime in which the typical wavenumber !c/c0 of the input
pulse is such that !c lc/c0( 1, we have an effective second-order diffusion (17) and no
effective dispersion. The phase function appearing in (33) is given by

"ð!, &Þ ¼ ! %cð0Þ!2

8c0
! i!&: ð35Þ

We introduce the parameterization

Z ¼ %cð0Þ!2
c

8c20
z, T ¼ 8c0

%cð0Þ!c
& ¼ !c#

Z
: ð36Þ

Note that the first arrival time #(z) corresponds to T¼!c0/(lc!c)(!1 in this
framework. We find the following characterization for the transmitted pulse:

Proposition 5.1: In mixing media, if Z is large and T is (at most) of order one, then the
transmitted signal has the asymptotic form

að#, zÞ ’
Z*1

aspðT,Z Þ þ apðT,Z Þ, ð37Þ

with

aspðT,Z Þ ¼ expð!ZT 2=4Þffiffiffiffiffiffiffiffiffi
4$Z

p 1

1þ T 2=4
,

apðT,Z Þ ¼ expð!ZÞ sinðZTÞIT40:

The result is based partly on a steepest descent asymptotic approximation
(see subsection 6.1). Here the component asp is the precursor signal that emerges as
the signal penetrates into the medium while ap is the oscillating sine wave component
that is exponentially damped with propagation distance. Indeed, in the regime Z* 1
the signal contribution has a much smaller amplitude than the precursor, however,
we retain it here to articulate how the sine pulse is gradually transformed into the
probing precursor.

If we consider a small T, of the order of Z!1/2, then we obtain the following
corollary:

Corollary 5.2: In mixing media, if Z is large and !c# is smaller than Z, then the
transmitted signal has the asymptotic Gaussian form

að#, zÞ ’
Z*1 1ffiffiffiffiffiffiffiffiffi

4$Z
p exp ! ð!c#Þ2

4Z

" #
: ð38Þ

In Figure 1 we show the transmitted pulse for two different propagation
distances: Z¼ 1 and 20 and with a mixing medium model. The solid line in the figure
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corresponds to a numerical evaluation of the integral in (32) using the FFT, while the
dashed line corresponds to the approximation in (37), and the dashed-dotted line is
the Gaussian approximation (38). Initially the pulse is the sine signal in (34). It can
be seen that the signal is quickly damped, and as the signal propagates into the
medium a coherent pulse emerges at the wavefront. Note that with large propagation
distance the precursor is indeed to leading order a Gaussian pulse that completely
dominates the transmitted sine signal. Regarding the decay of the precursor we have
the following result.

Proposition 5.3: The peak amplitude of the precursor decays as

max
#

að#, zÞ ’
Z*1 1ffiffiffiffiffiffi

4$
p Z!1=2: ð39Þ

We remark that the above results are robust in that they hold also for other
probing signals than (34), provided that these signals are broadband. Thus, the
precursor damping described in Proposition 5.1 is typical for mixing media in the
large propagation distance limit.

We comment next on the situation in which the wavenumber !c/c0 is such that
!c lc/c0* 1. We then have an effective constant attenuation and no effective
dispersion. The wave propagates therefore without deformation up to an
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Figure 1. (Color online) Pulse profile for Z¼ 1 and Z¼ 20 and for a mixing random medium.
The pulse is shown as a function of T. The solid line is the exact transmitted pulse (32), the
dashed line corresponds to the asymptotic form (37), and the dashed-dotted line is the
Gaussian approximation (38). Initially the pulse is the sine signal (34).
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exponential attenuation. In this case we have

"ð!, &Þ ¼ !"ð0Þc0d1=2
16lc

! i
"ð0Þ!
8

! i!&:

We introduce in this case the parameterization

Z ¼ "ð0Þd1=2
16lc

z, ð40Þ

T ¼ 2

d1=2

!clc
c0

" #
1þ 8&

"ð0Þ

" #
¼ !cð# þ #sðzÞÞ

Z
, ð41Þ

with #s(z)¼"(0)z/(8c0)¼ #0(z)! #(z).
We find then the following characterization for the transmitted pulse:

að#, zÞ ¼ expð!ZÞ sinðZTÞIT40, ð42Þ

which only exhibits an exponential decay of the sine wave without deformation. This
follows from the fact that attenuation is frequency-independent in this regime.

We shall find below that the low- and high-frequency limits of the mixing case
that we discussed above in proposition 37 and in Equation (42) can be obtained from
the ‘low frequency-long range’ and the ‘high frequency-short range’ cases discussed
in the next two subsections at the limiting value H¼ 1/2 for the Hurst parameter.

5.2. Random media with short-range correlations

We consider next the case in which the random medium has the H-short-range
correlation property (5) with H2 (0, 1/2). Moreover, we assume the high-frequency
regime with a relatively short wavelength so that !clc/c0* 1. Now the phase function
in (33) takes the form

"ð!, &Þ ¼ !i!
"ð0Þ
8

! "ð0ÞdH!ð1þ 2H Þc0
22Hþ3lc

exp i$ H! 1

2

" #" #
!lc
c0

" #1!2H

!i!&,

which can be derived from (7) and (8), see [4], or explicitly by formula 3.411 in [30].
We introduce a change of coordinates

Z ¼ "ð0ÞdH!ð1þ 2H Þ
22Hþ3lc

!clc
c0

" #1!2H

z, ð43Þ

T ¼ 22H

dH!ð1þ 2H Þ
!clc
c0

" #2H

1þ 8&

"ð0Þ

" #
¼ !cð# þ #sðzÞÞ

Z
, ð44Þ

with #s(z)¼"(0)z/(8c0)¼ #0(z)! #(z). Note that in view of the discussion regarding
observation frame in (13) we find that T¼ 0 corresponds to the first arrival time,
thus, the transmitted pulse vanishes for T50.
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We show in subsection 6.2 using a steepest descent approach that the transmitted
signal can be approximated as follows.

Proposition 5.4: In random media with short-range correlations, if Z is large and T is
at most of order one, then the transmitted signal has the asymptotic form

að#, zÞ ’
Z*1

aspðT,Z Þ þ apðT,Z Þ, ð45Þ

with

aspðT,Z Þ ¼ exp ! 's
HZ

T
1!2H
2H

" #
(s
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2$ZT
1þ2H
2H

p T
1
H

T
1
H þ ½ð1! 2H Þ' 1H

IT40,

apðT,Z Þ ¼ exp !Z sinð$H Þ½ ' sin ZðT! cosð$HÞÞ½ 'IT4 cosð$H Þ,

where

's
H ¼ 2Hð1! 2H Þ

1!2H
2H , (s

H ¼ ð2H Þ!
1
2ð1! 2H Þ

1
4H:

In the limit H" 1/2 we find:

aspðT,Z Þ þ apðT,Z Þ ¼H!1=2
expð!ZÞ sinðZTÞIT40:

with T, Z defined as in (40), which is the high-frequency regime of the mixing case
in (42).

In Figures 2 and 3 we show the transmitted pulse for two different
dimensionless propagation distances: Z¼ 10, 15. The solid lines in the
figures correspond to a numerical evaluation of the integral in (32) using the
FFT, while the dashed lines correspond to the approximation in (45). Again
we see how the precursor emerges at the wavefront. We now focus our attention
to the shape of the fractional precursor, which is studied in detail in
subsection 6.2.
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Figure 2. (Color online) Pulse profile for Z¼ 10 andH¼ 1/4. The pulse is shown as a function
of T. The solid line corresponds to the exact transmitted pulse (32) while the dashed line
corresponds to the approximation (45).
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Proposition 5.5: In random media with short-range correlations, if Z is large then the
precursor has the form

aðT,Z Þ ’
Z*1

Z! 1
1!2HAs

$
TZ! 2H

1!2H
%
, ð46Þ

AsðYÞ ¼
1

$
Re

Z 1

0
exp

$
!exp

$
i$ðH! 1=2Þ

%
u1!2H ! iuY

%
du

( )
: ð47Þ

The precursor shape function As has the following properties:

(i) For negative Y the value of As(Y) is zero.
(ii) At Y¼ 0 the function As and all its derivatives are zero.
(iii) For positive small Y the function As can be approximated by

AsðYÞ ’
(s
Hffiffiffiffiffiffi
2$

p Y!1þ2H
4H exp !'s

HY
!1!2H

2H

& '
: ð48Þ

(iv) For positive large Y the function As can be approximated by

AsðYÞ ’
1

$

+
sinð2H$Þ!ð2! 2H Þ

,
Y!ð2!2H Þ: ð49Þ

We see from the figures that the multiscale nature of the medium fluctuations
changes the nature of the precursor ‘pulse shaping’. First, in the mixing case the
decay rate of the peak amplitude is conversely proportional to the square root of the
propagation distance. In the short-range correlation case the decay amplitude is
different.

Corollary 5.6: In random media with short-range correlations the peak amplitude of
the fractional precursor decays as

max
T

aðT,ZÞ ’
Z*1

PsðH ÞZ! 1
1!2H ð50Þ

for Z* 1, where Ps(H) is a coefficient that depends only on H.

The function Ps(H) is plotted in Figure 4(a) and it can be well approximated,
from (48), by

PsðH Þ ’ 1ffiffiffiffiffiffi
2$

p
+
2Hð1! 2H Þ

,! 1
1!2H

$
Hþ 1=2

%Hþ1=2
1!2H exp !Hþ 1=2

1! 2H

" #
: ð51Þ
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Figure 3. (Color online) Pulse profile for Z¼ 15 and H¼ 1/4.
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The power law decay Z! 1
1!2H with the decay rate 1

1!2H 2 ð1,1Þ is characteristic of
random media with short-range correlations. It is different from the power decay
with decay rate Z!1/2 observed in mixing media.

In the mixing case discussed above the asymptotic shape is Gaussian.
In particular the tail of the precursor decays super-exponentially in time as (38).
In the case with a random medium with short-range correlations the asymptotic
shape is skewed with a power law decay for large times that depends on the Hurst
parameter. In fact the right tail of the fractional precursor has a power law decay in
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P
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Figure 4. (Color online) Coefficients Ps(H) (picture a) and Pl(H ) (picture b). The solid lines
are the exact values. (a) The dashed line is the approximation (51). (b) The dashed line is the
approximation (62).
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time reflecting the short-range correlation properties of the random medium.
The power law can be identified in the regime of large times and we next quote the
result that characterizes this aspect of the pulse shaping that carries in it the signature
of the medium class.

Corollary 5.7: If T
1!2H
2H * Z * 1 then we have

aðT,Z Þ ’ sinð2H$Þ!ð2! 2H Þ
$

Z!ð1!2H ÞT!ð2!2H Þ: ð52Þ

Since T¼!c(#þ #s(z))/Z, this statement is equivalent to the following one:
If [!c(#þ #s(z))]

1!2H*Z* 1 then we have

að#, zÞ ’ sinð2H$Þ!ð2! 2H Þ
$

Z

½!cð# þ #sðzÞÞ'2!2H
: ð53Þ

See subsection 6.2 for the derivation. We illustrate the tail behavior and the good
match with the theoretical predictions in Figures 5 and 6 for the Hurst parameter
being, respectively, H¼ 0.1 and H¼ 0.3.

5.3. Random media with long-range correlations

We consider the case in which the random medium has the long-range correlation
property (4) with H2 (1/2, 1) and the low-frequency regime !c( c0/lc. Now the
phase function in (33) takes the form

"ð!, &Þ ¼ ! c0rH!ð2H! 1Þ
22Hþ1lc

exp i$ H! 1

2

" #" #
!lc
c0

" #3!2H

!i!&:

We introduce the change of coordinates

Z ¼ rH!ð2H! 1Þ
22Hþ1lc

!clc
c0

" #3!2H

z, ð54Þ

T ¼ 22Hþ1

rH!ð2H! 1Þ
!clc
c0

" #2H!2

& ¼ !c#

Z
: ð55Þ

Using a steepest descent approach, we find the following result in subsection 6.3,
which shows that the step function modulated sine wave is exponentially damped
and that a precursor appears at the front.

Proposition 5.8: In random media with long-range correlations, if Z is large and T is
of order one and negative, then the transmitted signal has the asymptotic form

að#, zÞ ’
Z*1

aspðT,Z Þ þ apðT,Z Þ, ð56Þ

with

aspðT,Z Þ ¼ exp !'l
HZjTj

3!2H
2!2H

& '(l
HjTj

2H!1
4!4H

ffiffiffiffiffiffiffiffiffi
2$Z

p 1

1þ
$ jTj
3!2H

% 1
1!H

,

apðT,Z Þ ¼ exp !Z sinð$H Þ½ ' sin ZðT! cosð$HÞÞ½ 'IT4 cosð$HÞ,
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where

'l
H ¼ ð2! 2H Þð3! 2H Þ!

3!2H
2!2H, (l

H ¼ ð2! 2H Þ!
1
2ð3! 2H Þ!

1
4!4H:

We remark that as H# 1/2 the limiting pulse shape approaches the Gaussian
shape and is centered around T¼ 0. One can check explicitly that this limit gives the
signal in (37) of the low-frequency regime in the mixing case.
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Figure 5. (Color online) Precursor profile for H¼ 0.1, Z¼ 10, in linear (a) and logarithmic (b)
scales, as a function of T. The solid line is the theoretical expression (46)–(47) of the precursor.
The dashed line (in picture a) corresponds to the approximate expression (48) substituted into
(46), which gives a good approximation of the central form of the precursor. The dot-dashed
line (b) is the asymptotic formula (52), which gives a good approximation of the positive tail of
the precursor.
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For T) 0 the direct evaluation via the steepest descent method at the stationary
point does not give the leading contribution, however, we shall get the precursor
behavior and its power law decay via an integral expression as we discuss next.
We remark that the approximation ap for the damped sine wave component holds
also for T40.

In Figures 7 and 8 we show the transmitted pulse for two different propagation
distances: Z¼ 4, 400 and H¼ 0.9. The solid line in the figure corresponds to a
numerical evaluation of the integral in (32) using the FFT, while the dashed line
corresponds to the asymptotic approximation in (56).

The pulse shape of the precursor for arbitrary value of T is obtained in
subsection 6.3 and we give it in the following proposition.
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Figure 6. (Color online) Same as in Figure 5, but for H¼ 0.3, Z¼ 10.
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Proposition 5.9: In random media with long-range correlations, if Z is large then the
precursor has the form

aðT,Z Þ ’
Z*1

Z! 1
3!2HAl

$
TZ

2!2H
3!2H

%
, ð57Þ

Al ðYÞ ¼
1

$
Re

Z 1

0
exp

$
!exp

$
i$ðH! 1=2Þ

%
u3!2H ! iuY

%
du

( )
: ð58Þ

The precursor shape function Al has the following properties:

(i) At Y¼ 0 the function Al and its derivatives are given by:

@kAl

@Yk
ð0Þ ¼ 1

ð3! 2H Þ$
cos

$

2

1! 2ðHþ kÞ
3! 2H

" #
!

1þ k

3! 2H

" #
:

(ii) For negative large Y the function Al can be approximated by

Al ðYÞ ’
(lHffiffiffiffiffiffi
2$

p jYj2H!1
4!4H exp !'l

HjYj
3!2H
2!2H

& '
: ð59Þ

(iii) For positive large Y the function Al can be approximated by

Al ðY Þ ’ 1

$

+
! sinð2H$Þ!ð4! 2H Þ

,
Y!ð4!2H Þ: ð60Þ

We see from Figures 9 and 10 that the long-range correlations in the medium
again change the precursor qualitatively. First, the peak amplitude of the precursor
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Figure 7. (Color online) Pulse profile for Z¼ 4 and H¼ 0.9. The pulse is shown as a function
of T. The solid line is the exact transmitted pulse (32) while the dashed line corresponds to the
approximation (56).
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Figure 8. (Color online) As Figure 7, but with Z¼ 400.
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has a anomalous power decay different from the usual decay rate Z!1/2 observed in
mixing media.

Corollary 5.10: In random media with long-range correlations the peak amplitude of
the fractional precursor decays as

max
T

aðT,ZÞ ’
Z*1

Pl ðH ÞZ! 1
3!2H, ð61Þ

where Pl (H) is a coefficient that depends only on H.
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Figure 9. (Color online) Precursor profile for H¼ 0.7, Z¼ 10, in linear (a) and logarithmic (b)
scales as a function of T. The solid line is the theoretical expression (57)–(58) of the precursor.
The dashed line (a) corresponds to the approximate expression (59) substituted into (57),
which gives a good approximation of the precursor at negative times. The dot-dashed line (b)
is the asymptotic formula (63), which gives a good approximation of the positive tail of the
precursor.
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The function Pl(H) is plotted in Figure 4(b) and it can be well approximated,
from (59), by

Pl ðH Þ ’ 1ffiffiffiffiffiffi
2$

p
+
ð2! 2H Þð3! 2H Þ

,! 1
3!2H

$
H! 1=2

%H!1=2
3!2H exp !H! 1=2

3! 2H

" #
: ð62Þ

The power law decay Z! 1
3!2H with the decay rate 1

3!2H 2 ð1=2, 1Þ is characteristic of
random media with long-range correlations. It is different from the power decay with
decay rate 1/2 observed in mixing media.

Second, the pulse develops an anomalous power law decay for large times.
We have the following proposition characterizing this effect.
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Figure 10. (Color online) Same as in Figure 9, but for H¼ 0.9, Z¼ 10.
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Corollary 5.11: If T * Z
2H!2
3!2H and Z* 1, then we have

aðT,Z Þ ’ ! sinð2H$Þ!ð4! 2H Þ
$

Z!ð3!2H ÞT!ð4!2H Þ: ð63Þ

Since T¼!c#/Z, this statement is equivalent to the following one: if (!c#)
3!2H*

Z* 1 then we have

að#, zÞ ’ ! sinð2H$Þ!ð4! 2H Þ
$

Z

ð!c#Þ4!2H
: ð64Þ

We show in Figures 9 and 10 the excellent match of the theoretical power law
prediction with the explicit calculation of the tail via computation of the integral
in (32).

6. Derivation of the main results

6.1. Mixing media

We consider the medium regime discussed in subsection 5.1 and derive the results
presented there. We use the parameterization in (36), moreover, denote #¼!/!c.
The expression (32) for the transmitted pulse becomes

að#, zÞ ¼ ! 1

2$
Re

Z 1

!1

1

#! 1
exp

$
Z"mð#,T Þ

%
d#

( )
, ð65Þ

with the phase function

"mð#,T Þ ¼ !#2 ! i#T:

We plot the real and imaginary parts of "m in Figure 11 for T¼ 1 and as a
function of complex frequency #. We have a unique saddle point in the complex
plane given by #*¼!iT/2. The saddle point is shown by the diamond in the figure,
the pole by the cross. The steepest descent path is in this case parallel to the abscissa
and can be joined with the original integration path for some large absolute value for
the real part of #. We have also a contribution in terms of the residue at the pole
at !c, that is #¼ 1, giving rise to the ‘signal’ component ap. Applying now the
method of steepest descent and computing the signal contribution via the associated
residue we find that we can approximate the integral (65) as in (37).

6.2. Random media with short-range correlations

We consider the medium regime discussed in subsection 5.2 and derive the results
discussed there with !c* c0/lc. We use notations as in the previous subsection. Here
T¼ 0 corresponds to the first arrival time, thus, the transmitted pulse vanishes for
T50. The expression (32) for the transmitted pulse becomes

að#, zÞ ¼ ! 1

2$
Re

Z 1

!1

1

#! 1
exp

$
Z"sð#,T Þ

%
d#

( )
, ð66Þ
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with the phase function now taking the form

"sð#,T Þ ¼ !exp
$
i$ðH! 1=2Þ

%
#1!2H ! i#T:

We plot the real and imaginary parts of "s in Figure 12 for H¼ 0.3 and T¼ 0.5.
For T40 the saddle point is given by

#, ¼ i
1! 2H

T

" #1=ð2H Þ
:

Thus, we have a unique saddle point in the upper complex half-plane. The saddle
point is shown by the diamond in the figure, the pole by the cross and the steepest
descent path from the top saddle point joining the original integration path by the
dashed line. Applying again the method of steepest descent and computing the
contribution of the residue associated with the signal pole we arrive at the approx-
imation in (45).

We next derive the results in Proposition 5.5 and Corollaries 5.6 and 5.7. We give
the main steps of the proof while the technical details are given in Appendices 2
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Figure 11. (Color online) Contour plot of Real(") and Imag(") for T¼ 1. Case of a random
mixing medium. The diamond corresponds to the saddle point while the cross corresponds to
the pole and the dashed line is the integration path.
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and 3. The pulse profile is given by (66). The following lemma shows that the pole at
#¼ 1 is asymptotically negligible in that it gives a contribution to the transmitted
pulse profile that is small in Z (i.e. smaller than the precursor amplitude).
This expresses the fact that the step function modulated sine wave signal is damped
and becomes negligible compared to the precursor signal (67) that appears at
the front.

Lemma 6.1: There exists a constant KH such that:

!!!aðT,Z Þ ! 1

$
Re

Z 1

0
exp

$
Z"sð#,T Þ

%
d#

( )!!! - KHZ
! 2

1!2H: ð67Þ

Proof: See Appendix 2. h

Next, using the change of variable #¼ uZ!1/(1!2H) in the expression of the
precursor in (67) we obtain the statement of Proposition 5.5. The function As defined
by (47) is the dimensionless pulse profile of the precursor in media with short-range
correlations. We have in particular

max
T

aðT,Z Þ ¼
+
max
Y

AsðYÞ
,
Z! 1

1!2H,
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Figure 12. (Color online) Contour plot of Real(") and Imag(") for H¼ 0.3 and T¼ 0.5.
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which gives Corollary 5.6. The analysis of the large-Y behavior of As(Y) and the
result (49) is based on a variant of the Abelian theorem 7(i) in [31] which is detailed in
Appendix 3. By substituting (49) into the expression (47) of the precursor we obtain
the result of Corollary 5.7. Note that the two hypotheses of Corollary 5.7 are
equivalent to T

1!2H
2H * Z * 1 or [!c(#þ #s)]

1!2H*Z* 1 (since T¼ [!c(#þ #s)]/Z).
In the (#,Z) variables we obtain (53). We remark that the error bound in Lemma 6.1
gives a corresponding limit on the range of T in (52):

T ( Z
1þ4H!4H2

ð1!2H Þð2!2H Þ,

to assure that the approximation dominates the error bound in (67). Finally, note
that the result (48) can be obtained via a steepest descent approximation.

6.3. Random media with long-range correlations

We consider the medium regime discussed in subsection 5.3 and derive the results
discussed there with !c( c0/lc. We use here the parameterization in (54) and the
expression (32) for the transmitted pulse becomes

aðT,Z Þ ¼ ! 1

2$
Re

Z
1

#! 1
exp

$
Z"l ð#,T Þ

%
d#

( )
, ð68Þ

with the phase function now taking the form

"l ð#,T Þ ¼ !exp
$
i$ðH! 1=2Þ

%
#3!2H ! i#T:

We plot the real and imaginary parts of "l in Figure 13 for H¼ 0.75 and T¼!2.
The saddle point for T50 is given by

#, ¼ i
jTj

3! 2H

" #1=ð2!2H Þ
:

Thus, we have a single saddle point in the upper complex half-plane. The saddle
point is shown by the diamond in the figure, the pole by the cross and the steepest
descent path from the saddle point joining the original integration path by the
dashed line. Applying again the method of steepest descent and evaluating the pole
contribution we find that we can approximate as in (56).

We now give the main steps of the proof of Proposition 5.9 and Corollaries 5.10
and 5.11 of subsection 5.3. The details are given in the appendices. The pulse profile is
given by (68). As in the case of media with short-range correlations the first step shows
that the step function modulated sine wave signal is exponentially damped and
becomes negligible compared to the precursor signal (69) that appears at the front.

Lemma 6.2: There exists a constant KH such that:

aðT,Z Þ ! 1

$
Re

Z 1

0
exp

$
Z"l ð#,T Þ

%
d#

( )!!!!

!!!! - KHZ
! 2

3!2H: ð69Þ

Proof: The proof follows the same line as in the case of a medium with short-range
correlations. h

Using the change of variable #¼ uZ!1/(3!2H) in the expression of the precursor in
(69) we find the statement of Proposition 5.9. The function Al defined by (58) is the

146 J. Garnier and K. Sølna

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
I
U
S
 
J
u
s
s
i
e
u
/
P
a
r
i
s
 
6
]
 
A
t
:
 
0
9
:
3
1
 
2
0
 
F
e
b
r
u
a
r
y
 
2
0
1
0



dimensionless pulse profile of the precursor in media with long-range correlations.
We have in particular

max
T

aðT,Z Þ ¼
+
max
Y

Al ðYÞ
,
Z! 1

3!2H,

which gives Corollary 5.10. The large-Y behavior of Al (Y) follows from an Abelian
theorem as explained in Appendix C. By substituting (60) into the expression (58) of
the precursor we obtain the result of Corollary 5.11. Note that the two hypotheses of
Corollary 5.11 are equivalent to T!3!2H

2!2H * Z * 1 or (!c#)
3!2H*Z* 1. In the (#,Z)

variables we then obtain (64).

7. Conclusion

We have considered wave propagation in one-dimensional random media.
The probing signal experiences a self-averaging deformation by interacting with
the medium. This can be seen as a ‘law of large number result’ in that many double
scattering events, backward and then forward scattering of wave energy, adds up
with propagation distance to give the deterministic deformation. The character of the
deformation depends on the medium class and long- or short-range correlations in
the medium in particular lead to an anomalous and skewed power law shape for
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Figure 13. (Color online) Contour plot of Real(") and Imag(") for T¼!2, H¼ 0.75.
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the pulse. What is not so intuitive is that this phenomenon takes place even when the
source signal is not pulse like, but for instance a stepped sine signal as we
have considered in this paper constituting the broadband source. Then at the front of
the sine wave the scattering builds a coherent wave pulse which travels much deeper
than the sine signal itself, it experiences an algebraic decay with propagation distance
rather than exponential. An intuitive argument for this situation is that at the front
of the sine the broadband nature of the signal builds the precursor, while far behind
the front the stepped sine source has a monochromatic nature. In Figure 14 we
summarize the picture: the solid line plots the exponent of the frequency-dependent
power law attenuation as described in Section 4, which corresponds to the order of
the time derivative in the fractional wave equation; the dashed line shows the
damping power of the precursor associated with the fractional wave equation. The
fractional precursor is damped as the reciprocal of the propagation distance to
the damping power. The antipersistent case H2 (0, 1/2) corresponds to relative
high-frequency waves and the medium roughness being the principal effect, while the
persistent case corresponds to H2 (1/2, 1) and the medium long-range correlations
being the principal effect in terms of generation and damping of the precursor.

We have here presented a first analysis of the ‘fractional precursor’ phenomenon.
Many important questions remain: for instance, the robustness of the result with
respect to the medium model, in particular with respect to the one-dimensional
assumption that we have made here and also with respect to the scaling assumptions in
the underlying theory; how this phenomenon can be relevant in applications
analogous to those where the classical precursors of homogeneous dispersive media
have played a role.
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Figure 14. (Color online) The fractional time derivative order in the fractional wave equation
(solid line) and the damping power for the precursor (dashed line) as functions of the Hurst
index H.
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Appendix 1. Mixing and exponentially decorrelating media

We consider here the case with the correlation function for the medium fluctuations being

"ðzÞ ¼ E½!ð yÞ!ð yþ zÞ' ¼ "ð0Þ expð!jzj=lcÞ: ð70Þ

As remarked above the behavior at the origin of this correlation function is rather general.
We present it here to illustrate the intermediate case with (c0/lc)/!c¼O(1). We remark
moreover that this model has common features with the Lorentz dielectric model of the
classical situation analyzed for precursors in homogeneous dispersive media [12]. The phase
function in (33) is now

"ð!, &Þ ¼ !i
"ð0Þ!2

8ð!þ ic0=ð2lcÞÞ
þ !&

" #
:

We introduce the parameterization

Z ¼ "ð0Þ!c

8c0
z, T ¼ 1þ 8&

"ð0Þ
¼ 1þ !c#

Z
, ð71Þ

and the mixing parameter

)m ¼ c0
2!clc

:

The limit case )m!1, resp. )m! 0, corresponds to the low-frequency, resp. high-frequency,
regime. Note also that in view of the discussion regarding travel time presented in Section 4 we
find that T¼ 0 corresponds to the first arrival time, thus, the transmitted pulse vanishes for
T50. We then find the following characterization for the transmitted pulse:

Proposition A.1: Under the model (A1), if Z is large and T is of order one, then the transmitted
signal has the asymptotic form

að#, zÞ ’
Z*1

aspðT,Z Þ þ apðT,Z Þ, ð72Þ
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with

aspðT,Z Þ ¼ expð!Z)mð1!
ffiffiffiffi
T

p
Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4$ZT 3=2=)m

p
T

Tþ )2mð1!
ffiffiffiffi
T

p
Þ2
IT40,

apðT,Z Þ ¼ exp ! Z)m
1þ )2m

" #
sin Z T! )2m

1þ )2m

" #" #
IT4)2m=ð1þ)2mÞ:

The result follows again by a steepest descent argument. Here the component asp is the
precursor signal that emerges as the signal penetrates into the medium while ap(T,Z) is the
oscillating ‘signal’ component that is exponentially damped with the propagation distance.

If )m!1, then we recover the statement of Proposition 5.1 in the low-frequency regime,
after the change of variables Z! )mZ and T! 1þT/)m. Similarly, if )m! 0 then we recover
the asymptotic approximation (42) valid in the high-frequency regime, after the change of
variables Z!Z/)m and T! )mT. If )m is of order one and Z is large, then the following
corollaries show that the peak amplitude of the precursor has a power law decay and that the
shape of the precursor is Gaussian as in the low-frequency regime )m!1.

Corollary A.2: The peak amplitude of the precursor decays as

max
#

að#, zÞ ’
Z*1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4$=)m
p Z!1=2: ð73Þ

Corollary A.3: If Z is large and !c# is smaller than Z, then we have

að#, zÞ ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4$Z=)m

p exp ! )mð!c#Þ2

4Z

" #
: ð74Þ

In Figures 15, 16, 17 and 18 we show the transmitted pulse for four different
propagation distances: Z¼ 2, 10, 20, 100, moreover, with the mixing parameter )m¼ 1. The
solid lines in the figures correspond to numerical evaluations of the integral in (32) using
the FFT, while the dashed lines correspond to the approximation (72) and the
dashed-dotted lines correspond to the Gaussian approximation (74) with !c#¼Z(T! 1),
according to (71).

Appendix 2. Proof of step 1 in the derivation of the anomalous power law

We consider the short-range case H2 (0, 1/2). The long-range case can be addressed in the
same way. We first show the following lemma.
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Figure 15. (Color online) Pulse profile for Z¼ 2 and for a mixing random medium with
)m¼ 1. The pulse is shown as a function of T. The solid line is the exact transmitted pulse (32),
the dashed line corresponds to the approximation (72), and the dashed-dotted line is the
Gaussian approximation (74).
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Lemma B.1: The integrals
Z

j#j41=2

1

1!#
exp

$
Z"sð#,T Þ

%
d# and

Z

j#j41=2
exp

$
Z"sð#,T Þ

%
d#

are exponentially decaying in Z.

Proof: We write

Z"sð#,T Þ ¼ !Z ð#Þ ! iZ#T,  ð#Þ ¼  rð#Þ þ i ið#Þ,
with  r(#)¼ cos($(H! 1/2))j#j1!2H and  i(#)¼ sin($(H! 1/2))j#j!2H#. We first look at the
integral from 1/2 to 3/2:

Re

Z 3
2

1
2

1

#! 1
eZ"sð#,T Þd#

" #

¼ Re

Z 3
2

1
2

1

#! 1
e!Z ð1Þe!i#TZd#

" #

þRe

Z 3
2

1
2

1

#! 1

$
e!Z ð#Þ ! e!Z ð1Þ%e!i#TZd#

" #

:
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Figure 16. (Color online) Pulse profile for Z¼ 10.
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Figure 17. (Color online) Pulse profile for Z¼ 20.
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Figure 18. (Color online) Pulse profile for Z¼ 100.
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Using the fact that [1/2, 3/2] is an interval symmetric with respect to 1 we find

Re

Z 3
2

1
2

1

#! 1
e!Z ð1Þe!i#TZd#

" #!!!!!

!!!!! ¼ Re e!Z ð1Þe!iTZ

Z 1
2

!1
2

1

#
e!i#TZd#

" #!!!!!

!!!!!

¼ Re !ie!Z ð1Þe!iTZ

Z TZ=2

!TZ=2

sinðuÞ
u

du

( )!!!!!

!!!!!

- K1e
!Z rð1Þ, K1 ¼ 2 sup

U40

Z U

0

sinðuÞ
u

du

!!!!

!!!!:

Moreover,

Re

Z 3
2

1
2

1

#! 1
e!Z ð#Þ ! e!Z ð1Þ$ %

e!i#TZd#

" #!!!!!

!!!!! -
Z 3

2

1
2

sup
#2½12,

3
2'

@

@#
e!Z ð#Þ

!!!!

!!!!d#

- K2Ze
!Z rð12Þ, K2 ¼ ð1! 2H Þ22H,

and

Re

Z 1

3
2

1

#! 1
eZ"sð#,TÞd#

" #!!!!!

!!!!! - 2

Z 1

3
2

e!Z rð#Þd#

¼ 2e!Z rð32Þ
Z 1

0
e!Z½ rð32þ#Þ! rð32Þ'd#

- K3e
!Z rð32Þ, K3 ¼ 2

Z 1

0
e!½ rð32þ#Þ! rð32Þ' d#,

for any Z) 1. This shows that the integral from 1/2 to 1 is exponentially decaying in Z.
The integral from !1 to !1/2 can be shown to be exponentially decaying in Z by a similar
argument. This shows that the first integral of the lemma is exponentially decaying in Z.

Let us consider the second integral. We have

Re

Z 1

1
2

eZ"sð#,T Þd#

" #!!!!!

!!!!! -
Z 1

1
2

e!Z rð#Þd#

¼ e!Z rð12Þ
Z 1

0
e!Z½ rð12þ#Þ! rð12Þ'd#

- K4e
!Z rð12Þ, K4 ¼

Z 1

0
e!½ rð12þ#Þ! rð12Þ'd#,

for any Z) 1. The integral from !1 to !1/2 can be shown to be exponentially decaying in Z
by the same argument. This shows that the second integral of the lemma is exponentially
decaying in Z. h

We can now consider the difference (67):

aðT,Z Þ ! 1

$
Re

Z 1

0
eZ"sð#,T Þd#

( )!!!!

!!!! - ~K1e
!)HZ þ 1

2$

Z 1
2

!1
2

1! 1

1!#

!!!!

!!!!e
!Z rð#Þd#

- ~K1e
!)HZ þ 2

$

Z 1
2

0
#e!Z rð#Þd#

- ~K1e
!)HZ þ ~K2Z

! 2
1!2H, ~K2 ¼

2

$

Z 1

0
#e! rð#Þd#:

This gives the result of step 1.
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Appendix 3. Proof of step 3 in the derivation of the anomalous power law

Let us first address the short-range case H51/4 and denote

BsðuÞ ¼ exp !exp
$
i$ðH! 1=2Þ

%
u1!2H

$ %
:

We have

AsðYÞ ¼
1

$
Re

Z 1

0
BsðuÞe!iuY du

( )
:

We seek the large-Y behavior of As(Y). Abelian theorems indicate that it should be related to
the small-u behavior of the function Bs(u), thus we write the function Bs(u) in such a way that
its small-u behavior can be clearly identified. Motivated by the expansion of the function Bs(u)
for small u, we write the function Bs(u) in the form

BsðuÞ ¼ f1
$
½2H cosð$ð1=2!H ÞÞ' 1

1!2Hu
%
þ if2

$
½sinð$ð1=2!H ÞÞ' 1

1!2Hu
%
þ CsðuÞ,

where f1 and f2 are defined by

f1ðuÞ ¼ 1! 1

2H
u1!2H þ 1! 2H

2H
u

" #
1½0,1'ðuÞ, ð75Þ

f2ðuÞ ¼ u1!2H ! ð1þ 2H Þuþ 2Hu2
$ %

1½0,1'ðuÞ: ð76Þ

Note that the linear and quadratic terms in the definitions of f1 and f2 have been added so that
these functions are continuously differentiable over (0,1) (even at u¼ 1) and piecewise twice
differentiable over (0,1). The function Cs(u) is continuously differentiable and piecewise
twice differentiable over (0,1), because Bs, f1 and f2 are continuously differentiable and
piecewise twice differentiable over (0,1). Moreover, Cs, C

0
s, and C00

s are absolutely integrable
over (0,1), Cs(0)¼ 0, and C0

s(0
þ) is well defined (here we use the fact that 2! 4H41, so that

the terms in u2!4H that come from the expansions of the exponential are differentiable at zero).
Consequently a double integration by parts yields:

Z 1

0
CsðuÞe!iYudu ¼ !C0

sð0þÞ
Y2

! 1

Y2

Z 1

0
C00

s ðuÞe
!iYu du ¼Y!1

O
1

Y2

" #
: ð77Þ

Moreover, by performing an integration by parts step, we obtain
Z 1

0
f1ðuÞe!iYudu ’

Y!1
! i

Y
þ i

1! 2H

2HY2!2H

Z 1

0
v!2He!ivdvþ o

1

Y2!2H

" #
,

Z 1

0
f2ðuÞe!iYudu ’

Y!1
!i

1! 2H

Y2!2H

Z 1

0
v!2He!ivdvþ o

1

Y2!2H

" #
:

The computation of the definite integral (see formula 3.761 in [30])
Z 1

0
v!2He!ivdv ¼ !ð1! 2H Þe!ið1!2H Þ$2 , ð78Þ

gives then

Re

Z 1

0
f1ðuÞe!iYudu

( )
’

Y!1 !ð2! 2H Þ
2HY2!2H

sin ð1! 2H Þ$
2

& '
þ o

1

Y2!2H

" #
,

Re i

Z 1

0
f2ðuÞe!iYudu

( )
’

Y!1 !ð2! 2H Þ
Y2!2H

cos ð1! 2H Þ$
2

& '
þ o

1

Y2!2H

" #
: ð79Þ

Using (77) and (79), and the identity 2 cos((1! 2H )$/2)sin((1! 2H )$/2)¼ sin(2H$), we
obtain the desired result.
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If H2 [1/4, 1/2), then one needs to consider the terms uk(1!2H ), 1- k- 1þ b1/(1! 2H )c,
that come from the expansion of the exponential in the expression of Bs(u) in the same way we

have addressed u1!2H. This gives corrective terms proportional to Y!k(1!2H )!1 which are

negligible compared to Y2H!2.
The long-range case H2 (1/2, 1) can be analyzed as the short-range case with H2 (0, 1/4).
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