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Abstract

The method of the time reversal operator deconiiposs usually employed to detect
and characterize static targets using the invariahtthe time reversal operator. This paper
presents a theoretical and experimental investigatito the impact of small displacements of
the target on these invariants. To find these iawgs, the time reversal operator is built from
the multistatic response matrix, and then diagaedli Two methods of recording the
multistatic response matrix while the target is mgvare studied: acquisition either element
by element or column by column. It is demonstrateat the target displacement generates
new significant eigenvalues. Using a perturbatioeoty, the analytical expressions of the
eigenvalues of the time-reversal operator for kamtjuisition methods are derived. We show
that the distribution of the new eigenvalues stiprlgpends on these two methods. It is also
found that for the column by column acquisitiong gecond eigenvector is simply linked to
the scatterer displacements. At last, the implceti on the Maximum Likelihood and
Multiple Signal Classification detection are alsscdissed. The theoretical results are in good

agreement with numerical and 3.4 MHz ultrasonicesxpents.
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[. Introduction

A time reversal mirror (TRM) provides a robust tdolfocus a wave in space and
time, whatever the complexity of the propagatingdimm. It has been applied in many
different fields such as non-destructive testimgnedical therap{’ and underwater acoustics,
either for detectioh’ or for telecommunicatiofi. A time reversal experiment is achieved in
two steps: first, the TRM records the wave emitbgda source, and then these signals are
flipped in time and emitted back into the mediunowdver, time-reversal invariance requires
a stationary medium, thus the focusing of the timeersed signal is impaired when the
medium is changed between the two steps. The effefttictuations on TRM performance
has been quantitatively investigated in severalepp'?> For example, in underwater
acoustics, Rourt al.studied the degradation of the focal spot in alshalvater environment
with waves on the surface, and Sabtral. presented an analytical study of the effect cdyarr
deformation using modal decomposition and a stediistnodel to present analytical results.

This paper focuses on the DORT (French acronymDecomposition of the Time
Reversal Operator) method which is derived from rikedrix formulation of iterative time-
reversal experiment This method is an efficient way to detect andhlize passive targets.
In the frequency domain, the time reversal operflI®0O) is given by the Hermitian matrix
K'K (or KK ") whereK is the Multistatic Data Matrix (MDM) and the daggguperscript
denotes transpose conjugation. For well-resolvettdpic scatterers, one eigenvector of the
TRO, i.e., one time-reversal invariant, is gengradlssociated to a single scatterer.
Consequently, the rank of the TRO is equal to thenlver of scatterers. However, this
property, which is important for detection, is onlglid in a time-invariant environment.
Indeed, previous studies assumed that the propagaiedium and the targets were static

during the acquisition of the MDM. But because ttexzording of the MDM is not
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instantaneous, this last assumption may not bastedlhis is especially true for at-sea

experiments. For instance in Prada &“lthe DORT method was applied in shallow water
using a 12 kHz vertical array composed of 24 transts. Hence, 24 emissions and the 24
sound round-trip travels were necessary to acqnedMDM on the 24 transducer array. Thus
it takes at least 8 seconds to detect targets @n2%s a consequence, instead having 1
significant eigenvalues for detecting one targeg, strongest eigenvalue is only 5dB larger
than a continuous distribution of the 23 other rigdues.

However in this complex shallow water experimenis idifficult to isolate the effects
of the medium fluctuations from the effect of theund reverberation that also increases the
number of significant eigenvalues. Moreover, at, $eare are many possible causes of time
fluctuations: array oscillations, gravity wavesnrgiationary water currents, target motion,
etc. Thus it is important to understand the effetcttarget motion on the time reversal
invariants.

Because, the general derivation of the invariahtthe® TRO is a tough problem, we
consider a simple configuration for which analytiesults can be derived: an isotropic point-
like scatterer moving parallel to a linear arraytr@insducers. Even in this simple case, it is
observed that, instead of a unique time-reversariant for a motionless target, the scatterer
is associated with as many invariants as the numibansducers. Here, we study this effect
when the displacements are small compared to tad wadth at the target position. With this
assumption, analytical results can be derived uSegor expansions. It is very enlightening
to understand the transition from a rank 1 TRO folarank TRO when the displacement
range increases.

This paper is organized as follows. In sectionthe DORT method is briefly
described and the two MDM acquisition methods ateoduced. The theory describing the

eigenvalue distribution is developed in sectionfél column by column acquisition, and in



section IV for element by element acquisition. Botbdels are based on the Taylor expansion
of the MDM with respect to the root mean squar@ldisement of the target. Random matrix
theory is used to describe the eigenvalue disiobuor the element by element acquisition
method. In addition, from the analysis of the eigarors of the TRO obtained with the
column by column acquisition, we derive an originalethod to extract the target
displacement which is even valid in the presencphaise aberration. In the last section, we
discuss how this approach can be applied to preléctresolution loss of two well-known
non-linear array processing algorithms: minimunelitkood and the Multiple Classification.
The theoretical results are confirmed with MDM obéal either numerically or
experimentally. The experiments are performed waithultrasonic transducer array working at

3.5MHz central frequency.

Il. EIGENVALUES OF THE TIME REVERSAL OPERATOR FOR A moving target

A thorough description of the DORT method can hentbin previous works™® (and
references therein), therefore only a few basialtesre recalled in this section. For a given
experiment with two arrays of transducers, two thenersal operators can be introduced, the

transmission operator (Tx-TRO) and the recepticerafor (Rx-TRO). They are, respectively,
given by the matrix product& 'K and KK . The Tx (resp. Rx) time-reversal invariants are
the eigenvaluesy.’* (resp. >~*) and the eigenvectors*(resp. UY*) of the Tx-TRO (resp.
Rx-TRO). It can be easily demonstrated that tfeeigenvalues ofk 'K and KK "are
identical, i.e. X =Y"™=3 . Vector U™ (resp. U%) is defined as th@"™ eigenvector of
K'K (resp.KK "), i.e., KIKU* =3 U ™ (resp.KK U =3 U ™). In the present study, a
single array is used for transmission and receptiod acoustic reciprocity is assumed so that

K is symmetrical an&K = KK ".



We consider an isotropic scatterer moving pardtiel linear array of transducers,
slowly enough to ignore the Doppler effects. Insthbnfiguration, we study two ways of
acquiring the MDM. The first one, called "column legplumn”, consists in successively
transmitting a probing signal (pulse or chirp) freach of the transducers (Fig. 1). After each
emission, the backscattered field is simultaneotestprded on all elements of the array. This
method is commonly used in DORT experiments andatagiisition time is B7 whereN is
the number of transducers in the array and the one-way wave travel time between the
array and the target. As the target moves betweeremissions, each column of the acquired
MDM corresponds to a different position of the &trgrhe second one, which is used when
there is no parallel processed reception, is thenfent by element" acquisition. This method
consists of\N? Tx/Rx acquisitions, and the total acquisition tilm@N?7 . It is therefore much
more time consuming and in this case, each eleroér{ corresponds to a different

scatterer’s position.



Transducer array

Emission by 1 transducer

(T

Reception by all transducers
N
Reception by one transducer
O
N

Column by column Element by element
acquisition acquisition

Fig. 1 Experimental geometry and schematic descrigin of the "column by column" and

"element by element" acquisition methods.

To better understand the consequences of theseatgoisition processes, simple
numerical computations are performed to generaeTiROs. The moving target, which is
assumed to be isotropic and point-like, is sehawater at distance L = 136 mm from a 64-
transducer linear array working at 3.5 MHz. Theagpmitchd is 0.417 mm. The target motion
is supposed to be parallel to the array. The digplents are supposed random and
uncorrelated following a zero-mean Gaussian digtidim with a standard deviation denoted
0. The N’ elementsK,, of the MDM are computed as the product of the &=eéunction

between antenna numbkilnd the target’'s position, and the Green’s fumcbetween the



target and antenna numben. The synthetic Tx-TROK'K is then computed and
diagonalized. Fig. 2 displays the evolution of gigenvalues of the Tx-TRO with respect to
o. Note that for a giverw, the plotted eigenvalues are obtained from oneza&&hn of the
MDM. Hence, since the diagonalization is a selfrageng process there is no need for
averaging. In these figures, in the static case(), both acquisition methods give the same
single positive eigenvalue. However, asincreases, the eigenvalue distributions behave
differently. For column by column acquisition, tegenvalues increase roughly as a power
law of o (Fig. 2. For element by element acquisition, a continudissribution of the
eigenvalues rises. The distribution follows a qa#idrlaw o for small . But the second
eigenvalue separates from the continuum &or 0.25 mm and behaves like the 2nd
eigenvalue in the case of the column by column iggeun (Fig. 2a). In both cases, the
presence of secondary significant eigenvalues mdyce false alarms as if more than one
target is present in the medium. In order to idgrthiese false alarms, the first step consists to
solve the direct problem by predicting the evolntmf the eigenvalues with respect to the

target motion.

Normalized Eigenvalues
Normalized Eigenvalues

0 0.5 1 1.5 0 0.5 1 1.5
a) Standard deviation o (mm) b) Standard deviation o (mm)

Fig. 2 (Color online) Evolutions of the 64 eigenvaks of the Tx-TRO at 3.5 MHz as a function of

the root mean square displacement of the scattere(a) element by element acquisition (the scatterer



position is different for each MDM element). The iset plot is an enlargement between Omm and 0.4mm.

(b) column by column acquisition. The scale of thmset plot is log-log.

We propose two models associated with each acgusmethod. The column by
column results are explained thanks to Taylor'seseof the time reversal operator with
respect tahe root mean square (rms) displacemendf the target. We show that the leading
Taylor's order of the"" eigenvalue i=”™Y. To interpret the element by element results, we
perform a Taylor's series of the TRO and also usaldmental results of random matrix
theory which predicts the eigenvalue distributiamr & large random matrix. The whole
analysis is performed in the frequency domain. ther sake of simplicity, the frequency

dependence is kept implicit.

lll. ANALYSIS oF the TRO FOR a COLUMN BY COLUMN ACQ UISITION

The transfer matrix is acquired column by columnsyultaneously recording the
backscattered field on all array elements aftetheamission. This acquisition method is
commonly used in experiments where a transmit-vecarray (TRA) is available, since it is

much faster than the element by element acquisition

A. Derivation of the Time Reversal Operator

Let us consider a linear array of apertdreith N transducers and a moving scatterer
at a distancé& from the array. Assuming a homogenous and isatrpmpagating medidm
is given by the propagation from transduneat positionMy, to the scatterer at positic™
and the back-scattering from the scatterer to tremstucer at positiorM,. Thus,
K,, =G(M,,S™)G(S™, M, ) whereG is the Green’s function. Using the free space Green’s
functiont’, it comes

1 ik (M, S™[+[M,, S ™))

K'“‘=16n2\|v||s<m>HMmSm>\e (1)




whereM, (1< m< N) are the transducer positidfisPosition §” does not depend on
index | because a whole column is acquired for one seatfgosition. Without loss of
generality, the scattering coefficient is assumgdaéto 1. Because in our configuration the
target range is about 5 times the array size,atget can be considered far enough from the

array to replace M;S™| and 1M,S™)| by 1L. Then Eq. (1) becomes

1 ik (| M S™[+|M, S7))

“n = T | @

The Tx-TRO H =K K ) is then given by

1 kM SO ( ik(Mns(mLMnsﬁ'))j KM <™
H,=——=e"" e Sl 3
ey % | ®

Matrix H is the product of two diagonal matrices and a ixdt . Indeed,

— ikMs s ikm, ™
Hlm—e' ! Hlme'M“ (4)

Because the diagonal matrices are unitdtyand H have the same eigenvalues and

the I"™ component of the"™ eigenvector ofH is equal to thd™ component of then"

eigenvector ofH multiplied by e s” For largeN, the transformation of the discrete sum

of Eq. (4) into a continuous one yields

~ 1 NJ-d/Z eik(\/L2+(2—UZ(m))2—\/L2+(Z-UZ('))Z)dz

Im = (4771_)4 E —d/2 (5)

=F(oz",0z™)

where 0Z" is the cross-range scatterer position for ifheemission (see Fig. 1).
N
Distancecis a displacement factor that is defined sucti ('))2 = N. In the following,o
1=1

is assumed to be small comparedLtod and +AL/277. Thus a Taylor expansion of the

functionF in terms ofaZ® and gZ™ can be performed. At thg" Taylor order, this series

is written:
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d.. ,F(0,0) ,
F O'Z('),U'Z(m) - (p.P) 77OV (g ZM P 4 q+l,

(p, )OO, aF, (p+ P)<a,(, MO[LN]
In this equation, the TRO is expressed on a basisemgted by{[z(')]n,nDN},
however the sequencesZy, (Z")? ("3 ,..(z"" } are not orthogonal (e.g.,

> z9(ZV)*#0). Thus, to simplify the derivation, it is usefa write equation (6) on an
|

orthonormal basis. The chosen ba{s\kﬁ]} is built from the well-known Gram-Schmidt

(I=ms<N)

orthonormalization of the famil{[z(')]n,nDN}. The iterative procedure to deriwé_ is

described in APPENDIX A. The Appendix also providbs expressions of the first three

vectors. By definition, one element bf under this new basis is given by:
H(m+1)(m'+1) = \7:1':'\7 n - (7)

Note that the dimension dfl is infinite. But, thanks to this orthonormalizatjcthe
elements of the matrix are sorted with respecth@rtTaylor's order. More precisely, the
Taylor order of each element of an anti-diagonajii@n by the number of elements of the

anti-diagonal minus 1. For instance, the Tayloifth forder expansion is given by:

P ;k\gﬁff 0@5? o@e/"fo@ey\ e
T, By By By 0
H 217 /sz/H23/H24 “0 0 ..
i, H, H, 0 0 0 . 5
f{i A o o o L[
[, 0 0 o0 0 o0 ..
0 0 0 0 0 0 ..

(8)
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The method to compute the matrix elements up terd2ds described in Appendix B.
This method can be generalized to compute themouant arbitrary order. The use of a
symbolic algebra software makes the task much easachieve.

Therefore, computation of the eigenvalues and theneectors up to the" Taylor

order, means the diagonalization of the uppersiafit-matrix of dimensions (k+1, k+1).

B. Eigenvalues
In this section, the displacement distribution sstaned symmetrical with respect to
the array axis. We show in APPENDIX C that in sacbase, the elememimm. equals zero

when indexesn andm’ are of different parities. Consequently (8) beesm

&

A (/\e"o = C\\l \ O‘de\’
@ o E" o
0_Hp, 0 H, 0 6
H= ;ﬁl}% /xom@/ o o +O(%)
,«O - 7H a0 101 0
{#y 0 [o] o pol

The expressions of the matrix elements are ginekAPENDIX D. MatrixH can be

decomposed into two independent matrices: the dingt is built from HAZn'Zn. elements and
the other fromHA2n+1,2n.+1 elements. Hence the diagonalizations of both sabrices provide

the eigenvalues of . Even with these simplifications, the extractiontloé eigenvalues is

quite laborious. The expansions of the first 3 eigdues’s;, 5, andSzup to the fourth order

are given in table I.
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Taylor Eigenvalues,
order
1 , o[ d®NZK? J NP 7T N K
N"+0°| - 2 |TO 7t 4
121 4L 720L
2 e d? N2K? g d* NZK‘_ dN 2 K
1212 8oL 4.°
3 . d4N2k4
360L*

Tab. 1 Fourth order Taylor expansion of the eigenviaes of I:I .

Up to orderd?, these expressions of the eigenvalues only rethiated . 2" =0 (there
|

is no statistical assumption @¥’). But at higher order, they are based on the latarge
numbers and the displacements are assumed randtimawbaussian distribution. Within
these two assumptiong; as defined after equation (5) is also the standakdation of the
target motion. The eigenvalues shown in Tab. 1 ab®ined using a computer algebra
software (Mupad) and by performing the diagonaimabf a three by three matrix and a two
by two matrix. The derivation of the general casbayond the scope of this paper.

These analytical results are compared to eigensatigeluced from synthetic TRO

(Fig. 3a) and from experimental TRO (Figb). The data are measured with a 64-transducer

array working at 3.4 MHzA = 0.43 mm). The array pitch &= 0.417 mm so that the array
aperture is equal to 26.7 mm. The target is a Orh diameter steel wire placed at
L =136 mm. A stepping motor translation stage nsotree target following a programmed
pseudo random (zero mean Gaussian distributedipdempent sequence.

As can be seen in Fig. 3, the model successfulgdipts the evolution of the
eigenvalues of the TRO as a functioncofvhen this last is smaller than 0.3 mm.
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Fig. 3 (Color online) Eigenvalues (solid line) ofysmthetic TRO (a) and of the experimental TRO
(b) as a function of g for the column by column acquisition The results are compared to the analytic

expressions obtained with a second order Taylor egmsion (dashed lines).

C Eigenvectors

After a careful study of the eigenvalues, we noauton the eigenvectors and their

numerical back-propagation (i.e., beamforming). Rxeand Tx back-propagated fields of the

q" eigenvector at positionP=(L,2) are expressed as{ZeXp(—ikl\/hP)[U:?X}I and

|
Zexp(+ikM|P)[U;Xl . In Fig. 4a and Fig. 4b, these back-propagatddsfiare plotted at
|

rangeL and on z-axis for the first four Tx and Rx eigertees computed foo= 0.54 mm.

We first note thatU and U;* are close to the eigenvectors in the motionlese ca
i (1)
([UIX]I ~ gMs ‘/\/N). Consequently, they are focused at the averaggettdocation.

Second, we see thalﬂ;X is no longer equal tc(st)* when g>1, as it should be if the

experiment was static. This is due to the symmisteaking ofK matrix for >0. Indeed, the

target position is now different for each column.Hig. 4c and Fig. 4d, the experimental
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results show the same behavior, even if the megettaosition is not exactly centered with
the transducer array.
Matrix H is not diagonal, i.e., the vectdrs are not the eigenvectors BFf. But since

the off-diagonal elements are small compared to dlagonal eIements,\N/m are good

approximations of the"™ eigenvectors at zero order.

URx UTx

_____

.....
~.

~~~~~
S

-
S

.
. -
3 -

-

Distance to mean position (mm)
Distance to mean position (mm)
Distance to mean position (mm)

-
.

47 - =-2nd

= = =2nd
-8 Y, 0 === 3rd 4 =+=+=3rd
P —se=s 4th ~««" —-—- 4th
-10 L - -10 : - - ! ! !
0 0.02 0.04 0.06 0 0.02 0.04 0.06 20 40 60
Pressure Field Amplitude Pressure Field Amplitude Pressure Field Amplitude Pressure Field Amplitude
a) (a.u) b) (a.u) c) (a.u) d) (a.u)

Fig. 4 (Color online) Back-propagation (or beamforming) d the first four eigenvectors on z-axis

at range L for column by column acquisition with =0.54 mm. The eigenvectorsiJ;x used for (a) and

st used for (b) are deduced from synthetic TRO. The genvectors U;X used for (c) and st used for

(d) are deduced from the experimental data.
. . ~ . ~ (I)
Hence, the leading term of the second eigenvedtdf os V, =

Eqg. (4), the second eigenvectorldf=K 'K is then approximated by:

kMis?l )

(V) == 9
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Note that the indexes of the eigenvectom:lofstart at 0 while the ones bif start at 1.
This difference comes from the fact thétis derived from a Taylor expansion whilg’* is

|th

an experimental observable. The ratio of fh@lement ofUT* by thel™ of element ofUl*

i (1)
which is equal 1™’/ /N leads to the target positiad during the acquisition of thé"
column of the MDM. The absolute displacement of tdrget isoZ" and ois obtained from

the ratio of the two first eigenvalues. Finallgdmes

o700 = [T 203 (U3) (10)
5, kd (UD)

We recall thatt,, 2, are the first and second eigenvalueghe target range andlthe

array width.

Experimental results plotted in Fig. 5 and Fig. & abtained with a random
displacement and a linearly accelerated targeboth cases, there is an excellent agreement

between the positions deduced from (10) and tHeoress.
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Fig. 5 (Color online) Experimental estimation of tke random motion of the target. Comparison
between the real positions of the target (-o0) anché position deduced from the DORT analysis (see Eq.

(20)) (--*). (a) is obtained foro=0.14 mm and (b) forg=0.66 mm.
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Fig. 6 (Color online) Case of a linear, acceleratethotion of the target. Comparison between the
real positions of the target (- 0) and the positiordeduced from DORT analysis (see Eq. (9)) (--*). Jas

obtained for 0=0.14 mm and (b) for=0.66 mm. The TRO are computed from synthetic data.

As can be seen in Fig. 5a and Fig. 6a, for smdliesgmof g, the use of Eq. (10)
provides an original way to track a target. Thisthmod differs from the match-filter based

techniques proposed in underwater acouSiftsas the displacements of the targets are

directly deduced from the absolute valueldf .

However aso increases, the zero order Taylor expansion&)pf and UJ* are not

sufficiently accurate, so it becomes difficult tongpensate for the phase termw¥* (Fig. 5b

and Fig. 6b). This is striking fa> 0.6 mm, where the“éeigenvalue begins to stand out from
the noise (see Fig. 3a). In order to give a quatinte measurement of the mismatch between

derived and real positions, the deviation inducgdhle error made on the position derived by

Eq. (10) is compared tbA142/ ﬁzz. Indeed, by using the zero order approximatiotugf, de

facto, the termHA42 is neglected. It stands to reason that the ria?ti,g/lfl22 will give an

18



estimation of the error. This approach is confirnmeéig. 7 where this quantity is compared

to the error made on the derived positions. In figgre, the standard deviation of the error
clearly follows the coupling term, proving theidaton. Thanks toﬁ42/ I—A|22 we deduce a
validity criterion for Eq. (10) related to the wé&ihown resolution quantitylL /d . Indeed,

I:|42/I:I ,,<0.1wheno <0.061L /d only then the tracking of the target can be tmliste

42 22

Coupling Term H_/H

Standard deviation of error  (mm)

Fig. 7 (Color online) Error made on the position dduced from Eq. (10) (solid line) compared to

H,,/H,, (dashed line).

This tracking technique offers one more advantagepared to matched-filter based

methods. Indeed, going back to Eq. (4), we concthdethis method is working even when

phase aberrations occur in front of the arraythéf aberrator induces a phase shjftat the
n™ transducer of the array then the new multistasia dnatrix become& , = PKP" where
the diagonal matriP represents the aberration effeﬂy,(=e”""). The (,m) element of Tx-

TRO (H_, =K1K ) with the aberrator is expressed as
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N
(Hp), =D €K %% K &%
k

(Ha), =63 K K™ = 6 b, & =

This equation is similar to Eq. (4), then doing te@me derivation, the target
displacement is also given by Eqg. (10), i.e.,siproportional to the ratio of the elements of

two first eigenvectors.

With a strong random phase aberrator in front & ttansducer array, we compute the
synthetic TRO. We compare the localization using @) to the classical beamforming.

We note that when no noise is added (Fig. 8a), apfitoaches provide very good estimations
of the target positions. Indeed, although the b&amed map looks like a speckle pattern due
to the unknown phase aberrator (there is no fquatl at the target position), for small target
displacements, the speckle pattern is shiftedgstmmally. But when strong noise is added,
we observe on Fig. 8b, contrary to DORT approatle, beamforming does not work

anymore. Thus DORT appears to be more robust 8enoi
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Fig. 8 Displacementof a target with respect to the iteration inde: when a strongand random
phase aberrator is in front of the array. The solid line with plus markersis the exact positiol of the
scatterer, solid line with circlemarkers is deduced from Eg. (10) and the dé¢d line with diamonds is the
positions extracted fromthe displacement<of the maximum of the beamformedmap. (a) no noise is added
to the MDM. (b) decorrelated Gaussian noise is added to each element of the MCwith a signal to noise

ratio equal to 1.

IV. ANALYSIS OF THE TRO FOR an ELEMENT BY ELEMENT ACQUISITION

A. Eigenvalues

The Cartesian coordinates of the target posiS"™ during acquisition of theKim,
element is I(,0,6Z2'™) wherez!™ is a normal random variable with zero mean andamn
variance. Contrary to the column by column acquwisjt the position of the scatterer

different (uncorrelated) for each element of therimK.

Using the Green'’s function in free space, the ehts of the MDM are writter
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1 ik (M, S"™]+|M,, ™))

K =
" 1672 [M,S"M, S (12)
with k=caJc the intrinsic wavenumber.
Considering that. > d > o, K, simplifies into
1 -ika ( 22" | 72" )
_ k2472 _jkoJL2+22 N[EFPEN e

wherez is the transversal position of th transducer of the array. In addition, we
also consider the case whétes large enough to apply the law of large numbers.

One can show that the rank of the first order Tagigansion oK is equal td\. This
is a major difference with the column by column casere this rank equals 1. Consequently,
random matrix theory (RMT) should be applied termptet the element by element MDM. To

this end, we distinguish the mean value of the MDMmrits fluctuating part :
KIm = <Klm> + 5Klm-

The analysis of the eigenvalue distribution of tatrix K 'K whereK can be described as a
deterministic matrix<K> perturbed by a random matrdK has recently attracted attention,

and we will use some of the results reported initBeaturé®>* In the following we will first
show that the mean value of the matkxis indeed a low-rank matrix and compute its
eigenvalues, and then we will show how the eigenvdisteibution is affected by the addition

of random fluctuations.

The mean value df, written <K >, is given by:

R 2 2 2 2 - 2 2 2 2
<Klm> _ Ay e|k\/|_ 7, e|kJ|_ 3’ [ g o VEr7 (g
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Assumingz andz;, are small compared tqg it comes

k?c?
1 iKJL2+22 ik 12+ 2.2 -5 (7+%,)°
z° _ikyL+7, 2
e e et _ (15)

< lm>:—

(4rL)’
The distributions of the eigenvalues ok k<K> given by Egs. (13) and (15) are

compared in Fig. 9. The eigenvalues of the meamixnsticcessfully describes the evolution

of the two first eigenvalues #f'K obtained without averaging.

o o o
= [e}] (o]
T T T
~
£,

Normalized eigenvalues

o
N
T

~a
-
LT
-----

--------------
---------

=T 1
0.5 1 1.5 2 2.5 3
Scatterer standard deviation ¢ in mm

0
0

Fig. 9 First two eigenvalues of KK as a function of o for the element by element acquisition
(continuous lines). For each element of K, the pdsin of the scatterer is different. Here K is a sythetic
MDM, i.e., it has been numerically computed from tle Green’s function (see part Il for more details).

These eigenvalues are compared to those of k&K> (dashed line). An element <l,> is estimated

numerically by averaging K, over 100 different positions. The dashed-dottedrles correspond to the

Taylor expansions of the first and second eigenvads [Eq. (17)].

Next, to find the analytical expression of these fust eigenvalues, we use the same

approach as for the column by column case. A Tagigransion of K> up to the fourth

order is derived.
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To compute the eigenvalues, Eq. (16) is project@d a new orthonormal basis built
from Gram-Schmidt orthonormalization. This partsimilar to what has been done in Sec.
[II.A., but instead of using the positions of tlaeget to from the generating family, we use the
positions of the transmit/receive elements ({1,zZ, ...}). After some derivations, the two

first eigenvalues of K "><K > are as follows:

N2 Ko2d? 7Kod*T
2, = 2 1- ot 2 )
(47L) 121 720
N2 [ Ko?d? Kio*d*| 40
S = - .
? (477L)‘{ 12> sa’ }

Here, it is assumed thhtis large. As shown in Fig. 9, the analytical exsgien of the
first eigenvalue up to order 4 is in good agreemeith the simulated eigenvalues for
0< 0.6 mm. As foiz,, it is primarily below the second eigenvalue doehte fluctuating part
of K. Then it increases rapidly, but the Taylor expamss no longer valid.

Thus we have shown that the two first eigenvalue& & observed on Fig. 9 are
mostly due to K'><K>. Next we show that the other eigenvalues (foritylahey are not

shown on Fig. 9) are mainly originated from thecfiating pardK. They are deduced from

the variance of elemeit,,. For smallg; it is given by:

2\ _[x \2__ KO Z 7 2
N - G

The result clearly depends on both entti@dm. In general, there is no analytical
formulation in the case of a random matrix withnedmt variance dependent on the two
element indexes. Nevertheless, we assume thatatigtisal properties of the fluctuating part
of K mainly depend on the variance averaged over allelements oK. From, (18) the

average value over matrix index is
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1 2 k’o?

N 2 ()~ () = g™
z 22 7, %

%’ |-2+Z|2+\/L2+z|2\/L2+znﬁ T Z,

(19)

The second term on the right hand side vanishesuseche array is symmetrical with

2 d/2 2

respect to z=0 axis. The first and the third terane equal to? j in 5dz . The

-d/2

continuous integral replaces the discrete sum. eletite averaged variance is equal to

ﬁ(l—&arctan d ﬂ
1287L* d '

The spectral properties of a uniform random maaie well known. In particular, it
has been shovnthat, for large matrices, there is a determinist@ximum to the singular
value distributiorf® Hence, the maximum eigenvalue (the square of tArimum singular

value) is given by:

ko Y[, 2L d
2. =S8N 1-— arctan — 20
A L I
Assumingd<<2L, Eqg. (20) can be simplified into:
2
h:i(_dkaj (21)
%, 3NU L

In Fig. 10a and Fig. 10b, we observe that, for smakEq. (21) approximately fits the

eigenvalues of both synthetic and experimental TRO.
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Fig. 10 (Color online) Element by element acquisitin. Comparison of the eigenvalues ok'K
computed from synthetic (a) and experimental (b) M (solid lines) as a function of the standard
deviation of the displacement. These curves are mpared to Eq. (21) (dotted line). The configurationis

the same as that in Fig. 3 except for L=175 mm.

B. Eigenvectors

The phase and the amplitude of the 3 first transioms eigenvectors measured at

0=0.70 mm are plotted in Fig. 11a. As expected,tive first eigenvectors are given by the

eik\[Lz+qz
diagonalization ~of the mean matrix K&<K>, ie. [U]] = and
[ \/ﬁ
20 d+z
[ngl :T' respectively. As for the third eigenvector, itdge to the fluctuating

part of the matrix and, consequently, the phase thadamplitude of each component are
random. Fig. 11b shows that one may use the twbdigenvectors to find the mean position
of the target, but unlike the column by column ¢dke information on the positions of the
target is, to the authors’ knowledge, not extrdetallt is worth noting that the first
eigenvector corresponds to a monopolar focus whéesecond eigenvector corresponds to a
dipolar focus, even when the target in itself isisotropic scatterer. Thus the mean value of

MDM is the MDM of a sort of average extended tardetleed, in such a case, we have
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already shown that beamforming of the first andosdceigenvector gives rise to such

patterns.

UTx

10 20 30 40 ) 60
Transducer Index

Distance to the center (mm)
Distance to the center (mm)

-6 1st
g = = =2nd
—eme=3rd
o= 4th

‘ ' k —1oLaki
10 20 30 40 50 60 0 20 40 60 0 20 40 60
a) Transducer Index b) Pressure Field Amplitude (a.u) Pressure Field Amplitude (a.u)

Fig. 11 (Color online) Experimental element by eleent eigenvectors wheng=0.70 mm. (a)
Amplitude and phase of the three first experimentaleigenvectors U*(*), U}*(0) and UL*(x). (b)

Beamforming of the first five Tx and Rx eigenvectos at a distance L of 175 mm. The first eigenvector
shows a monopolar focusing while the second eigemt@ shows a dipolar focusing. We have shown that

the first 2 eigenvalues were dominated foo=0.70mm by the mean value <K>.

V. DISCUSSION ON THE IMPACT ON MUSIC AND ML DETECTI ON

Up to now, we have only focused on the analysithefinvariants of the time reversal
operator and their back-propagation. In 2003, PeathThoma< showed that two classical
detection algorithms, Maximum Likelihood (ML) and Wfiple Signal Classification
(MUSIC) can be introduced within the framework of(DR.T. The ML and MUSIC

expressions in terms of time-reversal invarianésgiven by

|7R(P) = ZN_:zq‘l Zt‘:exp(iikW/Lz +z2 U] (22)
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ZN:exp(iikw/Lz + 72 )[u;XvRX]I

=1

q=2

} (23)

We compare these two non-linear estimators to theist beamforming

5P =(z

estimator :

(24)

2

N
IR P) =%,
q=1

IZ::eXp(iik‘/ L?+2 )[U;X‘RX]I

Because the target is moving during acquisitiothefMDM, the three estimators are affected
and can provide different results when using theffthe Rx eigenvectors. Note that + (resp.
-) sign in Eqs (22)-(24) are related to Tx (resp) Bigenvectors. These estimators computed
from synthetic MDM are plotted on Fig2. For a motionless target (FitRa), as expected,
the localization is excellent with both ML and MWSéstimators. The sharpness of the spot is
only limited by the 60dB SNR. But when the targetves during MDM acquisition, the spot
width dramatically increases in case of ML and MOSistimators. This sensitivity to target
motion is due to the non-linear behavior of the &id MUSIC algorithms.
In case of the MUSIC estimator, the spot width ®poertional the square root of
N - IZ'\‘:exp(+ik\/l_2Tz2 )[UIX]l 2. In other words, the width depends oraff4vhereais the

=
projection of the first eigenvector on the firsti@ of the basis resulting from Gram-Schmidt
orthonormalization. Without motion, the eigenvect® equal t@xp-ikM, P)WN,
i.e.,Jaf’=1 and the spot width decays toward 0. With motithe first eigenvector is
decomposed over all the vectors of the aforemeetioarthonormal basis. Because the
eigenvector is normalizedgif is now smaller than 1 and the width of the MUSIbts
becomes finite. Exact expressions of the singuémtors can be derived thanks to the same

Taylor's expansion of the time-reversal operat@antthe one performed in order to work out

analytical expressions of the eigenvalues. The ¢astepderivation of the vector is quite
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technical and out of the scope of this paper. Hegepnly give the main results. The factors
1-|laf* are equal toa'cd’k/720L* and a®c?k?/12L2 for the Rx and Tx column by column
acquisition, respectively. This result explains vihg MUSIC spot is smaller for the estimator
computed with Rx eigenvectors (Fig.12 b) than the computed with Tx eigenvectors (here
aok/L<1) (Fig.12 c). As for the element by element asijoin, because the matrix is
statistically symmetric, the Tx and Rx spots areadt identical (Fig.12 d and e). In that case,
one can show that the factordf|is equal toa’c®k’/6NL2. Applied to the parameters used to
obtain the synthetic results shown on.Hg , the last factor, i.e., the spot width is bedw

the two previous ones.

The ML results are more complex to analyze. We hes@n that for the element by
element acquisition, the first eigenvalue is muarigér than the other ones. In such a case ML
estimator is close to the MUSIC one: the two estimsaprovide similar spots. It is different
for the column by column acquisition where ML sp@ing RXx eigenvectors seems worse
than the one using Tx eigenvectors. This effect tayexplained by the fact that the Rx
eigenvectors are expressed in terms of the targgtigns (see Section IllI) while on the
contrary, it can be shown that the Tx eigenvecto@nly depends on the transducers
positions and the average properties of the tatigplacement. Consequently, the maximum

of the ML processing is less sensitive to targspldicement when using Tx eigenvectors.
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Fig. 12 Lateral target detection at range L=136mm from synhetic data using beamforming
(dashed line), MUSIC (continuous line) and ML (dashd-dotted line) estimators. A -60dB level noise is
added. The noise is Gaussian distributed and decatated between all the array transducers. Fig. (as
obtained for a motionless target. Figs. (b) and (dyesp. Figs. (d) and (e)] are worked out from a damn by
column (resp. element by element) acquisition of @MDM for a target that moves randomly (1=0.2mm).

Figs. (b) and (d) [resp. Figs. (c) and (e)] are cqmted from Rx (resp. Tx) invariants.

V. Conclusion

We have presented a theoretical and experimentdy stf the eigenvalues of the time
reversal operator for a moving target. We have shiat target motion increases the rank of
the MDM leading to supplementary "time reversalain&nts”. For detection purposes, this
effect may induce false positive alerts. In theeca$ column by column acquisition, the

eigenvalues increase as a power law of the displent while for element by element
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acquisition of the MDM, two phenomena are obserwett is due to the fluctuations of the
MDM and the other is related to the mean value. i@melom part of the MDM induces an
eigenvalue continuum that grows linearly with respe o whereas for the mean part, the
eigenvalues follow a power law. Analytical formudat of the evolution of the eigenvalues
have been given for both acquisition methods andirtoed by synthetic data or ultrasonic
water tank experiments. A thorough study of eigiresand eigenvectors provides the target
displacement. To finish, we have quantified thee@ff of such uncontrolled target
displacements on two non-linear detection arraycgssing. The degradation of the target
localization strongly depends on the MDM acquisitimethod and on the applied detection

algorithm.

APPENDIX A: EXPRESSION OF THE VECTORS V|
We use the Gram-Schmidt orthonormalization methodtlwe family of vectors

{[Z(m)}n ,nQJ N} to construct the new bas{is?m,mDN} . Them™ vector is proportional to the

perpendicular component E(Z(l))m,(z(z’)m,...,( Z(N))m} toV,, V,,...,V_,. In other words

<

(2 -2
(2 |

(2|90 =~ 2. (2|7
) (20) (V0] = 20, (29 |0)

<

For example,
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The right hand side expressions in (A2) requiregsragtrical displacement. In case of

symmetrical random displacement, the law of langeipers is also mandatory.

APPENDIX B: THE SECOND ORDER TAYLOR EXPANSION OF H

We start from Eq. (5):

" dz B1)

1 N J‘d/z eik(\/L2+(z—aZ(m))2—\/L2+(z—UZ

~ st _ N
(H)ml _(K K)ml _(4771_)4 d J-a2

whereN is the number of elements in the arrays the distance between the array and
the targetd is the array lengttz, denotes the positions of the array elementsaai
(1<I <N) the positions of the target during acquisition

The second order Taylor series expansioklofiroundo= 0 is written:

(KTK)mI = (47::_)4 [1—02(Cl(z(m)_ ZM)2 + icz[(z(m))z_(zﬂ))Z])}+ do?)
(B2)

with
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k2 d/2 2

X K’
=— 1—— t
C = a[/zxz“—zd ( arcan?j
(B3)
k J- L
C,=—— =—

arctan{— )
4, X L2 d (?L

Assumingd <« 2L, c¢; can be approximated by:
k*d?

“=Zaz

The imaginary term in Eq. (B2) can be neglected a4l only add a phase term to the

eigenvectors and will not change the eigenvalued offhe computation of the elements of

H is carried out as follows:

H(m+1)(rd+1) V H

<
3.

=1

=N 3 (V) [0 (27~ 277)]( W),

(B4)
For instance, for m=1 and m’'=3,

NiZN: 1 [ 2(q(z(l)_z(|-))2)] (202 -1

=1 1'=1 N

N (B5)
Thanks to the orthogonality betwedfy andV, , the previous expression becomes
2

. k2d2 N, N (Z(l’))2_1
H,, =-No? zO - 70 2—

2 KIS (22 -1 3 0 (Z) 2 (21)7-1

(Z (l))2 -2 (Z()Z(l)) _|_ (Z))
e pr e S5 B

(B6)
To simplify the expression, we assume thaZ8llare uncorrelated random Gaussian

variables. The previous equation can be reducéd third term. Indeed the odd moments of
Z" are null, and as the variance 8f & equal to 1. Finally, (B6) is simplified into

A =Nt KE 330 ) -2’
241 54 N+/2
e KRS (2 -y
2412 & N+/2
_ _\/ENZO'ZkZdZ
B 2412

242 _
242 N2
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In Eq. B7, the law of large numbers is used toaeplthe sum overby the mean

value times\.

APPENDIX C: SYMETRIC DISPLACEMENT DISTRIBUTION
In this appendix, we show that when the paritiesnoind m' are different, the
elementsﬁmm. equal zero.

The elementH ., m.piS equal to VIHV .. This expression is a sum of terms

N,N f
Kypy = Z(Z('))p F(JZ('),UZ‘”)( Z '))p . A symmetric displacement distribution means that
(N

for each scatterer positiod’Za symmetric oneZ exists, such that? = -z". Consequently,

Ko = 2, (27) Fl020,020)(27) =" S (2) F(o 2,0 27)( 27) +
[N I+ +
Sz Eroztr ez ) (29) S (29) Fle 2 -0 27)(- 29)°
1+, +' 1+,1+'
N/2,/N/2

_700YP 2708 _ 70 (70"
+,§;.(Z )" F(-0Z"",-02")(-2"")

(C1)
where thd+ andl+’ indices only refer to the positive scatterer posg. The function
F is symmetric with respect to its two entries, Fdoz2"?, 02" =F(-oZ2'?,-c Z!").

The previous equation can be rewritten:

N'N(Zm)p F(JZ('),UZ(m))( Z(m))p‘ = NIZ'ZINI/Z( Z(l))P F(o2",o Z|+'))(Z(|+-))P' [1_'_ (_1)p+p':|+
) peaz a2 2 [+

I+ +

+

(C2)
It is now clear that when the paritiespandp’ are different, the expression is equal

to zero. Due to Gram-Schmidt orthonormalization hodt thel™

element of vectoW, is a
polynomial sum of term&" (see Appendix A). For symmetrical displacemenisthal power

exponents involved in the sum have the same pé#nay p (if p is odd, all the power
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N,N
exponents are odd and vice-versa). Conseque@:)(,\/p)I F(O’Z(l),O'Z(m))(Vp.)m =0, i.e.,
I,m

\7,;I-|\7m, =0, when the parities gf andp’ are different. Invoking low of large numbers, this

property still holds for random symmetrical displacements wherlN>

APPENDIX D: EXPRESSION OF THE ELEMENTS OF H

Using the method described in appendix B, the dominant terthe obon-zero

elements of the matrixl are written ﬁ IS symmetric):

2 21,2 2
iy = e ?2:_(20
q :_ﬁdzNzkzaz
3 2412
d2N2K?o?
25 1212
|:| :\/6N2k20'4 (Dl)
1 412
i :_Jéd4N2k4a4
42 480'.4
N2k?c*
337 2L2

APPENDIX E: DERIVATION TO THE SECOND TAYLOR ORDER

Up to the second Taylor order of the derivation the displacememhatrix H is

written:
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,  d?N2K%o? J2d% N2k ? |
N = 0 T
2 21,2 2
_\/EdzNzkza.z 0 0
I 2412 |

2N121,2,42
This matrix has obviously a second eigenvalue etquglw associated with the

eigenvectolV,. The other eigenvalues are derived by calculatiegleterminant of the

remaining matrix:

. _I*N’K'o? o J2d’Nk'o?

2 2 2 21,2 -2
12L 24L - _N2+d N ka +Z Z+0(0.4) (E2)
2
J2d2N2k%o2 121
T >

The roots of the determinant give the first andtthel eigenvalues

2, =N —T+ o(c”) andZ, =0+0(c"). Thus the leading term of the third

eigenvalue is at least of fourth Taylor order.

Note that the Gaussian assumption and the law of large nuareessly required for
the off diagonal matrix elements. Because these terms only coatabliylor order 4, up to

Taylor order 2, the two first eigenvalue expressions are alsofealitbon Gaussian motions

(e.g., a deterministic motion).
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Figure Captions

Fig. 1 Experimental geometry and schematic desonf the "column by column" and "element Jy

element” acquisition methods.

Fig. 2 (Color online) Evolutions of the 64 eigenwed of the Tx-TRO at 3.5 MHz as a function of “he
root mean square displacement of the scattererelément by element acquisition (the scatterer
position is different for each MDM element). Theséh plot is an enlargement between Omm and

0.4mm. (b) column by column acquisition. The sadlthe inset plot is log-log.

Fig. 3 (Color online) Eigenvalues (solid line) ghthetic TRO (a) and of the experimental TRO (b’ as
a function of g for the column by column acquisitiofhe results are compared to the analytic

expressions obtained with a second order Tayloamsipn (dashed lines).
Fig. 4 (Color online) Back-propagation (or beamforg) of the first four eigenvectors on z-axis at
rangeL for column by column acquisition witt=0.54 mm. The eigenvectort#;X used for (a) and

U used for (b) are deduced from synthetic TRO. TigereiectorsU* used for (c) andJ& used

for (d) are deduced from the experimental data.

Fig. 5 (Color online) Experimental estimation ofethhandom motion of the target. Comparison
between the real positions of the target (-0) dedposition deduced from the DORT analysis (see Eq.

(20)) (--*). (a) is obtained foo=0.14 mm and (b) fop=0.66 mm.

Fig. 6 (Color online) Case of a linear, acceleratextion of the target. Comparison between the real
positions of the target (- 0) and the position dedlifrom DORT analysis (see Eqg. (9)) (--*). (a) is

obtained foro=0.14 mm and (b) foo=0.66 mm. The TRO are computed from synthetic data.
Fig. 7 (Color online) Error made on the positiorddeed from Eqg. (10) (solid line) compared to

H,,/H,, (dashed line).

Fig. 8 Displacement of a target with respect ® iteration index when a strong and random phase

aberrator is in front of the array. The solid limg¢h plus markers is the exact position of the teret,
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solid line with circle markers is deduced from Efj0) and the dotted line with diamonds is the
positions extracted from the displacements of tlagimum of the beamformed map. (a) no noise is
added to the MDM. (b) decorrelated Gaussian neissdded to each element of the MDM with a

signal to noise ratio equal to 1.

Fig. 9 First two eigenvalues of 'K as a function ofc for the element by element acquisition
(continuous lines). For each element of K, the tpmsiof the scatterer is different. Here K is a
synthetic MDM, i.e., it has been numerically congazlfrom the Green’s function (see part Il for more
details). These eigenvalues are compared to thos& ‘@<K> (dashed line). An element <KIm> s

estimated numerically by averaging Kim over 100fedént positions. The dashed-dotted lines

correspond to the Taylor expansions of the first second eigenvalues [Eq. (17)].

Fig. 10 (Color online) Element by element acquisiti Comparison of the eigenvalues KfK
computed from synthetic (a) and experimental (b)NUolid lines) as a function of the standard
deviation of the displacement. These curves ampeaoed to Eq. (21) (dotted line). The configurat on

is the same as that in Fig. 3 except for L=175 mm.

Fig. 11 (Color online) Experimental element by ed&mn eigenvectors whem=0.70 mm. (a)
Amplitude and phase of the three first experimeatgénvectors U;*(*), UJ*(0) and U*(x). (b)

Beamforming of the first five Tx and Rx eigenvesetat a distance L of 175 mm. The first eigenvector
shows a monopolar focussing while the second emmov shows a dipolar focussing. We have

shown that the first 2 eigenvalues were dominated£0.70mm by the mean value <K>.

Fig. 12 Lateral target detection at range L=136momfsynthetic data using beamforming (dashed
line), MUSIC (continuous line) and ML (dashed-ddttme) estimators. A -60dB level noise is add=d.
The noise is Gaussian distributed and decorrelattdieen all the array transducers. Fig. (a) is
obtained for a motionless target. Figs. (b) and[(e$p. Figs. (d) and (e)] are worked out from a
column by column (resp. element by element) actimisiof the MDM for a target that moves
randomly (0=0.2mm). Figs. (b) and (d) [resp. Figs. (c) ang ée computed from Rx (resp. Tx)

invariants.
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