
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Contemporary Mathematics
Volume 577, 2012
http://dx.doi.org/10.1090/conm/577/11466

Imaging with noise blending
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Abstract. Seismic exploration and other imaging configurations are typically
characterized by large data sets corresponding to response recordings at a set
of receiver locations for the source at each of a large number of source points.
Recording, storing and processing such large data sets is very resource de-
manding. In this paper we discuss an approach where we can reduce this
work significantly without compromising imaging quality. The approach in-

volves sounding all the sources simultaneously. We show using high-frequency
asymptotics that common imaging functionals are not affected by this as long
as the sources satisfy certain scaling assumptions. We refer to the approach to
noise blending in the sense that the sources are blended in a particular “noisy”
way so that cross-talk terms that otherwise could impede image quality with
simultaneous sources are small. A significant aspect of our analysis is that we
prove that the scheme is statistically stable with respect to the realization of
the noise blending. We illustrate our results with numerical examples.

1. Introduction

In recent years there has been a focus on time-reversal techniques in wave
propagation. A model problem that illustrates this phenomenon is the situation
with a source emitting a signal that is captured on a sensor array of finite aperture,
time-reversed, and re-emitted into the medium. The signal then refocuses on the
original source location. The surprising result is that the focusing on the source
location is often very good and in fact enhanced by randomness or heterogeneities
in the medium, moreover, that the focused pulse is statistically stable and does not
depend on the particular realization of the random medium. The analysis of this
property involves a fourth moment calculation for the propagator. The technique
has had some successful applications in the context where one can carry out physical
time reversal, that is actually resend the signal physically into the medium to refocus
the energy for kidney stone destruction for instance [8]. A challenge in the context
of using the technique for imaging is that one has to migrate or resend the signal
numerically in a model medium that typically does not, in general cannot, capture
the heterogeneities of the original medium. The problem that we address in this
paper is related in the sense that we propose to use a technique in which randomness
helps the refocusing of the pulse, however, in a way that can be realized both in
physical time-reversal experiments as well as in imaging contexts.
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We consider a situation in which we actually use sources that are noisy or
randomly delayed satisfying certain scaling properties. The signal is reflected off
targets in the medium and recorded on a receiver array. In fact both in the case
of physical time reversal as well as in the imaging context we can time reverse this
signal and propagate it into the medium, either physically in (physical) time reversal
or numerically in the context of imaging and obtain stable focusing at the target
location. In the context of imaging the backpropagation or migration takes place
in a model for the background medium. What is significant about the approach
we discuss in our paper is that we sound all the sources simultaneously, both in
the case of probing and backpropagation. In classic seismic exploration situations
one sound one source at a time. The approach with simultaneous sources that we
discuss in this paper means significant savings both in the data gathering, storing
and processing stages. The analysis of the phenomenon is analogous to the analysis
of the time-reversal phenomenon [9] and bears also similarities with techniques for
passive imaging based on ambient noise sources [1, 7, 10, 12, 15]. The technique
associated with ambient noise is another spectacular imaging situation that recently
has received a lot of attention, in which one exploits the correlations in between
recordings at different stations to infer some information about the medium. In
this case as in the time-reversal case the presence of heterogeneities may improve
the imaging result, here due to the enhanced phase space diversity that it produces.

There has been a recent focus on various blending type methods that exploits
simultaneous sources, in particular in the context of seismic imaging. In the case of
classic vibratory source approaches one seeks to design a family of relatively long
sources encoded such that the responses of each one of them can be identified in a
preprocessing step, with oil companies often having their own patented approaches
for the encoding [2, 3]. More recently there has also been work on using simulta-
neous impulsive sources such as in the case of air guns that are fired with random
time delays. The idea of “deblending” is to try to recover the full “single-survey”
response [3, 14]. In fact similar techniques can also be used in the context of
blending at the receiver end [4].

Our point of view differs somewhat from the ones above in that we are not seek-
ing deblending approaches. We will rather present a general theoretical framework
that shows how, when data are viewed through the actual image, the cross-talk
effect associated with simultaneity of sources may actually be effectively mitigated
by the image formation algorithm: we do not need to deblend and to estimate the
full single-survey response, because the appropriate imaging algorithm will actually
produce the same image as if we had the full single-survey response. We articulate
explicitly the crucial scaling assumptions that should be satisfied for this to happen.
Our point of view is similar to that presented in [6] where a least squares approach
was used in the context of simultaneous sources for a particular data set and it
was demonstrated how this could lead to surprisingly good results. The results ob-
tained there are consistent with the analysis we set forth here with a probabilistic
modeling of the sources.

The paper is organized as follows. In Section 2 we recall the results about the
classic experimental configuration in which the full multi-static response matrix
can be recorded and used. In the cases of simultaneous sources emitting either
stationary random signals or randomly delayed pulses we derive and discuss the
main result regarding the normal operator and its stability in Sections 3 and 4.
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The applications of this result are discussed in more detail in Section 5 where we
elaborate on the fascinating fact that imaging with simultaneous sources of the two
types we have described gives a resolution that corresponds to the one obtained if
the full multi-static response matrix was available, that is if we have the recordings
of the responses at all of the receivers for all the surveys where only one source emits
at a time. The main mechanism that allows us to obtain this striking result is the
separation of scales that is inherent in our formulation and that serves to eliminate
cross-talk terms that otherwise could contaminate an image that was constructed
based on simultaneous sources. Simple numerical results are presented in Section 6.

1.1. The wave equation with random sources. We consider the solution
u of the wave equation in a three-dimensional inhomogeneous medium:

(1.1)
1

c2(x)

∂2u

∂t2
−Δxu = n(t,x) .

The term n(t,x) models the point sources emitting deterministic or random signals.
For instance in the context of seismic exploration, they could be point sources
emitting well separated short pulses in a sequence of experiments. We discuss
this configuration in Section 2. They could be sources emitting simultaneously
stationary random signals. We discuss this configuration in Section 3. They could
also be simultaneous blended (i.e., time-delayed impulsive) sources emitting from
the surface. We discuss this configuration in Section 4.

We write the velocity c(x) in the form

c−2(x) = c−2
0 (x) + δc−2(x) ,

where c0(x) is the known smooth background velocity and δc−2(x) is the velocity
perturbation that we want to estimate, whose spatial support is contained in some
domain Ω ⊂ R

3. The direct and inverse problems can be formulated in terms of
the background Green’s function that we introduce next.

1.2. The background Green’s function. The solution of the wave equation
(1.1) with the background velocity c0(x) has the integral representation

u(t,x) =

∫∫
G(s,x,y)n(t− s,y)dsdy ,(1.2)

where G(t,x,y) is the time-dependent causal Green’s function. It is the fundamen-
tal solution of the wave equation

(1.3)
1

c20(x)

∂2G

∂t2
−ΔxG = δ(t)δ(x− y) ,

starting from G(0,x,y) = ∂tG(0,x,y) = 0, and continued on the negative time
axis by G(t,x,y) = 0 ∀t ≤ 0.

For a homogeneous background, the Green’s function in the Fourier domain is
given by

(1.4) Ĝ(ω,x,y) =
1

4π|x− y| exp
(
i
ω

c0
|x− y|

)
.

Here the Fourier transform of a function f(t) is defined by

f̂(ω) =

∫
f(t)eiωtdt .
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For a general smoothly varying background, the high-frequency behavior of the
Green’s function is related to the travel time and it is given by the optical (or
acoustical) geometric approximation [5]

(1.5) Ĝ(ω,x,y) � A(x,y) exp
(
iωT (x,y)

)
,

which is valid when the frequency ω is much larger than the inverse of the travel
time T (x,y). Here the coefficientsA(x,y) and T (x,y) are smooth except at x = y.
The amplitude A(x,y) satisfies a transport equation and the travel time T (x,y)
satisfies the eikonal equation.

1.3. The scattering operator. In this section we introduce the scattering
operator, that is, the mapping from velocity perturbations to the data, in the Born
approximation [5]. Our analysis pertaining to imaging and inverse scattering is
based on this operator.

We assume that we observe the signals at a passive sensor array (xr)r=1,...,Nr

for some large time interval [−T/2, T/2].
Individual sources: In the case when it is possible to emit a short pulse

f(t) from each point source ys, s = 1, . . . , Ns, then the multi-offset data are the
signals (d(t,xr,ys))r=1,...,Nr,s=1...,Ns,t∈[−T/2,T/2] recorded by xr when the source
at ys emits the short pulse at time 0. These data are modeled by the operator
F0 : (δc−2(x))x∈Ω → (d(t,xr,ys))r=1,...,Nr,s=1...,Ns,t∈[−T/2,T/2] with

(
F0δc

−2
)
(t,xr,ys) =

∫
Ω

Q0(t,xr,ys,x)δc
−2(x)dx ,

Q0(t,xr,ys,x) = − ∂2

∂t2

∫∫
G(t2,xr,x)G(t1,x,ys)f(t− t1 − t2)dt1dt2 ,

which is in the Fourier domain

(1.6) Q̂0(ω,xr,ys,x) = ω2Ĝ(ω,xr,x)Ĝ(ω,x,ys)f̂(ω) .

Simultaneous sources: The data in the situation in which all sources emit
simultaneously are the signals (d(t,xr))r=1,...,Nr,t∈[−T/2,T/2] recorded by xr with a
source term n(t,x) spatially supported on the set of point sources. These data are
modeled by the operator F : (δc−2(x))x∈Ω → (d(t,xr))r=1,...,Nr ,t∈[−T/2,T/2] with

(
Fδc−2

)
(t,xr)=

∫
Ω

Q(t,xr,x)δc
−2(x)dx ,(1.7)

Q(t,xr,x)= − ∂2

∂t2

∫∫∫
G(t1,xr,x)G(t2,x,y)n(t− t1 − t2,y)dt1dt2dy ,(1.8)

which reads in the Fourier domain as

(1.9) Q̂(ω,xr,x) = ω2

∫
Ĝ(ω,xr,x)Ĝ(ω,x,y)n̂(ω,y)dy .

1.4. Imaging problem. The imaging problem aims at inverting the mapping
F0 or F in order to reconstruct the velocity perturbation from the data set.

When the sources can be used separately and the full data set or multi-static
response matrix d = (d(t,xr,ys))r=1,...,Nr ,s=1...,Ns,t∈[−T/2,T/2] is available, then the

usual (least-square) inversion process consists in applying the operator (F∗
0F0)

−1F∗
0
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to the data set d, where the adjoint of the scattering operator is

(
F∗

0d
)
(x) =

Nr∑
r=1

Ns∑
s=1

∫ T
2

−T
2

Q0(t,xr,ys,x)d(t,xr,ys)dt .

When simultaneous sources are used and the data set consists of the vector
of recorded signals d = (d(t,xr))r=1,...,Nr,t∈[−T/2,T/2] then the inversion process

consists in applying the operator (F∗F)−1F∗ to the data set d, where the adjoint
of the scattering operator is

(
F∗d

)
(x) =

Nr∑
r=1

∫ T
2

−T
2

Q(t,xr,x)d(t,xr)dt .

Note that the kernel of the adjoint F∗ depends on the background Green’s function
G(t,x,y) and on the source term n(t,y). This means that we need to know the
signals emitted by the sources in order to be able to apply the adjoint to the
recorded data.

In both cases, the full least square inversion is in practice too complicated and
the normal operator F∗

0F0 or F∗F is usually dropped in the inversion process.
This procedure gives a reasonable estimate of the velocity perturbation provided
the normal operator is close to the identity operator. This is approximately true for
F∗

0F0 when the multi-static response matrix is available and we will recall this result
in Section 2. The purpose of this paper is to show that this is also approximately
true for F∗F in the case of two special models of random sources. In Sections 3
and 4 we will carry out a detailed statistical analysis of the kernel of the normal
operator F∗F which is given by

(1.10) F∗F(x,x′) =

Nr∑
r=1

∫ T
2

−T
2

Q(t,xr,x)Q(t,xr,x
′)dt .

We will show that the kernel is statistically stable (i.e., its fluctuations are smaller
than its expectation) and that it is concentrated along the diagonal x � x′.

2. Multi-offset sources

We assume in this section that multi-offset data can be recorded. The sources
are localized at the points (ys)s=1,...,Ns

and they emit short pulses (f(t))t∈R. The
data acquisition is achieved during a sequence of Ns experiments. In the sth ex-
periment, the source term in the wave equation (1.1) is

(2.1) n(t,x) = f(t)δ(x− ys) .

In the proof it will be important to assume that the duration of the pulse f is much
smaller than the typical travel time.

The normal operator is

(2.2)
(
F∗

0F0δc
−2

)
(x) =

∫
Ω

F∗
0F0(x,x

′)δc−2(x′)dx′ ,

with the kernel given by

(2.3) F∗
0F0(x,x

′) =
Nr∑
r=1

Ns∑
s=1

∫ T
2

−T
2

Q0(t,xr,ys,x)Q0(t,xr,ys,x
′)dt .
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We assume that T is large enough, so that the backscattered signals are completely
recorded over [−T/2, T/2]. This means that T should be larger than the typical
travel time for a round trip from the array to the search region. We can then
replace the integral over [−T/2, T/2] in (2.3) by the integral over R. Using (1.6)
and applying Parseval formula to express the quantities in the Fourier domain, we
find the following expression for the kernel of the normal operator:

F∗
0F0(x,x

′) =
1

2π

∫
ω4|f̂(ω)|2

[ Ns∑
s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω,x′,ys

)]

×
[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)]dω .(2.4)

When the duration of the pulse f is much smaller than the typical travel time (which
is a usual assumption), it is possible to use the high-frequency approximation of
the Green’s function and to perform a detailed resolution analysis which shows that
the kernel F∗

0F0(x,x
′) is concentrated along the diagonal band x � x′. This comes

from the fact that the two squares brackets in the expression in (2.4) behave like the
kernel studied in Appendix B which is concentrated along the diagonal band. The
width of the diagonal band depends on the source and receiver array apertures.
If the source and receiver arrays densely sample a domain on a two-dimensional
surface whose diameter is (at least) of the order of the distance from the arrays
to the points x and x′, then the width of the diagonal band is of the order of the
wavelength.

3. Stationary random sources

In this section we consider the situation with stationary random sources. The
sources are localized at the points (ys)s=1,...,Ns

and emit stationary random signals
(ns(t))t∈R. The source term in the wave equation (1.1) has the form

(3.1) n(t,x) =

Ns∑
s=1

ns(t)δ(x− ys) .

The random functions (ns(t))t∈R, s = 1, . . . , Ns, are independent, zero-mean, sta-
tionary Gaussian processes with autocorrelation function

(3.2) 〈ns(t1)ns′(t2)〉 = δss′F (t2 − t1) .

Here δss′ is the Kronecker symbol and 〈·〉 stands for statistical average with respect
to the distribution of the random sources. Note that we model here in terms of
discrete sources at (ns(t))t∈R, s = 1, . . . , Ns. However, as we describe in Appendix
A our analysis also captures the main aspects in a situation with a continuum of
sources.

In the proof it is important to assume that the decoherence time of the random
sources is much smaller than typical travel times, i.e., that the width of the function
F is much smaller than typical travel times. The Fourier transform F̂ of the time
correlation function is a nonnegative, even real-valued function. It is proportional
to the power spectral density of the sources. Note that we have

(3.3)
〈
n̂s(ω)n̂s′(ω′)

〉
= 2πδss′F̂ (ω)δ(ω − ω′) .
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Using the stationarity of the noise sources, the expectation of the kernel of the
normal operator (1.10) is

〈F∗F(x,x′)〉 = T

Nr∑
r=1

〈
Q(0,xr,x)Q(0,xr,x

′)
〉
.

Substituting the Fourier representation (1.9) into this expression and using (3.3)
we find that the expectation of the kernel of the normal operator is for any T

〈F∗F(x,x′)〉 = T

2π

∫
ω4F̂ (ω)

[ Ns∑
s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω,x′,ys

)]

×
[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)]dω .(3.4)

Note that the mean kernel has the same expression as the approximation obtained
for the kernel of the normal operator (2.4) when the multi-static response matrix is
available and the recording time T is larger than the typical travel time. Therefore
it enjoys the same property, that is, it is localized on the diagonal band x � x′.
The important question is whether the normal operator F∗F is statistically stable,
in the sense that its typical behavior is similar to the one of its expectation. From
known results about the cross correlation of ambient noise signals [10] we anticipate
that it is indeed the case when T → ∞, but it is relevant to estimate carefully the
fluctuations since the quantity T in typical applications cannot be taken arbitrarily
large. The variance of the kernel of the normal operator is

Var
(
F∗F(x,x′)

)
=

Nr∑
r,r′=1

∫ T
2

−T
2

∫ T
2

−T
2

(
〈Q(t,xr,x)Q(t,xr,x

′)Q(t′,xr′ ,x)Q(t′,xr′ ,x′)〉

− 〈Q(t,xr,x)Q(t,xr,x
′)〉 〈Q(t′,xr′ ,x)Q(t′,xr′ ,x′)〉

)
dtdt′ .(3.5)

We can write Q in the form

(3.6) Q(t,xr,x) =

Ns∑
s=1

∫
G(v,xr,ys,x)ns(t− v)dv ,

with

(3.7) G(v,xr,ys,x) = −
∫

∂2
wG(w,xr,x)G(v − w,x,ys)dw .

Therefore the variance of the kernel of the normal operator can be written as

Var
(
F∗F(x,x′)

)
=

Nr∑
r,r′=1

Ns∑
s1,s2,s′

1,s
′
2=1

∫∫∫∫
G(v,xr,ys1 ,x)G(u,xr,ys2 ,x

′)

× G(v′,xr′ ,ys′
1
,x)G(u′,xr′ ,ys′

2
,x′)ST,s1s2s′

1s
′
2
(v, u, v′, u′)dvdudv′du′ ,(3.8)

with

ST,s1s2s′
1s

′
2
(v, u, v′, u′) =

∫ T
2

−T
2

∫ T
2

−T
2

(〈
ns1(t− v)ns2(t− u)ns′

1
(t′ − v′)ns′

2
(t′ − u′)

〉

−
〈
ns1(t− v)ns2(t− u)

〉〈
ns′

1
(t′ − v′)ns′

2
(t′ − u′)

〉)
dtdt′ .(3.9)
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The product of second-order moments of the random processes ns(t) is〈
ns1(t− v)ns2(t− u)

〉〈
ns′

1
(t′ − v′)ns′

2
(t′ − u′)

〉
= δs1s2δs′

1s
′
2
F (v − u)F (v′ − u′) .

The fourth-order moment of the Gaussian random process n is〈
ns1(t− v)ns2(t− u)ns′

1
(t′ − v′)ns′

2
(t′ − u′)

〉
= δs1s2δs′

1s
′
2
F (v − u)F (v′ − u′)

+δs1s′
1
δs2s′

2
F (t′ − t− v′ + v)F (t′ − t− u′ + u)

+δs1s′
2
δs2s′

1
F (t′ − t− u′ + v)F (t′ − t− v′ + u) .

Consequently, we have that for any T > 0

ST,s1s2s′
1s

′
2
(v, u, v′, u′)

= δs1s′
1
δs2s′

2
ST (v − v′, u− u′) + δs1s′

2
δs2s′

1
ST (v − u′, u− v′) ,(3.10)

where

(3.11) ST (s, u) =
T 2

4π2

∫∫
F̂ (ω)F̂ (ω′)sinc2

( (ω − ω′)T

2

)
eiωs−iω′udωdω′ .

When T is much larger than the inverse of the bandwidth of the noise sources (i.e.,
T is much larger than the decoherence time), we can use the approximation

T sinc2
( (ω − ω′)T

2

)
� 2πδ(ω − ω′)

in (3.11), and therefore

(3.12) ST (s, u) �
T

2π

∫
F̂ (ω)2eiω(s−u)dω .

Substituting (3.10) and (3.12) into (3.8), we obtain for all T larger than the
decoherence time the following expression for the variance of the kernel F∗F(x,x′):

Var
(
F∗F(x,x′)

)
=

T

2π

∫
F̂ (ω)2ω8

[ Ns∑
s=1

|Ĝ
(
ω,x,ys)|2

][ Ns∑
s=1

|Ĝ
(
ω,x′,ys)|2

]

×
∣∣∣

Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)∣∣∣2dω

+
T

2π

∫
F̂ (ω)2ω8

[ Ns∑
s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω,x′,ys)

]2

×
[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)]2dω .(3.13)

Using the approximation (1.5), we have in particular in the high-frequency
regime for x = x′

(3.14)
Var

(
F∗F(x,x)

)
〈F∗F(x,x)〉2

=
4π

T

∫
ω8F̂ (ω)2dω( ∫
ω4F̂ (ω)dω

)2 � 4π

BT
,

where B is the bandwidth of signals emitted by the random sources. This gives the
order of magnitude of the signal-to-noise ratio. Note that the ratio (3.14) does not
depend on the number of source and receiver points, but only on the bandwidth B
and the recording time T . Only these two parameters control the fluctuations of
the kernel F∗F(x,x′) along the diagonal band x � x′.
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When x is different from x′ the first term in the right-hand side of (3.13) is
dominant (because of the absolute values). In particular, the decay of the variance
as a function of the distance |x− x′| is ensured only by the sum over the receiver
points, while the sum over the source points does not contribute to the decay,
contrarily to the expectation (3.4). Therefore the relative fluctuations of the kernel
F∗F(x,x′) become larger away from the diagonal band, but we always have

(3.15)
Var

(
F∗F(x,x′)

)
〈F∗F(x,x)〉 〈F∗F(x′,x′)〉 ≤ 4π

T

∫
ω8F̂ (ω)2dω( ∫
ω4F̂ (ω)dω

)2 � 4π

BT
.

We remark that the important scaling constraint in order to ensure statistical
stability is that the decoherence time of the random traces is much smaller than
the recording time, that is T . Note that the total recording time, even without
simultaneous sources, must be at least of the order of c0L where L is the propagation
distance. Thus, the durations of the experiments may be of the same order in the
simultaneous source case as in a more classic measurement configuration with a
single source at a time as long as one can generate random or heterogeneous source
signals whose characteristic time scale is small compared to the travel time to
the probed region. The only, but major, difference is that one performs only one
experiment in the simultaneous case, while one performs Ns experiments in the
classical case, where Ns is the number of sources.

4. Incoherence by blending

In this section we consider the situation in whichNs point sources emit the same
short pulse waveform, but at randomly delayed times. We refer to this situation as
noise blending. It is modeled by the wave equation (1.1) with a source term of the
form

(4.1) n(t,x) =

Ns∑
s=1

f(t− τs)δ(x− ys) .

The pulse function (f(t))t∈R is deterministic. Its carrier frequency is ω0 and its
bandwidth is B. The time delays (τs)s=1,...,Ns

are zero-mean independent and
identicially distributed random variables with the probability density function pτ (t).
We denote by σ2

τ

〈
τ2s

〉
=

∫
t2pτ (t)dt the variance of the random time delays. Here

〈·〉 stands for statistical average with respect to the distribution of the random time
delays. Note that the source is not a Gaussian process, so the recorded signals are
not Gaussian either, contrarily to the case addressed in the previous section, and
the evaluations of second- and fourth-order moments require specific calculations
which are different from the standard rules for moments of Gaussian processes.

The expectation of the kernel of the normal operator is
(4.2)

〈F∗F(x,x′)〉 =
Nr∑
r=1

Ns∑
s,s′=1

∫∫
G(u,xr,ys,x)G(u′,xr,ys′ ,x′)IT,ss′(u, u′)dudu′ ,

where G is given by (3.7) and IT,ss′ is defined by

(4.3) IT,ss′(u, u′) =

∫ T
2

−T
2

〈
f(t− u− τs)f(t− u′ − τs′)

〉
dt .
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We assume that T is large enough, so that the backscattered signals are completely
recorded over [−T/2, T/2]. This means that T should be larger than the typical
travel time from the array to the search region and than the typical time delay στ .
We can then replace the integral over [−T/2, T/2] in (4.3) by the integral over R

and we find

IT,ss′(u, u′) =
1

2π

∫
|f̂(ω)|2e−iω(u−u′)

〈
e−iω(τs−τs′ )

〉
dω .

If s 
= s′, then
〈
e−iω(τs−τs′ )

〉
=

∣∣〈eiωτs
〉∣∣2 = |p̂τ (ω)|2 .

Therefore, if στω0 � 1 then |p̂τ (ω)|2 � 0 for all ω in the bandwidth and

IT,ss′(u, u′) =

{
1
2π

∫
|f̂(ω)|2e−iω(u−u′)dω if s = s′,

0 otherwise.

This result shows that the expectation of the kernel of the normal operator is

〈F∗F(x,x′)〉 = 1

2π

∫
ω4|f̂(ω)|2

[ Ns∑
s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω,x′,ys

)]

×
[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)]dω ,(4.4)

which has the same form and the same properties (in terms of concentration along
the diagonal x � x′) as the expectation of the kernel of the normal operator (3.4) in
the case of stationary random sources, or as the kernel of the normal operator (2.4)
obtained when the full multi-static response matrix is available. The important
issue to be clarified is the statistical stability of the normal operator F∗F .

The analysis of the variance of the kernel of the normal operator is based on
the following basic result: for any u, u′, ũ, ũ′ ∈ R and s, s′, s̃, s̃′ = 1, . . . , Ns, and
again for T much larger than the typical travel time and time delay,

J :=

∫ T
2

−T
2

∫ T
2

−T
2

(〈
f(t− u− τs)f(t− u′ − τs′)f(t̃− ũ− τs̃)f(t̃− ũ′ − τs̃′)

〉

−
〈
f(t− u− τs)f(t− u′ − τs′)

〉〈
f(t̃− ũ− τs̃)f(t̃− ũ′ − τs̃′)

〉)
dtdt̃

� 1

(2π)2

∫∫
|f̂(ω)|2|f̂(ω̃)|2e−iω(u−u′)e−iω̃(ũ−ũ′)

×
[〈
e−iω(τs−τs′ )e−iω̃(τs̃−τs̃′ )

〉
−

〈
e−iω(τs−τs′)

〉〈
e−iω̃(τs̃−τs̃′ )

〉]
dωdω̃ .

If στω0 � 1, then

J = δss̃δs′s̃′(1− δss′)
1

(2π)2

∫∫
|f̂(ω)|2|f̂(ω̃)|2e−iω(u−u′)e−iω̃(ũ−ũ′)|p̂τ (ω + ω̃)|2dωdω̃

+δss̃′δs′s̃(1− δss′)
1

(2π)2

∫∫
|f̂(ω)|2|f̂(ω̃)|2e−iω(u−u′)e−iω̃(ũ−ũ′)|p̂τ (ω − ω̃)|2dωdω̃ .
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Therefore the variance of the kernel F∗F(x,x′) is:

Var
(
F∗F(x,x′)

)
=

1

(2π)2

∫∫
dωdω̃|f̂(ω)|2ω4|f̂(ω̃)|2ω̃4

×
[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)][ Nr∑
r=1

Ĝ
(
ω̃,xr,x)Ĝ

(
ω̃,xr,x

′)]

×
[ Ns∑
s,s′=1,s �=s′

Ĝ
(
ω,x,ys)Ĝ

(
ω̃,x,ys)Ĝ

(
ω,x′,ys′)Ĝ

(
ω̃,x′,ys′)|p̂τ (ω + ω̃)|2

+

Ns∑
s,s′=1,s �=s′

Ĝ
(
ω,x,ys)Ĝ

(
ω̃,x′,ys)Ĝ

(
ω̃,x,ys′)Ĝ

(
ω,x′,ys′)|p̂τ (ω − ω̃)|2

]
,

that we can also write as (after the change of variable ω̃ → −ω̃ in the first part of
the right member)

Var
(
F∗F(x,x′)

)
=

1

(2π)2

∫∫
dωdω̃|f̂(ω)|2ω4|f̂(ω̃)|2ω̃4

×
[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)][ Nr∑
r=1

Ĝ
(
ω̃,xr,x)Ĝ

(
ω̃,xr,x

′)]

×
{[ Ns∑

s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω̃,x,ys)

][ Ns∑
s=1

Ĝ
(
ω,x′,ys)Ĝ

(
ω̃,x′,ys)

]

−
Ns∑
s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω̃,x,ys)Ĝ

(
ω,x′,ys)Ĝ

(
ω̃,x′,ys)

}
|p̂τ (ω − ω̃)|2

+
1

(2π)2

∫∫
dωdω̃|f̂(ω)|2ω4|f̂(ω̃)|2ω̃4

×
[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)][ Nr∑
r=1

Ĝ
(
ω̃,xr,x)Ĝ

(
ω̃,xr,x

′)]

×
{[ Ns∑

s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω̃,x′,ys)

][ Ns∑
s=1

Ĝ
(
ω̃,x,ys)Ĝ

(
ω,x′,ys)

]

−
Ns∑
s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω̃,x′,ys)Ĝ

(
ω̃,x,ys)Ĝ

(
ω,x′,ys)

}
|p̂τ (ω − ω̃)|2 .(4.5)

The statistical stability follows from the fact that the variance of the kernel is small.
In order to prove that the variance is small we first want to show that the integral in
(ω, ω̃) concentrates on a small band around the diagonal ω = ω̃. The double integral
in (ω, ω̃) can be written as a double integral in (ω+ω̃

2 , ω− ω̃). The products of terms

that depend on Ĝ vary in ω − ω̃ on a scale of the order of the reciprocal of the
typical travel time c0/L (where L is the typical propagation distance). This can be
seen from the high-frequency asymptotic expression (1.5) of the Green’s function.

Moreover, the terms depending on f̂ are varying in ω − ω̃ on a scale of the order
of B and the term |p̂τ (ω − ω̃)|2 concentrates on a band of size |ω − ω̃| < σ−1

τ .
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Therefore, provided σ−1
τ 
 min(c0/L,B), we can make the approximation

|p̂τ (ω − ω̃)|2 � 2π

Tτ
δ(ω − ω̃) , with

1

Tτ
=

∫
p2τ (t)dt .

To summarize, if στ � L/c0 and στB � 1, then the variance of the kernel
F∗F(x,x′) is:

Var
(
F∗F(x,x′)

)
=

1

2πTτ

∫
dω|f̂(ω)|4ω8

∣∣∣
Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)∣∣∣2

×
{[ Ns∑

s=1

|Ĝ
(
ω,x,ys)|2

][ Ns∑
s=1

|Ĝ
(
ω,x′,ys)|2

]
−

Ns∑
s=1

|Ĝ
(
ω,x,ys)|2|Ĝ

(
ω,x′,ys)|2

}

+
1

2πTτ

∫
dω|f̂(ω)|4ω8

[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)]2

×
{[ Ns∑

s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω,x′,ys)

]2
−

Ns∑
s=1

Ĝ
(
ω,x,ys)

2Ĝ
(
ω,x′,ys)

2
}
.

The hypothesis στB � 1 is not restrictive and it was already required in the
framework of the stationary random sources in section 3. The hypothesis στ � L/c0
means that the random time delays, and therefore the recording time, must be larger
than the typical travel time. We will see in the numerical illustrations that it is
enough to have random time shifts of the same order of typical travel time.

We have in particular for x = x′

(4.6)
Var

(
F∗F(x,x)

)
〈F∗F(x,x)〉2

� 4π

Tτ

(
1− 1

Ns

) ∫
ω8|f̂(ω)|4dω( ∫
ω4|f̂(ω)|2dω

)2 � 4π

BTτ
.

This gives the order of magnitude of the signal-to-noise ratio. The quantity BTτ

controls the statistical stability. It should be large so that the kernel F∗F(x,x′)
is statistically stable. Using the method of Lagrange multipliers we get the two
following results:

The maximal value of Tτ amongst all probability density functions pτ compactly
supported in [−τmax, τmax] is Tτ = 2τmax and it is obtained for a uniform density
over [−τmax, τmax].

The maximal value of Tτ amongst all probability density functions pτ with

variance σ2
τ is Tτ = 5

√
5

3 στ and it is obtained for a probability density function of
the form

pτ (t) =
3

4
√
5στ

(
1− t2

5σ2
τ

)
1[−

√
5στ ,

√
5στ ]

(t) .

5. Applications

5.1. Simultaneous source exploration. In this section we consider the for-
mulation (1.1)-(4.1) as it describes a physical exploration problem. That is, the
source term n(t,x) results from the simultaneous emission of Ns point sources lo-
cated at (ys)s=1,...,Ns

and emitting randomly delayed pulses as in (4.1), and from
the measurements at the Nr receiver points (xr)r=1,...,Nr

we aim to recover the
medium perturbations (δc−2(x))x∈Ω. In this framework, only one experiment is
performed to acquire the data set.
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To put our approach in perspective we first consider the classic experimental
configuration in which we can use the sources separately and we observe the full
multi-static response matrix d = (d(t,xr,ys))r=1,...,Nr ,s=1...,Ns,t∈[−T/2,T/2]. This
requires us to perform Ns experiments. In the sth experiment, s = 1, . . . , Ns, we
observe the signal d(t,xr,ys) at the receiver point xr when the point source at ys

emits a short pulse f(t). The Reverse-Time imaging functional for the estimation
of the medium perturbations δc−2 is based on the application of the adjoint F∗

0 on
the data set [5]:

IRT(x) =
(
F∗

0d
)
(x) =

Ns∑
s=1

Nr∑
r=1

∫
Q0(t,xr,ys,x)d(t,xr,ys)dt

=
1

2π

Ns∑
s=1

Nr∑
r=1

∫
ω2Ĝ(ω,x,xr)Ĝ(ω,x,ys)f̂(ω)d̂(ω,xr,ys)dω .(5.1)

To evaluate the imaging functional, one needs a priori to solve Ns +Nr times the
wave equation in order to get Ĝ(ω,x,xr), for r = 1, . . . , Nr, and Ĝ(ω,x,ys), for
s = 1, . . . , Ns. Usually the number of sources is smaller than the number of receivers
Ns < Nr and then the strategy that requires to call the numerical wave solver only
2Ns times is as follows:
- for each s = 1, . . . , Ns, compute the wave emitted by the source at ys, that is
to say evaluate v̂(s)(ω,x) solution of the Helmholtz equation with the background

velocity c0(x) and with the source term n̂(ω,x) = ω2f̂(ω)δ(x− ys).
- for each s = 1, . . . , Ns, time reverse the recorded data and propagate these time
reversed signals from the receivers, that is to say evaluate û(s)(ω,x) solution of the
Helmholtz equation with the background velocity c0(x) and with the source term

n̂(ω,x) =
∑Nr

r=1 d̂(ω,xr,ys)δ(x− xr).
- for each s = 1, . . . , Ns, correlate the two pairs of signals, one of them being
time-reversed first, and sum over the sources. One gets

IRT(x) =
1

2π

Ns∑
s=1

∫
v̂(s)(ω,x)û(s)(ω,x)dω ,

which is equal to (5.1). In the Born approximation and for T large enough (i.e.,
larger than the typical travel time), then we get

IRT(x) ≈
∫
Ω

K(x,x′)δc−2(x′)dx′ ,

K(x,x′) =
(
F∗

0F0

)
(x,x′) =

1

2π

∫
ω4|f̂(ω)|2

[ Ns∑
s=1

Ĝ
(
ω,x,ys)Ĝ

(
ω,x′,ys

)]

×
[ Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)]dω .(5.2)

It is possible to equalize the spectrum and to divide the data by ω4|f̂(ω)|2 in
the Fourier domain over the bandwidth in order to improve the accuracy of the
estimation. We will see below that this functional gives an image of the velocity
perturbations δc−2 with an accuracy of the order of the wavelength when the source
and receiver array apertures are large enough.
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We then return to the blended source configuration (1.1)-(4.1). In this case the
data set consists of the vector d = (d(t,xr))r=1,...,Nr,t∈[−T/2,T/2], where d(t,xr) is
the signal measured at xr when the source term is (4.1). The imaging functional
(for imaging the medium perturbations) consists in applying the adjoint operator
F∗ to the data set:

IBS(x) =
(
F∗d

)
(x) =

Nr∑
r=1

∫
Q(t,xr,x)d(t,xr)dt

=
1

2π

Nr∑
r=1

∫∫
ω2Ĝ(ω,x,xr)Ĝ(ω,x,y)n̂(ω,y)d̂(ω,xr)dydω .(5.3)

To evaluate the imaging functional, one needs to solve the wave equation only
two times. This is a considerable advantage compared to the standard technique
described above that uses the full response matrix and that requires 2Ns calls to
the numerical wave solver. More precisely the strategy to evaluate the imaging
functional is as follows:
- compute the wave emitted by the original source n(t,x) given by (4.1), that is
to say evaluate v̂(ω,x) solution of the Helmholtz equation with the background
velocity c0(x) and with the source term n̂(ω,x)ω2.
- time reverse the recorded data and propagate these time reversed signals from the
receivers, that is to say evaluate û(ω,x) solution of the Helmholtz equation with the

background velocity c0(x) and with the source term n̂(ω,x) =
∑Nr

r=1 d̂(ω,xr)δ(x−
xr).
- correlate the two pairs of signals, one of them being time-reversed first. One gets

IBS(x) =
1

2π

∫
v̂(ω,x)û(ω,x)dω ,

which is equal to (5.3). In the Born approximation and for T large enough (i.e.,
larger than the typical travel time and the typical time delay), we find that

IBS(x) =

∫
Ω

F∗F(x,x′)δc−2(x′)dx′ ≈
∫
Ω

〈F∗F(x,x′)〉 δc−2(x′)dx′

=

∫
Ω

K(x,x′)δc−2(x′)dx′ ,(5.4)

where the kernel K(x,x′) is given by (5.2). Note that here we have used the crucial
stabilization result F∗F � 〈F∗F〉 that we derived in Section 4.

The resolution in the perturbation estimate is given by the classic Kirchhoff
resolution which characterizes the support of K [11]. We assume that the source
and receiver arrays coincide and have a characteristic aperture or diameter a. Then:

(i) If the diameter a of the array is smaller than the distance L from the array to
the target, the resolution is given by the standard Rayleigh resolution formulas: The
cross range resolution is λ0L/a and the range resolution is λ0(L/a)

2 for narrowband
sources and c0/B for broadband sources with bandwidth B > ω0(a/L)

2. Here λ0 is
the central wavelength corresponding to the central frequency ω0 of the pulse wave
form f .

(ii) If the diameter of the array is of the same order as or larger than the
distance from the array to the target, then we find that the resolution is of the
order of the central wavelength λ0.
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Note that we could also use the stationary random sources of the form (3.1)
that in view of (4.4) gives the same resolution as the noise blended sources. Our
analysis applies directly to the important case when we do not have “controlled
sources”, rather “sources of opportunity”. However the important assumption that
we make here is that the (incoherent) traces of the sources and their locations are
assumed to be known. Situations in which the sources are not assumed a priori
known are discussed in [13].

5.2. Seismic forward simulations. We illustrate here how our results could
be used in the context of forward simulations which constitute an important ingre-
dient in typical iterative imaging or inversion schemes.

Consider again first the situation when we in fact have measured the full multi-
static response (MSR) matrix d = (d(t,xr,ys))r=1,...,Nr,s=1,...,Ns,t∈[−T/2,T/2]. For

each s = 1, . . . , Ns, denote by u(s)(t,x; ĉ) the numerical solution of (1.1) with the
source term n(t,x) = δ(x− ys)f(t) when the medium perturbations are δĉ−2. De-
note by d[ĉ] the corresponding computed MSR matrix, whose elements are defined
by

d[ĉ](t,xr,ys) = u(s)(t,xr; ĉ) =
(
F0δĉ

−2
)
(t,xr,ys) .

An iterative imaging scheme can then be based on calculating and minimizing the
quadratic misfit functional

J [ĉ] =

Ns∑
s=1

Nr∑
r=1

∫ T
2

−T
2

∣∣d(t,xr,ys)− d[ĉ](t,xr,ys)
∣∣2dt .(5.5)

The implementation of a descent algorithm over ĉ produces a sequence of estimates
ĉ1, ĉ2, . . . leading to an estimate, say ĉN , of c at termination. We find in the Born
approximation that the residual in (5.5) is

J [ĉ] =

Ns∑
s=1

Nr∑
r=1

∫ T
2

−T
2

∣∣(F0δc
−2

)
(t,xr,ys)−

(
F0δĉ

−2
)
(t,xr,ys)

∣∣2dt

=

∫∫
Ω2

F∗
0F0(x,x

′)(δc−2(x)− δĉ−2(x))(δc−2(x′)− δĉ−2(x′))dxdx′ ,(5.6)

with F∗
0F0(x,x

′) defined by (2.4) when T is large enough (i.e., larger than the
typical travel time). Note that this minimization approach requires the calculation
of J [ĉj ], j = 1, . . . , N which is computationally very expensive because it requires
computing the full multi-static response matrix with a new velocity function at
each step, which amounts to solving the forward problem Ns times at each step.

Consider now the situation when the sources are defined as in (4.1), that is
with simultaneous randomly delayed point sources. The data has the form of the
vector d = (d(t,xr))r=1,...,Nr ,t∈[−T/2,T/2]. Denote by u(t,x; ĉ) the solution of (1.1)

when the medium perturbations are δĉ−2 and the source term is (4.1). Denote by
d[ĉ] the corresponding computed data:

d[ĉ](t,xr) = u(t,xr; ĉ) =
(
Fδĉ−2

)
(t,xr) .

We can implement an iterative imaging scheme based on calculating and minimizing
the least-square functional

J̃ [ĉ] =

Nr∑
r=1

∫ T
2

−T
2

∣∣d(t,xr)− d[ĉ](t,xr)
∣∣2dt .
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Figure 1. Numerical set-up: the triangles are the sensors of the
array, the diamonds are the reflectors, the dashed lines determine
the search window for the imaging functionals.

We then find in the Born approximation and when T is large enough (i.e., larger
than the typical travel time and the typical time delay) that

J̃ [ĉ] =

Nr∑
r=1

∫ T
2

−T
2

∣∣(Fδc−2
)
(t,xr)−

(
Fδĉ−2

)
(t,xr)

∣∣2dt

=

∫∫
Ω2

F∗F(x,x′)(δc−2(x)− δĉ−2(x))(δc−2(x′)− δĉ−2(x′))dxdx′

≈
∫∫

Ω2

〈F∗F(x,x′)〉 (δc−2(x)− δĉ−2(x))(δc−2(x′)− δĉ−2(x′))dxdx′ ,(5.7)

where we use the statistical stability property of the normal operator. Applying
a descent algorithm on J̃ [ĉ] over ĉ is much less computationally intensive than
with the full MSR strategy, since it requires solving only one forward problem at
each step of the algorithm. The essential observation here is that the residual
in (5.6) corresponds to the residual in (5.7). Therefore, we can expect that the
velocity model estimation based on the simultaneous sources will give estimates
that are comparable to those obtained with (physical) measurements and successive
numerical calculations based on simultaneous sources only, when in the scaling
regime introduced above. We remark that the same random forcing should be used
in each iteration, that is, the random forcing associated with the actual measured
MSR matrix. Note, moreover, that if in fact the whole MSR matrix was measured in
the physical experiment one could from this synthesize a “synthetic” simultaneous
source experiment by convolution with simulated stationary random sources or
randomly delayed sources.

6. Numerical illustrations

The numerical simulations presented in this section compare the image obtained
with migration of the full MSR matrix and the one obtained with migration of a
unique set of data collected with blended (randomly time delayed) sources.

We consider a three-dimensional homogeneous background medium with veloc-
ity c0 = 1. We compute the image in the plane (x, z) and use the homogeneous back-
ground Green’s function (1.4) and the Born approximation for the three reflectors
we want to image. The source and receiver arrays are coincident and the Ns = 10
sensors are located at (0,−20+4j), j = 1, . . . , 10 (Figure 1). The pulse signal is the

second derivative of a Gaussian with Fourier transform f̂(ω) = ω2 exp(−ω2). We



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

IMAGING WITH NOISE BLENDING 121

a) MSR b) BS τmax = 10 c) BS τmax = 100

d) BS τmax = 0 e) BS τmax = 10 f) BS τmax = 100

Figure 2. Images given by Kirchhoff migration of the full MSR
matrix (a); migration of the data vector obtained with simulta-
neous sources without random time delays (d); migration of the
data vector obtained with blended sources (BS) with random time
delays uniformly distributed over [−10, 10] for two realizations
of the delays (b,e); migration of the data vector obtained with
blended sources with random time delays uniformly distributed
over [−100, 100] for two realizations of the delays (c,f).

consider three point reflectors at locations (47, 14), (53, 10), (47, 6) with the same
reflectivity. The random time delays of the sources are independent and identically
distributed random variables with uniform distribution over [−τmax, τmax] and we
test three different values for τmax and two different realizations in Figure 2. As
expected by the theory, the image obtained with the data collected with blended
sources is very similar to the one obtained with the full MSR matrix when τmax is
large enough (here the time for a round trip from the array to the target is about
100). When τmax is small the image is unstable in that it depends on the particular
realizations of the time delays.

7. Conclusion

We have presented a scheme for global imaging using incoherent simultaneous
sources. A main focus of our analysis is the normal operator and we have been
able to prove its statistical stability in our scaling regime. We have also discussed
some important consequences for imaging and numerical forward simulations of our
results. We have in fact been able to identify scaling regimes where we can obtain
dramatically enhanced survey efficiency without sacrificing image quality.

The approach set forth here could indeed exploit and be combined with other
blending approaches. For instance with enhanced signal processing and generation
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capabilities one could use techniques developed in the area of wireless communica-
tions and seismic exploration to obtain enhanced simultaneity via partitioning of
the frequency spectrum and specific source encoding.

Further work involves both extensions of the modeling and work on the imaging
scheme. Regarding the modeling, results in the case of medium clutter and a gen-
eral background function will be presented elsewhere. Regarding imaging schemes,
further work focuses on analysis of optimal Kirchhoff migration and also a more
general inverse scattering formulation incorporating 	1 regularization.

We remark that we have not considered implementational aspects like paralleli-
sation that will play a role in the trade-off of algorithms. We have rather presented
a unified framework which shows how source blending in various implementations
may play an important role in imaging.

Appendix A. Statistical stability for a continuum of point sources

When the point sources are close to each other (closer than a wavelength apart)
then it is possible to model the process n(t,x) as a zero-mean stationary (in time)
Gaussian process with autocorrelation function

(A.1) 〈n(t1,y1)n(t2,y2)〉 = F (t2 − t1)δ(y2 − y1)θ
(y1 + y2

2

)
,

where the function θ describes the spatial support of the sources.
The product of second-order moments of the random process n(t,x) is

〈n(t− s,y1)n(t− u,y2)〉 〈n(t′ − s′,y′
1)n(t

′ − u′,y′
2)〉

= F (s− u)F (s′ − u′)θ(y1)δ(y1 − y2)θ(y
′
1)δ(y

′
1 − y′

2) .

The fourth-order moment of the Gaussian random process n is

〈n(t− s,y1)n(t− u,y2)n(t
′ − s′,y′

1)n(t
′ − u′,y′

2)〉
= F (s− u)F (s′ − u′)θ(y1)δ(y1 − y2)θ(y

′
1)δ(y

′
1 − y′

2)

+F (t′ − t− s′ + s)F (t′ − t− u′ + u)θ(y1)δ(y1 − y′
1)θ(y2)δ(y2 − y′

2)

+F (t′ − t− u′ + s)F (t′ − t− s′ + u)θ(y1)δ(y1 − y′
2)θ(y2)δ(y

′
1 − y2) .

Consequently, we have that for any T > 0

∫ T
2

−T
2

∫ T
2

−T
2

(
〈n(t− s,y1)n(t− u,y2)n(t

′ − s′,y′
1)n(t

′ − u′,y′
2)〉

− 〈n(t− s,y1)n(t− u,y2)〉 〈n(t′ − s′,y′
1)n(t

′ − u′,y′
2)〉

)
dtdt′

= ST (s− s′, u− u′)θ(y1)δ(y1 − y′
1)θ(y2)δ(y2 − y′

2)

+ST (s− u′, u− s′)θ(y1)δ(y1 − y′
2)θ(y2)δ(y

′
1 − y2) ,(A.2)

with ST defined by (3.11). We then get the same formulas as in the discrete model.

Appendix B. Resolution analysis

We consider the kernel:

Iω(x,x′) =
Nr∑
r=1

Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′) .
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We assume that the points (xr)
Nr
r=1 are at the surface Σ = {y ∈ R

3, y3 = 0}
and are close to each other (closer than half-a-wavelength) so that a continuum
approximation can be used:

Iω(x,x′) =

∫
Σ

ρ(xr)Ĝ
(
ω,xr,x)Ĝ

(
ω,xr,x

′)dσ(xr) ,

where ρ is the surface density of receivers. In the high-frequency asymptotics, for
x = x′, we have

Iω(x,x) =
∫
Σ

ρ(xr)A(x,xr)
2dσ(xr) .

For |x− x′| of the order of the wavelength, we find

Iω(x,x′) �
∫
Σ

ρ(xr)A(x′,xr)
2 exp

(
− iω∇x′T (x′,xr) · (x− x′)

)
dσ(xr) .

If, additionally, we assume that the background is homogeneous c(x) = c0, then
T (x′,xr) = |x′ − xr|/c0 and A(x′,xr) = 1/(4π|x′ − xr|) and we have

Iω(x,x′) � 1

(4π)2

∫
Σ

ρ(xr)
1

|x′ − xr|2
exp

(
i
ω

c0

xr − x′

|xr − x′| · (x− x′)
)
dσ(xr) .

This expression gives the width and the form of the function Iω(x,x′) along the
diagonal band x � x′. If the diameter a of the array (i.e., the support of ρ) is
smaller than the distance from the array to x′, then we find the standard Rayleigh
resolution formulas. If the diameter of the array is of the same order as or larger
than the distance from the array to x′, then we find that the resolution is of the
order of the wavelength.

Using stationary phase arguments, we obtain for |x−x′| much larger than the
typical wavelength:

Iω(x,x′) � ρ(x0)

(4π)2
2πc0(x3 − x′

3)
2

|x− x′|3
i

ω
sgn(x3 − x′

3) exp
(
− i

ω

c0
|x− x′|

)
,

where x0 is the intersection of the ray going through x and x′ with the surface
y3 = 0:

x0 =
x3x

′ − x′
3x

x3 − x′
3

.

This expression gives the long-distance decay of the function Iω(x,x′) for ω|x −
x′|/c0 � 1.
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