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Abstract

Within the structural reliability context, the aim of this paper is to present a new accelerated
Monte-Carlo simulation method, named ADS - Adaptive Directional Stratification -, and de-
signed to overcome the following industrial constraints: robustness of the estimation of a low
structural failure probability (less than 10−3), limited computational resources and complex (al-
beit often monotonic) physical model. This new stochastic technique is an original variant of
adaptive accelerated simulation method, combining stratified sampling and directional simu-
lation and including two steps in the adaptation stage (ADS-2). First, we theoretically study
the properties of two possible failure probability estimators and get the asymptotic and non-
asymptotic expressions of their variances. Then, we propose some improvements for our new
method. To begin with, we focus on the root-finding algorithm required for the directional ap-
proach: we present a stop criterion for the dichotomic method and a strategy to reduce the re-
quired number of calls to the costly physical model under monotonic hypothesis. Lastly, to
overcome the limit involved by the increase of the input dimension, we introduce the ADS-2+

method which has the same ground as the ADS-2 method, but additionally uses a statistical test
to detect the most significant inputs and carries out the stratification only along them. To con-
clude, we test the ADS-2 and ADS-2+ methods on academic examples in order to compare them
with the classical structural reliability methods and to make a numerical sensitivity analysis over
some parameters. We also apply the methods to a flood model and a nuclear reactor pressurized
vessel model, to practically demonstrate their interest on real industrial examples.
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1. Introduction

1.1. Industrial context

Structural reliability is a domain of long-standing interest in the context of industrial safety and
reliability that motivated the development of dedicated algorithms, notably for the efficient com-
putation of low probabilities of occurrence of threshold-exceedance or failure events, such as
FORM-SORM, directional sampling and importance sampling ([1, 2, 3]). The present research
is inspired by the continuing difficulties encountered in some key industrial applications when
tackling the issue of controlling the robustness of existing algorithms. Two different models
are taken for inspiration and benchmark: a flood model and a nuclear reactor pressurized vessel
Preprint submitted to Elsevier May 26, 2011



fracture mechanics model. Although it is a simplified one, the flood model is studied because it
remains physically realistic and is sufficiently simple to be a test model on which a large number
of structural reliability methods can be applied. The nuclear reactor pressurized vessel model is
the core one that motivated this work: the mathematical and numerical constraints inherent to
this model constituted our framework.

Flood
The purpose is to estimate the risk of a flood to run over a dyke, which is generally equivalent
to model the ”maximum highness flow of the flood” by hydraulic equations. The modelling
depends on various physical parameters, the exact number depending on the sophistication of
the chosen model. We denote by H the water height, this one being calculated by maximizing
the water height during the flood event. The flood event is itself calculated by solving a par-
tial differential equation system (typically from Navier-Stokes equations). A simplified analytic
model can give an approximation ofH . We denote byQ the watercourse flow, L the watercourse
section length studied, B the watercourse width, Ks the watercourse bed friction coefficient or
Strickler coefficient, Zm and Zv respectively the upstream and the downstream bottom water-
course height above the sea level, Hd the dyke height and Zb the bank height. The water height
simplified model takes into account all these variables:

H =

 Q

KsB
√

Zm−Zv

L

3/5

. (1)

The model is usually expressed in overflow height: S = Zc − Zd with Zc = (Zv + H) and
Zd = Hd+Zb. Among the model inputs, there are many uncertainties, like intrinsic phenomenon
randomness or lack of knowledge. Here, we make the choice that the following variables are
known precisely: L = 5000 (m), B = 300 (m), Zb = 55.5 (m), Hd = 0 (m) and the next
ones are considered as random: Q, Ks, Zm, Zv . Table 1.1 presents the distributions taken by the
random physical variables (see Appendix A for an explanation of the meaning of the parameters),
supposedly uncorrelated. For more details on this model we refer to [4].

Random var. Distribution Parameters
Q (m3s−1) Gumbel a = 1013, b = 558
Ks (m1/3s−1) Gaussian µ = 30, σ = 7.5
Zv (ASL m) Triangular (a+ b+ c)/3 = 50, b− c = c− a = 1
Zm (ASL m) Triangular (a+ b+ c)/3 = 55, b− c = c− a = 1

Table 1.1 Distributions of the random physical variables of the flood model.

Note that a Gumbel distribution is a classical extreme value description for the watercourse flow.
A Gaussian distribution for the friction coefficient Ks represents the metrological errors that
embody most of the associated uncertainties. For the bottom watercourse heights, Zv and Zm,
triangular distributions illustrate a geomorphological variability limited to well-known bounds
yet more likely to return to its mean equilibrium value than a uniform distribution.

Nuclear reactor pressure vessel
During the normal operation of a nuclear power plant, the nuclear reactor pressure vessel (NRPV)
walls are exposed to neutron radiation, resulting in localized embrittlement of the vessel steel and
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weld materials in the area of the reactor core. If an embrittled NRPV has an existing manufac-
turing flaw of critical size and if severe system transients occur, the flaw might propagate very
rapidly through the vessel, resulting in a through-wall crack and challenging the integrity of the
NRPV. The severe transients of concern, known as pressurized thermal shock, are characterized
by a rapid cooling (i.e. thermal shock) of the internal NRPV surface and downcomer, which may
be followed by repressurization of the NRPV. Thus, a pressurized thermal shock event poses a
potentially significant challenge to the structural integrity of the NRPV. For more details, we
refer to [5].

The NRPV fast fracture thermo-mechanical model during an accidental situation includes three
parts. Firstly, a simplified thermo-hydraulic representation of the accidental event, which analyt-
ically describes, as functions of the time and the security injection temperature, Tsi, the primary
fluid temperature, the pression and the heat transfer coefficient between primary coolant and
vessel cladding. Secondly, a thermo-mechanical model of the vessel cladding thickness, incor-
porating the vessel material properties depending on the temperature. Lastly, a rupture model
around a manufacturing flaw, including different variables: (a) a variable, h, representing the
dimension of an axial type flaw, underclad and located in the base metal, (b) a stress intensity
factor with plastic correction, (c) the toughness depending on the temperature at the flaw and the
RTNDT , whose discrepancy with the fluence is evaluated with some codified forecasting formu-
las called FIM ([6]).
In practice, the modelling of the NRPV may assign probabilistic distributions to some physical
sources of uncertainty. In this article, a maximum of 7 input physical variables will be consid-
ered as random. The next table summarizes the distributions of the independent physical random
inputs of the NRPV model (see Appendix A for an explanation of the meaning of the parameters).

Random var. Distribution Parameters
h (mm) Weibull a = 0.02, b = 3.09, c = 1.80
∆RTNDT (◦ C) Gaussian µ = FIM , σ = 8.1
KIc (MPa m0.5) Uniform a = 0, b = 100
Ratio height/length Lognormal a = 0.02, ln(b) = −1.53, ln(c) = 0.55
Azimut flaw (◦ C) Uniform a = 0, b = 360
Thickness sheathing (mm) Uniform a = 7.5, b = 9
Tsi (◦ C) Uniform a = 9, b = 35

Table 1.2 Distributions of the random physical variables of the NRPV model.

The failure event is defined as follows: at least at one time t during the accidental situation,
the instantaneous failure function, G, becomes negative. So, we are looking for an evalua-
tion of the following probability: Pf = P

(
GMin(X) < 0

)
with X the random input vector and

GMin(X) = min
t

(G(X, t)). The practical difficulty for the evaluation of this probability comes
from the fact that it involves high computational times: indeed, each calculation of GMin(x) for
a fixed value of the input vector requires the evaluation of

(
G(x, t)

)
t

for fixed random value of
each variable, and then a minimization along the duration of the simulated accidental situation,
which can be sizeable in CPU time.
Another point to be mentioned is that the failure function G is monotonic with respect to some
variables, as in many industrial mechanical models and structural reliability applications where
inputs are mostly either of a resistance-type (hence increasing margin) or a load-type (hence
decreasing margin) [4]. Notice that the results of this paper must be considered as textbook ex-
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ercises, which can not be used to draw conclusions about the integrity or safety assessment of
nuclear power plants.

1.2. Mathematical modelling for failure probability problems
One way to assess the reliability of a structure from physical considerations is to use a proba-
bilistic approach: it includes the joint probability distribution of the random input variables of
the deterministic model representing the physical behaviour of the studied structure. We consider
a real-valued failure function, G : D ⊂ Rp → R, which typically represents a failure margin
predicted by a numerical deterministic model. A probability space (D,A,P) is defined in order
to model the uncertainties, giving to X, the input variable vector, the nature of a random vector.
Then, we assume that the probability density function f of the random vector X exists and is
known.
In this context, we want to assess the failure probability Pf :

Pf = P(G(X) < 0) =

∫
G(x)<0

f(x)dx (2)

with G the failure function defined over D, X = (X1, ..., Xp) the p-dimensional random vector
of the input variables and f the density function of X. We partition the set where G is defined,
D, into three subsets: the reliability domain, denoted by Dr := {x ∈ D, G(x) > 0}, the failure
domain, denoted by Df := {x ∈ D, G(x) < 0}, and the boundary between the two previous
subsets, the limit state surface, denoted by Dl := {x ∈ D, G(x) = 0}. Furthermore, four key
features characterize our agenda:

• G may be complex and greedy in computational resources: even when involving high
performance computing, industrial constraints limit typically to a maximum of a few thou-
sands evaluations of G,

• no continuity or derivability assumptions are considered for G.

• the failure is a rare event, which means that Pf is very small. In this work, we will consider
that a small probability is a probability lower than 10−3.

• the results must be robust, i.e. with explicit and trustworthy error control. In fact, these
results might be presented to the NSA (Nuclear Safety Authority) in some decision process
(maintenance inspection program, decision lifetime extension...) and, consequently, must
come with guarantees.

The first two constraints correspond to our hypotheses and the last constraint is the key goal mo-
tivating this research. Remember in fact that larger failure probabilities are mostly satisfactorily
treated by classical alternatives e.g. crude Monte-Carlo sampling; conversely, efficient heuristics
do exist for smaller failure probabilities although error control remains partial if not inexistent
(e.g. FORM/SORM) as detailed hereafter.

1.3. Analysis of the existing strategies
Many stochastic tools already exist in the literature to estimate a failure probability. A well-
developed state of the art can be found in [7, 8, 9] with a large bibliography. From a global point
of view, the numerical integration methods are not effective when the dimension p of D is large.
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Methods such as sparse grid are currently under development to overcome the curse of dimen-
sionality. However, these methods require smoothness assumptions to be efficient [10, 11, 12].
Consequently, these optimized numerical integration methods, potentially efficient, are inade-
quate in our context. Another standard solution consists in keeping the real physical model cou-
pled with the FORM/SORM numerical approximation [13, 1]. However, in non-analytic cases,
the error carried out is not easily calculable, even if the calculation times remain reasonable [13].
The last solution is to evaluate the integral (2) by Monte-Carlo simulation [7, 14]. This method
is reliable and controllable thanks to probabilistic theorems, which give an accurate statistical
measure of the estimation error. Nevertheless, the required number of simulations is unrealistic
for a rare failure problem and a complex physical model. There exist accelerated methods which
reduce the variance of the failure probability estimator [15, 7, 16, 17, 18, 19]. But the estima-
tion error control is only asymptotic and, consequently, only valuable for a sufficient number
of simulations. All of them may be combined with a response surface approach, replacing the
initial physical model by a simplified one with numerical approximation. This last alternative
includes for instance the largely-developing non-intrusive chaos polynomial approaches. Be-
sides, coupling any of those with a response surface approach generally adds another source of
error, which enjoys only very limited error control. In this article, we choose to reflect over the
simulation methods rather than the response surface methods. Within the context of structural re-
liability applications, the Monte-Carlo sampling basis remains therefore generally the reference.
This state of fact brings us to consider the accelerated Monte-Carlo methods and try to develop a
new one, which ”converges” as fast as possible and enables to obtain an estimation error control
in a reasonable number of simulations.

2. The ADS method

We turn our attention to the stratified sampling and the directional simulation methods. On the
one hand, the stratified sampling offers the opportunity to carry out an adaptive strategy and the
possibility to take advantage of a potential monotonic hypothesis of the model G: [7, 15, 20, 21].
On the other hand, the use of the directional sampling method enables to keep a good ”preci-
sion/calculation time” ratio: [1, 22, 23]. That is why we decided to combine these two methods
and their advantages to develop our new stochastic technique. Thus, the aim of this article is
to present and concretely demonstrate the interest of a new accelerated simulation method, we
named ADS - Adaptive Directional Stratification -, and which we designed to overcome the real
industrial constraints listed above.
Our purpose here is to estimate the following expectation:

I = E
(
F (X)

)
(3)

by a new accelerated Monte-Carlo simulation method, for some bounded measurable function
F . The stratification method is widely used for the estimation of expectations in various con-
texts such as survey, finance, reliability... The directional simulation method is essentially used
in structural reliability for failure probability estimations, but here we present it in the general
case of an expectation estimation. We just keep in mind that for all our failure probability esti-
mation applications, the function F is of the form: F (x) = 11G(x)<0 which has all the required
properties.
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2.1. Preliminary: stratification, directional sampling and optimization

The idea is to take advantage of the possibilities given by the stratification and directional simula-
tion methods: optimal allocation result, adaptive strategy, efficient small probability estimation,
reasonable calculation time.
I can be expressed as follows: I = E

(
ξ(A)

)
with

ξ(a) = E
(
H(RA)|A = a

)
=

∫
H(ra)fR(r)dr, (4)

where fR is the density function of R, H = F ◦ T−1Nataf and T−1Nataf the inverse Nataf trans-
formation, such that U = F ◦ T−1Nataf (X) is a Gaussian random vector. U can be expressed
as U = RA with R2 a chi-square random variable, A a random vector uniformly distributed
over the unit sphere Sp ⊂ Rp and R independent with A [24]. At this point, we introduce the

b

Normal

Normal

Ai

S2

U2

U1

R =
√
U1 + U2

Df
ri

Dr

Fig. 2.1 Two dimensional illustration of the directional simulation method in the Gaussian space.

stratification method by partitioning the ”directional space”, in other words the space where A
takes its values, that is to say the p-dimensional unit sphere Sp. The natural strata adapted to
directional draws are cones and partitioning Sp is equivalent to make a partition of the general
space into cones. Let us denote by (qi)i=1,...,m a partition of Sp into m strata.
Let us denote by n the total number of directional draws and consider an allocation of directional
draws in each stratum described by the sequence w = (wi)i=1,...,m such that

∑m
i=1 wi = 1. The

number of draws in the i-th stratum is ni = bnwic with b.c the floor function.
We can express the expectation I = E

(
ξ(A)

)
as:

I =

m∑
i=1

P(A ∈ qi)E
(
ξ(Ai)

)
=

m∑
i=1

ρiIi (5)

with Ai ∼ L(A|A ∈ qi) uniformly distributed over qi and Ii = E
(
ξ(Ai)

)
.

Now, we estimate Ii by drawing ni directions in the i-th stratum. This can be done by using a
simple rejection method. We get:

Îi =
1

ni

ni∑
j=1

ξ(Ai
j) (6)

with (Ai
j)j=1,...,ni a family of independent and identically distributed random variables with the

distribution L(A|A ∈ qi).
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We obtain the following unbiased estimator by coupling the directional sampling and the strati-
fication methods:

ÎDSS =

m∑
i=1

ρiÎi (7)

and its variance is given by σ2
DSS/n with

σ2
DSS =

m∑
i=1

ρ2iσ
2
i

wi
(8)

where σ2
i = V ar

(
ξ(Ai)

)
.

Then, we get the following asymptotical result:
√
n(ÎDSS − I)

L−−−−−→
n→+∞

N (0, σ2
DSS). (9)

Now, just like in the standard stratification method, we can determine the optimal allocation
of directional draws in each stratum in order to minimize the variance estimator given by (8),
which can be useful for the design of an adaptive strategy. The unique solution of this constraint
optimization problem is given by the sequence defined by:

wopt1i =
ρiσi
m∑
j=1

ρjσj

(10)

for i = 1, ...,m. The optimal variance obtained with this allocation is: σ2
opt1/n with

σ2
opt1 :=

( m∑
i=1

ρiσi

)2

. (11)

Now, we can see that the variance of the estimator ÎDSS with the optimal allocation is smaller
than the one with the proportional one. Besides, we demonstrate that the variance of ÎDSS with
the proportional allocation, and a fortiori with the optimal one, is: (a) smaller than the variance of
the usual stratified estimator (in the Gaussian space) with a proportional or an optimal allocation,
(b) smaller than the variance of the standard directional simulation method. All these variances
are also smaller than the one of the standard Monte-Carlo.
Before presenting the adaptive strategy, we can imagine that we have to draw directions in a stra-
tum where we have already drawn some directions. Let us split the total number of simulations
n into two parts γ1(n)n and γ2(n)n such as γ1(n) + γ2(n) = 1. Let us assume that we have
already drawn a sizeable deterministic proportion, βi, of γ1(n)n in the i-th stratum and that now
we want to draw a proportion wi of γ2(n)n in this stratum. At the end, we will have drawn
γ1(n)βin + γ2(n)win in the i-th stratum, for all i. Of course,

∑m
i=1 βi = 1 and

∑m
i=1 wi = 1.

Then, the variance of the estimator will be:

1

n

m∑
i=1

ρ2iσ
2
i

γ1(n)βi + γ2(n)wi
. (12)

Now, we can try to calculate the (wi)i=1,...,m which will minimize variance (12). The associated
constraint optimization problem has a unique solution, which can be computed by the following
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algorithm.

Algorithm 1 :

(a) Compute, for i = 1, ...,m, the quantities βi

ρiσi
and sort them in decreasing order, denoting

them β(i)

ρ(i)σ(i)
. Compute, for i = 1, ...,m, the quantities:

1 + γ1(n)
γ2(n)

∑m
j=i+1 β(j)

γ1(n)
γ2(n)

∑m
j=i+1 ρ(j)σ(j)

.

(b) Denote i∗ the largest i such that

β(i)

ρ(i)σ(i)
≥

1 +
γ1(n)

γ2(n)

m∑
j=i+1

β(j)

γ1(n)

γ2(n)

m∑
j=i+1

ρ(j)σ(j)

.

If this inequality is false for all i, then, by convention, set i∗ = 0.

Let us denote by K ⊂ {1, ...,m} the subset defined by:

K =

{
i ∈ {1, ...,m}, (i) ≤ i∗

}
(13)

where i∗ is defined in algorithm 1. Its complementary is denoted by Kc. Thus, the unique
solution of the previous optimization problem is the sequence defined by:

wopt2i =


0 if i ∈ K

ρiσi∑
j∈Kc

ρjσj

(
1 +

γ1(n)

γ2(n)

∑
j∈Kc

βj
)
− γ1(n)

γ2(n)
βi if i ∈ Kc (14)

for i = 1, ...,m.
The optimal variance obtained with this allocation is: σ2

opt2/n with

σ2
opt2 :=

∑
i∈K

ρ2iσ
2
i

γ1(n)βi
+

1

γ2(n) + γ1(n)
∑
j∈Kc

βj

( ∑
i∈Kc

ρiσi

)2

(15)

and we get the following variance inequality:

σ2
opt1 ≤ σ2

opt2 . (16)
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2.2. ADS-2 estimator definitions and properties
Now, we have all the tools to set up our 2-steps adaptive method with an estimator coupling
stratification and directional sampling. We will call this estimator the 2-adaptive directional
stratification (ADS-2) estimator. It will be denoted by ÎADS−2.
Let us explain our strategy. We split the total number n of draws into two parts: γ1(n)n and
γ2(n)n such that

∑2
i=1 γi(n) = 1 and (γi(n))i=1,2 are functions of the variable n. The first

part, γ1(n)n, will be used to estimate the optimal allocation minimizing the variance (learning
step), and the second part, γ2(n)n, will be used to estimate the failure probability (estimation
step), using the estimation of the optimal allocation.
For instance, we can take γ1(n) = nl−1 with l ∈ (0, 1), or γ1(n) = γ1 with γ1 ∈ (0, 1) and, in
an obvious way, we have γ2(n) = 1 − γ1(n). Let us set a prior choice of the draw proportions
(wi)i=1,...,m for the m strata we define as the quadrants of the Gaussian space. Without any
other information, the most natural choice is a uniform allocation, (wi) = (ρi). Let us suppose
we use the directional and stratification estimator (7). Consequently, the idea is to replace the
allocation (wi)i=1,...,m by an estimation, (W̃i)i=1,...,m, of the optimal allocation made with the
γ1(n)n first draws: optimization problem results (10) and (14) are the optimal allocations on
which we will refer.
But first, we need to define our estimators. Two possibilities can be considered: we can choose
either a recycling estimator or a non-recycling estimator.

The recycling ADS-2 estimator
The recycling ADS-2 estimator uses the γ1(n)n first draws, that are used for the optimal alloca-
tion estimation step, for the expectation estimation:

ÎADS−2r =

m∑
i=1

ρi
1

Nr
i

Nr
i∑

j=1

ξ(Ai
j) (17)

with

Nr
i := bγ1(n)nwic+

⌊
γ2(n)nW̃ r

i

⌋
, (18)

(wi)i=1,...m the prior allocation made in the optimal allocation estimation step and (W̃ r
i )i=1,...,m

given by (14), substituting the (σi)i=1,...,m by an estimation of them, (σ̃i)i=1,...,m, given, for all
i ∈ {1, ...,m}, by:

σ̃i =

√√√√ 1

ni − 1

ni∑
j=1

ξ(Ai
j)

2 − 1

ni(ni − 1)

( ni∑
j=1

ξ(Ai
j)
)2

(19)

with ni = bγ1(n)nwic. Consequently,

W̃ r
i =


0 if i ∈ K̃

ρiσ̃i∑
j∈K̃c

ρj σ̃j

(
1 +

γ1(n)

γ2(n)

∑
j∈K̃c

wj
)
− γ1(n)

γ2(n)
wi if i ∈ K̃c (20)

where K̃ and K̃c are also estimated replacing the (σi)i=1,...,m by the (σ̃i)i=1,...,m in algorithm
1.
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This estimator has the following bias due to the dependence of the optimal allocation estimation:

E
(
ÎADS−2r

)
− I = −

∑
i∈Kc

ρiγ1(n)wiγ2(n)

(γ1(n)wi + γ2(n)wopt2i )2
Cov

(
ξ(Ai), W̃i

)
+ o(

1

n
). (21)

The covariance term can be more precisely expressed. It is of the order of 1
n and depends on

the first, second and third order moments of the ξ
(
Ai
)
, so that this bias cannot be efficiently

estimated with a small number of simulations.
If we suppose that γ1(n) = γ1, then the variance of the ADS-2 recycling estimator can be
expressed as:

V ar
(
ÎADS−2r

)
=

1

n

∑
i∈K

ρ2iσ
2
i

wiγ1

+
1

n
E
( ∑
i∈K̃c

ρ2iσ
2
i

γ2W̃
r
i

(γ1wi + γ2W̃ r
i )2

)

+
1

n

γ1
∑
i∈Kc wi(

γ2 + γ1
∑
i∈Kc wi

)2 ( ∑
i∈Kc

ρiσi
)2

+ o(
1

n
).

(22)

Then, we can prove the asymptotical convergence of the estimator to a Gaussian distribution
under two types of assumption. Firstly, if we suppose that γ1(n)→ 0 and γ1(n)n→ +∞, then:

√
n(ÎADS−2r − I)

L−−−−−→
n→+∞

N (0, σ2
opt1). (23)

Secondly, if we suppose that γ1(n) = γ1, then:

√
n(ÎADS−2r − I)

L−−−−−→
n→+∞

N (0, σ2
opt2). (24)

The assumption γ1(n) = γ1 corresponds to our framework: indeed, as the number of calls to
the failure function is limited, it is the most appropriate assumption. Also, the corresponding
convergence result could be used to obtain the robustness of the method by estimating the confi-
dence interval it offers. For this latter, we could use an estimation of the variance expression of
the estimator proposed in (22) resulting in the following estimator:

σ̂2
r =

1

n

∑
i∈K̃

ρ2i σ̂
2
i,r

wiγ1

+
1

n

∑
i∈K̃c

ρ2i σ̂
2
i,r

γ2W̃
r
i

(γ1wi + γ2W̃ r
i )2

+
1

n

γ1
∑
i∈K̃c wi(

γ2 + γ1
∑
i∈K̃c wi

)2 ( ∑
i∈K̃c

ρiσ̂i,r
)2

(25)
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with

σ̂i,r =

√√√√ 1

Nr
i − 1

Nr
i∑

j=1

ξ(Ai
j)

2 − 1

Nr
i (Nr

i − 1)

( Nr
i∑

j=1

ξ(Ai
j)
)2
. (26)

We can notice that, referring to the result (16), under the realistic assumption γ1(n) = γ1, the
optimal standard deviation we achieve, σopt2 , will be larger than σopt1 .

The non-recycling ADS-2 estimator
The non-recycling ADS-2 estimator does not use the γ1(n)n first draws for the expectation esti-
mation. It only uses the second part of draws, γ2(n)n:

ÎADS−2nr =

m∑
i=1

ρi
1

Nnr
i

Nnr
i∑

j=1

ξ(Ai
ni+j) (27)

with

Nnr
i =:

⌊
γ2(n)nW̃nr

i

⌋
(28)

and (W̃nr
i )i=1,...,m given by (10) replacing the (σi) by their estimations defined by (23).

Thus, for all i ∈ {i = 1, ...,m}:

W̃nr
i =

ρiσ̃i
m∑
j=1

ρj σ̃j

. (29)

This estimator is unbiased: E
(
ÎADS−2nr

)
= I . The variance of the ADS-2 non-recycling estima-

tor is:

V ar
(
ÎADS−2nr

)
=

1

γ2(n)n
E
[( m∑

i=1

ρi
σ2
i

σ̃i

)( m∑
j=1

ρj σ̃j
)]
. (30)

We also get the following Gaussian asymptotical results. Firstly, if we assume that γ1(n) → 0
and γ1(n)n→ +∞, then:

√
n(ÎADS−2nr − I)

L−−−−−→
n→+∞

N (0, σ2
opt1). (31)

Secondly, if we assume that γ1(n) = γ1, then:

√
n(ÎADS−2nr − I)

L−−−−−→
n→+∞

N (0,
1

1− γ1
σ2
opt1). (32)

We notice that we do not achieve the optimal standard deviation, σ2
opt1 : we loose a factor γ1/(1−

γ1) of it, i.e. the obtained variance is σ2
opt1/(1 − γ1) = σ2

opt1 + σ2
opt1γ1/(1 − γ1). To get the

confidence interval offered by this result, we can estimate the standard deviation (30) of the
estimator by:

σ̂2
nr =

1

γ2(n)n

( m∑
i=1

ρiσ̃i,nr

)2

(33)
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with

σ̂i,nr =

√√√√ 1

Nnr
i − 1

Nnr
i∑

j=1

ξ(Ai
j)

2 − 1

Nnr
i (Nnr

i − 1)

(Nnr
i∑

j=1

ξ(Ai
j)
)2
. (34)

Conclusion and choice of the estimator
In conclusion, the ADS-2 strategy concentrates the runs into the most important parts of the sam-
ple space, which results in an asymptotic optimal error variance.
When the number of simulations is limited, the most natural assumption will be to choose
γ1(n) = γ1, in order to have a sufficient number of draws in both learning and estimation steps
of the ADS-2 method. We will look for the optimum of this parameter in the following numerical
studies.
Another point is to make a choice between the recycling and the non-recycling estimators. Intu-
itively, the first choice would be for the recycling one, since re-using the first step draws seems to
be more efficient to estimate the failure probability. However, the problem is that this recycling
estimator is biased and this bias is not easy to estimate with a limited number of simulations,
which is discrepant with the robustness we are looking for. Consequently, the unbiased non-
recycling estimator seems to be a better choice: even if we loose some factor in the standard
deviation, we know exactly how much.

2.3. Numerical application
In this section, we test numerically the efficiency of the ADS-2 method on various examples.
First, we study the behaviour of the ADS-2 method on academic examples. Then, it is applied
to two realistic models: the flood and the nuclear reactor pressure vessel models, presented in
section 1.1.

Hyperplane failure surfaces
Here, we essentially want to determine the behaviour of the ADS-2 method in the cases where
the failure surface is: (a) concentrated only in one quadrant, (b) essentially concentrated in one
quadrant but with some part running over other quadrants, (c) uniformly concentrated in sev-
eral quadrants. So, we test respectively the ADS-2 method considering three hyperplane failure
surfaces:

H1 :

p∑
i=1

xi = k1, H2 :
1

4
x1 +

p∑
i=2

xi = k2, H3 : xp = k3,

with p the physical space dimension. To determine the constant kj corresponding to a given
failure probability, Pf , we just need to calculate some appropriate Gaussian quantiles.
Denoting by b the radius of the sphere beyond which the probabilities are insignificant in com-
parison with the seeked failure probability, it is defined in the p-dimensional Gaussian space by:

b =
√
χ−12,p(1− εPf ), with χ−12,p the inverse chi-square probability distribution with p degrees of

freedom and ε some margin, for example ε = 10−1. We want to study numerically the behaviour
of the ADS-2 estimators on several configurations. The failure probability takes its values into:
Pf ∈ {10−4, 10−8}, the physical space dimension takes its values into: p ∈ {3, 5, 8}, the per-
centage of directional draws allocated in the first step of the ADS-2 method, γ1, takes its values
between 5% and 85%:

γ1 ∈ {5%, 10%, 15%, 25%, 50%, 75%, 85%}
12



b

Df

Dr

H1 : x1 + x2 = k

b

Df

Dr

H2 :
1
4
x1 + x2 = k

b

Df

H3 : x2 = k

Dr

Fig. 2.2 Two dimensional graphic representations of respectively H1, H2 and H3.

and the total number of directional draws, n, takes its values between 100 and 5000:

n ∈ {100, 120, 140, 160, 180, 200, 240, 260, 280, 300, 500, 750,
1000, 1250, 1500, 2000, 3500, 5000}.

From now on, until specific notification, the physical space dimension is p = 3. The quality
of the ADS-2 estimators is evaluated through 4 indicators, depending of n and estimated over
N = 5000 runs of the method. The 4 indicators are:

• the mean number of calls to the failure function G: NG =
1

N

N∑
k=1

NGk, with NGk the

number of calls to the failure function at the k-th run of the method

• the mean relative bias of the failure probability estimator: B̂ =
1

N

N∑
k=1

B̂k, with B̂k =
ÎADS−2k − Pf

Pf

• the mean coefficient of variation: ĈV =
1

N

N∑
k=1

σ̂ADS−2nr,k

ÎADS−2k

• the percentage of estimations fallen in the estimated two-sided symmetric 95% confidence

interval: ˆPCI =
100

N

N∑
k=1

11Pf∈[P̂−k ;P̂+
k ], with P̂±k = ÎADS−2k ± α97,5%

σ̂ADS−2k√
n

, where

α97,5% is the 97, 5% Gaussian quantile.

The figures of these 4 indicators are presented in Appendix B.

Figures 1 and 5 give the averaged number of calls to the failure function, NG, depending on
n, when the seeked failure probability is respectively Pf = 10−4 and 10−8. NG goes from 3
to 10 in function of γ1 and, of course, it increases linearly with n. The difference between the
recycling and the non-recycling estimators is not significant. We can notice that when the failure
function is concentrated in one quadrant (H1), the number of calls is higher because the majority
of the directional draws intersects the failure surface, which implies many calls to G due to the
root-finding algorithm. On the contrary, when the failure surface stretches in multiple quadrants
(H3), a non negligible number of draws is lost and NG decreases. Moreover, when the seeked
failure probability decreases, the mean number of calls to the failure function in one direction
also decreases.

13



Figures 2 and 6 give an estimation of the relative bias, B̂, of the ADS-2 estimators, depend-
ing on n, when the seeked failure probability is respectively Pf = 10−4 and 10−8. For the
non-recycling estimator, the bias is clearly negligible and corresponds to the root-finding error.
But for the recycling estimator, a substantial bias appears in the ”worst cases” (multiple impor-
tant quadrants). For example, with hyperplane H3, the bias is of the order of magnitude of 20 to
30% of Pf . We can also observe that to minimize the bias when the failure surface is in several
quadrants, we need to allocate enough simulations for the first step (learning step) of the method;
50% seems to be enough.

Figures 3 and 7 give an estimation of the coefficient of variation, ĈV , of the ADS-2 estimators,
depending on n, when the seeked failure probability is respectively Pf = 10−4 and 10−8. The
estimation is made by approximating the variance expression of the ADS-2 estimators by σ̂2

nr.
The dashed graphics correspond to the estimation of the relative standard deviation of the ADS-2
estimator by directly calculating the standard deviation with the N = 5000 iterations made. We
can notice that the recycling estimator gives a smaller standard deviation in comparison with the
non-recycling estimator. The bias, difference between the dashed and the solid lines, is also a
little smaller, in particular for multiple quadrants failure surfaces. For both estimators, it is clear
that the allocation γ1 must be larger than 50%, as the standard deviation is smaller and the bias
decreases quite quickly. The best compromise seems to be 50%. In this case, the sensitivity to
the failure probability is negligible, otherwise it increases when the failure probability decreases.

Figures 4 and 8 give the percentage of estimations fallen in the estimated two-sided symmet-
ric 95% confidence interval, ˆPCI , depending on n, when the seeked failure probability is re-
spectively Pf = 10−4 and 10−8. Globally, the non-recycling estimator gives better results in
comparison with the recycling one. The theoretical 95% confidence interval is also more diffi-
cult to achieve when the failure surface is in several quadrants. It is reached quite quickly forH1,
but when the failure surface extends into multiple quadrants (H3), the inflation of the required
simulations can be significant.

These numerical results bring us to confirm the existence of the bias of the recycling estima-
tor. This recycling estimator gives quite better results for the standard deviation estimation in the
cases of multiple quadrants failure surfaces, but it is also in these configurations where the bias is
consequent. As we have theoretically seen in section 2.2, we loose some precision (and we know
exactly how much) with the non-recycling estimator; however, this latter is much more reliable.
This fact appears clearly in the graphics presenting the percentage of estimations fallen in the
estimated confidence interval (Figures 4 and 8). Also, we have noticed that the best compromise
for the allocation of simulations in the first step of the method, γ1, is 50%, in order to estimate
accurately the optimal allocation used in the second estimation step and thus keep a sufficient
number of simulations for the final estimation of the failure probability. We numerically con-
firmed the asymptotic variance result (35), which gives a Gaussian control over the estimation
error, as shown in the following Figure 3.2.
Summarizing, we confirmed numerically: the consistency of both recycling and non-recycling

estimators, the bias of the recycling estimator and the lack of this bias for the non-recycling es-
timator, the theoretical Gaussian behaviour of the standard deviation of both estimators and the
control of the error estimation for both recycling and non-recycling estimators. We determined
that, empirically, the best γ1 is about 50% for a limited number of calls to the failure function
and that the non-recycling estimator is more reliable than the recycling one, because of the bias
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Fig. 2.3 Empirical histogram of the non-recycling ADS-2 estimator on H1 with p = 3, Pf = 10−7,
n = 1000, N = 1000 and γ1 = 0.5.

of this latter which can not be easily corrected. We noticed that the worst case is when the failure
surface is uniformly distributed in several quadrants (H3). In this case, the learning step of the
method must be very important to obtain a reliable estimation of the optimal allocation. We have
observed that the ADS-2 method is not very sensitive to the order of magnitude of the failure
probability, although the efficiency decreases slowly with the failure probability. We recall that
all the previous results have been obtained for a physical dimension p = 3. In the following, we
study the behaviour of the ADS-2 estimators when the dimension increases. Intuitively, it is clear
that, for a fixed number of simulations, the estimation deteriorates when the dimension increases.
Indeed, the physical space becomes larger and the number of quadrants increases exponentially.
A small number of simulations, as we have in practice for industrial cases, will not be enough
to detect the failure surface accurately. In Figure 9 (Appendix B), we present the percentage of
estimations fallen in the estimated two-sided symmetric 95% confidence interval for p = 3, 5
and 8.
We observe that, as the dimension increases, the result can be just less reliable when the hy-
perplane is concentrated in one quadrant (H1), but when the surface is uniformly distributed in
several quadrants (H3), then the results are clearly not efficient at all. The impact of the extension
of the surface over multiple quadrants is more reasonable when the dimension is about p = 3.
Clearly, we need to control the dimension of the random inputs of the physical model and some
reduction over it must be achieved before applying the ADS-2 method. When the random inputs
are more than 3, a choice over which inputs to stratify should be advised: we will give a method
for this selection in section 3.4.

The flood model
From now on, we only consider the non-recycling estimator, since we have seen in the previous
section that it is the most appropriate to estimate small probabilities with a small number of calls
to the failure function.

The flood model has been presented in section 1.1. We recall that this model takes into ac-
15



count 4 random variables. The failure probability is of the order of magnitude of 10−2, which
may be seen like an upper range for small failure probabilities. As many standard methods have
been tested on this model to estimate the failure probability, it is an interesting model for bench-
marking our ADS-2 method. We will denote MC the standard Monte-Carlo method, DR the
dimension reduction method, DS the standard directional simulation method and IS the impor-
tance sampling method around the FORM/SORM design point (DP).
Table 2.1 gathers the coefficients of variation (ĈV ) obtained with these methods depending on
the number of calls to the failure function, NG, and for N = 1.

Method n NG P̂f ĈV (%)
MC 104 104 0.85× 10−3 10.8
MC 105 105 1.14× 10−2 2.9
MC 106 106 1.16× 10−2 0.92
DR (Q) 104 104 1.16× 10−3 3.6
DR (Q) 105 105 1.19× 10−2 1.1
DR (Q) 106 106 1.17× 10−2 0.37
DR (Ks) 104 104 1.16× 10−3 4
DR (Ks) 105 105 1.17× 10−2 1.3
DR (Ks) 106 106 1.17× 10−2 0.41
DS 2700 ≈ 104 1.13× 10−2 5.82
DS 27350 ≈ 105 1.18× 10−2 1.87
DS 273500 ≈ 106 1.18× 10−2 0.59
ADS-2 2850 ≈ 104 1.17× 10−2 2.8
ADS-2 28000 ≈ 105 1.20× 10−2 0.89
ADS-2 282000 ≈ 106 1.17× 10−2 0.28
IS (DP) 104 104 1.19× 10−3 1.7
IS (DP) 105 105 1.18× 10−2 0.56
IS (DP) 106 106 1.19× 10−2 0.18

Table 2.1. Non-recycling ADS-2 estimator results compared with different simulation methods
with the flood model. N = 1.

For the same number of calls to the failure function, the ADS-2 method gives much better co-
efficients of variation than the standard Monte-Carlo, the dimension reduction and the standard
directional simulation methods. The importance sampling method gives smaller coefficients of
variation, but these results are still dependent on the design point, the uniqueness of this one
being not insured. So, the ADS-2 method gives a little larger ĈV in comparison with the impor-
tance sampling, but with robust results in addition. Also, we can notice that the ADS-2 method
can be combined to the dimension reduction, as both methods are completely independent.
Table 2.2 gives a more exhaustive behaviour of the ADS-2 method applied to the flood model.
We can notice that the ADS-2 method begins to stabilize when the number of calls to the fail-
ure function is around NG = 800: then, the coefficient of variation decreases, as predicted by
the theory, at the rate 1/

√
n. Besides, the simulations have been achieved with the same kernel

and, even if in this example we underestimate the failure probability for the first values of n, the
two-sided symmetric 95% confidence interval contains the real failure probability anyway.
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Method n NG P̂ADS−2
f ĈV (%)

ADS-2 120 494 9.46× 10−3 24.4
ADS-2 160 592 1.02× 10−2 14
ADS-2 200 742 9.08× 10−3 12.2
ADS-2 240 870 9.07× 10−3 11.4
ADS-2 280 1060 1.01× 10−2 9.2
ADS-2 300 1110 1.14× 10−2 8.5
ADS-2 500 1790 1.20× 10−2 6.2
ADS-2 750 2654 1.22× 10−2 5.5
ADS-2 1000 3756 1.37× 10−2 4.8

Table 2.2. Non-recycling ADS-2 estimator results with the flood model for small values of n.
N = 1.

The nuclear reactor pressure vessel model
The nuclear reactor pressure vessel model has been presented in section 1.1. As the failure event
is conditional to a postulated thermal shock, all the following failure probability results must
be multiplicated by the frequency of the shock event, which is very small (≤ 10−4). We recall
that the numbers of random inputs are 3, 5 and 7. We apply the ADS-2 method to estimate the
failure probability and compare its results with the ones obtained with the standard directional
simulation (DS) and the FORM/SORM methods. The computations have been performed with
the platform OpenTURNS [25]. For the DS method, the root-finding algorithm is the standard
dichotomic method. However, the dichotomic algorithm used in the ADS-2 method is computed
with the stop criterion presented in section 3.1.
For p = 3, in table 2.3, we notice an improvement with the use of the ADS-2 method:

• with a similar number of calls to the failure function, the ADS-2 failure probability esti-
mation is slightly better than the SORM result in order of magnitude talking. Moreover,
we can notice the large difference between the FORM and SORM results which motivates
our method, that offers a confidence interval and thus provides a controlled estimation.

• in comparison with DS, for a same number of calls to the failure function,GMin, the ADS-
2 method gives a better estimation of Pf and reduces the width of the two-sided symmetric
95% confidence interval.

• in comparison with DS, for a same coefficient of variation (i.e. a comparable estimation
error), the ADS-2 method enables to reduce the number of calls to GMin by a factor of
about 3.
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Method n NG P̂f ĈV (%)

ADS-2 100 593 2.3× 10−6 35
ADS-2 140 918 5.1× 10−6 26
ADS-2 180 1169 5.3× 10−6 21
ADS-2 220 1371 4.3× 10−6 20
ADS-2 260 1446 4.1× 10−6 19
ADS-2 280 1632 3.8× 10−6 18.5
ADS-2 600 3832 4.5× 10−6 12.5
ADS-2 2000 12781 4.1× 10−6 7
DS 500 1553 6.1× 10−6 29
DS 1000 3116 8.0× 10−6 21
DS 5000 15103 5.45× 10−6 9.4
FORM − 80 9.0× 10−6 −
SORM − 1668 4.4× 10−5 −

Table 2.3. ADS-2 and DS results with the NRPV model. p = 3. N = 1.

Furthermore, in comparison with the DS method, as in the previous academic examples, when
the dimension increases, we can expect a significant improvement of the ADS-2 results and the
associated uncertainty. For a dimension p = 5, in table 2.4, taking as reference the results ob-
tained with the largest number of simulations n = 8192, we can notice that the minimum number
of calls to the failure function required to obtain a coherent result is larger than the one required
when p = 3. It begins to stabilize for a number of calls around NG = 6000. It can be explained
by the fact that a larger number of simulations is necessary to accurately detect the important
strata.
Also, in comparison with the DS method, we can see that the gap between the two methods has
increased. The number of calls needed to obtain a similar standard deviation with DS in compar-
ison with ADS-2 is definitively prohibitive. Finally, we observe that the FORM calculation of
the failure probability is strongly over-evaluated and that the SORM one is similar to the ADS-2
estimation. The numbers of calls to the failure function required by the FORM/SORM methods
are small compared with the ADS-2 method. Nevertheless, the reliability of the results they pro-
vide is not insured, as we can see through the large difference between the FORM and the SORM
evaluations of the failure probability. By contrast, the ADS-2 method is robust, since it supplies
a confidence interval on the failure probability estimation.

Method n NG P̂f ĈV (%)

ADS-2 256 849 1.8× 10−6 95
ADS-2 512 1734 5.7× 10−7 53
ADS-2 1024 2848 2.0× 10−7 50
ADS-2 2048 6755 7.7× 10−7 53
ADS-2 4096 13203 4.8× 10−7 22
ADS-2 8192 23324 4.3× 10−7 20
DS 4096 9246 1.5× 10−6 65
DS 6144 13871 1.2× 10−6 56
FORM − 132 6.6× 10−4 −
SORM − 1688 7.2× 10−7 −

Table 2.4. ADS-2, DS and FORM/SORM results with the NRPV model. p = 5. N = 1.

In conclusion, for large dimensions, the number of simulations needed to obtain reliable results is
clearly too large regarding our constraints. So, this point motivates the work presented in section
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3.4, which proposes a solution to reduce the number of calls to the failure function when the
dimension is larger than 3.

3. Improvement and monotonicity hypothesis

3.1. A stop criterion for the dichotomic algorithm in the directional sampling method: small
failure probability case

Root-finding algorithms lead to numerical approximation errors that may strongly impact the es-
timation of the failure probability. Thus, the question is: how many steps do we have to perform
to keep having the variance reduction result with the directional sampling method? Hence the
necessity of an analysis on the propagation and the control of these errors. Thus, our purpose
is to control the numerical error generated by the use of the chosen root-finding algorithm for a
continuous and potentially monotonic failure function. We assume that the root is unique, which
is true in some part of the physical space under monotonicity hypothesis.
The standard root-finding methods are the dichotomic, the secant, the inverse quadratic interpo-
lation and the Brent methods. The secant and the inverse quadratic interpolation methods do not
fit with our point of view, because they need additional hypotheses over the failure function to
get an error control. Despite of the fact that it is not the fastest method, the dichotomic method
has an error control without any additional assumption: so, it is a robust algorithm over which
the error propagation can be studied. We can notice that the Brent method is designed to com-
bine the reliability of the dichotomic method and the convergence speed of the secant and inverse
quadratic interpolation methods. Consequently, in the implementation step, we will use the Brent
method for which the errors studied for the dichotomic method still stand. In this section, we
suppose that:

2 ≤ p ≤ 8 and Pf ≤ 10−3 (35)

and we focus on the dichotomic algorithm. Then, in this case, the directional simulation estimator
becomes:

P̂DSf =
1

n

n∑
i=1

[
1− χ2

p(r
2
i )
]

(36)

where ri is the i-th root. We consider a bound, b, for the root beyond which the probabilities
are insignificant in comparison with the failure probability to be estimated, so that the interesting
roots are in the interval [0, b]. b can be determined by a quantile calculation. We can also con-
sider a lower bound a under which the probability is larger than a prior estimation of the failure
probability (considering that we are looking for a small probability): in the same way, a can
be determined by a quantile calculation. We suppose that the dichotomic method is performed
in the interval [a, b]. Let us denote by ki the number of steps performed with the dichotomic
method in the i-th direction to obtain the root ri. We know that, at the step ki, we obtain a
solution interval Ski = [Aki , Bki ] with |Ski | = Bki − Aki = (b − a)/2ki and ri is somewhere
within this interval. For the approximation of ri in Ski , we choose the middle point of Ski :
rεi = (Bki +Aki)/2. Then, we model ri − rεi by εci , a uniform random variable over the interval
[−(b − a)/2ki+1, (b − a)/2ki+1], as we do not have more information on its location without
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any other assumption. Thus, rεi = ri + εci . Now, we have the directional simulation estimator
including the numerical approximation error:

P̂DSf,εc =
1

n

n∑
i=1

1− χ2
p

(
(ri + εci )

2
)
. (37)

Using Taylor expansions, we find the following results.
Under assumptions (39) and if

min
j=1,...,n

(kj) ≥ C(a, b, p) (38)

with C(a, b, p) =: ln
( (b−a)|p−1−b2|

b

)
/ ln(2), then we have the following control over the bias:

∣∣B(P̂DSf,εc)
∣∣ =

∣∣E(P̂DSf,εc

)
− Pf

∣∣ ≤ (b− a)2

3n

n∑
j=1

ψ(r2j )|p− 1− r2j |
22kj+2

(39)

and over the variance:∣∣V ar(P̂DSf,εc

)
− V ar(P̂DSf )

∣∣ ≤ (b− a)2

3n2

n∑
j=1

(
ψ(r2j )rj

)2
22kj

. (40)

The variance result enables to look for the optimal allocation ki which minimizes the number of
calls to the failure function, G, and at the same time, allows to keep a control on the numerical
error to the variance. For this, we solve the following optimization problem:

(E)



min
(kj)j=1,...,n

( n∑
j=1

kj

)
under the constraint:

(b− a)2

3n2

n∑
j=1

(
ψp(r

2
j )rj

)2
22kj

≤ s

(41)

with s a fixed threshold. Then, the solution is the sequence (kj)j=1,...,n defined by:

kj = κ(rj) :=
ln( (ψ(r2)(b−a)r)2

3ns )

2 ln 2
. (42)

We determine that assumption (42) is satisfied for:

s ≤ ψ2
p(b2)b4

3n|p− 1− b2|2 . (43)

Hence, after these considerations, substituting (43) (replacing the inequality by an equality) into
the expression of kj (42), the optimal number of dichotomic steps which enables to keep a control
over the numerical errors propagation to the variance estimator is defined, for i ∈ {1, ..., n}, by:

kopti = κopt(ri) =: ln
( (ψ(r2i )ri(b− a)|p− 1− b2|)2

(ψp(b2)b2)2
)
/[2 ln(2)]. (44)

Finally, this result seems to be a priori useless from a practical point of view, since kopti depends
on ri. Nevertheless, this result can contribute for the design of a stop criterion for the dichotomic
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algorithm. As we denote by ki the k-th step of the dichotomic research of the i-th root, we know
that, at the step ki, the dichotomic algorithm gives the solution interval [Aki , Bki ]. Consequently,
we have ri ∈ [Aki , Bki ]. Thus,

kopti ∈
[

min
(
κopt(Aki), κ

opt(Bki)
)
,max

(
κopt(Aki), κ

opt(Bki)
)]
,

which provides the following stop criterion.
Dichotomic method stop criterion:
The dichotomic method in the i-th direction should stop as soon as the k-th step of the dichotomic
research of the i-th root satisfies:

ki > max
(
κopt(Aki), κ

opt(Bki)
)

with κopt(r) given by (48).

3.2. Notation, definition and properties given by the monotonicity hypothesis
We consider a failure function G defined over D ⊂ Rp and we recall that Dr, Df and Dl re-
spectively represent the reliability domain, the failure domain and the limit state surface. Let us
begin with specifying the monotonicity notion we consider. A function f : Rp −→ R is globally
monotonic if and only if ∀i ∈ {1, ..., p}, ∀(x1, ..., xi−1, xi+1, ..., xp) ∈ Rp−1, fi : R → R,
defined by fi(xi) = f(x1, ..., xi, ...xp), is a monotonic function. From now on, when we talk
about the monotonicity hypothesis, we refer to the global monotonicity definition. To simplify
the study, we also suppose that this monotonicity is decreasing, i.e all the functions fi are de-
creasing. If the fi are not all decreasing, a simple change of variable can put us in the considered
case. So, we will equivalently say G is monotonic or G is decreasing.
We denote by � the partial order between elements of any p-dimensional space, i.e x � y (re-
spectively x � y) means that all components of x are together lower than (respectively upper
than) or equal to the components of y. Then, a negative hypercone of vertex x = (x1, ..., xp) or
a negative x-hypercone is the set defined by: H−x = {y ∈ D, y � x} and in the same way, a
positive x-hypercone is defined by: H+

x = {y ∈ D, y � x}. These x-hypercones are illus-
trated in Figure 3.1. In a general frame, the monotonicity hypothesis indicates that if x ∈ Df ,

H−
y

H+
x

yx

Fig. 3.1 Two-dimensional hypercone illustration.

then H−x ⊂ Df , and if x ∈ Dr, then H+
x ⊂ Dr. These results express the fact that if a point

x, in the physical space, is in the reliability domain, then the positive x-hypercone associated
will also be in the reliability domain. Inversely, if x is in the failure domain, then the negative
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x-hypercone associated will be in the failure domain. Moreover, under monotonicity hypothesis,
denoting int(A) the largest open set included inA, if x ∈ Dl, then Dl ⊂ (int(H+

x ∪H−x ))c. This
result says that the limit state surface can be bounded by some unions of hypercones with their
vertex on the limit state; furthermore, it can also be bounded just by some unions of hypercones
whose vertex are not necessarily on the limit state.

3.3. Root-finding improvement using monotonicity

The algorithm
We assume that the failure function is monotonic. Then, applying the properties of the previous
section, we can deduce an algorithm which enables for each direction to reduce the length of
the interval used as prior for the dichotomy, using the solution intervals of the function G in this
direction. The idea is to use the fact that after the application of the dichotomic root-finding
algorithm in one direction, we obtain two bounds for the root. The left bound belongs to the
safety domain and the right bound belongs to the failure domain. Let us consider the left one:
then we know that the positive hypercone with vertex this left bound is in the safety domain. Now,
if we make a dichotomic root-finding in another direction, then the straight line representing the
new direction could have an intersection with the previous positive hypercone. If it is the case,
we can begin the dichotomic algorithm not between 0 and b, but between, on the one hand, the
intersection of the straight line and the positive hypercone and, on the other hand, b. The same
analysis can be done with the other right bound. Also, this process can be reiterated taking into
account, at each step, all the previous bounds already found. Figures 3.2 and 3.3 illustrate this
idea. Consequently, the aim is to find the intersection between the straight line representing the
current direction and the domains for which we are sure whether they are in the safety or in the
failure domain thanks to the roots previously determined. Based on this idea, we propose the
following dichotomic algorithm illustrated in Figure 3.1. Let us suppose we have already found

b

Dr

Df

ri,u

Ai

ri,l

S2

Fig 3.2 Two dimensional root-finding result illustration.

d solution intervals: ([ri,l, ri,u])i=1,...,d in the directions (Ai)i=1,...,d. So, we have 2d points in
Rp:

(zi,k)
k∈{l,u}
i=1,...,d with zi,k = Airi,k.

We build:

D+
d =

d⋃
i=1

D+
i (45)
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Fig 3.3 Two dimensional root-finding improvement illustration.

and

D−d =

d⋃
i=1

D−i (46)

where D+
i = H+

zi,l
and D−i = H−zi,u .

In the first direction A in which we have located a root (i.e. G(Ab)G(0) < 0), we denote
x+
0 = x−0 = 0 and y+

0 = y−0 = Ab.
Then, at step k ≥ 1:
on the one hand, if (x+

k + y+
k )/2 /∈ D+

d , then

x+
k+1 = x+

k and y+
k+1 =

x+
k + y+

k

2
,

else

x+
k+1 =

x+
k + y+

k

2
and y+

k+1 = y+
k ,

and, on the other hand, if (x−k + y−k )/2 ∈ D−d , then

x−k+1 = x−k and y−k+1 =
x−k + y−k

2
,

else

x−k+1 =
x−k + y−k

2
and y−k+1 = y−k .

The number, ta, of steps of the algorithm is not prohibitive, as we consider that the time required
by the algorithm remains negligible in comparison with a call of the failure function. Finally,
after l steps, we denote al = x+

ta and au = y−ta and we set the root-finding over the interval
[al,au]. We get a new solution interval, [rd+1,l, rd+1,u]. These two radius associated with the
directionA give two new points which will be used to buildD+

d+1 andD−d+1 and then we reiterate
the algorithm in a new direction.

Numerical application
Here, we present the results obtained with the improved root-finding algorithm over the hyper-
planes: H1, H2 and H3. We numerically study the sensitivity of this algorithm to the dimension,
p, the order of magnitude of the failure probability, Pf , and the type of hyperplane. For each
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case, we display the new number of calls to the failure function G, New-NG, obtained with the
improved algorithm, the previous number of calls to G, Prev. NG, obtained without and the
percentage of reduction, denoted by Rd.
The results presented in tables 3.1, 3.2 and 3.3 make us notice that:

• for a fixed hyperplane, a fixed failure probability and a fixed n, the algorithm provides
large percentages of reduction when the dimension is p = 3 and the efficiency strongly
decreases for p = 8,

• for a fixed hyperplane, a fixed dimension and a fixed n, the sensitivity to the failure prob-
ability is not strong. We just observe that the percentage of reduction decreases with it,

• for a fixed hyperplane, a fixed dimension and a fixed failure probability, the percentage of
reduction logically becomes better when n increases,

• for a fixed n, a fixed dimension and a fixed failure probability, the reduction of the number
of calls is almost independent of the form of the hyperplane.

In conclusion, the improved root-finding algorithm is clearly adapted for a non too large di-
mension, but as the dimension increases, the gain becomes negligible. In the case of a small
dimension, the reduction of the number of calls is non negligible, even for the limited number of
calls we have. In our case, the percentage of reduction is between 15 to 20%.

p Pf n New NG Prev. NG Rd (%)
3 10−4 200 1098 1418 22.5
3 10−4 500 2494 3336 25.2
3 10−6 200 1150 1377 16.5
3 10−6 500 2462 2974 17.2
3 10−8 200 1127 1287 12.4
3 10−8 500 2293 2640 13.1
8 10−4 2000 13438 13660 1.6
8 10−4 5000 28751 29350 2
8 10−6 2000 16227 16335 0.6
8 10−6 5000 35589 35978 1
8 10−8 2000 16158 16228 0.4
8 10−8 5000 37342 37508 0.4

Table 3.1. Improved root-finding algorithm results for hyperplane H1.

p Pf n New NG Prev. NG Rd (%)
3 10−4 200 888 1163 23.6
3 10−4 500 2006 2534 20.8
3 10−6 200 907 1055 14
3 10−6 500 1924 2403 20
3 10−8 200 865 1005 14
3 10−8 500 1900 2235 15
8 10−4 2000 12322 12485 1
8 10−4 5000 29182 29935 2.5
8 10−6 2000 13092 13202 0.8
8 10−6 5000 33165 33574 1.2
8 10−8 2000 12191 12226 0.3
8 10−8 5000 31490 31676 0.4
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Table 3.2. Improved root-finding improvement algorithm results for hyperplane H2.

p Pf n New NG Prev. NG Rd (%)
3 10−4 200 583 677 13.9
3 10−4 500 1435 1903 24.6
3 10−6 200 550 605 9
3 10−6 500 1355 1679 19.3
3 10−8 200 508 589 13.7
3 10−8 500 1331 1562 14.8
8 10−4 2000 5583 5706 2.1
8 10−4 5000 12777 13541 5.6
8 10−6 2000 5233 5274 0.8
8 10−6 5000 11895 12118 1.8
8 10−8 2000 4961 4966 0.1
8 10−8 5000 11331 11448 1

Table 3.3. Improved root-finding improvement algorithm results for hyperplane H3.

3.4. Improvement of the ADS-2 method for large dimensions
Classification of the influential random variables and stratification: the ADS-2+ method
When the physical dimension grows, the number of strata of the ADS-2 method increases expo-
nentially: indeed, in dimension p, the number of quadrants is 2p. As a minimum of simulations is
required to explore each quadrant, the number of directional simulations needed is too large for
the restricted number of simulations we have. The idea is to get, with the simulations performed
in the first step (learning step), a sort of the random variables in function of their influence on
the failure event. Then, in the second step of the method (estimation step), we can only stratify
the most important ones. To determine if a random variable will be stratified, we propose the
following method. We first index the quadrants. The input index k ∈ 1, ..., p is given the tag:
ik which takes its values in {−1, 1} and corresponds to the input sign. Thus, each quadrant is
characterized by a p-uple (i1, ..., ip).
Then, we define the sequence (Tk)k=1,...,p by:

Tk =
∑

il∈{−1,1},l 6=k

∣∣P̃ (i1, ..., ik−1,−1, ik+1, ..., ip)− P̃ (i1, ..., ik−1, 1, ik+1, ..., ip)
∣∣ (47)

with P̃ (i1, ..., ip) the estimation of the failure probability in the stratum (i1, .., ip) obtained dur-
ing the learning step.
Thus, Tk aggregates the differences of the failure probabilities between the quadrants along the
dimension k. The larger Tk is, the more influential the k-th input is. Then, we sort the sequence
(Tk)k=1,...,p by decreasing order and decide to stratify only over the p′ < p first dimensions,
the other inputs being simulated without stratification. We have numerically showed in section
2.3 that, for the targeted number of simulations, the ADS-2 method is efficient when the number
of random variables is close to 3. So a reasonable advice will be to take p′ = 3. Then, in the
second step of the method, we need to estimate the optimal allocation to be achieved in the new
m′ = 2p

′
hyper-quadrants. To do so, we still use the same formulas as the ones presented in

section 2.2, for i ∈ {1, ...,m′}:

W̃nr+
i =

ρ+i σ̃i
m∑
j=1

ρ+j σ̃j

(48)
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with ρ+i the failure probability of being in the i-th hyper-stratum and

σ̃i =

√√√√√ 1

n+i − 1

n+
i∑

j=1

ξ(Aij)
2 − 1

n+i (n+i − 1)

( n+
i∑

j=1

ξ(Aij)
)2

(49)

with n+i the number of simulations performed in the i-th hyper-stratum. Then, the new estimator
is:

ÎADS−2+nr =

m′∑
i=1

ρi
1

Nnr+
i

Nnr+
i∑
j=1

ξ(Aij) (50)

with

Nnr+
i =:

⌊
γ2(n)nW̃nr+

i

⌋
. (51)

The expression of the variance is:

V ar
(
ÎADS−2+nr

)
=

1

γ2(n)n
E
[( m′∑

i=1

ρ′i
σ2+
i

σ̃+
i

)( m′∑
j=1

ρ′j σ̃
+
j

)]
(52)

with σ+
i the standard deviation of the i-th hyper-stratum and σ̃+

i its estimation. Of course, all the
asymptotical results still stand. We will call this method the ADS-2+ method.

We can remark that, under the monotonicity hypothesis, the shape of the failure surface is re-
stricted: a symmetry or a quasi symmetry of the failure surface between two adjacent quadrants
can appear only if at least one input has no or little influence on the failure. In this case, if we
compare the failure probabilities between the quadrants along this dimension, they should be
small. We can also indicate that we could have been more drastic and, after having determined
the p′ most important inputs, have set the other inputs to conservative values and achieved the
ADS-2 method in the p′-dimensional space. This kind of strategy is a common practice in risk
analysis, but if we make a wrong classification of the inputs with the statistics (Tk)k=1,...,p, then
we will set one (or several) influential input to a conservative value and the estimation of the
failure probability might be too much conservative to be workable. Table 3.4 gives some results
of this strategy, this conservative method being called CADS-2+ and applied to the flood model.

Method p′ n NG P̂f ĈV (%)
CADS-2+ 2 256 1085 9.5 10−2 6.5
CADS-2+ 2 512 2155 8.5 10−2 4
CADS-2+ 3 256 1020 2.3 10−2 7
CADS-2+ 3 512 2009 2.0 10−2 5

Table 3.4. CADS-2+ results with the flood model. Pf = 1.17 10−2. p = 4. N = 1000.

The flood model has four random variables for inputs and we know that there are two influen-
tial inputs and two less influential ones (see Figure 3.6). As Table 3.4 shows, the estimations
provided by the CADS-2+ method are clearly conservative. We can propose an upper semi-
confidence interval and the percentage of estimations fallen in this semi-confidence interval will
be at 100%.
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Another alternative is to keep simulating the p − p′ variables by a classical Monte-Carlo simu-
lation: with this solution, then the problem is that we loose the directional strategy in the ”elim-
inated” dimensions and as we are looking for small probabilities, this strategy dramatically re-
duces the estimation accuracy when there are more than p′ influential inputs.

Numerical application to the hyperplanes
Here, we apply the ADS-2+ method to hyperplanes H1, H3 and H4, this latter being defined by

H4 : x1 + 0.1x2 + x3 + 0.1x4 + x5 = k4.

H3 has one influential variable, H4 three and H1 has all its variables influential. We also apply
ADS-2+ to the flood and NRPV models presented in section 1.1.
For the hyperplanes results (tables 3.5 to 3.7), we have the following observations. The ADS-2+

method gives similar results, in comparison with the ADS-2 ones, when the number of simula-
tions is less than 500. But, when this number increases and is about 1000, which corresponds
to approximatively 3000 calls to the failure function G, then the ADS-2+ method gives more
accurate estimations. We can also imagine that if the number of simulations is sufficiently large,
the ADS-2 method, in which we consider more strata, will be again the best one. In other words,
there is a interval of number of calls to G for which the ADS-2+ is more efficient. This interval
fortunately covers the number of calls we are limited to. More precisely, we can see that if there
are exactly p′ influential random variables, then the ADS-2+ method is very significantly better
than the ADS-2 even for a very small number of simulations. When there are less than p′ impor-
tant inputs, then we need a minimum of 3000 calls toG to ensure the accuracy of the estimations.
Finally, when there are more than p′ important random variables, which is the most penalizing
situation for ADS-2+, we do not deteriorate the percentage of estimations fallen in the two-sided
symmetric 95% confidence interval, ˆPCI , which is a positive outcome. But we still need much
more simulations to have the same coefficient of variation, ĈV .

Method n NG P̂f ĈV (%) ˆPCI

ADS-2+ 256 1075 9.96 10−5 25 92
ADS-2 256 1805 9.71 10−5 14 92
ADS-2+ 512 2100 1.00 10−4 19 90
ADS-2 512 3476 1.02 10−4 10 89
ADS-2+ 1024 4135 1.02 10−4 14 92
ADS-2 1024 6761 1.01 10−4 7 92

Table 3.5. ADS-2+ and ADS-2 results with hyperplane H1. Pf = 10−4. p = 5. p′ = 3.
N = 1000.

Method n NG P̂f ĈV (%) ˆPCI

ADS-2+ 256 783 1.04 10−4 62 61
ADS-2 256 891 1.00 10−4 59 67
ADS-2+ 512 1537 9.77 10−5 44 71
ADS-2 512 1626 1.03 10−4 52 70
ADS-2+ 1024 3065 9.93 10−5 29 86
ADS-2 1024 3117 9.60 10−5 39 72
ADS-2+ 2048 6113 1.00 10−4 18 92
ADS-2 2048 6150 1.00 10−4 26 86

Table 3.6. ADS-2+ and ADS-2 results with hyperplane H3. Pf = 10−4. p = 5. p′ = 3.
N = 1000.
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Method n NG P̂f ĈV (%) ˆPCI

ADS-2+ 256 1198 1.01 10−4 24 91
ADS-2 256 1323 1.00 10−4 33 77
ADS-2+ 512 2397 1.00 10−4 16 93
ADS-2 512 2516 1.00 10−4 22 88
ADS-2+ 1024 4760 1.00 10−4 11 94
ADS-2 1024 4920 1.00 10−4 13 91

Table 3.7. ADS-2+ and ADS-2 results with hyperplane H4. Pf = 10−4. p = 5. p′ = 3.
N = 1000.

As shown in table 3.8, when the failure probability decreases, the ADS-2+ has approximatively
the same improvement in comparison with ADS-2. However, we can notice the detrimental
impact of the decrease of the failure probability over ˆPCI .

Method n NG P̂f ĈV (%) ˆPCI

ADS-2+ 256 642 1.03 10−8 88 35
ADS-2 256 772 9.94 10−9 81 41
ADS-2+ 512 1278 1.13 10−8 79 46
ADS-2 512 1387 9.38 10−9 79 42
ADS-2+ 1024 2553 9.60 10−9 59 58
ADS-2 1024 2634 9.10 10−9 70 50

Table 3.8. ADS-2+ and ADS-2 results with hyperplane H3. Pf = 10−8. p = 5. p′ = 3.
N = 1000.

We can also compare the results of the ADS-2+ method when the number of insignificant random
variables increases. For this, we define the new hyperplane:

H5 : x1 + 0.1x2 + x3 + 0.1x4 + x5 + 0.1x6 + 0.1x7 = k5.

Table 3.9 gives the comparison results. We observe that the increase of the dimension reduces
the efficiency of the method. As the search space becomes larger, it is more difficult to find
the failure surface. A significant part of the directional draws is ”lost”, consequently the mean
number of calls to the failure function, NG, decreases, as ĈV and ˆPCI proportionately.

Hyperplane n NG P̂f ĈV (%) ˆPCI

H5 1024 3184 10−6 30 87
H4 1024 4037 10−6 20 93
H5 2048 6411 10−6 20 90
H4 2048 8058 10−6 10 94

Table 3.9. ADS-2+ results with hyperplanes H4 and H5. Pf = 10−6. p = 5. p′ = 3.
N = 1000.

Finally, we compare in table 3.10 the ADS-2+ method with the Subset Simulation method (SS)
which is built to overcome the curse of dimensionality and responds to the four constraints,
presented in section 1.2, we want to deal with ([26]. Also, the results obtained with the ADS-2
method are presented. The SS results have been obtained using the open-source Matlab toolbox:
FERUM (Finite Element Reliability Using Matlab) version 4.0.
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Method n NG ĈV (%) ˆPCI

SS 500 3300 60 77
SS 700 4600 51 88
SS 1000 6700 42 81
ADS-2 1200 3219 55 61
ADS-2 1750 4675 46 61
ADS-2 2550 6760 39 76
ADS-2+ 1200 3139 41 78
ADS-2+ 1800 4799 31 83
ADS-2+ (p′ = 1) 1500 3957 28 92
ADS-2+ (p′ = 2) 1500 3962 30 90

Table 3.10 Results with hyperplane H̄3. Pf = 10−6. p = 5. p′ = 3. N = 100.

Table 3.10 confirms the efficiency of the ADS-2+ method in comparison with the ADS-2 method.
Moreover, in comparison with the SS method and for approximatively a same ĈV and ˆPCI ,
the ADS-2+ method (p′ = 3) enables to reduce the number of calls to the failure function by
approximatively a factor 2. Also, for a better choice of p′ (equal to 1 or 2), we can reduce the
ĈV of 25% for approximatively the same number of calls to the failure function. As previously
demonstrated in section 2.3, we emphasis the fact that hyperplan H3 corresponds to the worst
case for the ADS-2 and ADS-2+ (p′ = 3) methods. Finally, the same study has been performed
on H1 and H3 for p going from 5 to 8 and Pf = 10−6 and 10−8. As predictable, the SS method
is completely robust with respect to the increase of the dimension and gives almost exactly the
same results. On H1, the ADS-2 method always outperforms the SS method: for instance in
dimension 7 for a failure probability of 10−8, we divide by a factor 2 the ĈV with the half
number of calls to the failure function used for SS (8000) while keeping a good ˆPCI . In the
worst case, i.e. H3, Pf = 10−8 and p = 7, the results between SS and ADS-2+ are equivalent.

Numerical application to the flood model
Table 3.11 presents the results obtained with the ADS-2+ and ADS-2 methods for the flood
model with p′ = 2. We can remark that ˆPCI and ĈV are quite similar for both methods, but
if we look more carefully, we notice that the ADS-2+ results are more robust for the smaller
number of simulations. We can deduce that for p = 4, the ADS-2 method remains efficient as
long as the physical space and the number of quadrants are not too large and ADS-2+ is a little
more reliable for very small numbers of simulations.

Method n NG P̂f ĈV (%) ˆPCI

ADS-2 256 957 1.16× 10−2 10.2 92
ADS-2 512 1862 1.20× 10−2 7 94
ADS-2 1024 3670 1.17× 10−2 4.3 96
ADS-2 2048 7300 1.18× 10−2 3.4 94
ADS-2+ 256 895 1.18× 10−2 11.2 95
ADS-2+ 512 1784 1.19× 10−2 7.8 94
ADS-2+ 1024 3556 1.17× 10−2 5.4 93
ADS-2+ 2048 7100 1.18× 10−2 3.8 95

Table 3.11. ADS-2+ and ADS-2 results with the flood model. p = 4 and p′ = 2. N = 1000.

The vector T := (Tk)k=1,...,p gives a hierarchy of the p random variables. In the flood example,
we know that there are two physical important random variables: (Q,Ks), and two less impor-
tant: (Zv, Zm). Figure 3.4 presents the FORM importance factors. Then Figure 3.5 shows the
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Fig. 3.4 FORM importance factor for the flood model.

distribution of the p′ = 2 selected variables by T . We notice that the statistic T selects well
the two most important inputs with high frequency. In this example, T seems to be an efficient
statistic. Table 3.12 gives the results of the T -selection for hyperplane H4. The percentage of

Fig 3.5 Percentage of the T -selection of the p′ = 2 influential variables. p = 4. From left to right, n is
equal to 256, 512, 1024 and 2048. N = 1000.

selection of the three most important variables, i.e. the first, the third and the fifth, is presented.
Once again, the accuracy of the selection method is reasonable for a limited number of calls to
the failure function.
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n NG Tk-selection (%)
256 997 83
512 2033 99.5
1024 4037 100

Table 3.12. Percentage of the correct T -selection of the p′ = 3 influential variables for H4.
p = 5. Pf = 10−6. N = 1000.

Besides, the same results are obtained when we apply the T -selection method to hyperplanes
H1, H2 and H3.

Numerical application to the NRPV model
Now, we apply the ADS-2+ method to the NRPV model. To begin with, we compare the organi-
zation into a hierarchy result given by the T -selection with the FORM one for a five-dimensional
space. Figure 3.6 gives the classification obtained with the FORM method and the vector T .
We remark that the selection of the p′ = 3 important variables is the same with both methods.
Nonetheless, the two less influential variables are not classified the same way. Indeed, for a
small number of simulations, the statistic T only globally separates the real important variables
from the negligible ones. Next, we compare the ADS-2+ method with the ADS-2 method. The

Fig. 3.6 FORM (left) and T -selection (right) results for the NRPV model with p = 5.

ADS-2+ method applied to the NRPV model gives better results than the ADS-2 method. We
can notice in table 3.13 that, for too small numbers of simulations, the results are not consis-
tent. Then, the two methods stabilize and for the same number of calls to the failure function,
NG ≈ 3000, the methods give similar correct results. But for the same precision, it seems
clear that the ADS-2 method requires fewer calls. Thus, we confirm the results obtained with
hyperplaneH1: for the same reasonable number of calls to the failure function, we obtain a more
reliable confidence interval with the ADS-2+ estimator than with the ADS-2 estimator.
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Method n NG P̂ADS−2
f ĈV (%)

ADS-2 256 849 1.8× 10−6 95
ADS-2 512 1734 5.7× 10−7 53
ADS-2 1024 2848 2.0× 10−7 50
ADS-2 2048 6755 7.7× 10−7 53
ADS-2 4096 13203 4.8× 10−7 20
ADS-2 8192 23324 4.3× 10−7 20
ADS-2+ 256 905 1.2× 10−7 43
ADS-2+ 512 1325 1.2× 10−7 57
ADS-2+ 1024 3036 6.1× 10−7 48
ADS-2+ 2048 4679 5.3× 10−7 38

Table 3.13. ADS-2+ and ADS-2 results with the NRPV model. p = 5. p′ = 3. N = 1.

So, the ADS-2+ method increases the number of times we correctly get in the two-sided sym-
metric 95% confidence interval, but in compensation, the confidence interval gets larger when
the number of influential (or non negligible) inputs is greater than the number of ”kept” inputs
p′.

4. Conclusion and perspectives

To overcome the main industrial constraints involved by the estimation of a small structural fail-
ure probability with a computationally expensive model (for example a nuclear reactor pressure
vessel failure probability estimation), we have developed the new accelerated Monte-Carlo ADS-
2 method. For a physical space dimension less than or equal to 4, the ADS-2 method enables
to get a reliable confidence interval of the failure probability with a limited number of calls to
the failure function (a few thousands). This number of calls is reduced by at least a factor 3
in comparison with the directional simulation. For a same number of calls to the failure func-
tion, the order of magnitude of the failure probability estimation is better or quite similar to
a FORM/SORM result, and, additionally, it is reliable. When the dimension is larger than or
equal to 5, as the number of strata increases exponentially and the physical space gets wider,
the ADS-2 does not give robust results anymore, i.e. the percentage of estimations fallen in
the two-sided symmetric 95% confidence interval ( ˆPCI) is far from 95%. So, to counter the
curse of dimensionality, we developed the ADS-2+ method based on the basic ADS-2 method
and on a statistical test to detect the most significant inputs, which then enables to reduce the
number of dimensions along which the stratification is carried out. The ˆPCI is improved in
most cases. Also, the statistical test seems to be efficient for the number of calls we are limited
to: for a small number of calls to the failure function, in comparison with the ADS-2 method,
the ADS-2+ method improves the ˆPCI for a space dimension up to 7 (although we can notice
that the confidence interval is a little larger). This improvement depends on the number of sig-
nificant inputs: if it is larger than the number of inputs p′ along which stratification is carried
out (we propose p′ = 3), then the improvement can be negligible in the worst case. When p′

matches exactly the number of significant inputs, the improvement is substantial. Monitoring p′

with respect to statistical test should be interesting. For a dimension greater than or equal to 7,
the number of simulations required for the first learning step of the ADS methods is too large
regarding the limited number of calls we have, and thus the ˆPCI collapses. Another option is
the CADS-2+ estimator we proposed: no matter how many inputs we have, we set the p − p′
non-influential random variables we selected to deterministic and conservative values in order to
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get a conservative 100% semi-confidence interval. However, the result can be distant from the
real failure probability if the real number of influential variables is too far from p′. Finally, we
compare the ADS-2 and ADS-2+ methods to the subset simulation method which is one of the
most relevant method to use in the context described in section 1.2. The results show that the
ADS-2+ method outperforms the subset simulation method. Hence, the ADS methods are very
efficient when the following conditions are met: a number of calls to the failure function of a few
thousand, an order of magnitude of the failure probability less than 10−4, a dimension less than
7, no regularity assumption on the failure function, and a need for explicit and trustworthy error
controls.
To summarize, the methods we have proposed respond substantially to the initial constraints for
a realistic space dimension. To our opinion, it may not be unreasonable to concentrate onto at
most half a dozen important variables when looking for improved accuracy in the prediction of
rare failure probabilities. For larger sets of uncertain variables that may be involved in upstream
stages of risk analysis, undertaking prior physical or numerical sensitivity studies may prove
more relevant; remember also that the accuracy in the computation of failure probability makes
sense only if there is high confidence in the description of the input uncertainty distributions.
Finally, assuming that there is only one root in each direction, we got an ”intelligent” stop cri-
terion for the dichotomic root-finding algorithm, in order to keep the variance reduction result
despite of the numerical error. Moreover, under the monotonicity hypothesis, we have proposed
an algorithm to reduce the number of calls to the failure function in the root-finding step, by
using the estimators of the previously determined roots. Thus, we reduced the number of calls
to the failure function by 15 to 20% for a limited number of calls and a dimension less than or
equal to 4.
A perspective would be to theoretically study the statistical test, T , in order to be able to esti-
mate efficiently the number of significant inputs, also a quite similar strategy, with a different
statistic, has been achieved in ([27]) and both methods could be compared. Another point would
be to work on the first learning step of the method to make more accurate the detection of the
important strata for a limited number of calls to the failure function. Firstly, we could think
about a directional quasi Monte-Carlo approach or a directional and orthogonal sampling ([28]),
in order to probe more efficiently the physical space in the first step and then, in the second one,
better concentrate the directional draws in the detected influential parts. Secondly, to get a more
accurate idea of the variation of the estimated allocation, we could use a bootstrap method. Fi-
nally, in order to better capture the failure area and the influential inputs, we could imagine an
hybridization of the ADS methods with the FORM/SORM one, as this latter, for a small number
of calls to the failure function, gives important information.
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Appendix A: Distributions formulas

Distribution Parameters Probability density function Support

Gaussian µ, σ
1

σ
√

2π
exp

(
− 1

2

(x− µ
σ

)2)
(−∞; +∞)

Gumbel a, b
1

b
exp(−x− a

b
) exp

(
− exp(−x− a

b
)
)

(−∞; +∞)

Triangular a, b, c
2(x− a)

(b− a)(c− a)
if a ≤ x < c,

2(b− x)

(b− a)(b− c) if c < x ≤ b [a; b]

Uniform a, b
1

b− a [a; b]

Weibull a, b, c
c

b

(x− a
b

)c−1
exp

(
−

(x− a
b

)c)
[a; +∞)

Lognormal a, b, c
1√

2πc(x− a)
exp

(
− 1

2

( ln(x− a)− b
c

)2)
[a; +∞)

Table 1 Distributions of the random physical variables taken for the flood and the NRPV models.
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Appendix B: Figures
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Fig. 1. Mean number of calls to the failure function depending on n and γ1. Pf = 10−4. p = 3. (Line 1)
H1. (Line 2) H2. (Line 3) H3. (Left) Non-recycling estimator. (Right) Recycling estimator.
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Fig. 2. Estimation of the relative bias depending on n and γ1. Pf = 10−4. p = 3. (Line 1) H1. (Line 2)
H2. (Line 3) H3. (Left) Non-recycling estimator. (Right) Recycling estimator.
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Fig. 3. Estimation of the coefficient of variation (full line) and the empirical coefficient of variation
(dashed line) depending on n and γ1. Pf = 10−4. p = 3. (Line 1) H1. (Line 2) H2. (Line 3) H3. (Left)

Non-recycling estimator. (Right) Recycling estimator.
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Fig. 4. Estimation of the percentage of estimations fallen in the estimated two-sided symmetric 95%

confidence interval depending n and γ1. Pf = 10−4. p = 3. (Line 1) H1. (Line 2) H2. (Line 3) H3.
(Left) Non-recycling estimator. (Right) Recycling estimator.
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Fig. 8. Estimation of the percentage of estimations fallen in the estimated 95% confidence interval
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Fig. 9. Non-recycling estimator. Estimation of the percentage of estimations fallen in the estimated
two-sided symmetric 95% confidence interval depending on n and γ1. Pf = 10−8.

(Line 1) p = 3. (Line 2) p = 5. (Line 3) p = 8. (Left) H1. (Right) H3.
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