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We study temporal incoherent solitons in noninstantaneous response nonlinear media. Contrarily
to the usual temporal soliton, which is known to require a focusing nonlinearity with anomalous
dispersion, we show that a highly noninstantaneous nonlinear response leads to incoherent soliton
structures which require the inverted situation: In the focusing regime (and anomalous dispersion)
the incoherent wave-packet experiences an unlimited spreading, whereas in the defocusing regime
(still with anomalous dispersion) the incoherent wave-packet exhibits a self-trapping. These coun-
terintuitive results are explained in detail by a long-range Vlasov formulation of the problem.
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Introduction – Solitons have been usually considered as
coherent localized structures and the discovery of incoherent
optical solitons has represented a significant advance in non-
linear physics [1–4]. The incoherent soliton (IS) consists of a
phenomenon of spatial self-trapping of incoherent light in a
focusing nonlinear medium characterized by a slow response
[1–4]. The remarkable simplicity of experiments realized in
photorefractive crystals has led to a fruitful investigation of
the dynamics of incoherent nonlinear waves [2–5]. The mech-
anism underlying the formation of these IS states finds its
origin in the existence of a self-consistent potential, which is
responsible for a spatial self-trapping of the incoherent opti-
cal beam. From this point of view, these ISs are of the same
nature as the ISs predicted in plasma physics long time ago
in the framework of the Vlasov equation [6–11].

Since their first experimental observation [1], ISs have been
studied in different circumstances [12, 13], and have been
shown to be also supported by a spatial nonlocal nonlinear-
ity, instead of the traditional noninstantaneous nonlinearity
[14, 15]. A nonlocal nonlinearity is encountered in various
nonlinear wave systems [16, 17]. In particular, in the highly
nonlocal limit where the range of the nonlocal response is
much larger than the size of the optical beam, the beam can
be guided by the nonlocal response of the material, a pro-
cess originally termed ‘accessible solitons’ in Refs.[17, 18]. In
this limit, a speckled beam can be guided and trapped by the
effective waveguide induced by the nonlocal response [14].

From a different perspective, the long-term evolution of
a modulationally unstable coherent wave has been recently
studied in the presence of a nonlocal response [15]. Contrar-
ily to the expected soliton turbulence process where a coher-
ent soliton is eventually generated in the midst of small-scale
fluctuations [19], a highly nonlocal response leads to a pro-
cess of IS-turbulence, which is characterized by the sponta-
neous formation of an IS structure starting from an initially
homogeneous plane-wave. A kinetic approach of the prob-
lem revealed that these ISs can be described by a long-range
Vlasov-like equation [15].

In this article we study the existence of ISs in the tem-
poral domain in the presence of a highly noninstantaneous
nonlinear response. We report a remarkable and unexpected
result: Contrarily to the spatial domain, in which IS are
exclusively supported by a focusing nonlinearity, we show

that IS are exclusively supported by a defocusing nonlinear-
ity in the temporal domain. In other terms, contrarily to
the expected temporal soliton behavior, which is known to
require a focusing nonlinearity with anomalous dispersion (or
a defocusing nonlinearity with normal dispersion), we report
here the existence of an IS which requires the inverted sit-
uation: In the focusing regime (with anomalous dispersion)
the incoherent wave-packet experiences an unlimited tempo-
ral spreading, whereas in the defocusing regime (still with
anomalous dispersion) the incoherent wave-packet exhibits a
phenomenon of IS self-trapping.
The mechanism underlying this counterintuitive process

of self-trapping finds its origin in the spectral shift induced
by the causality condition inherent to the nonlinear response
function – a well-known effect in the context of the Raman
induced soliton self-frequency-shift [4]. When combined with
natural wave dispersion, such a spectral shift leads to a con-
stant acceleration of the IS, which in turn is responsible for
a fictitious force that leads to a trapping of the incoher-
ent wave-packet. This mechanism of acceleration-induced
incoherent self-trapping in the defocusing regime, as well as
the inhibition of self-trapping in the focusing regime, are ex-
plained in detail by the long-range Vlasov formalism. Note
that this long-range Vlasov approach differs from the tradi-
tional Vlasov equation considered to study incoherent mod-
ulational instability and ISs in plasmas [6, 20], hydrodynam-
ics [21] and optics [7–11]. We can expect the experimental
observation of this unexpected phenomenon of self-trapping
thanks to the recent progress made on the fabrication of pho-
tonic crystal fibers filled with molecular liquids displaying
highly noninstantaneous Kerr responses [22].
Numerical simulations– We consider the standard NLS

equation accounting for a noninstantaneous nonlinear re-
sponse function

i∂zψ + ∂ttψ + σψ

∫

R(t− t′) |ψ|2(z, t′) dt′ = 0. (1)

For convenience, we normalized the equation with respect
to the ‘healing time’ τ0 =

√

|β|/(|γ|ρ) and the length scale
L0 = 1/(|γ|ρ), where β is the dispersion coefficient, β >
0 (β < 0) referring to the anomalous (normal) dispersion
regime, and γ is the nonlinear coefficient with σ = sign(γ).
The parameter ρ = N/T is the wave intensity, which is a



2conserved quantity of Eq.(1), N =
∫

|ψ|2 dt being the power
and T the numerical temporal window. The variables can be
recovered in real units through the transformations t→ tτ0,
z → zL0, ψ → ψ

√
ρ and R(t) → τ0R(t). The response

function R(t) is constrained by the causality condition. In
the following we use the convention that t > 0 corresponds to
the leading edge of the pulse, so that the causal response will
be on the trailing edge of a pulse, i.e., R(t) = 0 for t > 0.
The range of the noninstantaneous response R(t), say τR,
denotes the response time of the nonlinearity. We consider
here the highly noninstantaneous nonlinear regime, τR ≫ 1,
where the response time is much larger than the healing time
or the time correlation of the optical wave [23]. In order to
make easier the comparison with spatial nonlocal effects, we
implicitly assumed in Eq.(1) that the wave propagates in the
anomalous dispersion regime (β > 0), and we will consider
separately the focusing (σ = +1) and defocusing (σ = −1)
regimes of interaction.
We report in the left columns of Fig. 1 and 2 the evo-

lutions of the spectrograms [24] of an initial super-Gaussian
incoherent wave-packet which has been obtained by integrat-
ing numerically the NLS Eq.(1). The corresponding spectral
and temporal FWHM are ∆ω = 1.257 and ∆t = 200, respec-
tively. We considered in this example a Gaussian-like re-
sponse function, R(t) = H(−t)t2 exp[−t2/(2τ2R)]/(τ3R

√

π/2)
[H(t) being the Heaviside function], while similar results
are obtained with an exponential-shaped response function.
Note that the prefactor t2 avoids discontinuities in the
derivative of R(t) at t = 0, which is important in order to
accurately simulate the Vlasov Eq.(2). We remark in Fig. 1
that in the focusing regime (σ = +1), the incoherent wave-
packet exhibits a delocalization process characterized by an
unlimited temporal spreading of the pulse and a slow pro-
cess of spectral broadening. In marked contrast with this
dispersive behavior, in the defocusing regime (σ = −1, see
Fig. 2) the incoherent wave-packet exhibits a phenomenon
of self-trapping, which is very robust and thus preserved for
long propagation distances – in the example of Fig. 2 the
IS loses less than 0.1% of its power while it propagates over
more than z = 103. Note that the spectral shift of the optical
wave simply results from the causality property of R(t). This
effect is well-known for the Raman induced self-frequency-
shift [4, 13], and manifests itself as a red- (blue-)shift in the
focusing (defocusing) nonlinear regime [25].

Vlasov approach – This novel phenomenon of inco-
herent self-trapping is explained in detail by the ‘long-
range’ Vlasov equation [26, 27], which describes the
evolution of the averaged local spectrum of the wave,
nω(t, z) =

∫

B(t, τ, z) exp(iωτ) dτ , where B(t, τ, z) =
〈ψ(t− τ/2, z)ψ∗(t+ τ/2, z)〉 is the correlation function and
〈.〉 denotes an average over the realizations

∂znω(t, z) + ∂ωk̃ω(t, z) ∂tnω(t, z)− ∂tk̃ω(t, z) ∂ωnω(t, z) = 0,
(2)

FIG. 1: Evolutions of the spectrogram (left column), and of the
local spectrum nω(t, z) (right column), obtained by integrating
numerically the NLS Eq.(1) and the Vlasov Eq.(2), respectively.
The simulations refer to a focusing nonlinearity in the anomalous
dispersion regime, σ = +1 [τR = 200 (in units of τ0)].

where k̃ω(t, z) = k(ω) + V (t, z) is the generalized dispersion
relation, with k(ω) = ω2, and the self-consistent potential
V (t, z) = −σR ∗ N , where ∗ denotes the temporal convo-
lution product and N(t, z) = (2π)−1

∫

nω(t, z) dω the aver-
aged intensity profile of the incoherent wave. The structure
of Eq.(2) is analogous to the Vlasov equation recently de-
rived to describe highly nonlocal spatial effects [15]. Note
however that in the temporal domain the potential V (t, z) is
constrained by the causality property of R(t), which breaks
the Hamiltonian structure of the Vlasov Eq.(2).

We report in the right columns of Fig. 1 and 2 the simula-
tions of the Vlasov Eq.(2) starting from the same initial con-
dition as the NLS Eq.(1). We underline the good agreement
between the NLS and Vlasov simulations, which corroborates
the fact that the ‘long-range’ Vlasov Eq.(2) provides an ‘ex-
act’ statistical description of the random nonlinear wave (see
Ref.[15]). Figure 3 remarkably reveals that, after a transient
(z ∼ 300), the wave-packet adopts an invariant profile char-
acterized by a linear spectral shift, which in turn induces a
constant IS acceleration (parabolic trajectory) in the tem-
poral domain. Note that in a real experiment, this spectral
shift can be affected by the particular form of the dispersion
of the PCF [22], so that an improved NLS model accounting
for higher-order dispersion effects should be considered.
To discuss the mechanism underlying the formation of
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FIG. 2: Evolutions of the spectrogram (left column), and of the
local spectrum nω(t, z) (right column), obtained by integrating
numerically the NLS Eq.(1) and the Vlasov Eq.(2), respectively.
The simulations have been performed with a defocusing nonlin-
earity in the anomalous dispersion regime – parameters and initial
conditions are the same as in Fig. 1, except that σ = −1. After
a transient (z ∼ 300), the incoherent wave-packet evolves into an
IS state (see Fig. 3).

the IS, it is instructive to comment first an analogy with
a nonlocal spatial response. This analogy becomes appar-
ent by remarking that Eq.(1) is almost identical to the non-
local NLS equation, provided one substitutes the temporal
response with a spatial nonlocal response, R(t) → U(x) [15–
17]. The fundamental difference is that nonlocal effects are
not constrained by the causality condition, so that U(x) is an
even function. Assuming the beam intensity approximately
symmetric (N(x) is even), then the self-consistent potential
V (x) = −σU ∗ N is also even. It becomes apparent that
in the focusing regime (σ = +1), the optical beam can be
self-trapped by its own induced potential (V (x) < 0). Con-
versely, in the defocusing regime (σ = −1) the repelling po-
tential leads to the expected beam spreading (see Fig. 4a-b).

Non-inertial reference frame – As commented above
through Fig. 3, the spectral-shift of the wave-packet, with
spectral velocity α, leads to a constant acceleration of the
IS. It thus proves convenient to study the dynamics of the
wave-packet in its own accelerating reference frame

ξ = z, τ = t− αz2, Ω = ω − αz. (3)
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FIG. 3: Parabolic trajectory of the intensity profile N(t, z) =
(2π)−1

∫
nω(t, z)dω (a), and evolution of the spectral profile

S(ω, z) =
∫
nω(t, z)dt (b), corresponding to the simulation of

the Vlasov Eq.(2) reported in Fig. 2 (right column). The linear
increase of the IS velocity w (constant acceleration) (c), results
from the linear spectral shift of the IS (d): the slope of the dashed
red line in (c) is twice the corresponding slope in (d), as expected
from the group-velocity dispersion law, ∂ωk(ω) = 2ω.
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FIG. 4: Intensity profile N(x) (continuous dark line) and cor-
responding self-consistent potential V (x) = −σU ∗ N (dashed
red line), in the case of a spatial nonlocal nonlinearity in the fo-
cusing (a), and defocusing (b), regimes. Intensity profile N(τ )
(continuous dark line), corresponding self-consistent potential
V (τ ) = −σR ∗N (dashed red line), and effective potential Veff(τ )
[Eq.(5)] (continuous red line) in the accelerating reference frame,
in the case of a temporal noninstantaneous nonlinearity in the fo-
cusing (c), and defocusing (d), regimes. The arrows indicate the
‘particle motions’ in the effective self-consistent potentials Veff(τ ):
The non-inertial fictitious force inhibits (c) (induces (d)) the self-
trapping in the defocusing (focusing) regime.



4In this non-inertial reference frame the Vlasov Eq.(2) reads

∂ξnω(t, z) + 2Ω∂τnΩ(τ, ξ)− ∂τVeff(τ, ξ) ∂ΩnΩ(τ, ξ) = 0. (4)

This equation remarkably reveals the existence of an effective

self-consistent potential

Veff(τ, ξ) = V (τ, ξ) + ατ, (5)

where V (τ, ξ) = −σ
∫ +∞

−∞
R(τ − τ ′)N(τ ′, ξ) dτ ′ just refers to

the self-consistent potential written with the new variables
(3). The linear part of the potential in (5) finds its origin in
the fictitious force which results from the non-inertial nature
of the reference frame, in analogy with the effective gravity
mimicked by an elevator Ref.[28].
This fictitious force explains both phenomena of self-

trapping with a defocusing nonlinearity, as well as the in-
hibition of self-trapping with a focusing nonlinearity. Let us
first discuss the defocusing regime. Recalling that the po-
tential is induced by the wave-packet itself, an IS can only
form provided that the self-induced potential Veff(τ) has a

local minimum at the pulse center, i.e., at τ = 0 in the ac-

celerating reference frame of the IS. Contrary to the spatial
case (Fig. 4a), it seems that this condition cannot be satis-
fied in the temporal case, since the causality condition shifts
the potentials toward τ < 0. However, in the defocusing
regime, a local minimum can be restored at τ = 0 thanks to
the fictitious force due to the non-inertial reference frame, as
illustrated in Fig. 4d. More precisely, one can Taylor expand
the effective potential Veff(τ) = a + (b + α)τ + cτ2 +O(τ3)
at τ = 0, where b < 0 in the defocusing regime and c > 0
if the nonlinear response is slow enough (see Fig. 4d) [29].
In these conditions the particular choice α0 = −b guarantees
that Veff(τ) has a local minimum at τ = 0 (see Fig. 4d).
In other words, the system spontaneously selects the amount

of spectral shift, α0 = −∂τV |τ=0, and hence the amount of

IS acceleration, 2α0, in such a way that the effective self-

consistent potential Veff(τ) admits a local minimum at τ = 0.
This is confirmed by the numerical simulations of the Vlasov
Eq.(4) reported in Fig. 4d, in which the value of α0 = 0.01325

used to plot Veff(τ) = V (τ)+α0τ has been determined from
the spectral shift measured in Fig. 3d. Note however that
the potential barrier in the negative τ axis is characterized
by a limited depth, so that highly energetic particles can
overcome such barrier to escape from the localized IS struc-
ture. Then depending on the initial condition and on the
particular form of the response function, the phenomenon of
incoherent self-trapping can be more or less efficient [29].

Let us now discuss the focusing regime, which is charac-
terized by a red-shift of the wave-packet, α < 0. Following
the same reasoning as above and remarking that we now
have b > 0 and c < 0, the choice α0 = −b still leads to an
extremum of Veff(τ) at τ = 0. However, contrary to the de-
focusing regime, this extremum refers to a local maximum,
as illustrated in Fig. 4c. Note that, in order to clearly dif-
ferentiate the focusing and defocusing regimes, the IS profile
N(τ) of Fig. 4d has been used in Fig. 4c to calculate V (τ)
and Veff(τ) in the focusing case. Actually, in the focusing
regime, there is no value of α such that Veff(τ) has a lo-
cal minimum at τ = 0. The local maximum around τ = 0
then plays the role of a repelling potential, which explains
the temporal broadening of the incoherent pulse: the ‘un-
stable particles’ located near by τ = 0 are either attracted
toward the local minimum at τ < 0, or either pushed toward
τ > 0 by the non-inertial force (see Fig. 4c). Let us finally
remark that, in this focusing regime, we didn’t identify the
existence of dark IS states. Note that the homogeneous noise
background inherent to such dark IS can be modulationally
unstable in the focusing regime [27].

Conclusion – We reported a novel mechanism of self-
trapping of incoherent nonlinear waves with a defocusing
nonlinearity which is described in detail by a long-range
Vlasov equation. Note that the extension of these ISs to
the spatiotemporal domain is expected to give rise to ac-
celerating incoherent light-bullets sustained by a focusing
nonlinearity and normal dispersion. In contrast with the
expected process of thermalization of an incoherent optical
wave [9, 30], these IS states constitute genuine nonequilib-
rium and nonstatinary stable states of the turbulent field.
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