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This paper presents a precise description of the characteristics of the hot spots of a partially coherent
laser pulse. The average values of the sizes and velocities of the hot spots are computed, as well as
the corresponding probability density functions. Applications to the speckle patterns generated by
optical smoothing techniques for uniform irradiation in plasma physics are discussed00®
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I. INTRODUCTION of hot spotst2~**1t is thus of great interest to have precise
expressions for the joint probability distributions of the in-

~ Partially coherent light has become a subject of greajspgities of the hot spots of a speckle pattern, their transverse
interest for many applications, such as smoothing techmque&nd longitudinal lengths, as well as their velocities.

for “T"fofm irradiation in plasr_na phy5|&sTh|s paper IS a The statistical distribution of the peak intensities of the
contribution to the study of optical smoothing for application . .
hot spots can be calculated theoretically for a focal spot in

to inertial confinement fusioflCF), which requires a high . . .
vacuum or homogeneous medium, in the asymptotic frame-

level of irradiation uniformity for both direct and indirect K wh h ber of ial modes is | hat th
drive. This criterion can be reached by implementing activeVork where the number of spatial modes is large, so that the

smoothing methods, such as induced spatial incoherend@aussian limitis valid.5'.16The corresponding distribution is
(ISI) with echelong smoothing by spectral dispersion then entlrely charagterlzed by the autocorrelation fun_ctlon
(SSD),® smoothing by multimode optical fibeiSOR.* Al (AF) of the field, which can also be computed very precisely
these methods involve the illumination on the target with arfor any smoothing methotl. The theory developed in Refs.
intensity which is a time varying speckle pattern, so that thel5, 16 and refined in Ref. 18 provides accurate expressions
time integrated intensity averages towards a flat profile. Wéor the number of local maxima that exceed a given intensity
aim in this paper at studying the statistical properties of thdevel. But the statistical description of the radius and velocity
hot spots of a partially coherent pulse. It is relevant to reporbf a speckle spot has not yet been performed. We can find
a precise account of these properties because the hot spgiliminary results in Ref. 19, where the mean values of the
play a primary role in that they can give rise to the growth ofvelocities are computed for some specific configurations. We
laser—plasma instability such as filamentation, stimulate&hall extend these results by addressing more general con-
Brillouin scattering(SBS), and stimulated Raman scattering figurations and by deriving precise expressions for the prob-

(SRS.° ability density functiongPDP) of the radius and the velocity
The future French Laser MegaJoylavlJ) and the U.S. ¢ 5 speckle spot.

National Ignition Facility(NIF) (Ref. § are designed for the This work is triggered by the study of the statistics of the

indirect drive scheme, whose prir_lciple is the foIIowing. Nu_— hot spots of the speckle patterns generated by random phase
merous laser beams are focused into a hohlraum and 'rrad'%?ates(RPB (Ref. 20 or kinoform phase platePP). 2! It

the inner gold wall to produce x rays. However it was foundalso deals with active smoothing methods, such as ISI, SSD
that it is necessary to diminish the wall expansion by filling r SOF. Although thorough attention is ,devoted to 7these,

the cavity by a gas. Unfortunately this means that the lase?

light has to propagate through an underdense plasma whef&Ses: the formulas we derive in our paper can be applied to

parametric instabilities such as SRS or SBS may occur. Sind@0re general situations where the Gaussian limit is valid.
experimental evidence of SRS and SBS in hohlraums frond Nis is the case as soon as the pattern consists of the super-
randomized laser beams have been obsefvEdhe control ~ Position of many independent modes by the central limit
of high laser intensities has become of crucial importance'f.m?mer“z-2

The literature contains a lot of work which deals with self- ~ The paper is organized as follows. We derive the AF of
focusing (SP and/or parametric instabilities from optically the speckle pattern generated by optical smoothing tech-
smoothed beams. The theoretical papers develop carefoiques in Sec. lll. We give a general description of a local
methods to study SBS and/or SF from a single speckle anthaximum of a speckle pattern in terms of the AF in Sec. IV.
then average the single hot spot reflectivity over the statisticgVe apply these results to compute the PDF of the duration,
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| modulator then a grating. An auxiliary grating is imposed
i A before the modulator in order to compensate for the temporal
A A | skew of the global shape of the field. We assume that the
modulator RPP : input beam is a monochromatic pulse with wavelenggh
(a) grating grating lens  focal plane and durationT s (longer than all the characteristic time
p scales involved in the problerand we consider a pure phase
HH % |ll! % % % [A modulator. After modulation and dispersion the field is
Ag I / / A, : -
modulator 1 modulator 2 RPP ' A1(X,y,t) = eXFl(l ¢(t+ SX))AO(t)l
(b) grating grating  grating grating  lens  focal plane

where ¢ is the phase modulation arsds the temporal skew
FIG. 1. Implementation of 1D-SS[y) and 2D-SSD(b). per unit length generated by the grating in tidirection.
A two-dimensional version of this technique is possible
) ) , [see Fig. 1b)]. It consists of applying a phase modulator
the radius and the velocity of a speckle spot in Secs. V, Vipetween a pair of gratings in each orthogonal directibn.

and VI, respectively. After modulation and dispersion the field is

Il. PARTIALLY COHERENT LASER PULSES A1(X,y, ) =expi(o1(t+51X) + ¢o(t+s5y) ) Ag(l),

We shall denote byA the complex electromagnetic field. where ¢; is the phase modulation arg] is the temporal
The field is normalized so that the laser intensity is simplyskew per unit length generated by the gratings in the
|A|2. We shall derive our results in the framework where thex-direction forj=1 and in they-direction forj =2.
field A has Gaussian statistics with stationary AF. This cor-  In the following we shall neglect the time variations of
responds to the asymptotic framework when the field is thehe overall envelopé\,. In the focal plane of the lens the
superposition of a large number of incoherent modes. It igields of the beamlets overlap,
the case for the standard optical smoothing mettibds.

In Ref. 18 we give closed-form expressions for the denAXY,t)
sity M (1) of hot spots per unit volume with peak intensity
This is important since parametric instabilities are very sen- =2, A;(jh,Ih,t)e” ¥ (of)g=ily2ahiol i dj1
sitive to the peak intensities of the hot spots. However this L
description is not sufficient, since the transverse radiuse  \yhereD is the near field square beam apertdrés the lens
lengthz of the hot spots, as well as their duratiband their  focal length, andh is the length of the side of a square
velocity v, should be taken into account. We shall show inglement of the RPP. We denote by the number of ele-
the following that the quantitiesr (z,t,v) are random quan- ments of the square RPP, i.8l=D/h. ¢, is the random
tities whose statistical distributions depend on the peak Nphase imposed by thgl th element. We assume that the,
tensity| of the corresponding hot spot, and can be describede independent random variables which take either the value
by a PDFp,(r,z,t,v) indexed byl. Accordingly, the density g or 7 with probability 1/2. We consider points in the focal
M(l.r,zt,v) of hot spots per unit volume with peak inten- pjane such thak,y<\of/h, so that the smooth sinc enve-

sity I, transverse radius, longitudinal lengthe, durationt,  |ope of the diffraction function of a square aperture can be
and velocityv is given by considered as quasi uniform. N2 is large, the fieldA is a
M(1,r,z,t,v)=M()p(r,zt,v). stationary, centered, Gaussian process. We normalize the

i , mean intensity so that it is equal to 1. The AF of the field in
In this paper, we shall focus on the PIiH(r,z,t,v) since  ihe focal plane is defined by

M(l) is already known.
YOGYEXLYLE) = (AXY DAR (XY L),

where the brackets stand for statistical averaging. In the
We shall focus our attention to standard smoothing techframeworkN>1 the AF is separable in the two orthogonal

niques, although the general formulas we shall present cadlirections'’

be applied to other configurations. In this section we present

the active smoothing methods that are practically relevant.  ¥= Y1 EXt) ya(y, 6y ,t'),

We also compute the four-dimensior@D in space and 1D

in time) AF of the fields generated by these smoothing tech- yi(m.t; n’,t’)zf

niques, as it will appear in the following that these functions

contain all the information required for the derivation of the — b (t' +Tqu)—27U( — 7" ) pldu

results. ) 4 T TPl

IIl. OPTICAL SMOOTHING TECHNIQUES

1/2 ]
expi[ ¢j(t+Tgy;u)
172

. . . whereTy; are the time delays induced by the gratings apd
A h | . dj &= ;

Smoothing by spectral dispersion is the correlation radius of the speckle pattern,

A straightforward implementation of one-dimensional
smoothing by spectral dispersighD-SSD is shown in Fig. Aof e

1(a). The spectral dispersion is obtained by applying a phase Tai=sD, pe=7p
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In the case of 1D-SSD, note tha} is simply Since C(p,{=0,7)=C(p,{=0,r), the functionf can be
y—y’) computed easily from the expressionsygfandy,,

Pe f(k, 1) =TFa(ke, D Ta(ky,7),

where sincg) =sin(s)/s. As a numerical example we can ?-(k 7
consider the NIF geometR}, D=0.35m, f=8m, and e
No/D =10 ° (for \y=351 nm. The correlation radiug,, is ) To+Tgjpck) [ 77
then about 8um, while the size of the focal spot is of the = Peli<mip, €XPI| 2B COS(ZW—ij sin T_m]) .
order of 500um. Moreover the typical value for the lateral i _ . L

We finally substitute this identity into E@3) so as to get a

time delay imposed by the grating is of the order of 100 ps.

We consider in this paper sinusoidal phase modulators,Closed form expression of the four-dimensional AF,

yz(y,t;y’,t’)=sinc{rr

/()= B, s 2t/ Ty, =12, Clp.Ln)=Calpx &7 Colpy 7).
where,B_]- andT,; are, respe_ctively, the mod_u_lation depth and o= fllz expil 25, cos( 27TTo+ leu)sin( _ T— §/c)
the period of the modulatgr. In such conditions, ~1/2 mi Tt
12 i T0+deu) . ( 'T) Px g
(= expi| 28; co§ 2m———|sin| m=— —27u— —8u?—|du, 4
Y] f— 12 P IBJ { ij ij i Pc e @
o 112 To+Taov T—=/!(lc
—277u77 du, Cz=f expi Zﬁzcos(ZW 0 )sin(w ¢ )
Pe ~172 Tz T2
where To=(t+1t')/2 and 7=t'—t. Note thatt=Ty— 7/2, py ¢
t'=Ty+ 7/2 so thatT, can be referred to as the carrier time. —2mv e —8022 dv, ()
Cc Cc

This shows that the statistics of the field is locally stationary _ o .
with respect to time, since it depends on the carrier fige ~ Where{, is the longitudinal correlation length,

The computation of the four-dimensional AF, 8\ of2
Clp. L) = (Al +p.z+ L+ DA (1, 2,0) @ T ©

is required for the forthcoming results. The field satisfies the hi ical i
paraxial wave equation, B. Smoothing by optical fiber

A i A 1
92Tt T 2k

A broadband source illuminates a long multimode fiber
AA=0. with numerical apertur@.* This source is a monochromatic

source spectrally broadened by a sinusoidal phase modulator
Accordingly the pulse in the moving reference frame, with modulation depthB and periodT,. The incident beam
. excites many optical modes, which propagate at different
A(r,z,t):=A(r,z,t+2/c) velocities. The time delay between the fastest and the slowest

mode is assumed to be much longer than the modulation

satisfies the standard Schinger equation, X :
period T,,. Moreover small random fluctuations of the core

oA 1 radius or of the index of refraction affect the propagation by
'E“Lz_koArA:O- introducing random phases into the modes. If the fiber is
. . long enough, these phases can be considered as independent
Note that the AF ofA reads in terms of the AE of A as processes which obey uniform distributions oM&27]. As a
o consequence the optical modes interfere at the output of the
Clp.{,1=C(p.{,7={lc). 3 fiber and their overlap produces a speckle pattéirhe field
The equation that governs tigeevolution of C is at the output of the fiber is a Gaussian field with zero-mean
. and AF,
7S ptm) A E(pidim) =0 1 [ as|p| {
L s 2k ? Pi6: ' C(p,§,r)=JOJO( ; p)ex;{—Zisg—)ds
Cc Cc

This equation can be solved explicitty by Fourier

25 —!{lc
transform?> We get that % s Zﬂsin(rrT 4 ) ,
~ 3 . |k|2§ 2 Tm
Clp.{,7= (ZT)ZJ f(k,7)expi| —k.p— 2k, dk, where the transverse and longitudinal correlation radius are

. 5 pe=N\o/ 0 and .= (8\)/(76?), respectively.
where f(.,7) is the Fourier transform o€(.,{=0,7) with
respect to the transverse coordinates, C. Longitudinal spectral dispersion

In LMF design the focusing system consists in a grating

- = B i )
f(k’T)_f Clp.{=0m)expik.pd”p. that directly disperses the square benfihis configuration
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apply the results to different configurations. The aim of this
section is to derive the statistical distribution of this field

A, A, around a local maximum located at some pointvith peak
modulator Rpp : intensityl o=|A(Xo)|?. The results can be formulated only in
focusing focal plane ate, terms of the AF. They can be obtained easily if the AF is
granng real-valued(the so-called orthogonal cgsfhis is the case
FIG. 2. Implementation of SLSD. for instance when a speckle pattern generated by one of the

standard smoothing techniques is observed in the focal plane.
However the situation is a little more tricky when the speckle
was found to offer advantages in terms of color separation agatterns are observed in the focal volume since the AF has a
well as frequency conversion efficiency. Furthermore the fononzero imaginary part faf# 0 (the so-called unitary case
cal length of the grating strongly depends on the frequencyVe shall first address the orthogonal case, and then the uni-
w, tary case.

o+ wq
flw)= fo,

o

) ] ) A. The distribution of an orthogonal complex-valued
wheref is the focal length corresponding to the carrier fre- Gaussian field around an local maximum

guencywg. The grating is tailored so that more than 90% of d i
the energy is focused in the central spot. The grating can then -6t A(X), X< ", be a stationary zero-mean complex-
be regarded as a chromatic IéAsEach frequency of the valued Gaussian field. We denote Bythe stationary AF,
spectrum of t_he proadband p_ulse focuses at a spe_cifif: point  C(x)=(A(y+x)A*(y)). (8)
along thez-axis (Fig. 2). Two different frequencies will give

rise to two independent speckle patterns if the differencd he field is normalized so that the mean intensityCi0)
between their focal lengths is larger than the longitudinal=1- It is equivalent to assume that the processihdepen-
speckle dimension. Smoothing by longitudinal spectral disdent real and imaginary partand that the AF is real-valued.
persion(SLSD) thus belongs to the SSD category but with aln such conditions the Gaussian field is said to be orthogonal.
spectral dispersion along the longitudinal axis instead of thélote that the functiorC is also even since

transverse direction as in standard 1D or 2D-SSD techniques. o — VAR _ I\ AK (v _

Let us assume that the near field is a phase modulated CI=0=(A=0AT (YD) =(AY DA™ (Y +x)) =Cx).
pulse with a sinusoidal phase modulation with deptand Assume that there is a local maximum at pdnwith
period T,,. Let us denote byl the maximal time delay peak valueag/ly, ageC, |ag|=1. Since0 is a local maxi-
between the edge and the center of the square beam, mum we haveV|A|?(0)=0, or else Ref*(0)VA(0))=0.

K D2 The computation of the conditional distribution Af given
Td=—o[(D/2)2+(D/2)2]=—. A(0)=ag\l, and Re&;VA(0))=0 is performed as in the
2 fowg 4foc real casdsee Appendixby taking care to deal with the real
The computation of the four-dimensional AF can be carried@nd imaginary parts of separately. We can then claim that
out as in the SSD configuration. We get the distribution of the fieldA given that there is a local
" " maximum at point0 with peak value g/l apeC, |ay|
Cpim=| du| dv =1lis
-1/2 -1/2 _ \/_ %0)
AX)=A(x)+C(x)(Vlgag—A
| Tot 2Ty(U%+0?) o
X expi| 25 cos 27 T +a,VC(x)- A~ 1ReVA(0)), (9)
. T—{lc whereA obeys stationary Gaussian statistics with @Fand
Xsin T A is the matrix of the second-order spectral moments,
0 Py ¢ N oA 0 IA* 0 9*C 0 10
1 2 2 o= — = —
X expi —Zwup—c—27-rvp—c—8(u +v )g—J i axi( ) ox (0) &xi&xj( ). (10

(7) If the peak intensityty of the hot spot is far above the mean
_ _ 2 2 intensity 1, then there is a dominant term in the right-hand
wherep.=Af/D and{.=(8\qf)/(7D7). side of Eq.(9),
IV. DESCRIPTION OF A GAUSSIAN FIELD AROUND A A(X)=C(x)\lgao+O(1).

LOCAL MAXIMUM This means that the local shape of a strong local maximum

In this section we shall consider a fieddwith Gaussian  of a speckle pattern is roughly deterministic and given by the
statistics that depends on a time—space coordiratéd/e  AF. This result is well-knowrisee, for example, Refs. 12 and
shall here assume in great generality tkatRY, with d 29 and the exact descriptia®) gives the precise expression
=1,2,3, or 4, so that we shall be able in the following to of the random part.
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B. The distribution of a unitary complex-valued the timeTy may also be seen as the inverse of the bandwidth
Gaussian field around a local maximum of the fieldA while «, is dimensionless and depends only on

Let A(X), xeRY, be a stationary zero-mean unitary (e shape of the AF around .

complex-valued Gaussian field. Unitary means that the dis- 1 "€ derivation of the expression of the full width of a
tribution of A is invariant with respect to any rotation: speckle spot is based on the quadratic expansion of the field

L(A(-))=L(agA(+)) for any age C, |ag|=1. This implies around the local maximum located at O,
that [A®)[2=10+10Cqt?+ | 3Ri(0)] 42+ \To( Ay (0)
(1) The real and imaginary pari&, andA; are identically

o o ~A(0)Cyt?,
distributed(but not necessarily independent
(2) the AFC, of A (or A)) is stationary, where A, =Re@}A) and A;=Im(aiA). Note thatd,A,(0)
Ci(¥) = (A (YA (Y+X)) = (A (YA (Y+X)) —A,(0)Cy; obeys a normal distribution with zero-mean and
varianceat/Tg. Accordingly, the quadratic expansion of the
and it is an even function; intensity of the field around 0 is
(3) the cross-correlation functio@; of A, andA, is station-
ary, T ' |AD)|2=16(1— 2 T2) + Vg Zst4 T2+ S 222/ T2,
GO = (A (VA (VX)) = — (A (VA (V+ X whereZ,; andZ, are random Gaussian variables with zero-
= (AMAY+2) == (AAY+) mean and variance 1. We get that the full widgh, at level
and it is an odd function. lo—14is
We denote byC the stationary AR8) of A. Note that we 41,75

_ : - 2= : (12)
have C(x)=2C,(x)+2iC;(x), and thatC(—x)=C*(x). FwW lo— o Z1— 172

We further normalize the field so th&t(0)=1.

In the caseVC(0)=0 it is easy to check that the results Neglecting the tern3 which is of order 1 with respect to
of the previous section still hold true. The hypothesisthe peak intensity, allows us to compute the PDF of this
VC(0)=0 is important, otherwise the distributions A{0) random variable. This establishes the following result: The
and VA(0) would not be independent, and the conditional PDF of the full widthtr, at levell,— 1, of a local maximum
distribution of A given A(0) = \l,a, and Reé: VA(0)) =0 with peak intensityl is described by the random varialile
would be more complicated. tew

In the caséV C(0) #0, then this vector has purely imagi- T= T
nary coordinates of the formiC;, C; e RY. If you consider 0

the auxiliary fieldA(x):=A(x)exp(C; - x), thenA is a uni- Whose PDF is

tary complex-valued Gaussian field whose AF fulfills the 81,C, | (lg—41,T~2)?2

condition VC(0)=0. It is therefore more comfortable to P (T)=—°'13 ;{—¥ . (13
study the local maxima oA by considering them as local ! V2mloay T 2arl

maxima ofA. andC, , is anormalization constant that is chosen such that

fgplo,ll(T)dT:l-
This expression is all the more valid as the peak intensity
V. THE DURATION OF A HOT SPOT I is large, for a given levell;. Note also thaC,oJl is very

close to 1 a$,>1. We could also get a more precise expres-

We shall derive in this ;ection the distributipn of the sion that would take into accou@t,, but would be much
duration of a speckle spot defined as a local maximum of al ore intricate

orthogonal complex-valued Gaussian field. We consider a As expected, the typical value of the duration of a hot

Gaussian field with mean intensity 1. The AF, spot is proportional toly. Indeed, at first order the local
C(7) =(A(t+ 1)A* (7)) shape of a hot spot is detergninistic and imposed b_y the AF:
|A(1)|2=1,C2(t)=1o(1—t¥T§). Note also that the width of
can be seen as the inverse Fourier transform of the spectrgde distribution oftr,, is governed by the parametef. The
intensity by the Wiener—Khintchine theoréefh. PDF is all the wider asy, is larger.
Assume that there is a local maximumtatO with peak The tails of the PDF of the duration are worth studying
intensityl,. We aim at deriving an expression of the PDF of since they characterize the probability that there exists a hot
the full width at levell,—1, of this maximum. The impor- spot with a very large or a very small duration. The right tail

tant parameters in this section arg and «; defined by can be approximated by
- 1 1<Ctttt ) (11) (T)T> 211/l 814 . % lo )
0= v =5 =z ~1], Pi,, ey |
V=Cy 2\ Cy ol V2l ga, T3 204

whereCy; (resp.Cyy) is the second derivativeesp. fourth  This demonstrates that the tail of the PDF of the duration
derivative of C with respect to time evaluated at 0. Note that corresponding to the large values is quite long, so it is likely
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25 ‘ ‘ ~-- simulation methods in the focal plane singe—C(p,{=0) is real-
— theory valued(see Sec. I). However this is not the case when we
sl consider these patterns in the focal volume sigeeC(p
& =0,{) has a nonzero imaginary part. This case deserves a
€ specific study.
o 1.5F |0=4, P=75 %
s
£ I
g 1t B. Longitudinal length
é We shall now compute the longitudinal length of a hot
0.5 spot. Let a speckle field be given in the plang=0 with
AF (A(r+p,z=0)A*(r,z=0))=C(p,{=0). As shown in
- Sec. Il the fieldA in the whole spac&2 obeys the distribu-
% 1 1 /2 3 1 tion of a Gaussian process with AF,
T
’ C(p.O)=(A(r+p,z+)A*(1,2))
FIG. 3. Probability distributions of the full widths at leviel,, P=75% for .
given by

local maxima with peak intensitiely=4. The widths are normalized in

multiples of 7 . 1 |k| 25
—_ = |3 il _ 2

C(p.0) (zw)zf f(k)exp|< k.p e )d K,

that some of the hot spots of a speckle pattern may have Rheref is the Fourier transform oE(p,£=0)
duration much longer than the mean value given by the in- P '
verse of the spectral width. On the other hand, the tail of the . = B : 2

PDF of the duration corresponding to the small values is f(k)_J Clp.{=0)expik.pd”p.

very small, We are interested in the longitudinal forms of the hot spots,

T<\211TTo 8l, 812 which are characterized by the longitudinal correlation func-
Piy.1,(T) 3&XP ~ - tion {—~C(p=0,{) which is such thatC(0)=1, C,(0)
vamloaT o = —ic1, C,A0)=—Cz, Cppf0)=ics, and Cy,,40)=cy,
So it is very unlikely that there exists a hot spot whose duwherec; are given by
ration is much smaller than the mean value. 1

We can compare these results with full numerical simu- Cjzz—'j f(k)|k|21'd2k.

lations. We simulate a random field with Gaussian statistics, (2m)%(2ko)’

Gaussian AF:C(7)=exp(—7/(279)) and mean intensity 1. SinceC,(0)# 0 we should consider a modified versionfof

We detect all local maxima whose peak intensities are aboveo as to be able to apply the general results we derive here

lo0—0.1 and below ,+0.1. We measure the full widths of above. We should consider a process whose correlation func-

these maxima at levé?l,, P=75%. Once these results are tion has a first derivative that vanishes at 0. We thus intro-

cqllected, we plpt the histograms of the widths arjd compargiuceA(r,z)=A(r,z)exp(c,2) whose correlation function is

with the theoretical PDF. The results are shown in Fig. 3. E(0)=C(0)explc,d). The second derivative isS,,0)
=—Cy+ cf and the fourth derivative iséZZZ£O)=c4

VI THE SPATIAL RADIUS OF A HOT SPOT —4c5c,+6c,c2—3c]. As a consequence, the probability

A. Transverse radius distribution of the lengtler,, of a hot spot is described by

The study of the statistical distribution of the radius of athe random variable,

hot spot is formally identical to the study of the duration, Zrw 1
since it consists in analyzing the width of a local maximum  Z= Z Ly=—F—,
of the fieldA. We get that the radius-y at levell —1, (say 0 €27 C1
in the x-direction of a hot spot with peak intensityy, is  whose PDF is

described by the random varialie

811Ciy 1, F]{_(|0—4|122)2’ 15

r 1 Z)= ————eX

R, Rem Dot i

0 _
. . and the coefficiente, is given by (1/2)(:4—c§—4cgcl
whose PDF is +8c,c2—4ct)/(c,—c2)2.
8|1C|01|1 (|0_4|1R*2)2
P |(R)=—ex YT
ot V2l gaR®

and a,= (Cyyyx/C2,—1)/2. This result holds true for an or- Example 1. Speckle pattern generated by a circular ran-
thogonal Gaussian field. This is the case when we considetom phase plateA circular beam with diameteD and
speckle patterns generated by the standard optical smoothingavelength), irradiates a Random Phase Plate and is fo-

20fz|0

. (19

2aylg C. Applications
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cused by a lens with focal length The fieldA in the focal 8 [p——
plane obeys Gaussian statistics with zero-mean and AF, | - fr']:g; al
Cpi0y—2 meline A neon®
' (mlpl/pe) 2 1,6, 1,=1
357
wherep.=\,f/D. Accordingly the transverse radius of a hot g
spot with peak intensityy is r pw=2p R/, whereR admits 4
the PDF(14) with «,=1/2. The transverse AE(p) corre- %3,
sponds to a flat spectrum of the forﬁ(k)~1|k|§kc, with 2
k.= 7/ p.. Accordingly the longitudinal form of the AF is 2r
keg) . [ked b
C(p—O,g“)—exr{—lAf—ko sin ko)’ 0 Sac
0 0.2 . 1 1.2
The field A(r,2) = A(r,2)exp(k?2(4ks)) has also Gaussian  (2)
statistics with real-valued AF, 3 - simulation
A — theory 1
é(p=0 §)=sin(<£) 25 /M | == theory 2
1 é/c 1 "B\ .
wherel.=4ky/(k2)=(8\of2)/(wD?). Thus a hot spot with 5 2
peak intensityl, has a length that is described ©b3{.Z § |
whereZ obeys the distributioil5) with &,= 2/5. 51'5
Example 2. Smoothing by optical fibek monochro- )
matic source illuminates a long multimode fiber with nu- B I
merical apertured. The field at the output of the fiber is a
Gaussian field with zero-mean and AF, 0.51
1 [ 7slp| p( é) 0
C(p, =f ds ( exp —2is—|ds, 0
(p.0) . b e Z (b)

where p.=\o/6 and {.=8\y/(m6?). This is exactly the FIG. 4. Histograms of the full widths at levéy— 1, in the x-direction (a)
same configuration as in Example 1. and z-direction (b) of hot spots with peak intensitiely. The field is a
Example 3. Speckle pattern generated by a square rarsPeckle pattern generated by a square RPP. The widths are normalized in
dom phase plateConsider the very same implementation as™!"P1es 0fec (@ andZ; (b).
in Example 1, but assume here that the RPP as well as the
beam are square shaped with side lerigthThe fieldA in
the focal plane obeys Gaussian statistics with zero-mean and We can compare these results with full numerical simu-
AF, lations. We simulate the field in the coordinate as the su-
C(p,¢=0)=sind m|p,//pc)sind m|p,|/pc), perposition of N ”;001'65’
. . 1 .
wherep.=\f/D. Accordingly the transverse radius of a hot A(X.V.Z)= — A (X.V.2)exn(i b
spot with peak intensity, is rpyw=v3p.R/7, whereR ad- (x.y.2) 2Nj,I;N a0y z)expli ),
mits the PDF(14) with a,=2/5.

The transverse AE( - i ix+ly 2417 z
5 p) here corresponds to a flat spec A (x,y,2)=expi| — Pl
trum of the formC(k) ~ Ly j<k_ |k, <k, With Ke=7/pc . Ac- Pe Lo
cordingly the longitudinal form of the AF is where ¢;,, j,I=—N,... N-1 are independent random
variables which take either the value 0@mwith probabilit
Clp=0,0)— T (Ci(Z/\/;\/ﬁ/_Zc)_iSi(Z/\/;\/g/_gc))Z, 1/2. We adopt the following dimensionless va?ueBl——ZSO),/
4 (£140) pe and {.=1. The numerical histogram is computed from a

set of 5000 hot spots with the desired peak intensity. In Fig.
4(a) we plot the theoretical histograms as well as the numeri-

t T , vtofm, cal histogram for the full widths in th&-direction at level
Ci(t)zf co ES ds, Si(t)zf sin| ES ds,
0 0

whereC; andS; are the Fresnel cosine and sine,

lo— 1, of hot spots with peak intensitidg (remember that

the mean intensity is)1 The theoretical histogram 1 corre-
and {. is given by (6). Note that C(0)=1, C,(0)  sponds to the PDF14). The theoretical histogram 2 corre-
=—4i/(3¢.). IntroducingA=Aexp(4z/(3§c)), we get that sponds to the representatioi?). Indeed, ifa, is small or
the hot spots of the field have lengths that are described byhenl, is not very large, then the last term in the denomi-
V45132 .Z, where Z obeys the distribution15) with @, nator of Eq.(12) may play a role. This is the case in this
=11/14. configuration. In Fig. &) the theoretical and numerical his-
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tograms of the longitudinal lengthfull width in the  whereM is the 3x3 random matrix,
-directi t levell,— 14 of hot spots with peak intensities .
z-direction at levell,—1, 0 p P My=ToAy 2y, Li=123,

|, are compared.
andN is the vector,

VII. THE VELOCITY OF A HOT SPOT .
Ni=IgAis+Zis, i=1,23.

We consider a complex-valued Gaussian figld) that ] ) ) ) )
depends on a space coordinate R and on a time coordi- Note that, if we consider a local maximum with a very high
natete R. Consider that there is a local maximum at someP&2K intensitylo, or else if we average over many maxima,
point (xo,to) With value \1oa,, |ag]=1. We would like to the expression of the velocity becomes simpler, independent

compute the distribution of the velocity of this spot. The ©f lo. and deterministic,

velocity is defined as follows. Fdrin a neighborhood offy, ( 9%C ) ) 1( 9%C )
lot the maximum of the field, v=— : 17
P A e XX o105 KTy 53
t):=argma 1), ose to Xg}. o . . : .
X(t) =argmax|A[*(x,t), x .C S ' Xol This identity was derived in Ref. 18. The new expression
The velocity of the local maximum is (16) takes into account the fluctuations around this mean

dx(t) value.
= Remark 1 The PDF corresponding to E€(LL6) has a very

t=tg complicated form, so we shall not write it down. Note how-

Note thatv is a random variable, since it depends on theSVer that it is easy to plot this PDF by straightforward Monte

realizationA(.). Remember the field around the local maxi- Carlo S|mul_at|ons. I.ndeed a zero-mean Gaussian vector
mum is of the form, (Zi)i=1,.n With covariance matriX:=(Z;Z;); -1, n can

be simulated by multiplying a vector of independent Gauss-
A(Xot X, to+1) ian random variables with variance 1 by a square root of the
matrix K.
Remark 2 There exists one case for which we can give a
closed-form expression of the PDF of the velocity. If the AF
is separableC(x,y,z,t) =C1(X)Cy(y)C3(2)C4(t), then the

=A(Xo+X,to+ 1)+ C(x, 1) (VIpag—A(Xo, o))

+ayVC(x,t)- A T Re(VA(Xg,t0)),

whereV is the row operatord , . . . ,dy,,d;) while A is the  component of the velocity in the-direction is described by
symmetric positive K4 matrix defined by the PDF,
9°C Jov? | 2
Aj=———=(00), i,j=1,...,4, _ 0V0 o o
o P 2+ A 2aprol)r 10

where by conventiomx,=t. Expanding|A|? around g,to)
establishes the identity,

v=argmax {|w-VA|?+ReA*(w-V)2A)}(Xg,to).
ueR3, w=(u,1 To simplify the presentation of the forthcoming results

It shows that only the first and second derivative#ah the ~ We shall assume thdty=NcTy,, whereN, is a positive in-
point (xo,t,) are coming into the definition of the velocity. t€ger(the so-called “number of cycles” Note that we must
From this identity we can get a closed form expression of take care to consider the modified version of thevmelsluch
in terms of the first and second derivativesfofn the point ~ that the first derivatives of the AF vanishA(r,z,t)
(Xo.to), sincev reads as the location of the maximum of a = A(r,z,t)exp(44/(3¢.)), whose AF isC=C exp(4/(3¢,)).
guadratic function parametrized by the derivativeg\ofThe We shall not give the complete and awkward expression
distribution of (A,VA,V®VA)(Xq,to) given that there is a of the statistical distribution of the velocity. But it can be
local maximum at Xq,tp) is a Gaussian random vector with plotted by Monte Carlo simulations of E@16). Figure 5
known mean and covariandsee Sec. IY. The calculation plots the PDF of the three components of the velocity. It can
of the distribution of the velocity is then a matter of long but be seen that the means and the variances of these distribu-
straightforward algebra. The result can be formulated as foltions depend on the carrier tinTg,.
lows. Once again we assume that(0)=0. We introduce Furthermore we can give a closed-form expression of the
the random symmetric ¥4 matrix Z whose entries are mean velocity defined byl17). The component of the mean
Gaussian normal variables with zero-mean and covarianceyelocity along the transverse directigris 0, the component

wherevs=|Cy/Cyy| and ay=(Cyyyx/C—1)/2.
A. Application to 1D-SSD

Jc 2C.  J2C along the dispersion directionis
r r r

(ZZin)= IX[OX\IX[ 1 OX)1 IX[IX) OXjr Xy . To|( 1

_ L 6p.f3 (—1)Ne sin 27r_|_— 4—5+ kC4(Typ)

whereC, is the real part oC and derivatives are evaluated (v )= Pec m
at (0,0). The velocityv of a local maximum of the field\ T wNe A4 2kCy(To)+ k2(1—Cy(Ty))
with peak intensityl ; obeys the distribution of (29

v=—M"1IN, (16)  while the component along the longitudinal direction,
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FIG. 5. PDF of the velocity of a hot spot with peak intendif=6 as a
function of the carrier timel,. HereT,,'=10 GHz, 8=5, A=350 nm, f
=8 m, andD =0.35 m. The velocity is normalized in multiples of the light

velocity c.

kCq(To)+ K2(1_ Cy(To))
E+2KC1(To)+ k(1= Cy(T))’

(vy=c

where

_ 7B
4cTy’

K

To| (—1)Ne
e

(20

J. Garnier and L. Videau

0.2 0.4 0.6 0.8 1

(b) 0 T./T

FIG. 6. Mean velocity of a hot spot with peak intensiity=6 as a function
of the carrier time. HereT,'=10GHz, 8=5, A=350nm, f=8m,
and D=0.35m. The velocity is normalized in multiples of the light
velocity c. Only thex andz components of the mean velocity are plotted
since(v,)=0.

1
(WNC)Z.
Note that, wherN_ > 1, the component of the mean velocity
along the dispersion direction is 0 while the component
along the longitudinal direction is simplgee Fig. 6
o 45?
(v =CTi75e:

B. Application to SOF

We must take care to consider the modified version of
the field A such that the first derivatives vanisﬁ\(r,z,t)
=A(r,z,t)exp(Z/L,), whose AF is C=Cexp({/{). The
mean velocity has a rather simple expression. The only com-
ponent of the mean velocity which is not zero is along the
longitudinal axis,

o 96k?
(v =CT o5

wherex=(mwB{:)/(4cT,).
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C. Numerical simulations 0.14 TS cmaration
It is not possible to compare the theoretical results with 012} ” — theory
full numerical simulations. Indeed it would require the simu-
lation of a four-dimensional field with sufficient accuracy to ¥ o1
compute the velocities of local maxima with a given peak 5
intensity, which is out of the computational range of our 5008
computers. We have considered the auxiliary problem which E 0.06L
consists in observing the speckle pattern generated by 1D- >
SSD along thex-axis of the focal plane. Thet ¢ x)-AF is B 604l
given by (4) with {=0. The computation of the velocity,
can be performed as above, the only difference is that the 0.02f
spatial coordinate is here one-dimensional. It is found that
the statistical distribution of the velocity, is described by %
2oCuit ®)
Uy=— O—thu, (21) 012 ‘ - sir‘nulation
\/Tocxx'i' v — theory
0.1
where —
£o0.08"
(—D)Ne*! 278 ( To) 2
Cxe \/m N chmSIn 2’;TTm ' ‘2—’0.06*
2 &
Cxx= \/Tolb '%0'04
3p¢ =
and (u, v) is a zero-mean Gaussian random vector with co- 002
variance matrixK,

KMM:Cxxtt_Cs(t'
292 2
T B\ 2 1( ) ( To)”
=——7|—5+ 1-6sirf| 2m—1 ||,
pcTm 3 Wg Tm
2 474
va:Cxxxx_Cxx:Fpéla

K v = Cuxxt™ CxiCxx

y2%

473 9 To
= —l NC+1— 2—— 1 (2 _>.
(1) 3TmNCp§(” N2 sin T

Note thatv, and(v,) do not coincide with the-projections
of Egs.(16) and(19), respectively. Indeed E@16) describes
the velocities of the true hot spots which are local maxim
with respect t, y, andz. Here we observe the motions of
spots which are local maxima with respectiobut not with
respect toy andz.

When N.>1, the dependence with respect i,
vanishes, and the vectoru(v) becomes two indepen-
dent random normal variables with variancequ?)
=27*B%(3p2T2) and (v?)=47"(450%), respectively.
This means that the velocity admits the PDEB) with vy
=\6Bpc/ Ty and a,=2/5.

(b)

FIG. 7. PDF of the velocity, for To=0 (a) andTy=3T,/4 (b). 1D-SSD
with 2N=100, T;*=T,*=10 GHz, 8=5, andp,=8 um.

A B X vigsin 2al -+ iTq
j(t,x)=ex —|7-erC iBsin| 2 T_m W‘I’m ,
whereg;, j=—N, ... N—1 are independent random vari-

ables which take either the value 0@mwith probability 1/2.

In Fig. 7 we plot the theoretical PDF corresponding to Eq.
(21) as well as the numerical histograms for hot spots with
peak intensityl ;=6 (remember that the mean intensity is 1
The numerical histograms are computed from a set of 1000
hot spots with the desired peak intensity. Hg=0 the ve-

qocity has zero-mean. Fofy=3T,/4 the mean velocity is

6Bp./(7Ty). The support of the distribution lies in the posi-
tive half-line, which means that all spots are moving in the
right-direction. The FWHM of the distribution is smaller
than in the configuratiomy=0. This is a general feature:
When the mean velocity is maximalat times T,
=T,/2modT,,), the FWHM of the distribution is minimal,
and vice versa.

We have performed numerical simulations to compareV!ll. CONCLUSION
with the theoretical predictions. We simulate the field in the We have derived closed-form expressions for the prob-

x—t coordinates as the superposition df 2nodes,
N—1

1 .
A(t,x)= EJZN Aj(t,x)expli ¢;),

ability distributions of the characteristic parameters of hot
spots of speckle patterns such as the duration, the radius, and
the velocity. These expressions depend only on the four-
dimensional AF of the field. The analysis of the results ex-
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hibit the follpwing statements. The distribution of 'Fhe radius A(x):f&(x)+C(x)(AO—K(O))JrVC(x)-Aflvﬂ(O),

or the velocity of a hot spot depends on the peak intensity of (A5)

the hot spot. The histograms are not symmetric with respect

to the mean values. We have demonstrated the existence of

heavy tails for the probability distributions, which means that ~

it is likely that some of the hot spots in a speckle patternwhere A obeys Gaussian statistics with AE. Indeed, we
have a sizdresp. a duration, a velocityarger than the cor- can compute the mean and correlation function of the pro-

responding mean value. cess defined byA5). We find the very same expressions as
Eqgs.(A3)—(A4). Since a Gaussian process is fully character-
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