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Statistical analysis of the sizes and velocities of laser hot spots
of smoothed beams
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This paper presents a precise description of the characteristics of the hot spots of a partially coherent
laser pulse. The average values of the sizes and velocities of the hot spots are computed, as well as
the corresponding probability density functions. Applications to the speckle patterns generated by
optical smoothing techniques for uniform irradiation in plasma physics are discussed. ©2001
American Institute of Physics.@DOI: 10.1063/1.1405127#
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I. INTRODUCTION

Partially coherent light has become a subject of gr
interest for many applications, such as smoothing techniq
for uniform irradiation in plasma physics.1 This paper is a
contribution to the study of optical smoothing for applicati
to inertial confinement fusion~ICF!, which requires a high
level of irradiation uniformity for both direct and indirec
drive. This criterion can be reached by implementing act
smoothing methods, such as induced spatial incohere
~ISI! with echelons,2 smoothing by spectral dispersio
~SSD!,3 smoothing by multimode optical fiber~SOF!.4 All
these methods involve the illumination on the target with
intensity which is a time varying speckle pattern, so that
time integrated intensity averages towards a flat profile.
aim in this paper at studying the statistical properties of
hot spots of a partially coherent pulse. It is relevant to rep
a precise account of these properties because the hot
play a primary role in that they can give rise to the growth
laser–plasma instability such as filamentation, stimula
Brillouin scattering~SBS!, and stimulated Raman scatterin
~SRS!.5

The future French Laser MegaJoule~LMJ! and the U.S.
National Ignition Facility~NIF! ~Ref. 6! are designed for the
indirect drive scheme, whose principle is the following. N
merous laser beams are focused into a hohlraum and irra
the inner gold wall to produce x rays. However it was fou
that it is necessary to diminish the wall expansion by filli
the cavity by a gas. Unfortunately this means that the la
light has to propagate through an underdense plasma w
parametric instabilities such as SRS or SBS may occur. S
experimental evidence of SRS and SBS in hohlraums fr
randomized laser beams have been observed,7–11 the control
of high laser intensities has become of crucial importan
The literature contains a lot of work which deals with se
focusing ~SF! and/or parametric instabilities from opticall
smoothed beams. The theoretical papers develop ca
methods to study SBS and/or SF from a single speckle
then average the single hot spot reflectivity over the statis
4911070-664X/2001/8(11)/4914/11/$18.00
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of hot spots.12–14 It is thus of great interest to have precis
expressions for the joint probability distributions of the i
tensities of the hot spots of a speckle pattern, their transv
and longitudinal lengths, as well as their velocities.

The statistical distribution of the peak intensities of t
hot spots can be calculated theoretically for a focal spo
vacuum or homogeneous medium, in the asymptotic fram
work where the number of spatial modes is large, so that
Gaussian limit is valid.15,16The corresponding distribution i
then entirely characterized by the autocorrelation funct
~AF! of the field, which can also be computed very precis
for any smoothing method.17 The theory developed in Refs
15, 16 and refined in Ref. 18 provides accurate express
for the number of local maxima that exceed a given intens
level. But the statistical description of the radius and veloc
of a speckle spot has not yet been performed. We can
preliminary results in Ref. 19, where the mean values of
velocities are computed for some specific configurations.
shall extend these results by addressing more general
figurations and by deriving precise expressions for the pr
ability density functions~PDF! of the radius and the velocity
of a speckle spot.

This work is triggered by the study of the statistics of t
hot spots of the speckle patterns generated by random p
plates~RPP! ~Ref. 20! or kinoform phase plates~KPP!.21 It
also deals with active smoothing methods, such as ISI, S
or SOF. Although thorough attention is devoted to the
cases, the formulas we derive in our paper can be applie
more general situations where the Gaussian limit is va
This is the case as soon as the pattern consists of the s
position of many independent modes by the central lim
theorem.22

The paper is organized as follows. We derive the AF
the speckle pattern generated by optical smoothing te
niques in Sec. III. We give a general description of a lo
maximum of a speckle pattern in terms of the AF in Sec.
We apply these results to compute the PDF of the durat
4 © 2001 American Institute of Physics
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4915Phys. Plasmas, Vol. 8, No. 11, November 2001 Statistical analysis of laser hot spots . . .
the radius and the velocity of a speckle spot in Secs. V,
and VII, respectively.

II. PARTIALLY COHERENT LASER PULSES

We shall denote byA the complex electromagnetic field
The field is normalized so that the laser intensity is sim
uAu2. We shall derive our results in the framework where t
field A has Gaussian statistics with stationary AF. This c
responds to the asymptotic framework when the field is
superposition of a large number of incoherent modes. I
the case for the standard optical smoothing methods.17

In Ref. 18 we give closed-form expressions for the de
sity M (I ) of hot spots per unit volume with peak intensityI .
This is important since parametric instabilities are very s
sitive to the peak intensities of the hot spots. However t
description is not sufficient, since the transverse radiusr , the
lengthz of the hot spots, as well as their durationt and their
velocity v, should be taken into account. We shall show
the following that the quantities (r ,z,t,v) are random quan
tities whose statistical distributions depend on the peak
tensityI of the corresponding hot spot, and can be descri
by a PDFpI(r ,z,t,v) indexed byI . Accordingly, the density
M (I ,r ,z,t,v) of hot spots per unit volume with peak inten
sity I , transverse radiusr , longitudinal lengthz, durationt,
and velocityv is given by

M ~ I ,r ,z,t,v!5M ~ I !pI~r ,z,t,v!.

In this paper, we shall focus on the PDFpI(r ,z,t,v) since
M (I ) is already known.

III. OPTICAL SMOOTHING TECHNIQUES

We shall focus our attention to standard smoothing te
niques, although the general formulas we shall present
be applied to other configurations. In this section we pres
the active smoothing methods that are practically relev
We also compute the four-dimensional~3D in space and 1D
in time! AF of the fields generated by these smoothing te
niques, as it will appear in the following that these functio
contain all the information required for the derivation of t
results.

A. Smoothing by spectral dispersion

A straightforward implementation of one-dimension
smoothing by spectral dispersion~1D-SSD! is shown in Fig.
1~a!.3 The spectral dispersion is obtained by applying a ph

FIG. 1. Implementation of 1D-SSD~a! and 2D-SSD~b!.
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modulator then a grating. An auxiliary grating is impos
before the modulator in order to compensate for the temp
skew of the global shape of the field. We assume that
input beam is a monochromatic pulse with wavelengthl0

and durationTpulse ~longer than all the characteristic tim
scales involved in the problem! and we consider a pure phas
modulator. After modulation and dispersion the field is

A1~x,y,t !5exp~ if~ t1sx!!A0~ t !,

wheref is the phase modulation ands is the temporal skew
per unit length generated by the grating in thex-direction.

A two-dimensional version of this technique is possib
@see Fig. 1~b!#. It consists of applying a phase modulat
between a pair of gratings in each orthogonal direction23

After modulation and dispersion the field is

A1~x,y,t !5expi ~f1~ t1s1x!1f2~ t1s2y!!A0~ t !,

where f j is the phase modulation andsj is the temporal
skew per unit length generated by the gratings in
x-direction for j 51 and in they-direction for j 52.

In the following we shall neglect the time variations
the overall envelopeA0 . In the focal plane of the lens th
fields of the beamlets overlap,

A~x,y,t !

5(
j ,l

A1~ jh,lh,t !e2 i jx2ph/~l0f !e2 i ly 2ph/~l0f !eif j ,l,

whereD is the near field square beam aperture,f is the lens
focal length, andh is the length of the side of a squar
element of the RPP. We denote byN2 the number of ele-
ments of the square RPP, i.e.,N5D/h. f j ,l is the random
phase imposed by thej ,l th element. We assume that thef j ,l

are independent random variables which take either the v
0 or p with probability 1/2. We consider points in the foca
plane such thatx,y,l0f /h, so that the smooth sinc enve
lope of the diffraction function of a square aperture can
considered as quasi uniform. IfN2 is large, the fieldA is a
stationary, centered, Gaussian process. We normalize
mean intensity so that it is equal to 1. The AF of the field
the focal plane is defined by

g~x,y,t;x8,y8,t8!5^A~x,y,t !A* ~x8,y8,t8!&,

where the brackets stand for statistical averaging. In
frameworkN@1 the AF is separable in the two orthogon
directions,17

g5g1~x,t;x8,t8!g2~y,t;y8,t8!,

g j~h,t;h8,t8!5E
21/2

1/2

expi @f j~ t1Td ju!

2f j~ t81Td ju!22pu~h2h8!/rc#du,

whereTd j are the time delays induced by the gratings andrc

is the correlation radius of the speckle pattern,

Td j5sjD, rc5
l0f

D
. ~1!
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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In the case of 1D-SSD, note thatg2 is simply

g2~y,t;y8,t8!5sincS p
y2y8

rc
D ,

where sinc(s)5sin(s)/s. As a numerical example we ca
consider the NIF geometry,24 D50.35 m, f 58 m, and
l0 /D51026 ~for l05351 nm!. The correlation radiusrc is
then about 8mm, while the size of the focal spot is of th
order of 500mm. Moreover the typical value for the latera
time delay imposed by the grating is of the order of 100

We consider in this paper sinusoidal phase modulato

f j~ t !5b j sin~2pt/Tm j!, j 51,2,

whereb j andTm j are, respectively, the modulation depth a
the period of the modulatorj . In such conditions,

g j5E
21/2

1/2

expi F2b j cosS 2p
T01Td ju

Tm j
D sinS p

t

Tm j
D

22pu
h2h8

rc
Gdu,

where T05(t1t8)/2 and t5t82t. Note that t5T02t/2,
t85T01t/2 so thatT0 can be referred to as the carrier tim
This shows that the statistics of the field is locally station
with respect to time, since it depends on the carrier timeT0 .
The computation of the four-dimensional AF,

C~r,z,t!5^A~r1r,z1z,t1t!A* ~r ,z,t !& ~2!

is required for the forthcoming results. The field satisfies
paraxial wave equation,

i
]A

]z
1

i

c

]A

]t
1

1

2k0
D rA50.

Accordingly the pulse in the moving reference frame,

Ă~r ,z,t !ªA~r ,z,t1z/c!

satisfies the standard Schro¨dinger equation,

i
]Ă

]z
1

1

2k0
D rĂ50.

Note that the AF ofA reads in terms of the AFC̆ of Ă as

C~r,z,t!5C̆~r,z,t2z/c!. ~3!

The equation that governs thez-evolution ofC̆ is

i
]C̆

]z
~r,z,t!1

1

2k0
DrC̆~r,z,t!50.

This equation can be solved explicitly by Fouri
transform.25 We get that

C̆~r,z,t!5
1

~2p!2 E f̂ ~k,t!expi S 2k.r2
uku2z

2k0
Dd2k,

where f̂ (.,t) is the Fourier transform ofC̆(.,z50,t) with
respect to the transverse coordinates,

f̂ ~k,t!5E C̆~r,z50,t!expik.rd2r.
Downloaded 25 Feb 2002 to 129.104.70.7. Redistribution subject to AI
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Since C̆(r,z50,t)5C(r,z50,t), the function f̂ can be
computed easily from the expressions ofg1 andg2 ,

f̂ ~k,t!5 f̂ 1~kx ,t! f̂ 2~ky ,t!,

f̂ j~k,t!

5rc1uku<p/rc
expi S 2b j cosS 2p

T01Td jrck

Tm j
D sinS pt

Tm j
D D .

We finally substitute this identity into Eq.~3! so as to get a
closed form expression of the four-dimensional AF,

C~r,z,t!5C1~rx ,z,t!C2~ry ,z,t!,

C15E
21/2

1/2

expi F2b1 cosS 2p
T01Td1u

Tm1
D sinS p

t2z/c

Tm1
D

22pu
rx

rc
28u2

z

zc
Gdu, ~4!

C25E
21/2

1/2

expi F2b2 cosS 2p
T01Td2v

Tm2
D sinS p

t2z/c

Tm2
D

22pv
ry

rc
28v2

z

zc
Gdv, ~5!

wherezc is the longitudinal correlation length,

zc5
8l0f 2

pD2 . ~6!

B. Smoothing by optical fiber

A broadband source illuminates a long multimode fib
with numerical apertureu.4 This source is a monochromati
source spectrally broadened by a sinusoidal phase modu
with modulation depthb and periodTm . The incident beam
excites many optical modes, which propagate at differ
velocities. The time delay between the fastest and the slow
mode is assumed to be much longer than the modula
periodTm . Moreover small random fluctuations of the co
radius or of the index of refraction affect the propagation
introducing random phases into the modes. If the fiber
long enough, these phases can be considered as indepe
processes which obey uniform distributions over@0,2p#. As a
consequence the optical modes interfere at the output of
fiber and their overlap produces a speckle pattern.17 The field
at the output of the fiber is a Gaussian field with zero-me
and AF,

C~r,z,t!5E
0

1

J0S pAsuru
rc

D expS 22is
z

zc
Dds

3J0S 2b sinS p
t2z/c

Tm
D D ,

where the transverse and longitudinal correlation radius
rc5l0 /u andzc5(8l0)/(pu2), respectively.

C. Longitudinal spectral dispersion

In LMF design the focusing system consists in a grat
that directly disperses the square beam.26 This configuration
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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was found to offer advantages in terms of color separatio
well as frequency conversion efficiency. Furthermore the
cal length of the grating strongly depends on the freque
v,

f ~v!5
v1v0

v0
f 0 ,

where f 0 is the focal length corresponding to the carrier fr
quencyv0 . The grating is tailored so that more than 90%
the energy is focused in the central spot. The grating can
be regarded as a chromatic lens.27 Each frequency of the
spectrum of the broadband pulse focuses at a specific p
along thez-axis ~Fig. 2!. Two different frequencies will give
rise to two independent speckle patterns if the differe
between their focal lengths is larger than the longitudi
speckle dimension. Smoothing by longitudinal spectral d
persion~SLSD! thus belongs to the SSD category but with
spectral dispersion along the longitudinal axis instead of
transverse direction as in standard 1D or 2D-SSD techniq

Let us assume that the near field is a phase modul
pulse with a sinusoidal phase modulation with depthb and
period Tm . Let us denote byTd the maximal time delay
between the edge and the center of the square beam,

Td5
k0

2 f 0v0
@~D/2!21~D/2!2#5

D2

4 f 0c
.

The computation of the four-dimensional AF can be carr
out as in the SSD configuration. We get

C~r,z,t!5E
21/2

1/2

duE
21/2

1/2

dv

3expi F2b cosS 2p
T012Td~u21v2!

Tm
D

3sinS p
t2z/c

Tm
D G

3expi F22pu
rx

rc
22pv

ry

rc
28~u21v2!

z

zc
G ,

~7!

whererc5l f /D andzc5(8l0f 2)/(pD2).

IV. DESCRIPTION OF A GAUSSIAN FIELD AROUND A
LOCAL MAXIMUM

In this section we shall consider a fieldA with Gaussian
statistics that depends on a time–space coordinatex. We
shall here assume in great generality thatxPRd, with d
51,2,3, or 4, so that we shall be able in the following

FIG. 2. Implementation of SLSD.
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apply the results to different configurations. The aim of th
section is to derive the statistical distribution of this fie
around a local maximum located at some pointx0 with peak
intensityI 05uA(x0)u2. The results can be formulated only i
terms of the AF. They can be obtained easily if the AF
real-valued~the so-called orthogonal case!. This is the case
for instance when a speckle pattern generated by one o
standard smoothing techniques is observed in the focal pl
However the situation is a little more tricky when the spec
patterns are observed in the focal volume since the AF h
nonzero imaginary part forzÞ0 ~the so-called unitary case!.
We shall first address the orthogonal case, and then the
tary case.

A. The distribution of an orthogonal complex-valued
Gaussian field around an local maximum

Let A(x), xPRd, be a stationary zero-mean comple
valued Gaussian field. We denote byC the stationary AF,

C~x!5^A~y1x!A* ~y!&. ~8!

The field is normalized so that the mean intensity isC(0)
51. It is equivalent to assume that the process hasindepen-
dent real and imaginary partsand that the AF is real-valued
In such conditions the Gaussian field is said to be orthogo
Note that the functionC is also even since

C~2x!5^A~y2x!A* ~y!&5^A~y8!A* ~y81x!&5C~x!.

Assume that there is a local maximum at point0 with
peak valuea0AI 0, a0PC, ua0u51. Since0 is a local maxi-
mum we have¹uAu2(0)50, or else Re(A* (0)¹A(0))50.
The computation of the conditional distribution ofA given
A(0)5a0AI 0 and Re(a0*¹A(0))50 is performed as in the
real case~see Appendix! by taking care to deal with the rea
and imaginary parts ofA separately. We can then claim th
the distribution of the fieldA given that there is a loca
maximum at point0 with peak value a0AI 0, a0PC, ua0u
51 is

A~x!5Ã~x!1C~x!~AI 0a02Ã~0!!

1a0¹C~x!•L21 Re~¹Ã~0!!, ~9!

whereÃ obeys stationary Gaussian statistics with AFC, and
L is the matrix of the second-order spectral moments,

L i j 5 K ]A

]xi
~0!

]A*

]xj
~0!L 52

]2C

]xi]xj
~0!. ~10!

If the peak intensityI 0 of the hot spot is far above the mea
intensity 1, then there is a dominant term in the right-ha
side of Eq.~9!,

A~x!.C~x!AI 0a01O~1!.

This means that the local shape of a strong local maxim
of a speckle pattern is roughly deterministic and given by
AF. This result is well-known~see, for example, Refs. 12 an
29! and the exact description~9! gives the precise expressio
of the random part.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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B. The distribution of a unitary complex-valued
Gaussian field around a local maximum

Let A(x), xPRd, be a stationary zero-mean unita
complex-valued Gaussian field. Unitary means that the
tribution of A is invariant with respect to any rotation
L(A(•))5L(a0A(•)) for any a0PC, ua0u51. This implies
that:

~1! The real and imaginary partsAr and Ai are identically
distributed~but not necessarily independent!;

~2! the AF Cr of Ar ~or Ai! is stationary,

Cr~x!5^Ar~y!Ar~y1x!&5^Ai~y!Ai~y1x!&,

and it is an even function;
~3! the cross-correlation functionCi of Ar andAi is station-

ary,

Ci~x!5^Ar~y!Ai~y1x!&52^Ai~y!Ar~y1x!&

and it is an odd function.

We denote byC the stationary AF~8! of A. Note that we
have C(x)52Cr(x)12iCi(x), and that C(2x)5C* (x).
We further normalize the field so thatC(0)51.

In the case¹C(0)50 it is easy to check that the resul
of the previous section still hold true. The hypothe
¹C(0)50 is important, otherwise the distributions ofA(0)
and ¹A(0) would not be independent, and the condition
distribution of A given A(0)5AI 0a0 and Re(a0*¹A(0))50
would be more complicated.

In the case¹C(0)Þ0, then this vector has purely imag
nary coordinates of the form2 iC1 , C1PRd. If you consider
the auxiliary fieldǍ(x)ªA(x)exp(iC1•x), then Ǎ is a uni-
tary complex-valued Gaussian field whose AF fulfills t
condition ¹Č(0)50. It is therefore more comfortable t
study the local maxima ofA by considering them as loca
maxima ofǍ.

V. THE DURATION OF A HOT SPOT

We shall derive in this section the distribution of th
duration of a speckle spot defined as a local maximum o
orthogonal complex-valued Gaussian field. We conside
Gaussian field with mean intensity 1. The AF,

C~t!5^A~ t1t!A* ~t!&

can be seen as the inverse Fourier transform of the spe
intensity by the Wiener–Khintchine theorem.28

Assume that there is a local maximum att50 with peak
intensityI 0 . We aim at deriving an expression of the PDF
the full width at levelI 02I 1 of this maximum. The impor-
tant parameters in this section areT0 anda t defined by

T05
1

A2Ctt

, a t5
1

2 S Ctttt

Ctt
2 21D , ~11!

whereCtt ~resp.Ctttt! is the second derivative~resp. fourth
derivative! of C with respect to time evaluated at 0. Note th
Downloaded 25 Feb 2002 to 129.104.70.7. Redistribution subject to AI
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the timeT0 may also be seen as the inverse of the bandw
of the fieldA while a t is dimensionless and depends only
the shape of the AF around 0.

The derivation of the expression of the full width of
speckle spot is based on the quadratic expansion of the
around the local maximum located at 0,

uA~ t !u25I 01I 0Cttt
21u] tÃi~0!u2t21AI 0~] ttÃr~0!

2Ãr~0!Ctt!t
2,

where Ãr5Re(a0* Ã) and Ãi5Im(a0* Ã). Note that] ttÃr(0)
2Ãr(0)Ctt obeys a normal distribution with zero-mean a
variancea t /T0

2. Accordingly, the quadratic expansion of th
intensity of the field around 0 is

uA~ t !u25I 0~12t2/T0
2!1AI 0a tZ1t2/T0

21 1
2 Z2

2t2/T0
2,

whereZ1 andZ2 are random Gaussian variables with zer
mean and variance 1. We get that the full widthtFW at level
I 02I 1 is

tFW
2 5

4I 1T0
2

I 02AI 0a tZ12 1
2 Z2

2
. ~12!

Neglecting the termZ2
2 which is of order 1 with respect to

the peak intensityI 0 allows us to compute the PDF of thi
random variable. This establishes the following result: T
PDF of the full widthtFW at levelI 02I 1 of a local maximum
with peak intensityI 0 is described by the random variableT,

T5
tFW

T0
,

whose PDF is

pI 0 ,I 1
~T!5

8I 1CI 0 ,I 1

A2pI 0a tT
3

expF2
~ I 024I 1T22!2

2a tI 0
G , ~13!

andCI 0 ,I 1
is a normalization constant that is chosen such t

*0
`pI 0 ,I 1

(T)dT51.
This expression is all the more valid as the peak inten

I 0 is large, for a given levelI 1 . Note also thatCI 0 ,I 1
is very

close to 1 asI 0@1. We could also get a more precise expre
sion that would take into accountZ2 , but would be much
more intricate.

As expected, the typical value of the duration of a h
spot is proportional toT0 . Indeed, at first order the loca
shape of a hot spot is deterministic and imposed by the
uA(t)u2.I 0C2(t).I 0(12t2/T0

2). Note also that the width of
the distribution oftFW is governed by the parametera t . The
PDF is all the wider asa t is larger.

The tails of the PDF of the duration are worth studyi
since they characterize the probability that there exists a
spot with a very large or a very small duration. The right t
can be approximated by

pI 0 ,I 1
~T! .

T@A2I 1 /I 0 8I 1

A2pI 0a tT
3

expS 2
I 0

2a t
D .

This demonstrates that the tail of the PDF of the durat
corresponding to the large values is quite long, so it is lik
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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that some of the hot spots of a speckle pattern may ha
duration much longer than the mean value given by the
verse of the spectral width. On the other hand, the tail of
PDF of the duration corresponding to the small values
very small,

pI 0 ,I 1
~T! .

T!A2I 1 /I 0 8I 1

A2pI 0a tT
3

expS 2
8I 1

2

a tI 0T4D .

So it is very unlikely that there exists a hot spot whose
ration is much smaller than the mean value.

We can compare these results with full numerical sim
lations. We simulate a random field with Gaussian statist
Gaussian AF:C(t)5exp(2t2/(2tc

2)) and mean intensity 1
We detect all local maxima whose peak intensities are ab
I 020.1 and belowI 010.1. We measure the full widths o
these maxima at levelPI0 , P575%. Once these results a
collected, we plot the histograms of the widths and comp
with the theoretical PDF. The results are shown in Fig. 3

VI. THE SPATIAL RADIUS OF A HOT SPOT

A. Transverse radius

The study of the statistical distribution of the radius o
hot spot is formally identical to the study of the duratio
since it consists in analyzing the width of a local maximu
of the fieldA. We get that the radiusr FW at levelI 02I 1 ~say
in the x-direction! of a hot spot with peak intensityI 0 is
described by the random variableR,

R5
r FW

R0
, R05

1

A2Cxx

,

whose PDF is

pI 0 ,I 1
~R!5

8I 1CI 0 ,I 1

A2pI 0axR
3

expF2
~ I 024I 1R22!2

2axI 0
G , ~14!

andax5(Cxxxx/Cxx
2 21)/2. This result holds true for an or

thogonal Gaussian field. This is the case when we cons
speckle patterns generated by the standard optical smoo

FIG. 3. Probability distributions of the full widths at levelPI0 , P575% for
local maxima with peak intensitiesI 054. The widths are normalized in
multiples oftc .
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methods in the focal plane sincer °C(r,z50) is real-
valued~see Sec. III!. However this is not the case when w
consider these patterns in the focal volume sincez°C(r
50,z) has a nonzero imaginary part. This case deserve
specific study.

B. Longitudinal length

We shall now compute the longitudinal length of a h
spot. Let a speckle fieldA be given in the planez50 with
AF ^A(r1r,z50)A* (r ,z50)&5C(r,z50). As shown in
Sec. III the fieldA in the whole spaceR3 obeys the distribu-
tion of a Gaussian process with AF,

C~r,z!5^A~r1r,z1z!A* ~r ,z!&

given by

C~r,z!5
1

~2p!2 E f̂ ~k!expi S 2k.r2
uku2z

2k0
Dd2k,

where f̂ is the Fourier transform ofC(r,z50),

f̂ ~k!5E C~r,z50!expik.rd2r.

We are interested in the longitudinal forms of the hot spo
which are characterized by the longitudinal correlation fun
tion z°C(r50,z) which is such thatC(0)51, Cz(0)
52 ic1 , Czz(0)52c2 , Czzz(0)5 ic3 , and Czzzz(0)5c4 ,
wherecj are given by

cj5
1

~2p!2~2k0! j E f̂ ~k!uku2 jd2k.

SinceCz(0)Þ0 we should consider a modified version ofA
so as to be able to apply the general results we derive
above. We should consider a process whose correlation f
tion has a first derivative that vanishes at 0. We thus int
duceǍ(r ,z)5A(r ,z)exp(ic1z) whose correlation function is
Č(z)5C(z)exp(ic1z). The second derivative isČzz(0)
52c21c1

2 and the fourth derivative isČzzzz(0)5c4

24c3c116c2c1
223c1

4. As a consequence, the probabili
distribution of the lengthzFW of a hot spot is described b
the random variableZ,

Z5
zFW

Z0
, Z05

1

Ac22c1
2

,

whose PDF is

pI 0 ,I 1
~Z!5

8I 1CI 0 ,I 1

A2pI 0ǎzZ
3

expF2
~ I 024I 1Z22!2

2ǎzI 0
G , ~15!

and the coefficientǎz is given by (1/2)(c42c2
224c3c1

18c2c1
224c1

4)/(c22c1
2)2.

C. Applications

Example 1. Speckle pattern generated by a circular ra
dom phase plate: A circular beam with diameterD and
wavelengthl0 irradiates a Random Phase Plate and is
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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cused by a lens with focal lengthf . The fieldA in the focal
plane obeys Gaussian statistics with zero-mean and AF,

C~r,z50!52
J1~puru/rc!

~puru/rc!
,

whererc5l0f /D. Accordingly the transverse radius of a h
spot with peak intensityI 0 is r FW52rcR/p, whereR admits
the PDF~14! with ax51/2. The transverse AFC(r) corre-
sponds to a flat spectrum of the formĈ(k);1uku<kc

, with
kc5p/rc . Accordingly the longitudinal form of the AF is

C~r50,z!5expS 2 i
kc

2z

4k0
D sincS kc

2z

4k0
D .

The field Ǎ(r ,z)5A(r ,z)exp(ikc
2z/(4k0)) has also Gaussia

statistics with real-valued AF,

Č~r50,z!5sincS z

zc
D ,

wherezc54k0 /(kc
2)5(8l0f 2)/(pD2). Thus a hot spot with

peak intensityI 0 has a length that is described by)zcZ
whereZ obeys the distribution~15! with ǎz52/5.

Example 2. Smoothing by optical fiber: A monochro-
matic source illuminates a long multimode fiber with n
merical apertureu. The field at the output of the fiber is
Gaussian field with zero-mean and AF,

C~r,z!5E
0

1

dsJ0S pAsuru
rc

D expS 22is
z

zc
Dds,

where rc5l0 /u and zc58l0 /(pu2). This is exactly the
same configuration as in Example 1.

Example 3. Speckle pattern generated by a square r
dom phase plate: Consider the very same implementation
in Example 1, but assume here that the RPP as well as
beam are square shaped with side lengthD. The fieldA in
the focal plane obeys Gaussian statistics with zero-mean
AF,

C~r,z50!5sinc~purxu/rc!sinc~puryu/rc!,

whererc5l0f /D. Accordingly the transverse radius of a h
spot with peak intensityI 0 is r FW5)rcR/p, whereR ad-
mits the PDF~14! with ax52/5.

The transverse AFC(r) here corresponds to a flat spe
trum of the formĈ(k);1ukxu<kc ,ukyu<kc

, with kc5p/rc . Ac-
cordingly the longitudinal form of the AF is

C~r50,z!5
p

4

~Ci~2/ApAz/zc!2 iSi~2/ApAz/zc!!2

~z/zc!
,

whereCi andSi are the Fresnel cosine and sine,

Ci~ t !5E
0

t

cosS p

2
s2Dds, Si~ t !5E

0

t

sinS p

2
s2Dds,

and zc is given by ~6!. Note that C(0)51, Cz(0)
524i /(3zc). Introducing Ǎ5A exp(4iz/(3zc)), we get that
the hot spots of the field have lengths that are described
A45/32zcZ, where Z obeys the distribution~15! with ǎz

511/14.
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We can compare these results with full numerical sim
lations. We simulate the field in thex coordinate as the su
perposition of 4N2 modes,

A~x,y,z!5
1

2N (
j ,l 52N

N21

Aj ,l~x,y,z!exp~ if j ,l !,

Aj ,l~x,y,z!5expi S 2p
jx1 ly

Nrc
22

j 21 l 2

N2

z

zc
D ,

where f j ,l , j ,l 52N, . . . ,N21 are independent random
variables which take either the value 0 orp with probability
1/2. We adopt the following dimensionless values: 2N550,
rc andzc51. The numerical histogram is computed from
set of 5000 hot spots with the desired peak intensity. In F
4~a! we plot the theoretical histograms as well as the num
cal histogram for the full widths in thex-direction at level
I 02I 1 of hot spots with peak intensitiesI 0 ~remember that
the mean intensity is 1!. The theoretical histogram 1 corre
sponds to the PDF~14!. The theoretical histogram 2 corre
sponds to the representation~12!. Indeed, ifax is small or
when I 0 is not very large, then the last term in the denom
nator of Eq.~12! may play a role. This is the case in th
configuration. In Fig. 4~b! the theoretical and numerical his

FIG. 4. Histograms of the full widths at levelI 02I 1 in the x-direction ~a!
and z-direction ~b! of hot spots with peak intensitiesI 0 . The field is a
speckle pattern generated by a square RPP. The widths are normaliz
multiples ofrc ~a! andzc ~b!.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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tograms of the longitudinal length~full width in the
z-direction! at level I 02I 1 of hot spots with peak intensitie
I 0 are compared.

VII. THE VELOCITY OF A HOT SPOT

We consider a complex-valued Gaussian fieldA(•) that
depends on a space coordinatexPR3 and on a time coordi-
natetPR. Consider that there is a local maximum at som
point (x0 ,t0) with valueAI 0a0 , ua0u51. We would like to
compute the distribution of the velocity of this spot. Th
velocity is defined as follows. Fort in a neighborhood oft0 ,
plot the maximum of the field,

x~ t !ªargmax$uAu2~x,t !, x close to x0%.

The velocity of the local maximum is

vª
dx~ t !

dt U
t5t0

.

Note thatv is a random variable, since it depends on t
realizationA(.). Remember the field around the local max
mum is of the form,

A~x01x,t01t !

5Ã~x01x,t01t !1C~x,t !~AI 0a02Ã~x0 ,t0!!

1a0¹C~x,t !•L21 Re~¹Ã~x0 ,t0!!,

where¹ is the row operator (]x1
, . . . ,]x3

,] t) while L is the
symmetric positive 434 matrix defined by

L i j 52
]2C

]xi]xj
~0,0!, i , j 51, . . . ,4,

where by conventionx45t. ExpandinguAu2 around (x0 ,t0)
establishes the identity,

v5 argmax
uPR3, w5~u,1!

$uw•¹Au21Re~A* ~w•¹!2A!%~x0 ,t0!.

It shows that only the first and second derivatives ofA in the
point (x0 ,t0) are coming into the definition of the velocity
From this identity we can get a closed form expression ov
in terms of the first and second derivatives ofA in the point
(x0 ,t0), sincev reads as the location of the maximum of
quadratic function parametrized by the derivatives ofA. The
distribution of (A,¹A,¹ ^ ¹A)(x0 ,t0) given that there is a
local maximum at (x0 ,t0) is a Gaussian random vector wit
known mean and covariance~see Sec. IV!. The calculation
of the distribution of the velocity is then a matter of long b
straightforward algebra. The result can be formulated as
lows. Once again we assume that¹C(0)50. We introduce
the random symmetric 434 matrix Z whose entries are
Gaussian normal variables with zero-mean and covarian

^Zjl Zj 8 l 8&5
]4Cr

]xj]xl]xj 8]xl 8
2

]2Cr

]xj]xl

]2Cr

]xj 8]xl 8
,

whereCr is the real part of12C and derivatives are evaluate
at (0,0). The velocityv of a local maximum of the fieldA
with peak intensityI 0 obeys the distribution of

v52M 21N, ~16!
Downloaded 25 Feb 2002 to 129.104.70.7. Redistribution subject to AI
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whereM is the 333 random matrix,

Mi j 5AI 0L i j 1Zi j , i , j 51,2,3,

andN is the vector,

Ni5AI 0L i41Zi4 , i 51,2,3.

Note that, if we consider a local maximum with a very hig
peak intensityI 0 , or else if we average over many maxim
the expression of the velocity becomes simpler, independ
of I 0 , and deterministic,

v52S S ]2C

]xi]xj
D

i , j 51,2,3
D 21S ]2C

]xi]t D
i 51,2,3

. ~17!

This identity was derived in Ref. 18. The new express
~16! takes into account the fluctuations around this me
value.

Remark 1: The PDF corresponding to Eq.~16! has a very
complicated form, so we shall not write it down. Note how
ever that it is easy to plot this PDF by straightforward Mon
Carlo simulations. Indeed a zero-mean Gaussian ve
(Zi) i 51,..,n with covariance matrixKª^ZiZj& i , j 51, . . . ,n can
be simulated by multiplying a vector of independent Gau
ian random variables with variance 1 by a square root of
matrix K.

Remark 2: There exists one case for which we can give
closed-form expression of the PDF of the velocity. If the A
is separableC(x,y,z,t)5C1(x)C2(y)C3(z)C4(t), then the
component of the velocity in thex-direction is described by
the PDF,

pI 0
~v !5

AI 0v0
2

Ap~2axv
21v0

2!3/2
expS 2

I 0v2

2axv
21v0

2D , ~18!

wherev0
25uCtt /Cxxu andax5(Cxxxx/Cxx

2 21)/2.

A. Application to 1D-SSD

To simplify the presentation of the forthcoming resu
we shall assume thatTd5NcTm , whereNc is a positive in-
teger~the so-called ‘‘number of cycles’’!. Note that we must
take care to consider the modified version of the fieldA such
that the first derivatives of the AF vanish,Ǎ(r ,z,t)
5A(r ,z,t)exp(i4z/(3zc)), whose AF isČ5C exp(i4z/(3zc)).

We shall not give the complete and awkward express
of the statistical distribution of the velocity. But it can b
plotted by Monte Carlo simulations of Eq.~16!. Figure 5
plots the PDF of the three components of the velocity. It c
be seen that the means and the variances of these dist
tions depend on the carrier timeT0 .

Furthermore we can give a closed-form expression of
mean velocity defined by~17!. The component of the mea
velocity along the transverse directiony is 0, the component
along the dispersion directionx is

^vx&5
6rcb

Tm

~21!Nc

pNc

sinS 2p
T0

Tm
D S 1

45
1kC1~T0! D

1
4512kC1~T0!1k2~12C2~T0!!

,

~19!

while the component along the longitudinal direction,
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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^vz&5c
kC1~T0!1k2~12C2~T0!!

1
4512kC1~T0!1k2~12C2~T0!!

, ~20!

where

k5
pbzc

4cTm
,

C1~T0!5cosS 2p
T0

Tm
D ~21!Nc

~pNc!
2 ,

FIG. 5. PDF of the velocity of a hot spot with peak intensityI 056 as a
function of the carrier timeT0 . HereTm

21510 GHz, b55, l5350 nm, f
58 m, andD50.35 m. The velocity is normalized in multiples of the ligh
velocity c.
Downloaded 25 Feb 2002 to 129.104.70.7. Redistribution subject to AI
C2~T0!56 sin2S 2p
T0

Tm
D 1

~pNc!
2 .

Note that, whenNc@1, the component of the mean veloci
along the dispersion direction is 0 while the compone
along the longitudinal direction is simply~see Fig. 6!

^vz&5c
45k2

1145k2 .

B. Application to SOF

We must take care to consider the modified version
the field A such that the first derivatives vanish,Ǎ(r ,z,t)
5A(r ,z,t)exp(iz/zc), whose AF is Č5C exp(iz/zc). The
mean velocity has a rather simple expression. The only c
ponent of the mean velocity which is not zero is along t
longitudinal axis,

^vz&5c
96k2

1196k2 ,

wherek5(pbzc)/(4cTm).

FIG. 6. Mean velocity of a hot spot with peak intensityI 056 as a function
of the carrier time. HereTm

21510 GHz, b55, l5350 nm, f 58 m,
and D50.35 m. The velocity is normalized in multiples of the ligh
velocity c. Only thex and z components of the mean velocity are plotte
since^vy&50.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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C. Numerical simulations

It is not possible to compare the theoretical results w
full numerical simulations. Indeed it would require the sim
lation of a four-dimensional field with sufficient accuracy
compute the velocities of local maxima with a given pe
intensity, which is out of the computational range of o
computers. We have considered the auxiliary problem wh
consists in observing the speckle pattern generated by
SSD along thex-axis of the focal plane. The (t2x)-AF is
given by ~4! with z50. The computation of the velocityvx

can be performed as above, the only difference is that
spatial coordinate is here one-dimensional. It is found t
the statistical distribution of the velocityvx is described by

vx52
A2I 0Cxt1m

A2I 0Cxx1n
, ~21!

where

Cxt5A2I 0

~21!Nc11

Nc

2pb

rcTm
sinS 2p

T0

Tm
D ,

Cxx5A2I 0

p2

3rc
2 ,

and ~m, n! is a zero-mean Gaussian random vector with
variance matrixK,

Kmm5Cxxtt2Cxt
2 ,

5
p2b2

rc
2Tm

2 F2p2

3
1

1

Nc
2 S 126 sin2S 2p

T0

Tm
D D G ,

Knn5Cxxxx2Cxx
2 5

4p4

45rc
4 ,

Kmn5Cxxxt2CxtCxx

5~21!Nc11
4pb

3TmNcrc
3 S p22

9

Nc
2D sinS 2p

T0

Tm
D .

Note thatvx and^vx& do not coincide with thex-projections
of Eqs.~16! and~19!, respectively. Indeed Eq.~16! describes
the velocities of the true hot spots which are local maxi
with respect tox, y, andz. Here we observe the motions o
spots which are local maxima with respect tox, but not with
respect toy andz.

When Nc@1, the dependence with respect toT0

vanishes, and the vector (m,n) becomes two indepen
dent random normal variables with varianceŝm2&
52p4b2/(3rc

2Tm
2 ) and ^n2&54p4/(45rc

4), respectively.
This means that the velocity admits the PDF~18! with v0

5A6brc /Tm andax52/5.
We have performed numerical simulations to comp

with the theoretical predictions. We simulate the field in t
x– t coordinates as the superposition of 2N modes,

A~ t,x!5
1

A2N
(

j 52N

N21

Aj~ t,x!exp~ if j !,
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Aj~ t,x!5expF2 ip
jx

Nrc
1 ib sinS 2pS t

Tm
1

jTd

2NTm
D D G ,

wheref j , j 52N, . . . ,N21 are independent random var
ables which take either the value 0 orp with probability 1/2.
In Fig. 7 we plot the theoretical PDF corresponding to E
~21! as well as the numerical histograms for hot spots w
peak intensityI 056 ~remember that the mean intensity is 1!.
The numerical histograms are computed from a set of 1
hot spots with the desired peak intensity. ForT050 the ve-
locity has zero-mean. ForT053Tm/4 the mean velocity is
6brc /(pTd). The support of the distribution lies in the pos
tive half-line, which means that all spots are moving in t
right-direction. The FWHM of the distribution is smalle
than in the configurationT050. This is a general feature
When the mean velocity is maximal~at times T0

5Tm/2 modTm), the FWHM of the distribution is minimal,
and vice versa.

VIII. CONCLUSION

We have derived closed-form expressions for the pr
ability distributions of the characteristic parameters of h
spots of speckle patterns such as the duration, the radius
the velocity. These expressions depend only on the fo
dimensional AF of the field. The analysis of the results e

FIG. 7. PDF of the velocityvx for T050 ~a! andT053Tm/4 ~b!. 1D-SSD
with 2N5100, Td

215Tm
21510 GHz, b55, andrc58 mm.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp



us
y o
e
e
a
r

La

ry

A

n

th

u-

nt

ro-
as
er-

. M.

.

.

a-
c

ney,

.

luids

a,

y

4924 Phys. Plasmas, Vol. 8, No. 11, November 2001 J. Garnier and L. Videau
hibit the following statements. The distribution of the radi
or the velocity of a hot spot depends on the peak intensit
the hot spot. The histograms are not symmetric with resp
to the mean values. We have demonstrated the existenc
heavy tails for the probability distributions, which means th
it is likely that some of the hot spots in a speckle patte
have a size~resp. a duration, a velocity! larger than the cor-
responding mean value.
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APPENDIX: GAUSSIAN RANDOM FIELDS

We first list the basic results of the probabilistic theo
of Gaussian vectors.29 A randomRn-valued vector (Zi) i 51,..,n

is said to be a Gaussian vector if for anyuPRn the real-
valued variableu•Z obeys a real Gaussian distribution.
Gaussian vector is fully characterized by its meanMZ and
covariance matrixKZ,Z ,

MZ~ i !5^Zi&,

KZ,Z~ i , j !5^~Zi2MZ~ i !!~Zj2MZ~ j !!&.

If KZ,Z is invertible then the distribution of the zero-mea
vectorZ2MZ admits a PDF given by

p~z!5
1

A~2p!n detKZ,Z

expS 2
z•KZ,Z

21z

2 D .

If ~Y, Z! is a Gaussian vector, andKY,Y is invertible,
then the distribution ofZ given Y is a Gaussian vector with
mean,

MZuY5MZ1KZ,YKY,Y
21 ~Y2MY!, ~A1!

and covariance matrix,

KZ,ZuY5KZ,Z2KZ,YKY,Y
21 KY,Z . ~A2!

Let A(x), xPRd, be a real-valued Gaussian field wi
zero-mean and stationary AFC,

C~x!5^A~y1x!A~y!&.

The field is normalized so thatC(0)51. Assume that there is
a local maximum at point0 with peak valueA0PR. Apply-
ing Eqs.~A1!–~A2! establishes that the conditional distrib
tion of A given A(0)5A0 and¹A(0)50 is a Gaussian field
with nonstationary mean,

M ~x!5C~x!A0 , ~A3!

and nonstationary correlation function,

K~x,y!5C~y2x!2C~x!C~y!2¹C~x!•L21¹C~y!,
~A4!

whereL is the matrix of the second-order spectral mome
~10!. We can then claim that the distribution of the fieldA
given that there is a local maximum at point0 with peak
value A0PR is
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A~x!5Ã~x!1C~x!~A02Ã~0!!1¹C~x!•L21¹Ã~0!,
~A5!

where Ã obeys Gaussian statistics with AFC. Indeed, we
can compute the mean and correlation function of the p
cess defined by~A5!. We find the very same expressions
Eqs.~A3!–~A4!. Since a Gaussian process is fully charact
ized by its mean and correlation function the identity~A5! is
proved.
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