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Abstrac t. This paper is concerned with the statistical distribution of the
maximal hot spots of speckle patterns such as those generated by optical
smoothing methods designed for inertial con® nement fusion. It is proved that
the maximal intensity at the ® rst order is proportional to the logarithm of the
ratio of the pulse volume over the mean hot spot volume. Nevertheless the
complete description of the maximal intensity exhibits a quite important
variance. Di� erent ways for reducing either the maximal ¯ uence or the maximal
intensity are investigated, which are based upon time incoherence or polariza-
tion smoothing.

1. In tro d u c tio n

Incoherent light has become a subject of great interest for many applications
such as coherent spectroscopy [1], tomography in random media[2] or smoothing
techniques for uniform irradiation in plasma physics [3]. This paper is a con-
tribution to the study of optical smoothing for application to inertial con® nement
fusion (ICF), which requires a high level of irradiation uniformity for both direct
and indirect drive. This criterion can be reached by implementing active smooth-
ing methods, such as induced spatial incoherence (ISI) with echelons [4],
smoothing by spectral dispersion (SSD) [5], smoothing by multi-mode optical
® bre (SOF) [6], and polarization smoothing (PS) [7]. All these methods, except for
the last, involve illuminating the target with an intensity which is a time varying
speckle pattern, so that the time integrated intensity averages towards a ¯ at pro® le.
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We aim, in this paper, to study the statistical distribution of the maximal
intensity of a time± space incoherent pulse. This aspect of incoherent pulses was
not addressed in our previous works[8, 9] which dealt with a statistical approach to
the ampli® cation of incoherent pulses. Indeed the energy contained in the hottest
spot of a speckle pattern is very negligible compared with the total energy of the
pulse, so that the role of the hottest spot was then found negligible in terms of the
ampli® cation e� ciency. However it is relevant to estimate the intensity maxima in
the focal spot because the hot spots play a primary role in that they can give rise to
the growth of laser-plasma instability such as ® lamentation, stimulated Brillouin
scattering, and stimulated Raman scattering [10]. This is especially the case for the
most intense hot spot [11]. More important, some of the optical smoothing
techniques involve intensity space± time modulations in the ampli® ers and other
optical components (SOF). Therefore the maximal value of the intensity in the
laser chain is worth considering because the hottest spot is the one which will just
induce damage to the optical components. This study is thus clearly triggered by
ICF concerns. Nevertheless it should be mentioned that one can apply the
following results to more general situations where the ® eld obeys Gaussian
statistics, which is the case as soon as it consists of the overlap of many
independent modes by the Central Limit Theorem [12].

Studies exist in the literature about maxima of the electric ® eld intensity of a
laser speckle pattern. Weinrib and Halperin in [13] derive expressions for the
densities of maxima, minima and saddle points of two-dimensional speckle
patterns. Rose and DuBois in [14] consider the general statistics of hot spots of
a speckle pattern in ICF con® gurations. All previous work are concerned with the
statistical properties of the local maxima of the intensity distribution. Our work is
original in that we focus on the precise study of the complete statistical distribution
of the maximal hot spot, i.e. the global maximum of the intensity (or ¯ uence),
which is a critical point in terms of laser-plasma instability in the focal spot and in
terms of damage to the optical components of the laser chain. We shall assume in
this paper that the space± time modulations of the pulse obey Gaussian statistics. In
particular the instantaneous spatial intensity distribution of such a pulse is a
speckle pattern [12]. These statistical characteristics are actually very usual, and
correspond to the pulses generated by the smoothing techniques that we quote
here [8, 14].

In section 2 the maximal intensity and ¯ uence distribution of a spatially and
temporally incoherent pulse is studied in some reference plane, while section 3 is
devoted to the maximal intensity distribution of a monochromatic and spatially
incoherent pulse. In section 4 we address the particular case of polarization
smoothing, which di� ers from the other methods in that it instantaneously
smoothes the hot spots. Finally, section 5 is devoted to the maximal intensity of
time-dependent and time-independent propagating speckle patterns in three
spatial dimensions.

2. Sta tis ti c s o f th e m a xim a l in te n s i ty o f b ro a d b a n d pu ls e s

2.1. Statistics of partially coherent pulses
We consider an electromagnetic ® eld A whose temporal and spatial slowly

varying envelopes are deterministic, with spatial radius R0 (the so-called beam
radius) and temporal duration T0 (the so-called pulse duration). These scales will
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be referred to in the following as the macroscopic scales. In the experimental
conditions corresponding to high power laser chains such as the French Laser
MegaJoule [15] or the US National Ignition Facility [16], R0 is of the order of
20 cm in the laser chain, and 250 m m in the focal spot. T0 is of the order of several
nanoseconds. The incident pulse also has fast varying random ¯ uctuations, with
characteristic scales q c (the so-called correlation radius) in the spatial domain and
¿c (the so-called coherence time) in the temporal domain. These scales will be
referred to in the following as the microscopic scales. In order to ® x the sizes of
orders, we may assume that the value of q c is of the order of 2± 20 mm in the laser
chain, and 2± 20 m m in the focal spot. The coherence time ¿c is of the order of
1-10 ps. These random ¯ uctuations are assumed to obey Gaussian statistics. Their
distributions are then characterized by the autocorrelation function de® ned by:

CR,T ( q , ¿) = h A(r1, t1)A (r2, t2) , (1)
with R = (r1 + r2)/ 2, T = (t1 + t2)/ 2, q = r1 ­ r2, and ¿ = t1 ­ t2. Throughout
this paper we consider an incoherent pulse with mean intensity I0 whose macro-
scopic envelope is ¯ at, with beam radius R0 and pulse duration T0. Its volume is
therefore

V 0 : = p R2
0T0

and the autocorrelation function reads as:

CR,T ( q , ¿) = I0f
q

q c
,

¿

¿c
(2)

for j Rj R0, j T j T0/ 2, where f (~q , ~¿) is the normalized shape of C which is
assumed to ful® l some mathematical technical conditions.

(1) ( ~q , ~¿) 7 ! f (~q , ~¿) is 4 times di� erentiable.
(2) There exist positive constants c1, c2, d such that for any j ~q j 2 + ~¿2 < d :

c1( j ~q j 2 + ~¿
2) 1 ­ f (~q , ~¿) c2( j ~q j 2 + ~¿

2).
(3) The correlation function decays fast enough so that:

R 3
f ( ~q , ~¿)j j 2 d2~q d~¿ < 1 ,

where R 3 is the real space of dimension 3.

These three conditions give some requirements of regularity and integrability for
the normalized correlation function f , so that we will be allowed to apply results
which can be found in the mathematical literature. In the numerical applications,
we will take f to have Gaussian shape f (~q , ~¿) = exp (­ j ~q j 2 ­ ~¿2). In the following,
V c will be referred to as the volume of a hot spot:

V c := p q 2
c¿c.

The scalar ® eld can be expressed in terms of its real and imaginary parts:
A(r, t) = AR(r, t) + iAI(r, t). AR and AI are independent and identically distrib-
uted zero-mean real Gaussian processes, with autocorrelation function:

h AR(r, t)AR(r 0 , t 0 ) i = 1
2C(r ­ r 0 , t ­ t 0 ). (3)
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The intensity obeys an exponential distribution with mean intensity I0, which
readily implies that the fraction area of the beam contained in regions where the
intensity is higher than a I0 is exp (­ a ). However this elementary result does not
take into account the fact that there is only a ® nite number of hot spots in the
pattern. Consequently it does not indicate the right way to determine the statistics
of the maximal hot spot, which obviously should depend on the ratio V 0/ V c.
Indeed the maximal intensity is expected to be all the larger since there are many
hot spots.

It is also necessary to describe what are the underlying meanings of the
statistical expectation h . i and probability P .( ) in our framework. Indeed one
speckle pattern is associated with one value of the maximal intensity. This value
depends on the realization of the speckle pattern, which, in the context of a high
power laser chain, means that a di� erent speckle pattern is observed at each laser
shot. Therefore, we cannot use any ergodicity principle which means that the
statistical distribution we speak of throughout the paper is the distribution with
respect to the possible realizations of the speckle patterns.

2.2. Maximum of the instantaneous intensity distribution
Here we deal with the statistics of the maximal instantaneous intensity of the

time± space incoherent pulse. This study is based upon the following two state-
ments.

(1) Let us consider the local maxima in the space± time domain of the real-
valued ® eld A2

R and denote by IAR
max,1 IAR

max,n the values of the n
hottest local maxima of A2

R. In the asymptotic framework V c V 0, the
statistical distribution of IAR

max,n can be expressed in terms of independent
random variables Zj, j = 1, . . . , n with exponential densities p(z) =
exp (­ z) z 0 and means 1:

IAR
max,n = I0 C V ­ ln (Z1 + + Zn)( ), (4)

C V = ln
DV V 0

p V c
+ ln2

DV V 0

p V c
, (5)

where ln2 (x) := ln(ln (x)) and DV is the squared root of the determinant of
the 3 3 matrix K V of the second derivatives of f :

K
V
i,j = ­ ¶ 2f

¶ xi ¶ xj x=0
, where x = ( ~q , ~¿) .

If C has Gaussian shape, then we have DV = 23/ 2.
(2) The most intense local maximum of the intensity distribution corresponds

to a strong local maximum of AR (or AI), the contribution of AI (or AR)
being much smaller, following a Gaussian random variable with variance
I0/2.

These statements are proved in appendices A and B respectively. Since the real
and imaginary parts of the ® eld are identically distributed, the ® rst point also holds
true for the values of the n hottest local maxima IAI

max,1 IAI
max,n of the square

of the imaginary part A2
I of the ® eld. The second point actually proposes an ansatz

to deduce the statistical distribution of the maximal value of the intensity A2
R + A2

I
from that of the real part AR. Indeed Imax : = maxV 0 j A(r, t) j 2 will be smaller than
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u2 if and only if IAR
max,n + A2

I,n are smaller than u2 for every n, and IAI
max,n + A2

R,n are
smaller than u2 for every n, where AR,n and AI,n are independent, real-valued,
zero-mean, Gaussian random variables with variance I0/ 2. Since the ® elds AR and
AI obey the same distribution and are independent, this reads as:

P Imax I( ) = P ( 8 n, A2
I,n + IAR

max,n I)2. (6)
Substituting equation (4) into equation (6) then yields after some algebra that the
maximal intensity Imax can be expressed as the sum of a deterministic term I0 C V of
order I0 ln (V 0/ V c) and of a random term ­ I0 lnZ of order I0:

Imax = I0 C V ­ ln Z( ). (7)
The random variable Z is independent of V 0 and V c. It is very di� cult and in fact
not necessary to solve the in® nite-dimensional system which would provide the
exact expression of the distribution of Z, but would require one to take into
account the joint statistical distribution of all local maxima of AR and AI. By
considering only the n0 hottest spots of AR and AI, we can substitute for
equation (6) the following relation:

P Imax I( ) ’ P ( 8 n n0, j AI,n j 2 + IAR
max,n I)2.

We adopt the choice n0 = 2, which is a compromise between the accuracy (which
increases with n0) and the simplicity (which decreases with n0) of the correspond-
ing expression of the statistical distribution of Z. We then ® nd that the so-called
repartition function of Z can be expressed to a good approximation by (z 0):

P (Z z) =
4

p 1/ 2

1

0
exp (­ z exp (x2) ­ x2) erf (x)+z

x

0
erf (y) exp (y2) y dy dx

2

,

(8)
where erf (x) = 2/ p 1/ 2 x

0 exp (­ a2) da. In particular, the mean value of the random
part of Imax is ­ h ln Zi ’ 1.92, and its variance is h ln Z ­ h ln Zi( )2 i ’ 1.99. The
tails of the random variable ­ ln Z can be estimated from (8). The left tail,
corresponding to the probabilities of exceptional low values, decays very fast:

P (­ ln Z ­ I) ’ exp ­ I ­ 2 exp (I)( ) for I 1,

while the right tail, which corresponds to exceptional high values, decays as:

P (­ ln Z I) ’
4

p 1/ 2 I1/ 2 exp (­ I) for I 1.

The mean value of the maximal intensity is plotted in ® gure 1 for di� erent
microscopic volumes. It appears that the maximal intensity depends on the
coherence time in that it increases when the coherence time decreases and it can
reach very high values. However the maximal energy contained in each micro-
scopic cell decreases due tothe small coherence time, so that the maximal ¯ uence is
actually low for small coherence times (see also section 2.3).

It should be also mentioned that one of the most discussed methods to
generate the space± time incoherent pulses which are designed for ICF applications
is SSD using one sinusoidal modulator [5]. In such conditions, the ® eld in the
focal plane can be e� ciently approximated by a pulse with Gaussian statistics
only over a time interval whose duration is equal to the modulation period.
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Therefore T0 in all the results of this paper should then be understood as the
modulation period. Note also that other methods such as SOF or the use of at least
two sinusoidal modulators with incommensurate frequencies break this periodic
e� ect.

2.3. Statistics of the maximal ¯ uence
We still consider a time-incoherent speckle pattern and look for the statistics of

the maximal hot spot of the time-integrated pattern. In other words we aim at
exhibiting the e� ect of temporal smoothing on the maximal hot spot statistics. We
still develop our study in the asymptotic framework q c R0 and ¿c T0. In such
conditions, the contrast de® ned as the ratio of the normalized variance of the
¯ uence over the mean ¯ uence is:

c2 =
¿c

T0
F 0, 1( ), (9)

F(~q , ~t) =
~t/ 2

­ ~t/ 2
j f (~q , ~¿) j 2 d~¿, (10)

which means that the time-integrated pattern consists of the overlap of N = c­ 2

statistically independent speckle patterns. In particular, if f has Gaussian shape,
then F(0, 1 ) = ( p / 2)1/2. More precisely, we get by applying the central limit
theorem that the ¯ uence E(r) can be expressed as:

E(r) = E0 1 + ce(r)( ),

where E0 = I0T0 is the mean ¯ uence of the time-integrated pattern, and e(r) is a
real zero-mean Gaussian ® eld whose covariance is equal to:
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Figure 1. Theoretical mean values of the maximal intensity (solid line) and of the
maximal ¯ uence (dashed lines) of a pulse with Gaussian correlation function, beam
radius R0 = 20cm, and correlation radius q c = 3mm (these values are equivalent to
R0 = 250 m m and q c = 2.4 m m). The maximal intensity and ¯ uence are plotted versus
the ratio T0/ ¿c.



e r +
q

2
e r ­

q

2 =
F( q / q c, 1 )

F(0, 1 ) .

The maximal ¯ uence statistics is then straightforward to establish by using the
same approach as in appendix A which deals with the real part of the ® eld. We ® nd
that the maximal ¯ uence Emax := maxS0 E(r) can be represented as:

Emax = E0 + E0cC
1/2
F 1 ­ ln Z1

C F
, (11)

C F = 2ln
DF

2(2p )1/2
S0

Sc
+ ln2

DF

2(2p )1/2
S0

Sc
+ ln2, (12)

where Z1 is a random variable with an exponential probability density and mean 1
and DF is the squared root of the determinant of the 2 2 matrix K F of the second
derivatives of F(~q , 1 )/ F(0, 1 ). It thus appears that the maximal ¯ uence is rather
close to the mean ¯ uence due to time incoherence, and that the relative di� erence
is of the order of cC

1/2
F (see ® gure 1).

2.4. In¯ uence of the integration time
Section 2.2 deals with the maximal instantaneous intensity of a time± space

incoherent pulse, while section 2.3 is devoted to the maximal ¯ uence, which is the
intensity time integrated over the whole pulse duration. These con® gurations
correspond to limit cases of a more general problem which takes into account the
in¯ uence of the integration time ti which is the time duration with respect to which
the intensity is integrated, so that the relevant ® eld intensity is:

Iti (r, t) : =
1
ti

t+ti/2

t­ ti/ 2
j A j 2(r, s) ds.

We aim at exhibiting the maximal value of the intensity Iti as a function of ti. Note
that in the limit ti ¿c, we get back the instantaneous intensity, while if ti T0
then Iti is simply proportional to the ¯ uence of the ® eld. We shall show that there
exists three regimes. For small ti (ti T1), the distribution of the time-integrated
intensity is close to the distribution of the instantaneous intensity up to a multi-
plicative corrective term. For long ti (ti T2), it is close to the ¯ uence distribution
up to another corrective term. Finally there exists between these two regimes an
intermediate regime (T1 < ti < T2).

2.4.1. Short integration time
Part of the following results will be based upon the statement due to Adler [17,

Lemma 6-7-3] and rewritten in [14]: The ® eld around a local maximum (r0, t0) is
non-random and obeys:

A(r, t) ’ A(r0, t0)f r ­ r0

q c
,
t ­ t0

¿c
. (13)

In particular, in the neighbourhood of the global maximum of the instantaneous
intensity distribution whose position is denoted by (r0, t0), the intensity is:

I(r0, t) ’ Imax j f (0, (t ­ t0)/ ¿c) j 2.
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This statement holds true whenever the shape Imax j f (0, (t ­ t0)/ ¿c) j 2 prevails over
the background of order I0, which means for any j t ­ t0 j T1/ 2, where T1 is such
that² :

j f (0, T1/ (2¿c)) j 2 = I0/ Imax . (14)
In particular, in the case of a Gaussian correlation function, we have
T1 ’ ¿c(2 ln C V )1/2. If ti is shorter than T1, then the time integrated intensity at
the point (t0, r0) is Iti (t0, y0) = ImaxF(0, ti/ ¿c)/ (ti/¿c) and Iti

max corresponds to this
point. We can then state the following statement.

If ti T1:

Iti
max = I0 C V ­ ln Z( ) F(0, ti/¿c)

ti/ ¿c
, (15)

where Z is the random variable characterized by equation (8).

2.4.2. Moderate integration time
If ti is longer than T1, then the value of Iti(r0, t0) is the sum (divided by ti) of

the maximal instantaneous hot spot time integrated over [­ T1/ 2, T1/ 2]and of the
intensity background with mean I0 time integrated over [­ ti/2, ­ T1/ 2][
[T1/ 2, ti/ 2]:

If T1 ti T2:

Iti
max = I0 1 +

¿c

ti
F(0, 1 ) C V ­ ln Z( ) ­ T1

ti
. (16)

Note that, when ti becomes longer and longer, the contribution of the maximal
instantaneous hot spot becomes smaller and smaller. At some critical time T2, the
maximal time-integrated intensity does not correspond anymore to the buried
maximal instantaneous hot spot (r0, t0), but will switch to some other local
maximum of the time-integrated intensity. This will induce the third regime
examined in the next paragraph.

2.4.3. Long integration time
After T2, the time-integrated intensity distribution consists of a sequence of

T0/ ti independent patterns with contrast:

c(ti)2 = F(0, 1 ) ¿c

ti
.

The intensity distribution of the jth pattern can be written as I0(1 + c(ti)ej(r)),
where ej has Gaussian statistics with correlation function F( q / q c, 1 )/F(0, 1 ).
The maximal intensity of the jth pattern can be estimated in the same way as the
maximal ¯ uence in section 2.3: I0(1 + c(ti) C 1/2

F (1 ­ ln Zj/ C F) , where the Zj ’s are
independent random variables with exponential densities and means 1. The
maximal intensity of the integrated pulse is the maximum of these values.
Computing (N = T0/ ti):

1220 J. Garnier et al.
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P max
j=1,. . . ,N

(­ ln Zj) a = exp ­ N exp (­ a)( ),

which is equal to exp (­ z) if a = ln N ­ ln z, we get that:

If T2 ti T0:

Iti
max = I0 1 + c(ti) C 1/2

F 1 +
ln (T0/ ti)

C F
­ ln Z1

C F
, (17)

where Z1 is a random variable with exponential density and mean 1.

The transition between the second and the third regimes occurs at some time T2
which is random, but can be estimated by comparing the typical values given by
formulae (16) and (17):

h T2 i ’ C V ¿c.

Note also that, if ti T0, then we have Iti
max = IT0

max.
Figure 2 plots the expected maximal intensity of a time± space incoherent pulse

with the Gaussian correlation function in terms of the integration time ti. It gives
an illustration of the di� erent regimes pointed out above when ti goes from 0 to T0.
One can ® rst observe the rapid decrease (15), whose rate depends on the precise
shape of the correlation function. The second and third regimes depend on the
correlation function only through the parameters C V , C F and F(0, 1 ). The regime
(16) has a decay rate ¿c/ ti, while (17) has a slower rate of about (¿c/ ti)1/ 2.

3. Sta tis tic s o f th e m a xim al in te n s i ty o f m o n oc h ro m a ti c pu ls e s

Let us now consider the case when the pulse is steady state in time. This
con® guration is simpler than the one considered in section 2 in that the instanta-
neous intensity distribution coincides with the time-integrated intensity distri-
bution. If we denote by S0 = p R2

0 the area of the beam and by Sc = p q 2
c the area of
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Figure 2. Theoretical mean value of the maximal intensity versus the integration time.
We have assumed that the correlation function has Gaussian shape and we have
adopted the values R0 = 20cm, q c = 3mm, T0 = 1ns and ¿c = 10ps. In such
conditions T1 ’ 24ps and T2 ’ 150ps. In the main ® gure the integration time goes
from 0 to 100ps, and in the insert it goes from 100ps to 1.2ns.



a speckle spot, then by the very same method as in subsection 2.2 we ® nd that for
S0 Sc the maximal intensity Imax := maxS0 j A(r) j 2 of a two-dimensional speckle
pattern is governed by:

Imax = I0 C S ­ lnZ( ), (18)

C S = ln
DS

p 1/2
S0

Sc
+ 1

2 ln2
DS

p 1/2
S0

Sc
, (19)

where DS is the squared root of the determinant of the 2 2 matrix K S of the
second derivatives of f : K

S
i,j = ­ ¶ 2f / ¶ ~q i ¶ ~q j(0). In particular, if f has Gaussian

shape, then DS = 2. The statistical distribution of Z is described by equation (8).
In order to test the asymptotic formulae (7) and (18) we have carried out

numerical simulations in the two-dimensional case (i. e. the time-independent
speckle pattern). The routine to simulate a Gaussian ® eld is given in the
appendix C. Figure 3 compares the theoretically and numerically determined
mean values of the maximal intensities of a two-dimensional speckle pattern with
Gaussian statistics and the Gaussian correlation function. It shows good agree-
ment between theory and simulations for large values of S0/ Sc = R2

0/ q 2
c , but also

for rather small values of this ratio, which was unexpected. It appears that we can
have a maximal hot spot with an intensity 10 times larger than the mean intensity
for R0 32q c. In ® gure 4 we compare the probability density functions of the
maximal intensity for ® xed values of R0 and q c. It demonstrates that the above
theory e� ciently predicts not only the mean value, but also the whole statistical
distribution of the maximal intensity of a speckle pattern.

4. Or th og on a l ly p o l ar iz e d ® e ld s

Polarization smoothing (PS) consists of overlapping two orthogonally polarized
and statistically independent speckle patterns A1 and A2, so that it instantaneously

1222 J. Garnier et al.

Figure 3. Mean value of the maximal intensity of the pulse expressed in multiples of
the mean intensity I0. The pulse has a ¯ at macroscopic envelope with beam radius
R0 and is steady state in time. Its correlation function has Gaussian shape. The
thick line corresponds to the theoretical values. The crosses represent the mean
values of the maximal intensity averaged over 100 realizations for 10 di� erent values
of the correlation radius q c.



smoothes the spatial beam structure [7]. The intensity statistics j A j 2 =
A2

1,R + A2
1,I + A2

2,R + A2
2,I obeys the so-called chi-square distribution with four

degrees of freedom and mean intensity I0, whose probability density is p(I) =
4I/ I2

0 exp (­ 2I/ I0). The contrast of the instantaneous pattern is then c = 1/ 21/ 2.
With very similar arguments as in section 2 and the corresponding ansatz t̀he most
intense local maximum of the intensity distribution corresponds to a strong local
maximum of A1,R (or A1,I , or A2,R, or A2,I), the contributions of the three other
real ® elds being much smaller, following independent Gaussian random variables with
variance I0/4’ , we ® nd that the maximal intensity Imax : = maxV 0 j A j 2(r, t) of a
broadband orthogonally polarized ® eld with coherence time ¿c and correlation
radius q c obeys the following distribution:

Imax =
I0

2
C V ­ ln Zps , (20)

where Zps is a random variable independent of V 0 and V c = p q 2
c¿c and C V is given

by (5). With the same conditions the maximal intensity Imax := maxS0 j A j 2(r) of a
monochromatic (¿c = 1 ) orthogonally polarized ® eld with correlation radius q c is:

Imax =
I0

2
C S ­ ln Zps , (21)

where Sc = p q 2
c and C S is given by (19). The repartition function of the random

variable Zps can be expressed to a good approximation by (z 0):

P (Zps z) =
4

p 1/2

1

0
exp (­ z exp (x2) ­ x2)x2 dx

4

. (22)

In particular, the mean value of the random part of Imax is ­ h ln Zps i ’ 3.96, and its
variance is h (ln Zps ­ h ln Zps i )2 i ’ 1.85. The left tail is approximately:

P (­ ln Zps ­ I) ’ exp ­ 6I ­ 4 exp (I)( ) for I 1,

while the right tail decays as:
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Figure 4. Theoretical probability density of the maximal intensity of a two-dimensional
steady state for a time speckle pattern (solid line). The correlation function is
assumed to have Gaussian shape. The histogram has been numerically determined
by computing 2000 di� erent realizations. We have adopted the values R0 = 20cm
and q c = 3mm.



P (­ ln Zps I) ’
16

3p 1/2 I3/2 exp (­ I) for I 1.

It thus appears that the intensity of the maximal hot spot is much lower in the PS
con® guration than in the standard con® guration by a factor close to 2, as
demonstrated by comparing equation (7) with equation (20) (broadband pulses)
and equation (18) with equation (21) (monochromatic pulses). This reduction is
also shown by ® gure 5. Furthermore, if we combine temporal smoothing and
polarization smoothing, then both e� ects cumulate so that the maximal ¯ uence is
given by equation (11) with a further reduction by a factor 1/ 21/2 of the second
term in the right-hand member.

5. 3D spe c kle p a tte rn a n d p ro pa g a tio n

In the above sections we have studied the statistics of the hot spots of time-
dependent or time-independent speckle patterns in some reference plane. These
results will be accurate if we can neglect in practice the modi® cations of the hot
spots along the propagation axis (say z). The Rayleigh distance of a speckle spot is

zc :=
k0q

2
c

2
,

where k0 is the central wavenumber of the pulse. We shall take into account z-
propagation e� ects if zc is smaller than the typical depth of the considered system.
On the one hand, zc is of the order of several tens of metres in the laser chain,
where q c 2 mm. This distance is much larger than the width of any optical
component of the chain, ampli® er, mirror, and so on. Consequently it is consistent
to study the maxima in some plane and to neglect z-propagation e� ects. On the
other hand, in the focal plane the correlation radius q c is of the order of a few
microns, and the corresponding Rayleigh distance zc is then of the order of some
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Figure 5. Comparison of the theoretical probability densities of the maximal intensities
of two-dimensional steady state in time patterns. The solid line represents a linearly
polarized speckle pattern and the dashed line stands for the overlap of two
orthogonally polarized and statistically independent speckle patterns with the same
statistics and Gaussian correlation function. We have adopted the values R0 = 20cm
and q c = 3mm.



tens of microns. In the indirect drive scheme, for which the French Laser
MegaJoule [15] and the US National Ignition Facility [16] are designed, the
pulse propagates in a hohlraum from the window to the inner gold wall through an
underdense plasma. zc is consequently much smaller than the typical size of the
hohlraum (a few hundreds of microns), so a full four-dimensional model xyzt has
to be taken into account. Nevertheless the choice of the propagation model in z is
di� cult, because a lot of phenomena are expected to play some role, especially
stimulated Brillouin and Raman scattering. In this study we shall consider a very
simple free propagation model and assume that the equation which governs the
propagation of ® eld A is linear:

i
¶ A
¶ z

+
1

2k0
rA = 0. (23)

This model is surely valid while the plasma density ¯ uctuations can be neglected.
The ® eld A(x, y, z, t) then has Gaussian statistics with zero mean and a generalized
correlation function (GCF):

CR,T ,Z( q , ¿, z ) = h A(r1, t1, z1)A (r2, t2, z2) i , (24)
with R = (r1 + r2)/ 2, T = (t1 + t2)/ 2, Z = (z1 + z2)/2 q = r1 ­ r2, ¿ = t1 ­ t2, and
z = z1 ­ z2. We also assume that the z length of the domain is smaller than the
Rayleigh distance of the envelope of the ® eld (which is roughly k0q cR0), so that we
can neglect the Z dependence of the GCF. This hypothesis is ful® lled in the
experimental conditions corresponding to ICF con® gurations. For z = 0, the GCF
coincides with the correlation function (2). From equation (23) we can compute the
partial derivatives of the generalized correlation function:

¶ C
¶ z =

i
2k0

q C

and

¶ 2C
¶ z 2 = ­ 1

4k2
0

q q C.

We can use the same theory as in the previous sections to derive the statistical
properties of the hot spots of the ® eld A. Nevertheless we must take care to satisfy
the technical conditions under which we can apply the mathematical results for the
maxima of the real and imaginary parts of the ® eld. This causes one to regard
instead of A the ® eld ~A(x, y, z, t) := exp (­ ia z)A(x, y, z, t), where a := ~q f / (4zc).
This insures in particular that all ® rst derivatives of the GCF of ~A vanish at 0.
Obviously this does not a� ect the statistical properties of the maximum of the
intensity distribution. The only di� erence is that the squared root of the deter-
minant of the 4 4 matrix of the second derivatives of the normalized GCF
of ~A is:

~DV = DV z̧ , z̧ = 1
4 [ ~q ~q f ­ ( ~q f )2]1/ 2.

If f has Gaussian shape, then we have z̧ = 1. We can now state the result.
Denoting the disk with centre at 0 and radius R0 by D(0, R0), the maximal
intensity of the ® eld A in the domain D(0, R0) [0, T0] [0, z0] is:
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Imax = I0
~
C V ­ ln Z , (25)

~
C V = ln

~DV V 0z0

p 3/ 2V czc
+ 3

2 ln2

~DV V 0z0

p 3/2V czc
, (26)

where Z is a random variable whose statistical distribution is described by
equation (8), V 0 = p R2

0T0 and V c = p q 2
c¿c.

In the same way, for the case of a time-independent speckle pattern (i.e.
monochromatic or ¿c = 1 ), the maximal intensity of ® eld A in the domain
D(0, R0) [0, z0] is:

Imax = I0
~
C S ­ ln Z , (27)

~
C S = ln

~DSS0z0

p Sczc
+ ln2

~DSS0z0

p Sczc
, (28)

where ~DS = DS z̧ , S0 = p R2
0 and Sc = p q 2

c. By comparing equation (7) with
equation (25) on the one hand and equation (18) with equation (27) on the other,
one can see that the maximal intensity increases with the ratio z0/ zc roughly as
ln(z0/ zc). This was expected, since the speckle patterns in di� erent planes
separated by zc are almost independent.

6. Co n c lu s io n

In this paper we have described the statistical distribution of the maximal
intensity of a speckle pattern in terms of its macroscopic and microscopic
characteristic parameters. Inspection of formulae (5), (19) and (12) yields that
the only parameter related to the distribution of the ® eld is the determinant of the
matrix of the second order partial derivatives of the autocorrelation function
evaluated at 0. It appears that the mean value of the maximal intensity h Imax i
varies logarithmically as a function of the ratio of the pulse volume over the mean
hot spot volume. However the variance of the maximal intensity is rather import-
ant, and especially the right tail of the histogram which corresponds to very high
values of the intensity. This indicates that it is probable that one of many
experiments will give rise to an anomalous high peak which will exceed the
expected value h Imax i .

Another important parameter when one takes into account that the response
time of the medium is non-zero is the ratio of the response time over the coherence
time of the incoherent pulse. The response time plays in our framework the role of
an integration time with respect to which the intensity distribution is integrated.
When the ratio is smaller than one, then the results demonstrated for the
instantaneous intensity hold true. However if this ratio becomes of order 1 or
even larger, then the maximal value of the integrated intensity gets smaller and
smaller.

The roles of time incoherence and space incoherence are therefore not sym-
metric. Space incoherence enhances the probability to observe a very high peak.
But if time incoherence also increases the maximal instantaneous intensity of the
pulse, it decreases the maximal ¯ uence. Furthermore, if the coherence time is so
short that it reaches values of the order of the response time of the medium, then
the maximal value of the e� ective intensity distribution (that is to say the intensity
distribution integrated over the response time) is drastically reduced.
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To sum up, if one deals with a broadband pulse so that the coherence time
(which is proportional to the inverse of the spectrum bandwidth) is shorter than
the response time of the medium, then any smoothing technique based on time
incoherence (ISI, SSD, or SOF) can succeed in reducing the maximum of the
e� ective intensity distribution. But if the pulse is bandwidth limited below this
value, then polarization smoothing is the only way to reduce the maximal value of
the instantaneous intensity distribution.
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A pp e n d ix A

Maxima of real-valued ® elds with Gaussian statistics
This appendix deals with the statistics of the maxima of the real part of a time±

space incoherent pulse. In the following we denote by Mu the volume density of
local maxima of AR above the level u I1/ 2

0 , and pV
u stands for the probability that

the maximum of A2
R over a domain V is larger than u2. The pulse domain V pulse is

a time± space cylinder with spatial radius R0, time duration T0, and volume
V 0 = p R2

0T0. Then Adler shows that [17, Theorem 6-3-1]:

h Mu i =
DV u2

2p V cI0
exp ­ u2

I0
1 + O

I1/2
0

u
. (A1)

Since the statistical distribution of AR is symmetric with respect to 0, the mean
volume density of local maxima of A2

R above level u2 is simply 2h Mu i . We develop
in the following an asymptotic analysis with respect to the large parameter V 0/ V c.
Consider u such that 2h Mu i V 0 is of order 1.

Divide the pulse domain V pulse into N 1 elementary domains V i ,
i = 1, . . . , N, of identical volume (see ® gure 6). N is chosen so that
V c V 0/ N V 0. Then remove from each V i a boundary of thickness q c in the
spatial direction and ¿c in the time direction. The ® elds over the resulting domains
Ui are statistically independent. Besides, for each i the volume of the boundary
V i n Ui is of order:
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Vol V i n Ui( ) ’ V 1/ 3
c (V 0/ N)2/3 . (A2)

Since V c V 0/ N, this shows that we have Vol (Ui) ’ V 0/ N. Thus the mean
number h KUi

u i of local maxima above level u2 in each domain Ui is:

h KUi
u i =

2h Mu i V 0

N
up to terms of order 2h Mu i V 1/ 3

c (V 0/N)2/3 2h Mu i V 0/N. Since h KUi
u i is of order

N­ 1 1, this implies that the probability that a domain Ui contains a maximum
above level u2 is of order N­ 1, and the probability that a domain Ui contains more
than two maxima above level u2 is of order N­ 2 N­ 1. This yields that the mean
number h KUi

u i is equal to the probability pUi
u to a very good approximation.

Consequently, for every i = 1, . . . , N:

pUi
u =

2h Mu i V 0

N (A3)

up to terms of order N­ 2. Equation (A2) also establishes that the total volume of
the boundaries i V i n Ui represents a negligible contribution to the total pulse
domain:

Vol
N

i=1
V i n Ui ’ N1/3V 1/3

c (V 0)2/ 3 V 0.

Thus the probability that the maximum of A2
R over the domain V pulse is smaller

than u2 is:

1 ­ pV pulse
u ’ P 8 i, max

Ui
AR(r, t)2 u2 . (A4)

From the independence of the ® elds over the domains Ui and from equation (A3)
we get that:

1 ­ pV pulse
u =

N

i=1
(1 ­ pUi

u ) = 1 ­ 2h Mu i V 0

N

N

.

It is well know that (1 ­ a / N)N ’ exp (­ a ) for large N. From equation (A1) we
can then deduce that the maximal value IAR

max,1 := maxV pulse AR(r, t)2 obeys:

P (IAR
max,1 u2) = exp ­ DV V 0u2

p V cI0
exp ­ u2

I0
.

We can then express the maximal intensity IAR
max,1 in terms of a random variable Z1

with an exponential probability density p1(z) = exp (­ z) z 0:

IAR
max,1 = I0 C V ­ ln Z1( ), (A5)

where C V is given by (5). The representation (A4) can also be deduced from
Theorem 6-9-4 [17] whose proof relies on the same basic estimates as ours.
However this result by itself is insu� cient because the precise expression of the
statistical distribution of the maximal intensity of the ® eld A2

R + A2
I requires the

statistical distributions of the hottest spots IAR
max,1 IAR

max,n for n large enough.
Furthermore our arguments can be easily repeated to derive the statistical distri-
bution of the nth hottest spot IAR

max,n. Indeed the probability that IAR
max,n is smaller

1228 J. Garnier et al.



than u2 is equal to the probability that there is at most n ­ 1 domains Ui which
contain a maximum above level u2. As a consequence:

P (IAR
max,n u2) =

n­ 1

i=0
Ci

NpU1i
u (1 ­ pU1

u )N­ i.

Using the fact that Ci
N ’ Ni/ i! for N 1 and equation (A3) yields:

P IAR
max,n u2 =

n­ 1

i=0

(2h Mu i V 0)i

i!
exp (­ 2h Mu i V 0).

It is then straightforward to identify the statistical distribution of IAR
max,n as (4).

A pp e n d ix B

Ansatz
The above results rely on ansatz (6) which consists of assuming that the

maximal intensity of the scalar ® eld A is obtained at a point corresponding to a
strong maximum of AR (or AI) and a value of AI (or AR) which obeys the standard
Gaussian distribution. This ansatz can actually be justi® ed. We shall show that
points (r, t) where both AR and AI reach high values do not bring a noticeable
contribution to the maximal intensity of the total ® eld AR + iAI . Once again, this
result is based on the independence of the processes AR and AI . Indeed the real
Gaussian process AR can be expanded around a local maximum (r0, t0) as (13), so
that the volume of points (r, t) around a local maximum (r0, t0) at height I1 of j AR j 2

which are above the level (1 ­ d )I1 is:

vAR( d ) ’
4V cd

3/2

3DV

for d 1. Let us ® x I1, I2 I0. If I1 I1 and I2 I2, then the probability that
there exists a local maximum of AR between [I1, I1 + d I1) and a local maximum of
AI between [I2, I2 + d I2) inside the elementary domain Ui is:

q(I1)q(I2) d I1d I2, q(I) =
2V 0

N
dh MAR

I1/ 2 i

dI
.

Furthermore, if such an event happens, then the probability that the volume
around the local maximum of AR above level I1 intersects the volume around the
local maximum of AI above level I2 is:

pUi
I1,I2(I1, I2) =

vAR(1 ­ I1/ I1) + vAI (1 ­ I2/ I2)
V 0/N

.

Combining these results implies that the probability that some point (r, t) 2 Ui

both satis® es AR(r, t)2 I1 and AI(r, t)2 I2 is:

pUi
I1,I2 =

1

I1

dI1

1

I2

dI2q(I1)q(I2)pUi
I1,I2(I1, I2).

Since the ® elds in the elementary domains are independent, the probability that
some point (r, t) 2 V pulse both satis® es AR(r, t)2 I1 and AI(r, t)2 I2 can be
expressed as:
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pV pulse
I1,I2 = 1 ­

N

i=1
(1 ­ pUi

I1,I2).

Combining with equation (A1) we compute this expression:

pV pulse
I1,I2 = 1 ­ exp ­ DV

p 3/ 2
V 0

V c

I
I0

1/2

exp ­ I
I0

x
I1

I2
,

where I = I1 + I2 and x ( a ) = ( a 3/ 4 + a ­ 3/4)/ ( a 1/2 + a ­ 1/ 2)1/ 2. Assuming the total
intensity I is ® xed, one can check that the above probability increases as either
a ! 0 or a ! 1 . These limit cases correspond to the situations when the maximal
value of j A j 2 = A2

R + A2
I is reached in a point (r, t) corresponding to a strong

maximum of either A2
R or A2

I respectively, and a relatively low value of either A2
I or

A2
R respectively. This statement justi® es the adopted ansatz and consequently

equation (6). In fact it is due to the fact that the superposition of high values of
both AR and AI does not contribute to the generation of a very high maximum of
the total ® eld A = AR + iAI, because the probability of such an overlap is too
small.

A pp e n d ix C

Routine to simulate a complex-valued ® eld with Gaussian statistics
We aim at simulating a stationary complex-valued zero-mean two-dimensional

Gaussian ® eld A over a square [0, D] [0, D]. The correlation function of the ® eld
is denoted by C. First note that the Fourier transform of C is non-negative real
valued. Indeed the Fourier transform of the correlation function of a stationary
Gaussian ® eld is proportional to its power spectral density which is obviously non-
negative [18]. The physical computation domain is D = Nh square with elemen-
tary step h. Consider a N N array Xj,k of independent, complex valued, zero-
mean and Gaussian random variables with h j Xj,k j 2 i = 1. This array is a discrete
Gaussian white noise, that is ® ltered in three steps. First apply the discrete Fourier
transform to the array:

^
Xu,v =

N­ 1

j,k=0
Xj,k exp (i2p ( ju + kv)/ N).

Then multiply it by
^

C
1/2

, where
^

C is the discrete Fourier transform of the
correlation function C:

^
Cu,v =

N­ 1

j,k=0
C( jh, kh) exp (i2p ( ju + kv)/ N), (A6)

~Xu,v =
^

Xu,v
^

C1/ 2
u,v . (A7)

Finally apply the discrete inverse Fourier transform:

Xj,k =
1

N2

N­ 1

u,v=0

~Xu,v exp (­ i2p ( ju + kv)/ N).

The resulting N N array X is precisely a realization of a Gaussian ® eld with
correlation function C:
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Xj,k = A( jh, kh), j, k 2 f 0, . . . , N ­ 1g .

Indeed the three steps of the ® lter are linear operations which do not alter the
Gaussian property of the initial ® eld X. Since a Gaussian ® eld is fully character-
ized by its mean and covariance, the proof will be complete if we establish that X
possesses the desired correlation function. If we denote by C the inverse Fourier
transform of

^
C

1/ 2
, then X is simply the convoluted array X w C ² :

Xj,k =
1

N2

N­ 1

j 0 ,k 0 =0
Xd j­ j 0 e , d k­ k 0 e Cj 0 ,k 0 .

Since the Xi,j are independent from each other and zero-mean, straightforward
calculations yield:

h Xi1, j1Xi2, j2 i = (C w C ) d i1­ i2 e , d j1­ j2 e .

In this expression the exponent holds for complex conjugation while the
sign w holds for the discrete convolution. The convoluted array C w C is
the inverse Fourier transform of the multiplied array

^
C

1/2 ^
C

1/2
= j

^
Cj . Since

^
C is non-negative real-valued, we have j

^
Cj =

^
C so that the array C w C is

exactly C.
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