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Abstract

We investigate quantile estimation by multi–element generalized Polynomial Chaos (gPC) metamodel where
the exact numerical model is approximated by complementary metamodels in overlapping domains that
mimic the model’s exact response. The gPC metamodel is constructed by the non–intrusive stochastic
spectral projection approach and function evaluation on the gPC metamodel can be considered as essentially
free. Thus, large number of Monte Carlo samples from the metamodel can be used to estimate ↵–quantile,
for moderate values of ↵. As the gPC metamodel is an expansion about the means of the inputs, its
accuracy may worsen away from these mean values where the extreme events may occur. By increasing the
approximation accuracy of the metamodel, we may eventually improve accuracy of quantile estimation but
it is very expensive. A multi–element approach is therefore proposed by combining a global metamodel in
the standard normal space with supplementary local metamodels constructed in a bounded domain about
the design points corresponding to the extreme events. To improve the accuracy and to minimize the
sampling cost, sparse–tensor and anisotropic–tensor quadrature are tested in addition to the full–tensor
Gauss quadrature in the construction of local metamodels; di↵erent bounds of the gPC expansion are also
examined. The global and local metamodels are combined in the multi–element gPC (MEgPC) approach
and it is shown that MEgPC can be more accurate than Monte Carlo or importance sampling methods for
high quantile estimations for input dimensions roughly below N = 8, a limit that is very much case– and
↵–dependent.

Key words: quantile estimation, generalized Polynomial Chaos, metamodels, multi–element refinement,
multiple design points, numerical quadrature, Sparse–tensor quadrature, anisotropic quadrature

1. Introduction

The estimation of high quantile is a challenging numerical topic and has received a considerable amount
of attention in many research disciplines [1]. Let us consider a numerical model of a complex system y = f(x)
where x is a N–tuple vector and f : RN ! R is a deterministic numerical model. The numerical model is
expensive in terms of the computation time required for a single run. We are interested in the case where
its input is a random vector X = (X

1

, ...,X
N

); in this context, the output Y = f(X) is a random scalar.
The ↵–quantile of Y is the level y

↵

such that the probability that Y takes a value lower than y
↵

is ↵:

y
↵

= inf{y;F (y) � ↵}, (1)

where F (y) is the cumulative distribution function (cdf) of Y , i.e. F (y) = P(Y  y). To accurately estimate
high quantiles with the Monte Carlo (MC) method, a large number of samples is required. When the
numerical models are computationally expensive to evaluate, the large MC samples required to accurately
estimate high quantiles may render this approach impractical.

Di↵erent approaches have been developed to improve the accuracy of ↵–quantile estimation when the
number of evaluations on the complete model is limited. As we assume no prior knowledge of the function in
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question, the estimation of high quantiles usually requires the following steps. First, y
↵

is roughly estimated.
Second, design points, which are the most likely inputs ⇠

↵

satisfying f(⇠
↵

) = y
↵

, are sought. Third, sampling
refinements are performed near the design points. High computational cost arises especially in the first step
due to the accuracy required in the preliminary quantile estimation and in the second step due to the
multiple function evaluations to estimate values, gradients, and Hessians of the complete model. Importance
sampling (IS) is a refined Monte Carlo sampling strategy that can be used in the third step to concentrate MC
inputs near ⇠

↵

; we will compare this strategy with our metamodel-based approach. Note also that, within
the context of structural reliability, First-Order Reliability Method (FORM) and Second-Order Reliability
Method (SORM) have been developed to estimate quantiles but their errors are di�cult to estimate [2, 3, 4].

In the current study, we investigate quantile estimation by multi–element generalized Polynomial Chaos
(gPC) metamodels. The gPC has recently been applied to uncertainty quantification studies [5, 6, 7]. By
approximating the complete model with an accurate spectral metamodel, di↵erent statistical measures such
as mean, variance and Sobol’ sensitivity indices can be readily computed [7]. Large number of MC samples
can be rapidly evaluated on the metamodel to estimate the quantile of the model solution. In addition, the
metamodel can be used in the design point search algorithm to estimate the values of the inputs corresponding
to the solution quantiles and the metamodel approach is valid even for complex nonlinear complete models
with multiple design points. In comparison to the multiple design point algorithm proposed in [8], the current
approach based on gPC metamodels do not require numerical modifications to f(x) in order to locate all
design points.

As the gPC metamodels are spectral expansions about the means of the inputs, their accuracy may worsen
away from these mean values where the extreme events may occur. By increasing the global approximation
level, we may eventually increase the accuracy of the global metamodel away from the mean but it can be very
expensive. Thus, a multi–element approach is used by combining the global metamodel with supplementary
local metamodels centered at the design points. Similar multi–element approaches have been used previously
although the local refinement goal was to reduce the contribution to the global variance from each local
element [9, 10, 11, 12].

The current approach is similar to the parametric study of the random inputs in [13, 14] with the
exception that the complete models are replaced by their metamodels. Indeed metamodels have been used
previously to improve the cost of quantile estimation. Bucher & Bourgund have used metamodels constructed
from polynomial expansions without cross terms [15] and polynomial chaos metamodels were used in [16].
Despite the availability of the metamodel, these studies used conventional gradient descent algorithms to
determine the design points, which increases the sampling costs significantly. Moreover, polynomials with
infinite supports are used to construct localized refinements around the design points [16]; the accuracy of
the expansion can be improved if appropriate polynomials with finite supports are used.

The methodology used in the current study is outlined in Fig. 1. Quantile estimation methods are
described in Sec. 2. The construction of the gPC metamodel is detailed in Sec. 3. Once the preliminary
estimation of the ↵–quantile of Y is obtained from the global gPC metamodel, the Lagrange multiplier
method is used to search for the design points and the details applied to the metamodels of this approach
are outlined in Sec. 4. Sec. 5 illustrates how the local gPC metamodels in the multi–element approach are
combined with the global metamodel to estimate the ↵–quantile. Finally, the proposed methods are applied
to some examples in Sec. 6.

2. Quantile Estimation

The current state of art for quantile estimation in the context of failure probability is documented in
details in [17]. Key methods and their application to quantile estimation are presented in the following
section.
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1. Define Y= f (X ) and target quantile �

2. Construct f r(x)with PC, cf. Sec. 3.1 Increment collocation level

Increment sampling cost

3. MC on f r(x) to estimate �–quantile Ŷ�,r, cf. Sec. 3.3

4. Find min�x� s.t. f r(x) = Ŷ�,r, cf. Sec. 4.2

Cost too large or �̂�,r converged? no

yes, pass on f r(x) and �̂�,r Design point search

5. One–dimensional refinements about �̂�,r, cf. Sec. 5.1.2

6. Construct local f �r (x) at each �̂�,r, cf. Sec. 5.1 Increment collocation level

Increment sampling cost

7. MC on f ME(x) to estimate Ŷ�,ME, cf. Sec. 5.2

Cost too large or Ŷ�,ME converged? no

yes Local refinement

Estimations of �̂�,r and Ŷ�,ME

Figure 1: The strategy used to estimation the �–quantile of the solution output, Y.
Figure 1: The methodology used to estimation the ↵–quantile of the solution output, Y .

2.1. Standard Monte Carlo method
The cdf F (y) of Y is the function y ! F (y) = P(f(X) 2 (�1, y]) whose integral form is

F (y) = E[1
(�1,y]

(f(X))] =
Z

RN

1

(�1,y]

(f(x))⇢(x)dx, (2)

where ⇢(x) is the probability density function (pdf) of X. Monte Carlo (MC) method and its variants are
the traditional approaches to approximate this integral [18]. The cdf can be estimated from Z MC samples
as

F̂ (y) =
1
Z

ZX

i=1

1

(�1,y]

(Y
i

), (3)

where Y
i

= f(⇣
i

) and ⇣
i

are independently generated according to the input pdf ⇢(x) and ˆ denotes that
the solution is an empirical estimate. The empirical ↵–quantile can be estimated from Ŷ

↵

= inf{y; F̂ (y) � ↵}
which gives

Ŷ
↵

= Y
(d↵Ze), (4)
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where {Y
(i)

}Z

i=1

is the ordered set of the Z MC samples {Y
i

}Z

i=1

such that Y
(1)

 Y
(2)

 ...  Y
(Z)

. The
empirical quantile Ŷ

↵

converges to y
↵

as Z !1 and it is asymptotically normal provided F is continuously
di↵erentiable at y

↵

and F 0(y
↵

) > 0 [19]. When Z is fixed a non-asymptotic confidence interval for the
↵–quantile y

↵

can be estimated by the Wilks estimation technique [20]. The probability of y
↵

falling within
the [↵+ ✏

1

,↵+ ✏
2

]–empirical quantile of {Y
i

}Z

i=1

is larger than a prescribed level �, i.e.

P(y
↵

2 [Y
(dZ(↵+✏1)e), Y(dZ(↵+✏2)e)]) � �, (5a)

provided that we take

✏
1

= max{✏ : C
↵

(Z, ✏)  1� �
2

} and ✏
2

= min{✏ : C
↵

(Z, ✏) � 1� 1� �
2

}, (5b)

where

C
↵

(Z, ✏) =
bZ(1�↵�✏)cX

j=0

✓
Z

j

◆
(1� ↵)j↵Z�j , (5c)

for ✏
1

< 0 < ✏
2

. For high quantiles, i.e. ↵ ⇠ 1 , Z needs to be large to reduce the length of the confidence
interval [21, 19]; therefore, the MC approach may not be practical in cases where the function f(x) is
computationally expensive to evaluate.

2.2. Monte Carlo with Very Large Samples
The size of the MC sample required to obtain high quantiles with reasonable confidence interval can be

large and the size of the solution vector (Y
j

)Z

j=1

may exceed the memory limit of the computer. We propose a
method that circumvents the numerical di�culty in sorting and storing a very large vector. Let Z⇤ be the size
of the largest allowable vector. If Y = (Y

j

)Z

⇤

j=1

are Z⇤ MC samples, only the subset Ỹ = {Y : Y
j

� Ŷ
↵

�}
contributes to the computation of Ŷ

↵

, where Ŷ
↵

� is chosen such that Ŷ
↵

� < y
↵

. An appropriate and
conservative choice of Ŷ

↵

� is the quantile at a lower ↵, e.g. Ŷ
↵

� = inf{y; F̂ (y) � ↵�} where ↵� < ↵.
We repeat MC simulations n times where n = max{n :

P
n

i=1

|Ỹ i| < Z⇤}. Here Y i is the i–th subset
of size Z⇤, Ỹ i is defined as above and |Ỹ i| is the size of Ỹ i. The cumulative subset from the n sets of
simulations, Ỹ = [n

i=1

Ỹ i, allows us to compute the quantile from nZ⇤ MC outputs without having to store
and sort the entire set. In addition, Ŷ

↵

� is determined from the first set, i.e.

Ŷ
↵

� = Y 1

(d↵�Z

⇤e),

where Y 1

(d.e) is the first ordered subset of the MC results. We need to make sure that ↵� is su�ciently close
to ↵ to minimize |Ỹ i| but su�ciently smaller than ↵ to ensure that Ŷ

↵

� < y
↵

.
Accordingly, the empirical estimate of F̂ in Eq. (3) for y > y

↵

� is rewritten as

F̂ (y) = 1� 1
nZ⇤

| ˜Y |X

k=1

1

(y,+1)

(Ỹ
k

), (6)

where Ỹ = (Ỹ
k

)|
˜

Y |
k=1

. The empirical estimate of the ↵-quantile y
↵

is thus

Ŷ
↵

= Ỹ
(d| ˜Y |�nZ

⇤
(1�↵)e), (7)

where (Ỹ
(k)

)|
˜

Y |
k=1

is the ordered set of the samples Ỹ .

2.3. Importance Sampling
The convergence of the MC method can be improved by reducing the variance in the MC approximation

error. Importance sampling is a variance reduction technique that is particularly convenient for quantile
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estimation. The idea is that, instead of estimating integral (2) with a sample taken with the pdf ⇢(x),
importance sampling uses an importance pdf, ⇢̄(x), that favors a certain region of interest of the input
parameters (which is the one that contributes to integral (2) in our case). The method is based on the
representation of the cdf F (y) as an expectation with respect to a random variable X̄ with the pdf ⇢̄(x):

F (y) = E[1
(�1,y]

(f(X))] =
Z

1

(�1,y]

(f(x))
⇢(x)
⇢̄(x)

⇢̄(x)dx = Ē
h
1

(�1,y]

(f(X̄))
⇢(X̄)
⇢̄(X̄)

i
, (8)

where Ē is the expectation with respect to the distribution of X̄ with the pdf ⇢̄(x). A natural estimator of
the cdf F (y) is in this context

F̂ (y) =
1
Z

ZX

i=1

1

(�1,y]

(f(⇣̄
i

))
⇢(⇣̄

i

)
⇢̄(⇣̄

i

)
, (9)

where ⇣̄
i

are generated according to the pdf ⇢̄(x). In fact, as shown in [22] it is better (in the point of view
of the asymptotic variance of the quantile estimator) to introduce an alternative estimator of the cdf of Y :

F̂ (y) = 1� 1
Z

ZX

i=1

1

(y,+1)

(f(⇣̄
i

))
⇢(⇣̄

i

)
⇢̄(⇣̄

i

)
, (10)

which follows from the representation

F (y) = 1� E[1
(y,1)

(f(X))] = 1� Ē
h
1

(y,1)

(f(X̄))
⇢(X̄)
⇢̄(X̄)

i
,

and to estimate the ↵-quantile by the standard formula Ŷ
↵

= inf{y; F̂ (y) � ↵}. The estimator Ŷ
↵

converges
to y

↵

as Z !1 and it is asymptotically normal whatever the importance pdf ⇢̄ (provided the support of ⇢ is
included in the support of ⇢̄ and E[⇢2(X)/⇢̄2(X)] < 1). However the convergence rate and the asymptotic
variance of the estimator strongly depend on the choice of the importance pdf and it is possible to reduce
the variance dramatically by a proper choice (see [23, Section V.1] for a general introduction to importance
sampling and [22] for a specific discussion for quantile estimation). For the case in which X is a standard
Gaussian vector, a rather e�cient choice is to take ⇢̄(x) = ⇢(x+⇠

↵

) where ⇠
↵

is the design point associated
with the ↵–quantile. Of course the design point is not known so one has to to take ⇢̄(x) = ⇢(x+ ⇠̂

↵

) where
⇠̂

↵

is an estimator of the design point (such estimators are introduced in Section 4). If there are several
design points, then a mixture of shifted Gaussian pdfs can be used.

In the context of the Monte Carlo sampling with a very large number of samples outlined in the previous
section, importance sampling can also be used as follows. The first set Y 0 of size Z⇤ is sampled by a standard
Monte Carlo technique. The estimator Ŷ

↵

� of the ↵�–quantile is defined as in (6): Ŷ
↵

� = Y 0

(d↵�Z

⇤e).
Additionally one computes an estimator Ŷ

↵

of the ↵–quantile and an estimator ⇠̂
↵

of the associated design
point. Next we carry out n sets of size Z⇤ of importance sampling simulations Y 1, . . . ,Y n with the pdf
⇢̄(x) = ⇢(x + ⇠̂

↵

). Here n = max{n :
P

n

i=1

|Ỹ i| < Z⇤} and Ỹ i = {Y
j

2 Y i : Y
j

� Ŷ
↵

�}. We introduce the
set Ỹ = [n

i=1

Ỹ i and we denote by Ỹ
k

its elements Ỹ = {Ỹ
k

, k = 1...|Ỹ |}. Here we need also to record the
corresponding weights w̃

k

= ⇢(⇣̃
k

)/⇢̄(⇣̃
k

) for k = 1...|Ỹ |. The cdf estimator is

F̂ (y) = 1� 1
nZ⇤

| ˜Y |X

k=1

1

(y,+1)

(Ỹ
k

)w̃
k

.

The final ↵–quantile estimator is again Ŷ
↵

= inf{y; F̂ (y) � ↵}.
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3. Generalized Polynomial Chaos

The numerical model from which quantiles are evaluated can often be complex and computationally
expensive. The computation cost can be significantly reduced by the use of metamodels. Metamodels can
be either a reduced numerical code of the complete model or a response surface calibrated to mimic the
complete model for typical realizations of the input parameters. The latter is the focus of this Section. In
the context of quantile estimation, supplementary metamodels are constructed around exceptional but most
important realizations of the input parameters which determine the values of the quantiles. The metamodel
is constructed with the stochastic spectral projection which involves multi-dimensional numerical integration
of the complete model solution over the input domain. Its construction is outlined before post–processing
methods are described.

3.1. Stochastic Spectral Projection
We assume that the components of the input X are independent; this allows us to build our approximation

functional spaces with tensor-product rules and write the joint pdf as a product of the marginal pdfs, i.e.
⇢(x) =

Q
N

j=1

⇢
j

(x
j

). We can then consider the following multivariate orthonormal polynomials that are built
as tensor products of univariate orthonormal polynomials along each random dimension with respect to the
probability measure ⇢(x)dx: �

↵

(x) = �
↵1(x1

)⌦ . . .⌦ �
↵N (x

N

). Here, ↵ = (↵
1

, . . . ,↵
N

) 2 NN represents a
set of multi-indices and we define the length of ↵ with the following norm: |↵| ⌘ ↵

1

+ · · ·+↵
N

. We therefore
have E[�

↵

(X)�
�

(X)] = E[�2

↵

(X)]�
↵�

where � is the Kronecker symbol.
The goal is to construct a metamodel of f(x) as a polynomial expansion, i.e. f

r

(x) =
P

↵2NN f
↵

�
↵

(x)
where the subscript “r” denotes that the expansion is a reduced model. The deterministic coe�cients f

↵

are computed from:

f
↵

=
E[f(X)�

↵

(X)]
E[�2

↵

(X)]
= E[f(X)�

↵

(X)], for ↵ 2 NN . (11)

The expectation used above is an inner product in the random space where

E[f(X)�
↵

(X)] =
Z

RN

f(x)�
↵

(x)⇢(x)dx. (12)

When the method used to approximate the polynomial expansion has a theoretical polynomial accuracy
of P , the conventional stochastic spectral projection includes all polynomials whose length of the multi-
indices is smaller or equal to P , i.e. {�

↵

/ |↵|  P}. We call such an expansion the canonical P expansion.
If the computation of f

↵

has a polynomial accuracy of P , i.e. P
n

accurate in each random dimension, we can
extend the expansion to the �

↵

’s whose degree in each dimension is not greater than P
n

, i.e. {�
↵

/ ↵  P }.
We call such an expansion the maximum P expansion. This is appropriate when we want to include all
gPC terms satisfying an isotropic P–accuracy or when the computation has an anisotropic P –accuracy. The
number of additional terms can be significant for large N and P .

In practice, the order P is chosen based on accuracy and cost requirements. The multi-index ↵ can be
renumbered with a unique index and the cardinality of the corresponding set is given by M =

�
N+P

P

�
in the

canonical approach. The gPC representation with (M + 1) terms reads:

f
r

(x) =
MX

m=0

f
m

�
m

(x). (13)

When the maximum P expansion is used, m is more generally taken to be an index pointing to all the
polynomials where ↵P . For a given random support, some classical polynomial’s weight functions are
similar to the pdfs of some random variables. This close correspondence allows an optimal polynomial basis
to be chosen to represent the selected random variables. The original Wiener polynomial chaos used the
Hermite polynomials as the expansion basis for the Gaussian random variables [24]. Such an expansion
forms a complete basis in Hilbert space determined by their corresponding support and converges to any L2
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function in the L2 sense when the number of terms approaches infinity according to the Cameron–Martin
theorem [25]. The expansion was generalized by [26] to represent non–Gaussian random fields by the use of
polynomials from the Wiener–Askey scheme [27]. For example, the Legendre polynomials’ weighting function
is similar to the pdf of the uniform distribution.

In this study, we adopt the non–intrusive approach where we perform a Galerkin projection of the
stochastic solution directly onto each member of the orthogonal basis. It has the advantage not needing
modifications to the existing deterministic solver and the computation of Eq. (11) is achieved through
numerical quadrature. The construction of the quadrature scheme is outlined in the following section.

3.2. Numerical Quadratures
The multidimensional integral (12) is approximated as the weighted sum of function evaluations at

deterministic points in the support. The numerical solver is not modified and acts as a black box from which
the solutions are repeatedly sampled. The inner product in the multivariate integral (12) is approximated
as the following weighted sum

Z

RN

f(x)�
m

(x)⇢(x)dx ⇡
ZQX

k=1

w
k

f(z
k

)�
m

(z
k

), (14)

where f(x) is evaluated at Z
Q

quadrature points, z
k

, each with an associated weight, w
k

. The accuracy
of the quadrature approximation depends on the design of the quadrature points and weights. Three types
of quadrature are considered in this paper: the Gauss full–tensor quadrature, the Smolyak sparse–tensor
quadrature, and the anisotropic–tensor quadrature.

The N–dimensional full quadrature is constructed from full–tensor products of one–dimensional quadra-
tures, Q1

L

, as
QN

L

[f ] =
�Q1

L

⇥ · · ·⇥Q1

L

�
f, (15)

where L is the quadrature level or the number of quadrature points in each dimension. The multivariate
weights are the products of the corresponding one-dimensional weights and they are derived in detail in
[28]. The Gauss–Hermite and Gauss–Legendre quadratures are used for the global and the local metamodels
respectively. The number of quadrature points in full quadratures scales as LN where P = 2L � 1 is the
polynomial accuracy of the quadrature in each random dimension. The exponential growth in the quadrature
cost leads to the “curse of dimensionality” [29] and it makes the full quadratures appropriate only in low
dimensions.

For higher dimensions, the quadrature costs may be reduced by using the sparse–tensor quadrature
[30, 31]. The sparse quadrature is constructed by embedding successive tensor–product rules as

QN

L

[f ] =
X

|k|1N+L�1

�41

k1
⌦ · · ·⌦41

kD

�
f, (16)

where L is the quadrature level and 41

k

is the one–dimensional di↵erence grid between successive quadrature
formula, i.e. 41

k

[f ] = (Q1

k

�Q1

k�1

)f . For the bounded support in the local metamodel, the sparse quadrature
is constructed using the Clenshaw–Curtis Chebyshev rules. The quadrature abscissae are the extrema of the
Chebyshev polynomials [32] and the abscissae from increasing quadrature levels are nested, i.e. Q1

k�1

⇢ Q1

k

,
which significantly reduce the total number of quadrature points. For the global metamodel with infinite
support, generic 1D nested quadrature rules do not exist. However, the Kronrod–Patterson (KP) rule
provides an optimal way to choose m additional quadrature points that complements the existing n Gauss
quadrature points with an improve accuracy of P = 2m + n � 1, cf. [33, 34, 35]. Additional roots are
symmetric about the origin and are real only for extensions m = {1, 2, 6, 10, 16} or m = {1, 2, 8, 10, 20},
cf. [36]. The computation of the quadrature weights w

k

is described in details in [31]. In the construction
of the multivariate sparse quadrature rule, these 1D quadrature points are incrementally incorporated in
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the sparse–tensor product. Although quadrature cost is reduced, Nobile et al. [37] observe that the sparse
quadrature is optimal only when the integrand is isotropic.

If the function response is dominant in only one direction, an anisotropic quadrature could be used where
the numbers of quadrature points are direction–dependent. In this study, for the local metamodel around
the design point ⇠

↵

, we can use an anisotropic quadrature which has high quadrature levels in the direction
with the most significant change in function response and L = 2 in all other directions with linear or no
function variation. The product rule for the anisotropic quadrature is thus

QN

L

[f ] =
�Q1

k1
⇥ · · ·⇥Q1

kN

�
f, where k

1

= L and k
2

= · · · = k
N

= 2. (17)

Examples of the di↵erent quadrature schemes are shown in Fig. 2. Details of the quadrature construction
and the computation of w

k

can be found in [38].
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Figure 2: Di↵erent quadrature schemes used in this study are shown for the two–dimensional standard normal support and the
corresponding bounded finite local support constructed on the design point at (�2, 1). Full Gauss–Hermite quadrature with
quadrature level L = 5 are plotted with circles in (a) and (b). Sparse Hermite Kronrod–Patterson quadrature with L = 5 is
plotted with circles in (c). The gray crosses show the local quadratures in (a), (b) and (c) and they are full Gauss–Legendre,
anisotropic Gauss–Legendre and sparse Clenshaw–Curtis Chebyshev quadratures, respectively. They all have a quadrature level
L = 5. The displacement, rotation and scaling of the local quadratures are explained in Sec. 5.1.

3.3. Post Processing
Within the framework of the gPC expansion, the statistical moments are easily obtained. The mean and

variance are

E[f
r

(X)] = f
0

,

�2

f

= Var[f
r

(X)] =
MX

m=1

f2

m

E[�2

m

(X)] =
MX

m=1

f2

m

,

and higher moments can be similarly derived. A sensitivity analysis of the system can also be carried out to
identify which random dimensions are the most dominant onto the solution. This is achieved by calculating
the partial variances from the Sobol’ sensitivity indices associated with each random variable X

n

as follows
[39]

D
n

= Var [E [f
r

(X)|X
n

]] .

In the context of the gPC expansion, they can be computed as

D
n

=
X

m2In

f2

m

E[�2

m

(X)] =
X

m2In

f2

m

, (18)

8



where I
n

is the set of indices to the polynomials containing only x
n

. In practice, those indices are numerically
very easy to compute due to the hierarchical nature of the orthogonal polynomial basis and its tensor–like
form. Moreover, the response surfaces of f(x) can be easily constructed from Eq. (13) which allows one to
predict the system solution at arbitrary points in the support. We can compute an empirical estimator of
the cdf of f

r

(X) from

F̂
r

(y) =
1

Z
MC

ZMCX

k=1

1

(�1,y]

(Y
k,r

),

where Y
k,r

= f
r

(⇣
k

) and ⇣
k

are independent random variables generated according to the pdf ⇢(x). The
↵–quantile y

↵,r

of f
r

(X) can be approximated from the ordered set Y
(1),r

 Y
(2),r

 · · ·  Y
(k),r

Ŷ
↵,r

= Y
(d↵Ze),r, (19)

where a large number of MC samples can be used. However, the accuracy of the quantile will be poor for
very large values of ↵ in the sense that the ↵–quantile y

↵,r

of f
r

(X) can be significantly di↵erent from the
↵–quantile y

↵

of f(X).

4. Design Point Search

In the parameter space, the feasibility surface of the complete model is the surface {x 2 RN , f(x)�y
↵

=
0}. From now on, we assume the components of the random input vector are independent and identically
distributed random variables with Gaussian distribution, zero mean and unit variance. For dependent
random vectors not in the standard normal space, the Rosenblatt or Nataf bijective transformations can be
used to transform them into the desired standard normal space [40, 41]. For independent random vectors not
in the standard normal space, the inverse cumulative distribution function method, cf. [42], can be applied
to each input random variable:

x̃
i

= ��1 � F
Xi(xi

), (20)

where F
Xi is the cdf of the random variable X

i

and � is the cdf of a standard Gaussian distribution. The
design points, ⇠

↵i
, are the points on the feasibility surface {x 2 RN , f(x) � y

↵

= 0} that are the closest
to the origin. The subscript i is used to index multiple design points; in the rest of the paper i is omitted
if only one design point is present or considered. The design points are found by minimizing an objective
function subject to the feasibility constraint. Thus, defining the limit state function g(x) and the objective
function r(x) as

g(x) = f(x)� y
↵

, (21)

r(x) =
1
2
xT x, (22)

the design points are solutions to the following minimum constraint problem

min r(x) s.t. g(x) = 0. (23)

The design points are the optimal center points for the construction of the response surface in reliability
analysis [43, 44] and the corresponding search algorithms are reviewed extensively in [4, 45]. In the following
section, the gradient projection method, applied to the complete model, and the Lagrange multiplier method,
applied to the gPC metamodel, are introduced.

4.1. Gradient Projection Method
The gradient projection method (GPM) described in [45] is implemented in the current study. First,

the ↵–quantile is estimated from the complete model using Eq. (4) and the limit state function (21) is
approximated by

g(x) = f(x)� Ŷ
↵

. (24)
9



From an initial guess that lies not far from the feasibility surface {x 2 RN , g(x) = 0}, GPM generates
a series of points, each satisfying g(x) = 0, that gradually converge towards a minimum of r(x). At each
iteration, a new point is generated along the negative gradient of g(x) which is determined using the central
di↵erence scheme from the complete model. A Newton–type correction is used to project the new point back
onto the limit state surface. The iterations continue until the empirical design point, ⇠̂

↵

, converges.
In this study, the initial guess is taken as the input whose function solution value is the closest to Ŷ

↵

, i.e.

x
0

= argmin
x2{⇣1,...,⇣ZMC

}
kf(x)� Ŷ

↵

k, (25)

where ⇣
1

, ..., ⇣
ZMC

are the MC samples used to generate Ŷ
↵

in Eq. (4). In fact, as f(x) is not necessarily
convex, we need to repeat the design point search with su�ciently many initial guesses to ensure that all
global design points are located.

4.2. gPC Lagrange Multiplier Method
The gPC metamodel f

r

(x) is constructed as outlined in Sec. 3 (Eq. (13)). The value of y
↵

is then
estimated from the global gPC metamodel using Eq. (19) and the limit state function (21) is approximated
by

g
r

(x) = f
r

(x)� Ŷ
↵,r

. (26)

The solutions of the design points involving linear and higher–order gPC metamodel will be examined
separately in the following sections.

4.2.1. Linear Limit State
Let us consider the linear gPC metamodel f

r

(x) = f
0

+
P

N

m=1

f
m

x
m

for f(x) in RN . The corresponding
feasibility surface {x 2 RN , f

r

(x)�Ŷ
↵,r

= 0} is a hyperplane. The point x of this hyperplane that minimizes
kxk is the point whose normal vector, with respect to the hyperplane, goes through 0. The normal vector of
an arbitrary point is given by its gradient, i.e. n = rf

r

(x); for the first–order gPC metamodel, the normal
vector is n = (f

1

, f
2

, . . . , f
N

). The linear estimation of ⇠̂
↵,r

thus has the value ⇠̂
↵,r

= ln and l can be
determined by solving g

r

(⇠̂
↵,r

) = 0 which gives

f
0

� Ŷ
↵,r

+ l

NX

m=1

f2

m

= 0. (27)

Although its computation cost is not high, the linear gPC metamodel will fail to find the design points if
more than one is present.

4.2.2. High–Order Limit State
The accuracy of the ⇠̂

↵,r

can be improved by increasing the accuracy of the metamodel, i.e. the order of
gPC expansion. The Lagrange multiplier method (LMM) is an approach to find the maxima or minima of
an objective function subject to limit state functions and it is used to solve Eq. (23) involving high–order
gPC limit state functions g

r

(x). Using the multiplier �, we combine the limit state (26) and the objective
(22) to form the Lagrange function

⇤(x,�) = r(x) + �g
r

(x).
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If ⇠̂
↵,r

is a minimum of the original constraint problem, then it must also be a stationary point of the
Lagrange function, where gradients of ⇤(x,�) are 0, i.e.

x
n

+ �

MX

m=0

f
m

@�
m

(x)
@x

n

= 0, for n = 1, ..., N , (28)

MX

m=0

f
m

�
m

(x) = Ŷ
↵,r

. (29)

However, not all stationary points are solutions to the minimum constraint problem (23) and they need to
be verified a posteriori. When solved analytically, this algorithm is able to find all the stationary points of
the gPC metamodel, from which the local extrema could then be determined. The analytical solution of
second-order gPC limit state function with few random variables is feasible; however for multivariate and
higher-order limit state functions, a numerical solution is needed.

The Newton method is used to solve the linearized version of the Lagrange function recursively [46].
Given initial guesses x

0

and �
0

, successive increments in x and � are determined from

r⇤(x,�)T + H(x,�)�x +rg
r

(x)T �� = 0,

g
r

(x) +rg
r

(x)�x = 0,

where H(x,�) is the Hessian in x of ⇤(x,�), i.e. H(x,�) = I + �r2g
r

(x). The above equations can be
solved in the matrix form as


�x
��

�
=


H(x,�) rg

r

(x)T

rg
r

(x) 0

��1

 �r⇤(x,�)T

�g
r

(x)

�
.

Although calls to the metamodel can be considered as essentially cost free in comparison to evaluations of
the complete function, for metamodels with large N and P , the Newton method can still be time consuming
in practice. Therefore, we need to select the initial guesses well to minimize the number of computations.
Eq. (25) is also used to determine the initial guess with f

r

(x) and Ŷ
↵,r

used instead of f(x) and Ŷ
↵

in the
equation.

Two levels of convergence in gPC Lagrange multiplier design points need to be considered. First, the
iterative numerical search of ⇠̂

↵,r

needs to converge. This convergence criterion does not need to be very
strict because the additional accuracy gained from higher decimal places in ⇠̂

↵,r

will not necessarily translate
to significant improvement in the quantile estimation. Second, the values of ⇠̂

↵,r

from successive quadrature
level L and di↵erent gPC order P need to agree. Since the metamodels are polynomial approximations of the
complete function, there could be numerical critical points where f

r

(⇠̂
↵,r

) = Ŷ
↵,r

but f(⇠̂
↵,r

) is very di↵erent
from Ŷ

↵,r

. These numerical critical points can be easily identified with an additional function evaluation on
the complete model and they will not be recurring at all L and P tested. In addition, they are likely to be
further away from the origin of the standard normal space than the physical critical points as the physical
design points should have the smallest modulus.

4.3. Cost Comparison
The cost of the gPC LMM depends only on the number of quadrature points required to construct the

gPC metamodel since both Ŷ
↵,r

and ⇠̂
↵,r

are computed from the gPC metamodel. In GPM, the cost consists
of that of MC estimation of y

↵

and that of gradient projection search for ⇠
↵

. The number of MC sample,
Z

MC

, required to ensure that y
↵

lies within the confidence interval [Ŷ
↵+✏1 , Ŷ↵+✏2 ] with a probability � can

be determined from Eqs. (5) and by inspection of these equations, Z
MC

increases roughly by O(10) for each
decrease of O(10�1) in 1�↵ for fixed � and ✏. With Ŷ

↵

and initial guesses x
0

determined from Eq. (25), we
search the design point with the GPM whose estimated cost is n

l

(N + 1) where n
l

⇡ 5� 20 [47]. As GPM

11



can only find local design points near x
0

, several initial guesses may be required to ensure that all global
design points are located. Therefore, the total cost is

Z
total

⇠ Z
MC

+ mn
l

(N + 1). (30)

where m is the number of initial guesses.
Using these parameters, the design point search cost for di↵erent methods at di↵erent dimensions are

shown for ↵ = 99% and 99.9% in Fig. 3. The cost for gPC LMM with full and sparse quadratic metamodels
are shown with squared and circled lines. GPM with � = 50% (dashed) and � = 90% (dashed–dotted) for
✏
1,2

= ±(1 � ↵)/2 are shown with lower and upper bounds of n
l

= 5 and n
l

= 20 for one initial guess, i.e.
m = 1. Taking the lower cost bound (n

l

= 5 and � = 50%), the full quadratic metamodel is as costly as GPM
between N = 5 and 7. For sparse quadrature metamodels, this limit is higher. This N–limit increases with
increasing ↵, � and n

l

. Although the range of applicable N is very much problem-dependent, a conservative
estimate would place the limit of e↵ective–N of gPC LMM at about N = 7.
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Figure 3: Cost comparison of di↵erent methods used to determine the design points for (a) ↵ = 99% and (b) ↵ = 99.9%. The
squared and circled lines are the cost of the gPC LMM with full and sparse quadratures with quadratic polynomial accuracy.
The dashed (resp. dashed–dotted) lines denote cost of the GPM with the complete model when we look for 50% (resp. 90%)
probability that the y↵ falls within [↵± ✏]–empirical quantile estimator where ✏ = (1� ↵)/2.

5. Local Refinement

Once the design points ⇠̂
↵i,r

are determined from the global metamodel, the function response in their
neighbourhoods can be refined. The following sections describe the two steps of this refinement procedure,
namely the definition of the local refinement domain D

�i for the i–th design point ⇠̂
↵i,r

and the construction
of the multi–element gPC metamodel.

5.1. Local Refinement Domain Definition
A local metamodel is constructed on a N–dimensional hypercube enclosing each design point. The

location, orientation, and size of the hypercube a↵ect the accuracy of the local metamodel. The definition of
the local refinement domain can be represented by a transformation operator x = T

i

(x⇤) where a point in
the uniform bounded support x⇤ 2 [�1, 1]N is mapped to the local domain x 2 D

�i . In addition to a shift by
⇠̂

↵i,r
, the transformation contains a scaling matrix S

i

and a rotation matrix R

i

, i.e. x = ⇠̂
↵i,r

+R

i

S

i

x⇤. The
subscript i denotes that the transformation is associated with the i–th design point but it will be omitted
in this section for the clarity in notation. The following sections outline the constructions of the scaling and
the rotation matrices.
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5.1.1. New Orthogonal Basis
Since ⇠̂

↵,r

is a design point, the feasibility surface f
r

(x)� Ŷ
↵,r

= 0 is orthogonal to the direction ⇠̂
0
↵,r

=
⇠̂

↵,r

/k⇠̂
↵,r

k at x = ⇠̂
↵,r

. Therefore the function f
r

(x) is slowly varying in the directions orthogonal to ⇠̂
0
↵,r

.
Motivated by this remark and by the possibility to use an anisotropic quadrature, we decide that instead of
having the hypercube aligned along the axes of the standard normal space, it should be aligned along ⇠̂

0
↵,r

and its transverse directions by applying the rotation matrix R to the original canonical basis {e
1

, ...,e
N

}.
R can be determined using Gram–Schmidt orthonormalization, i.e. (d

1

,d
2

, ...,d
N

) = R(e
1

, ...,e
N

) where
d

1

= ⇠̂
0
↵,r

and (d
n

)N

n=2

are its transverse directions.

5.1.2. One–Dimensional Refinements
After the new orthogonal basis is determined, one–dimensional gPC expansions of the function responses

are constructed about ⇠̂
↵,r

along d
1

= ⇠̂
0
↵,r

and its transverse directions. These metamodels are 1D expansions
of the form of Eq. (13) and are used to examine the function response in detail before the N–dimensional
local refinement is carried out. The quadrature costs of 1D refinement studies scale roughly as NL which is
low compared to the cost of full or sparse quadratures.

The 1D refinements can give additional information about the area near the design point in di↵erent
ways. First, they can determine if the design point is numerical, i.e. f

r

(⇠̂
↵,r

) = Ŷ
↵,r

but f(⇠̂
↵,r

) 6⇡ Ŷ
↵,r

.
Second, they can reveal if the function response is odd or even in each orthogonal direction. If one of
the parities is dominant in one particular direction, the local metamodel should only be carried out at
the corresponding quadrature levels. Third, the 1D refinements demonstrate if the function response is
anisotropic amongst the transverse directions. Partial variances are good quantitative measures of anisotropy.
The anisotropic quadrature described in Sec. 3.2 can be used to decrease the quadrature cost if the function
is indeed anisotropic. Last, the size of D

�

can also be adjusted according to the 1D refinement results. By
plotting the response of the 1D metamodel, one can readily observe if the lengths of D

�

in each orthogonal
direction includes su�cient zones of interest in the complete function. In addition, the response of the global
metamodel along the same orthogonal directions can be compared with the 1D refinement to identify zones
in need of local refinement. Detailed examples shown in Sec. 5.1.4 describe how the 1D refinement can be
used to determine the size of D

�

.

5.1.3. Refinement Zone Dimensions
The scaling matrix S is a diagonal matrix that determines the size of D

�

where S
nn

is the scaling factor
in the direction d

n

. First we define the length of D
�

in the direction d
1

= ⇠̂
0
↵,r

to be 2l
1

and place ⇠̂
↵,r

at the
mid–point along ⇠̂

0
↵,r

. As the purpose of the local refinement is to improve the metamodel accuracy away
from the input means, i.e. origin of the standard normal space, we need to ensure that D

�

is su�ciently far
from the origin so that l

1

< k⇠̂
↵,r

k. For the first iteration of the local metamodel, l
1

= 1 is used although
the one–dimensional refinements described in the previous section can be used to determine a better value
of l

1

when Ŷ
↵,r

become more accurate at later refinement stages.
Next the lengths (l

n

)N

n=2

of D
�

in its transverse directions (d
n

)N

n=2

are determined either according to
the 1D refinement results or as a function of l

1

. If the 1D refinement shows that the value of the function
near the design point is close to Ŷ

↵,r

, we define the transverse lengths using the following approach: We
consider the hyperplane that is perpendicular to ⇠̂

0
↵,r

and goes through ⇠̂
↵,r

� l
1

⇠̂
0
↵,r

and we ensure that the
pdfs of points on the edge of the hyperplane have at most the same value as the pdf of the design point,
i.e. that the distance to the edge of the hyperplane is at most k⇠̂

↵,r

k. From the centre of the hyperplane,
located at ⇠̂

↵,r

� l
1

⇠̂
0
↵,r

, the edges of the hyperplane are located at x
n

= ⇠̂
↵,r

� l
1

⇠̂
0
↵,r

+ l
n

d
n

. Therefore, l
n

are
determined by kx

n

k = k⇠̂
↵,r

k for n = 2 to N . If the transverse l
n

is too large, the number of inputs having
less probability than the inputs contributing to Ŷ

↵,r

increases. If l
n

is too small, inputs with su�ciently large
contribution to Ŷ

↵,r

are missed. If the 1D refinement shows that the value of the function near the design
point is not close to Ŷ

↵,r

, the approach in the following section is used.
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5.1.4. Examples
A Gaussian and a hyperbolic tangent function for N = 5 are used to illustrate how 1D refinements can

be used to determine the size of D
�

, cf. Fig. 4. The results are plotted with ⇠̂
↵,r

as the origin along the axes
d

1

and d
2

. The exact solution is plotted in solid dashed lines. The responses of quadratic global metamodels
are plotted in gray lines and the gray circles denote the values of Ŷ

↵,r

. The 1D local quartic (with Z=5
points) refinements are shown in solid black lines and the quadrature evaluations used to construct the 1D
refinements are in black dots.

We want to define l = (l
n

)N

n=1

such that regions with y values close to y
↵

are included in D
�

. Although
the approximation from the global metamodel is poor near the design point, the 1D local refinements resolve
very accurately the function response using only few additional quadrature samples. Therefore, we define
the refinement zone such that 1D refinement regions with y values larger than the best estimation of y

↵

are
included in D

�

. Before the local metamodels are constructed, the global Ŷ
↵,r

(gray circles in Fig. 4) is used
as the best estimation of y

↵

. With additional local metamodel, this boundary can be updated accordingly
(gray triangles representing the updated estimation Ŷ

↵,ME

of y
↵

).
In the Gaussian example, cf. Fig. 4.(a), the initial choice of l

1

= 1 includes su�cient areas about Ŷ
↵,r

.
The estimation of the transverse l

n

outlined in Sec. 5.1.3 includes regions whose y values are much smaller
than Ŷ

↵,r

; therefore, transverse l
n

is limited at 1.5 by examining the one–dimensional refinement values of
y. With the first multi–element estimation of Ŷ

↵,ME

(gray triangle), the refined region with y value larger
than the estimated quantile becomes even smaller; thus, transverse l

n

is decreased to 1. In the hypertangent
example, cf. Fig. 4.(b), a value of l

n

= 1 is su�cient in all transverse directions d
n

because all y values are
above Ŷ

↵,r

since the responses in these directions are flat. Therefore, we use the estimation of transverse l
n

outlined in Sec. 5.1.3 to ensure that enough probable inputs are included in D
�

.
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Figure 4: The one–dimensional local refinement about the design point for (a) a Gaussian and (b) a hypertangent function.
The responses from the global metamodels (quadratic) and the one–dimensional metamodels (quartic) are plotted in black and
gray lines, respectively. The gray circles and triangles show the estimated y↵ from the global metamodel and the multi–element
metamodel. The black dashed line is the exact function response and the black dots are the complete function evaluations used
to construct the one–dimensional refinements metamodels.

Examples of hypercubes D
�

in 2D and 3D are shown in Fig. 5. The values of ⇠
↵

are (�2, 1) and (2, 2, 2)
in the 2D and 3D case, respectively. In the 2D illustration, an 1⇥ 1 square (dashed) is placed at the origin.
In addition, a scaled, rotated and translated local domain in the new orthogonal axis is plotted in black
lines. The size of D

�

is determined with the scaling rules outlined in Sec. 5.1.3 with l
1

= 1. For the 3D
case, the local domain is plotted in black as well and no scaling is used to make the illustration clearer.
In addition, two additional refinement regions with the same ⇠0

↵

but with di↵erent transverse axes are also
shown with gray dashed lines in Fig. 5.(b). However, it appears that the orientation of the transverse axes is
not important. The local metamodels are constructed on these local bounded domains using the stochastic
spectral projection approach outlined in Sec. 3.

5.2. Multi–Element gPC
We have a global gPC metamodel which has a support in the standard normal space, D = RN . Within D,

we define local refinement domains, D
�i centered around ⇠̂

↵i,r
where local gPC metamodels are constructed.
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Figure 5: The local refinement zone definition in (a) 2D and (b) 3D. The dashed–lines mark the unit–length bounded support
centered about the origin and the black solid lines mark the bounded support that is translated, rotated and scaled according
to the location of the design point. The scaling of the local zone follows the rules outlined in Sec. 5.1.3 in (a) while no scaling is
used in (b) to facilitate the illustration. In (b), the gray dashed–dotted lines outline several possible orientations of the rotated
support.

Thus, we have a multi–element approach where the standard normal space is decomposed as follows:

D
ME

=

(
D

global

= D \D
local

, domain of global gPC,
D

local

= [N�

i=1

D
�i , domains of local refinement about ⇠̂

↵i,r
, for i = 1, ..., N

�

.
(31)

where D
�i is the i–th hypercube built in Sec. 5.1, centered at ⇠̂

↵i,r
and N

�

is the number of design points.
The local domain is the union of the refinement domains D

�i . While the global metamodel is used in D
global

,
the local metamodel is used in each D

�i . We represent the local metamodel for x 2 D
�i as

f⇤
r,i

(x) =
M

⇤
iX

m=0

f⇤
m,i

 
m

(T�1

i

(x)), for i = 1, ..., N
�

, (32)

where f⇤
m,i

= E [f(T
i

(X⇤)) 
m

(X⇤)] and the gPC truncation in D
�i is denoted by M⇤

i

. We take X⇤ as a
random vector with a uniform pdf in [�1, 1]N and  

m

(x⇤) the Legendre polynomial.
Thus, the final multi–element gPC (MEgPC) metamodel is

f
ME

(x) =

(P
M

m=0

f
m

�
m

(x), if x 2 D
global

,
P

M

⇤
i

m=0

f⇤
m,i

 
m

(T�1

i

(x)), if x 2 D
�i .

(33)

When MC samples are taken on Eq. (33), we use the inverse function to determine if the MC point lies in
D

�i , i.e. x 2 D
�i if T

�1

i

(x) 2 [�1, 1]N . Because Eq. (33) is not computationally expensive to evaluate,
a large number of MC points can be used to determine the ↵–quantiles. The ↵–quantile y

↵

can now be
approximated with the MEgPC metamodel with Z MC samples as

Ŷ
↵,ME

= Y
(d↵Ze),ME

, (34)

where Y
k,ME

= f
ME

(⇣
k

) and Y
(1),ME

 Y
(2),ME

 · · ·  Y
(k),ME

is the ordered set. The Monte Carlo method
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with very large sample size, outlined in Section 2.2, can also be used. The random inputs ⇣
k

are independent
random variables generated according to the pdf ⇢(x).

In the above approach, the design points ⇠̂
↵i,r

are determined from Ŷ
↵,r

of the global metamodel.
Clearly, the value of ⇠̂

↵i,r
can be refined after the first multi–element quantile estimation by solving the

minimum constraint problem (23) with an updated limit state function based on the local metamodel, i.e.
g(x) = f⇤

r,i

(x) � Ŷ
↵,ME

. The new design point estimator ⇠̂
↵,ME

will likely be slightly more accurate.

6. Examples

A Gaussian-like and a hyperbolic tangent functions are used to validate the MEgPC approach in the next
two sections. First, the accuracy in the design points determined by GPM and gPC LMM are first compared
at selected random dimension N . Second, the convergences of errors in the empirical ↵–quantile estimated
with di↵erent numerical methods are demonstrated at selected N . Finally, the di↵erent quantile estimation
methods are compared at di↵erent N values. After the MEgPC approach is validated, it is applied to a
flooding model in the third section.

6.1. Gaussian peak
We examine the quantile of the output of a function that is the superposition of Gaussian peaks in the

following form

f(x) =
N↵X

i=1

NY

n=1

exp

 
� (x

n

� µ
n,i

)2

2�2

n,i

!
, (35)

where the N–dimensional input are independent and identically distributed random variables following the
Gaussian distribution with mean zero and variance one. �

i

= (�
n,i

)N

n=1

controls the width of the i-th peak
centered at µ

i

= (µ
n,i

)N

n=1

. N
↵

is the number of peaks included in the function.

6.1.1. Design Point Search
Validation For N = 2 and N

↵

= 1 (single peak), the pseudo–exact 99%–quantile y
↵

is determined from
1 ⇥ 109 MC points and the pseudo–exact design point ⇠

↵

is found with an iterative algorithm to locate
f(⇠

↵

) = y
↵

along the direction µ0 = µ/kµk. Then, LMM is first validated by examining the convergence
of k⇠̂

↵,r

k and ⇠̂
0
↵,r

for � = (1, 1) and µ = (2,�1). Due to the low dimensionality, only the full quadrature
is used for the validation case. The error of k⇠̂

↵,r

k is normalized with k⇠
↵

k and the convergence of ⇠̂
0
↵,r

is determined from ⇠̂
T

↵,r

⇠
↵

/k⇠
↵

k2 whose value would be 1 if the two vectors overlap exactly. Two di↵erent
numerical solutions are examined, cf. Fig. 6. First, the convergences ⇠̂

↵,r

determined from linear gPC
constraints (27) constructed with quadrature levels L = 2 to L = 7 are evaluated. While ⇠̂

0
↵,r

converges
spectrally with increasing L, k⇠̂

↵,r

k does not converge due to both approximation errors in Ŷ
↵,r

and f
r

(x).
Therefore, linear gPC metamodels should be omitted. Second, the gPC metamodels from L = 2 to 14 and
P = L� 1 are used as the limit state function for the gPC LMM. With increasing L, the convergence of ⇠̂

↵,r

towards its exact value is clearly observed in both ⇠̂
0
↵,r

and k⇠̂
↵,r

k.
Single Peak The accuracies of the gPC LMM and GPM are compared. Eq. (35) with N

↵

= 1 (single peak)
and N = 5 is examined in detail with �

n

= 1 and µ
n

= 2/
p

N for n = 1, ..., N (so that kµk = 2).
For GPM, the initial guess Ŷ

↵

is estimated from f(x) with su�cient MC points to obtain 90% probability
that y

↵

lies within the confidence interval [Ŷ
↵�✏

, Ŷ
↵+✏

] where ✏ = (1 � ↵)/2. Eq. (25) is used to determine
the initial guess from the MC samples; in GPM, only one initial guess is used. Due to randomness in the
initial guess of Ŷ

↵

, the ensemble average of the error convergences in ⇠̂
↵

from 100 independent realizations is
computed; only the mean is shown in Fig. 7 as the standard deviation is small. It is clear that the initial MC
sampling is expensive and leads to the large initial cost at the start of the Ŷ

↵

convergence. In comparison,
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Figure 6: The convergence of the design point direction and distance from two numerical methods whose gPC limit state
functions are constructed with increasing quadrature level.

the convergence of the error in ⇠̂
↵

in the GPM step is rapid, resulting in a nearly vertical line in the log
scale. It is within the range estimated by Eq. (30).

In the gPC LMM, the full Gauss–Hermite and sparse Hermite Kronrod–Patterson sparse quadratures are
used to construct f

r

(x) from which Ŷ
↵,r

is determined from 1⇥ 106 MC samples and Eq. (25) is also used to
determine the initial guesses from these MC samples. The convergences of ⇠̂

↵,r

errors for the full and sparse
quadratures from L = 3 to 7 are shown with squared and circled lines in Fig. 7. The number of samples
shown is the cumulative quadrature cost from all the refinements, e.g. cost at L = 5 is total of quadrature
points from L = 3 to 5.

The convergences of the ⇠̂
↵,r

errors with increasing L for the full gPC metamodel is continuous but it is
less so for the sparse quadrature cases. The error convergence depends on the accuracy of the y

↵

estimation
as well as the metamodel resolution of f(x) about the true design point. As the accuracies of the full
and sparse Ŷ

↵,r

are comparable, cf. Fig. 9, the irregular sparse quadrature convergence is likely due to the
inaccuracy of f

r

(x). The sparse quadrature has a lower ratio of o↵–axis quadrature points in comparison to
the full quadrature and this likely influences the metamodel resolution near the design point which lies o↵ the
axes, cf. Fig. 2. With increasing ↵, the region of interest moves further away from the means of the inputs
which leads to deterioration in the f

r

(x) accuracy near the design point; therefore, for the same quadrature
level, the accuracy of ⇠̂

↵,r

worsens with increasing ↵. For example, at the higher quantile ↵ = 99.99%, the
sparse quadrature fails to accurately estimate the design point at the lower quadrature levels. Although
the normalized error in ⇠̂

↵,r

appears to be large at about O(10�1), the refinement zone of size O(1) is large
enough to ensure that ⇠

↵

is included in the local support. In comparison to GPM, the gPC LMM can
accurately estimate ⇠̂

↵,r

while avoiding the initial MC cost.
Multiple Peaks Multiple peaks could exist in the original function response or they could arise because of
the transformation of correlated inputs to the standard normal space [8]. One advantage of the gPC LMM
is that a single metamodel is used to locate all design points; in contrast several initial guesses are needed
for GPM to ensure that all design points are found, which increases the sampling cost. In this section, ⇠̂

↵,r

convergence for multiple Gaussian–like peaks is examined for di↵erent dimensions. All the peak maxima
are located at kµ

i

k = 2 with the same width �
i

= (1, ..., 1), which makes the problem more di�cult than
if a peak is more probable, i.e. closer to 0. The location of the i–th peak, µ

i

, is defined as µ
i,n

= 2/
p

N

for n = 1...N\{i} and µ
i,n

= �2/
p

N if n = i. The latter definition ensures that the peaks are located in
di↵erent quadrants. The pseudo exact design points ⇠

↵i
are determined in the same manner as in the single

peak case.
The average L2–norm error convergences of ⇠̂

↵i,r
with respect to ⇠

↵i
for N = 3 cases with double and

trip peaks (N
↵

= 2 or 3) are shown in Fig. 8. An error of 10 is assigned when the gPC LMM fails to locate
17
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Figure 7: The L2–norm error convergences for di↵erent design point search algorithms for N = 5 for ↵ = 99.9% and ↵ = 99.99%.
The squared and circled lines are the convergence from successive full and sparse quadratures refinement for the gPC estimations
of ⇠̂↵,r. Collocation levels from L = 3 and L = 7 are tested. The solid lines show the convergence in the design point search
from GPM whose target quantile was determined from su�cient MC samples such that there is a 90% probability that y↵ falls
within [↵± ✏]–empirical quantile estimator where ✏ = (1� ↵)/2.
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Figure 8: The L2–norm error convergence of ⇠̂↵,r determined by the gPC LMM for N = 3 for (a) double and (b) triple peaks.
The errors for ↵ = 99.9% and 99.99% are plotted in dashed and solid lines respectively. The squared and circled lines are the
convergences from full and sparse quadratures from L = 3 and L = 9. When the algorithm fails to determine all the design
points, an arbitrary error of 10 is assigned.

all the design points. Convergence results from ↵ = 99.9% and 99.99% are shown and the computations of
the design points at the lower quantiles are more accurate in most cases. Although the sparse quadrature
convergence is more irregular, it is in general more accurate than the full quadrature at the same number of
samples. The same test is repeated for higher dimensions but the gPC LMM is not very accurate in locating
multiple design points above N = 4. While the sparse quadrature fails to locate multiple design points for
N = 4, full quadrature requires quadrature level of L � 5 (Z

Q

= 624) and L � 7 (Z
Q

= 2401) to locate
double and triple Gaussian peaks, respectively. For low N , the gPC LMM is therefore e�cient in locating
multiple design points and the full metamodels give more consistent convergence in the ⇠̂

↵i,r
values, albeit

at a slightly higher quadrature cost. The gPC LMM is also more e�cient than GPM in locating multiple
design points for N  4. In GPM, the number of MC points required to estimate the initial Ŷ

↵

depends
solely on the probability and size of the confidence interval; thus, it remains large even for low N . Moreover,
multiple initial guesses are required to ensure that all the design points are located and these two factors
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combined make GPM much less cost e�cient than the gPC LMM. In addition, the gPC LMM design point
estimators are more robust than these of GPM as the convergence of the GPM solutions are very sensitive
to the algorithm’s parameters whose optimal values are dependent on the test functions.

In the presence of multiple design points, der Kiureghian & Dakessian labelled the point closest to the
origin as the global design point and the other ones as the local design points [8]. They suggest that the
di�culties in multiple design point problems arise due to the misidentification of local design points as the
global design point and the e↵ects that the local design points may have on the global FORM/SORM results.
In the context of the proposed method, both issues can be easily avoided. Firstly, the accuracy of the gPC
metamodel worsens with increasing kxk; therefore, the global design point with the smaller kxk will be
resolved before the local design points whose kxk are smaller. Secondly, the separate local metamodels are
constructed in di↵erent local domains about the respective estimated design points and they are not point
refinements as in the case of FORM/SORM. Even if the local domain contains design points not identified
by gPC LMM, their e↵ects will be individually resolved by the local metamodel.

6.1.2. Quantile Estimation
Local metamodels are constructed at the design points found. The convergences of the L2–norm errors

of the ↵–quantile estimated from MC, IS and MEgPC approaches are computed with respect to the pseudo–
exact value of y

↵

determined from f(x) with 1⇥109 MC samples. The means from the MC and IS estimators
Ŷ

↵

at selected Z determined from 500 independent series of simulations are shown in Fig. 9. The standard
deviations are not shown but their magnitudes are roughly 25% of the means for both MC and IS. The
sample distribution for the IS quantile is as follows: Z/2 are used to estimate the initial Ŷ

↵

from f(x), at
most Z/4 sample are used to determine ⇠̂

↵

with GPM and the remaining samples are used for the importance
sampling evaluation of Eq. (9). Although altering the sample distribution a↵ects the accuracy of Ŷ

↵

, we
found that it is better to ensure that the initial Ŷ

↵

has a high accuracy. As expected, the convergence rate
for the MC quantile is ⇠ 1/

p
Z

MC

. The accuracy of the IS method converges faster and is slightly more
accurate than the MC method for high number of samples. The convergence of Ŷ

↵,r

from the full and sparse
global metamodels versus cumulative sampling costs are shown in squared and circled lines, respectively.
The global Ŷ

↵,r

are less accurate than both the MC and IS methods in all cases; clearly, the local refinement
approach is needed and the accuracies of di↵erent local refinement approaches are examined in detail below.
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Figure 9: Convergences in the L2–norm error of Ŷ↵ in N = 5 for (a) ↵ = 99.9% and (b) 99.99%. The black line is the
mean convergence of 500 series of Monte Carlo simulations. The gray line is the mean convergence of 500 series of importance
sampling simulations whose design points are determined from the GPM. The squared and circled lines are the convergences of
the global gPC Ŷ↵ for the full and sparse quadratures, respectively.

Di↵erent Local Refinements Di↵erent types of local metamodels are compared against the MC con-
vergence in Fig. 10. For clarity, only the MC convergences of Ŷ

↵

are shown. The accuracy of the sparse
19
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Figure 10: Details of the local gPC supplementary refinement for (a) ↵ = 99.9% and (b) ↵ = 99.99%. The solid squared and
circled lines are the convergences of the global gPC Ŷ↵ with full and sparse quadratures. The dashed lines are the supplementary
local refinements where the squares and circles represent the local metamodels constructed from full and sparse quadratures,
respectively. In addition, the crosses represent the full quadrature case with maximum P expansion. The convergence of the
MC Ŷ↵ in the solid line is shown as a reference.

local metamodels is comparable to these of the full local metamodels; in the cases shown, the sparse Ŷ
↵,ME

are more accurate than their full counterparts for the same quadrature cost. Moreover, the maximum P
expansion from the full metamodel, cf. Sec. 3.1, increases the accuracy of Ŷ

↵,ME

without additional sampling
costs. The maximum P expansion increases the number of expansion terms significantly especially for high
N ; for example, at P = 4, M increases from 15 to 45 for N = 2 in contrast to N = 5 which increases from
252 to 3125. These additional expansion terms improve the accuracy of the gPC metamodel and Ŷ

↵,ME

.
For ↵ = 99.99%, only the design point from higher order full quadrature Ŷ

↵,r

were su�ciently accurate to
determine the locations of the local refinements. When the accuracies of estimators of global Ŷ

↵,r

and ⇠̂
↵i,r

are low, local refinement does not lead to significant improvement in the multi–element quantile estimator
By comparing the convergences of the local sparse quadrature Ŷ

↵,ME

(dashed line with crosses in Fig. 10(b))
from L = 3 and L = 4, it is clear that, for a given sample budget, it is better to maximize the accuracy of
⇠̂

↵,r

before local refinement is carried out.

6.1.3. Target Cost Study
In the following section, we compare the MEgPC against MC and IS from N = 1 to N = 7 for ↵ = 99.9%

and ↵ = 99.99%. A sample budget needs to be imposed in order to compare the di↵erent methods and we
arbitrarily define a linear increase in the sample budget with N where Z = 100N . Di↵erent combinations
of the global and local metamodels are also used to compute Ŷ

↵,ME

. Full and sparse global metamodels
are denoted with solid and dashed lines with symbols; their full and sparse local metamodels are shown
with crosses and circles, i.e. solid line with circles are full global metamodel with sparse local metamodel
refinements. Only the maximum P expansion results are shown as they are more accurate than their canonical
P expansion counterparts. The MC and IS accuracy estimators are determined from 500 independent series
of simulations. In all cases, most of the sample budget is concentrated on the global metamodel before local
refinement is carried out. In all cases, the MEgPC approach does not use all the sampling budget due to its
fixed and deterministic quadrature costs. Further work is required to determine how the leftover points can
be used to improve the accuracy of the quantile estimation.

For the given cost budget, the IS Ŷ
↵

is more accurate than the MC Ŷ
↵

at higher ↵ and lower N . At
higher N , the improvement from importance sampling is not significant because of the large number of
MC samples. For ↵ = 99.9%, the MEgPC Ŷ

↵,ME

is more accurate than the MC and IS Ŷ
↵

in most cases
and the accuracy of the full and sparse local metamodels are comparable. For the maximum P expansion
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approach, the improvement in accuracy increases with higher N ; this is likely due to the fact that additional
expansion terms are included with higher N as demonstrated in the previous Section. The comparison of
the accuracies in Ŷ

↵,ME

from di↵erent methods also depend on the sample budget. For example, the 99.9%–
quantile at N = 6 is estimated from 462 quadrature points, much smaller than the budget limit of 600;
the next refinement, requiring 878 points, would give an error of 3.01 ⇥ 10�2. For the ↵ = 99.99% case,
the accuracy of the MEgPC approach becomes inferior to MC and IS above N = 4 for the sample budget
imposed because of the global metamodel’s inadequacy in locating the design points. For example, in the
N = 5 case Ŷ

r,ME

error is decreased to the order of O(10�2) if the sample budget is increased above 1000.
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Figure 11: Quantile estimation as a function of N for di↵erent methods at (a) ↵ = 99.9% and (b) ↵ = 99.99%. The solid black
and dashed gray lines are the mean error convergences of 500 series of MC and IS simulations. The solid and dashed lines
with symbols are multi–element results with full and sparse global metamodels. The symbols denote the supplementary local
refinements where the crosses and circles represent the local metamodels constructed from full (maximum P expansion) and
sparse quadratures, respectively.

6.2. Hypertangent function
The hypertangent function resembles closely a reliability response surface where two states of a system

are connected by a continuous transition. Such a response is modelled by a hypertangent function as:

f(x) = 1 + tanh

 
NX

n=1

�
n

(x
n

� µ
n

)

!
, (36)

where µ = (µ
n

)N

n=1

controls the location of the ridge and � = (�
n

)N

n=1

its orientation.

6.2.1. Design Point Search
The design points for ↵ = 99% and 99.9% and N = 5 are determined with GPM and the gPC LMM. The

same methodology as in Sec. 6.1.1 is used. The convergences for the errors in the design point search for
kµk = 2.5/

p
N and �

n

= 1 for n = 1...N are shown in Fig. 12. The dominant cost in GPM is still the number
of MC samples required to compute the initial estimate of Ŷ

↵

. However, its convergence from its initial guess
is rapid; due to the shape of the function, the design point can also be readily found using a simple steepest
descend approach. For the gPC LMM ⇠̂

↵,r

, the errors from four quadrature levels (L = 3 to 6) are shown for
both the full and sparse metamodels. Better convergences are observed in the full quadrature case than the
sparse case. As the hypertangent function is anisotropic with one dominant direction, the sparse quadrature
provides a poorer function approximation, leading to the di↵erence in ⇠̂

↵,r

convergence. However, the gPC
LMM is more cost e�cient than GPM in determining the design point; when the full quadrature is used, it
is also more accurate for a given number of samples.

21



10
2

10
3

10
4

10
−2

10
−1

10
0

Number of Samples on Complete Model

L
2
−

N
o

rm
 E

rr
o

r 
o

f 
ξ α

(a)

10
2

10
3

10
4

10
−2

10
−1

10
0

Number of Samples on Complete Model

L
2
−

N
o

rm
 E

rr
o

r 
o

f 
ξ α

(b)

Figure 12: The L2–norm error convergences for di↵erent design point search algorithms for N = 5 for ↵ = 99% and ↵ = 99.9%.
The squared and circled lines are the convergence from successive full and sparse quadratures refinement for the gPC estimations
of ⇠̂↵,r. Collocation levels from L = 3 and L = 6 are tested. The solid lines show the convergence in the design point search
from GPM whose target quantile was determined from su�cent MC samples such that there is a 90% probability that y↵ falls
within [↵± ✏]–empirical quantile estimator where ✏ = (1� ↵)/2.

6.2.2. Quantile Estimation
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Figure 13: Convergences in the L2–norm error of Ŷ↵ in N = 5 and N = 8 for 99.99%. The solid black and gray dashed
lines are the means of the Ŷ↵ convergences determined from 100 series of MC and IS simulations. The squared and circled
lines are the convergences of the global gPC Ŷ↵,r for the full and sparse quadratures, respectively. The dashed lines are their
supplementary local refinements where the triangles and circle represent the local metamodels constructed from anisotropic and
sparse quadratures, respectively.

The convergences of the L2–norm errors of 99.9% and 99.99%-empirical quantiles at N = 5 are compared
in Fig. 13. Same µ and � as the previous section are used and the same methodology in Sec. 6.1.2 is followed
to compute the quantile estimators from the MC, IS and MEgPC approach. Only the means of the MC and
IS error convergences are shown and their standard deviations are roughly 25% of the means for both MC
and IS. At the sample size range examined, the IS quantiles are more accurate than their MC counterparts.

Quantile estimates Ŷ
↵,r

are obtained from the gPC global metamodel and the ↵ = 99.99% results are
shown for N = 5 and 8. Without local refinements, the values of Ŷ

↵,r

are already more accurate than some of
their MC and IS counterparts. For low quantile at ↵ = 99% and 99.9% (not shown), the global gPC Ŷ

↵,r

are
also more accurate than the MC and IS Ŷ

↵

. Before the local metamodels are constructed, the one–dimensional
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refinements, cf. Fig. 4.(b), are conducted about the design point and they reveal a strong dominance of the
function response in the ⇠̂

0
↵,r

–direction. Such strong anisotropic response may be economically approximated
by the anisotropic quadrature, cf. Sec. 2 and Fig. 2. As the sparse local metamodels have similar results to
the anisotropic metamodels, only the full and anisotropic Ŷ

↵,ME

are plotted in Fig. 13 and they show that
both metamodels improve significantly the accuracy of the quantile estimators. The anisotropic Ŷ

↵,ME

have
convergence rates comparable to these of the full Ŷ

↵,ME

; however, the anisotropic Ŷ
↵,ME

convergences are
more irregular where oscillations and slight divergence can be observed in the N = 8 and ↵ = 99.99% case.
Nevertheless, in all cases, local metamodels improve the quantile estimators especially for very large ↵ and
make the MEgPC approach more accurate than MC or IS.

6.2.3. Target Cost Study
We now compare the MEgPC against the MC and IS methods from N = 1 to N = 8 for ↵ = 99.9%

and ↵ = 99.99%. We impose the same arbitrary sample budget of Z = 100N and the same methodology
in Sec. 6.1.3 is followed. The normalized errors of MC and IS Ŷ

↵

are compared against those from MEgPC
Ŷ

↵,ME

in Fig. 14.
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Figure 14: Quantile estimation as a function of N for di↵erent methods at (a) ↵ = 99.9% and (b) ↵ = 99.99%. The solid black
and dashed gray lines are the mean error convergences of 500 series of MC and IS simulations. The solid and dashed lines
with symbols are multi–element results with full and sparse global metamodels. The symbols denote the supplementary local
refinements where the squares and triangles represent the local metamodels constructed from full and anisotropic quadratures,
respectively.

For ↵ = 99% (not shown), MC and IS have roughly the same accuracy between N = 3 to N = 5; with
increasing ↵, IS Ŷ

↵

becomes more accurate than the MC Ŷ
↵

. In the two quantiles shown, the IS Ŷ
↵

are more
accurate than the MC Ŷ

↵

, especially at lower N . In comparison, MEgPC Ŷ
↵,ME

are more accurate than MC
and IS Ŷ

↵

at all values of ↵ tested. In particular, the anisotropic quadratures perform better in most cases
than the sparse quadratures (not shown) which is in turn more accurate than the full quadratures. Having a
low number of quadrature points allows local metamodel of higher quadrature level to be constructed; thus
allowing one to better observe the convergence in the estimated quantile. In the case of anisotropic functions,
the anisotropic quadrature is the most economical quadrature scheme to capture the function response.

6.3. Flooding function
We now consider a practical problem related to a risk of flood. The risk of flood can be defined as a

first passage problem when the level of a watercourse exceeds the height of a dyke. While the water level
H of a watercourse can be calculated with the Navier–Stokes equations using the appropriate boundary
conditions, a simplified analytic model was introduced in [48]. The approximation involves the water course
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flow Q, the water course bed friction K
s

, the upstream water height Z
m

, and downstream water height Z
v

.
The water course flow is treated as a random variable with Gumbel distribution, a typical approximation of
extreme value theory in natural phenomenon. The water course bed friction is treated as a Gaussian random
variable to account for the cumulative e↵ects of di↵erent physical uncertainties. The triangular distribution
are used to model the upstream and downstream water heights where the random variables are bounded
with a maximum likelihood at a certain value. In addition, the watercourse length and width are taken as
constant L = 5000 and B = 300, respectively. The watercourse height H can then be approximated using
the closed formula

H =

0

@ Q

K
s

B
q

Zm�Zv

L

1

A
3/5

. (37)

The parameters of the random variables are listed in Table 1. These random variables are transformed into
the standard normal space using the inverse cdf method.

Table 1: The parameters used to defined the random variables in the watercourse height equation (37)

Random variable Distribution Parameters D
n

Q (m3s�1) Gumbel µ=1013, �=558 6.46⇥ 10�1

K
s

(m1/3s�1) Gaussian µ=30, �=7.5 1.88⇥ 10�2

Z
v

(m) Triangular a=49, b=50, c=51 3.83⇥ 10�3

Z
m

(m) Triangular a=54, b=55, c=56 3.83⇥ 10�3

The quantiles of the output H are determined from 1 ⇥ 109 MC samples and the empirical quantiles
from di↵erent methods are determined using the methodology outlined in Sec. 6.1.3. The convergences of
the quantiles at ↵ = 99.9% and ↵ = 99.99% are shown in Fig. 15. The accuracy of IS Ŷ

↵

is better than the
MC Ŷ

↵

for both cases. Since N = 4 is not high, the full quadrature is used to construct the global gPC
metamodel and the accuracies of the global gPC Ŷ

↵,r

are comparable to the IS results for both cases. The
partial variances, D

n

, are computed from the global quadratic gPC metamodel with Eq. (18) and are listed
in Table 1. From the global metamodel, it can already be observed that the function global dependence in Q
is strong and this observation is further verified locally through the one–dimensional refinement studies after
the design point is identified. Therefore, the anisotropic quadrature is used to construct the local metamodel
in addition to the full quadrature.

In all cases, the errors in Ŷ
↵,ME

are significantly reduced with local refinement. The improvement from
the full and anisotropic metamodels are comparable for a given number of samples although the convergence
of the anisotropic quadrature is more irregular. Indeed the quantile convergence is similar to those observed
in Fig. 13 and the watercourse height, H, has an anisotropic response. In addition to the results observed
in the previous section, we can conclude that the MEgPC approach provides quantile estimators that are at
least one order of magnitude more accurate than the MC or IS counterparts when the complete model has
an anisotropic response.

7. Conclusion

A multi–element gPC (MEgPC) metamodel is used to estimate high quantiles of solutions of multivariate
numerical models which are computationally expensive to evaluate. The multi–element metamodel consists
of a global gPC metamodel in the standard normal domain and local gPC metamodels in bounded domains
centered at design points corresponding to the quantile. The metamodels were constructed using a non–
intrusive method where the numerical solver is sampled on fixed and deterministic quadrature points; full–
tensor, anisotropic–tensor, and Smolyak sparse–tensor quadratures are tested. Three numerical models,
namely a Gaussian–like function, a hypertangent function, and a flooding model are used to validate the
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Figure 15: Convergence in the L2–norm errors of Ŷ↵ for (a) ↵ = 99.9% and (b) ↵ = 99.99%. The solid black and dashed gray
lines are the means of 100 series of MC and IS simulations. The squared lines are the convergences of the global gPC Ŷ↵,r with
full quadratures. The dashed lines are the supplementary local refinements where the squares and triangles represent the local
metamodels constructed from full and anisotropic quadratures, respectively.

numerical method proposed in this study. The global gPC metamodel is used to estimate the initial ↵–
quantile, Ŷ

↵,r

, and to determine the location of the design points ⇠̂
↵,r

with the Lagrange multiplier method.
In comparison to the conventional approach where the initial quantile estimation and the subsequent design
point search occur separately with costly evaluations of the complete model, the gPC Lagrange multiplier
method accurately estimate the design points at a fraction of the computation cost. The gPC Lagrange
multiplier method is also examined in numerical examples with multiple Gaussian–like peaks and is able
to accurately locate all design points for random dimension N  4. In all three test cases, the local gPC
metamodels significantly improve the accuracy of the quantile estimators. For the Gaussian–like function,
the maximum P expansion improves the accuracy of the gPC approximation with the conventional canonical
P expansion when a full–tensor quadrature is used. Using one–dimensional metamodels constructed about
the design points, it is readily revealed that the both the hypertangent function and the empirical flooding
model have an anisotropic response in the bounded refinement domain near the design point. Consequently,
an anisotropic quadrature scheme is used to reduce the quadrature cost; indeed the anisotropic results are
comparable to their full–tensor or the sparse–tensor counterparts in both cases.

For all methods tested, the accuracy depends on the complete function response as well as the number
of evaluations available on the complete model. Therefore, a target cost study is conducted to examine the
e↵ect of sampling budgets on the accuracy of the di↵erent methods for di↵erent types of complete model.
The gPC metamodel cost depends on the number of quadrature points which is fixed and deterministic;
therefore, the MEgPC approach may not use the entire sampling budget. In contrast, the entire sampling
budget is used for the Monte Carlo and the importance sampling methods. Given a sample budget, it is
better to allocate more sampling points to the global gPC metamodel such that the design points sought
are as accurate as the cost constraint allows. For the Gaussian–like function, the MEgPC Ŷ

↵,ME

is superior
to the MC and IS Ŷ

↵

for ↵ = 99.9% and ↵ = 99.99% up to N = 5 and comparable up to N = 7. For
the hypertangent function and the flooding model, the MEgPC approach is approximately one order of
magnitude more accurate than the MC and IS ↵–quantile estimators for both ↵ = 99.9% and ↵ = 99.99% at
all N values examined (from N = 1 to N = 8). In the context of reliability analysis, it can be asserted that
the MEgPC approach proposed can significantly increase the accuracy of high quantile estimation, especially
for functions are of the hypertangent type. Without additional complete function evaluations, the MEgPC
metamodel can also be used for sensitivity analysis and parameter optimization of the complete model; these
two additional features are not attainable with MC or IS.
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