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One of the key problems in chance constrained programming for nonlinear optimization problems is the
evaluation of derivatives of joint probability functions of the form PðxÞ ¼ Pðgpðx;KÞ 6 cp; p ¼ 1; . . . ;NcÞ.
Here x 2 RNx is the vector of physical parameters, K 2 RNK is a random vector describing the uncertainty
of the model, g : RNx � RNK ! RNc is the constraints mapping, and c 2 RNc is the vector of constraint levels.
In this paper specific Monte Carlo tools for the estimations of the gradient and Hessian of PðxÞ are pro-
posed when the input random vector K has a multivariate normal distribution and small variances. Using
the small variance hypothesis, approximate expressions for the first- and second-order derivatives are
obtained, whose Monte Carlo estimations have low computational costs. The number of calls of the con-
straints mapping g for the proposed estimators of the gradient and Hessian of PðxÞ is only 1þ 2Nx þ 2NK .

These tools are implemented in penalized optimization routines adapted to stochastic optimization,
and are shown to reduce the computational cost of chance constrained programming substantially.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

It is possible to distinguish two types of optimization problems
in the presence of randomness. In the first type, the cost function is
random, or it is the expectation of a random cost function, and the
set of feasible solutions is deterministic. In the second type, the
cost function is deterministic and the set of constraints is random.
One of the key issues is then to study the gradient and/or the Hes-
sian of the constraint function in order to apply KKT (Karush Kuhn
Tucker) or related theorems in optimization theory (Ruszczyński,
2006). Chance-constrained problems are described in the books
by Prékopa (1995), Ruszczyński and Shapiro (2003), Calafiore and
Dabbene (2006), and Kall and Wallace (1994) as well as in survey
articles by Birge (1997) and Sen and Higle (1999) for instance.

In the present work, a deterministic cost function JðxÞ has to be
minimized under a set of Nc random constraints

gpðx;KÞ 6 cp; p ¼ 1; . . . ;Nc; ð1Þ

where gp : RNx � RNK ! R is a real-valued constraints mapping and
cp 2 R is the constraint level, for each p ¼ 1; . . . ;Nc; x 2 RNx is the
ll rights reserved.

arnier), aomrane@univ-ag.fr
hdy).

J. et al., Asymptotic formulas
/j.ejor.2008.09.026
vector of physical parameters, and K 2 RNK is a continuous random
vector describing the uncertainty of the model. In this paper, we as-
sume that K has a multivariate normal distribution.

In many situations, the set of points x such that the Nc con-
straints (1) are satisfied for (almost) all realizations of the random
vector K is empty. Indeed, even if constraint violation at x happens
only for a very unlikely subset of realizations of K, the point x has
to be excluded. It then makes sense to look for an admissible set of
points x that satisfy the constraints with high probability 1� a,
0 < a < 1 (or �1), in the sense that only a small proportion a of
realizations of the random vector K leads to constraint violation
at x. The set of constraints (1) is then substituted by the probabilis-
tic constraint

PðxÞP 1� a; ð2Þ

with

PðxÞ ¼ Pðgpðx;KÞ 6 cp; p ¼ 1; . . . ;NcÞ: ð3Þ

The probabilistic constraint prescribes a lower bound for the prob-
ability PðxÞ of simultaneous satisfaction of the Nc random con-
straints. Situations where probabilistic constraints of the form (2)
and (3) are encountered are listed in the book by Prékopa (1995)
and in the articles by Henrion and Römisch (2000), Henrion and
Strugarek (2008), and Prékopa (1971).
for the derivatives of probability functions ..., European Journal of
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Optimization problems under probabilistic constraints of the
form (2) and (3) are particularly difficult to solve for continuous
random vectors, such as multivariate normal, because the proba-
bility (3) has the form of a high-dimensional integral that cannot
be evaluated directly, but has to be approximated by numerical
quadrature or by Monte Carlo (MC) simulations (Dubi, 2000). Be-
cause MC simulation appears to offer the best possibilities for high-
er dimensions, it seems to be the natural choice for use in
stochastic programs. Birge and Louveaux (1997) describe some ba-
sic approaches built on sampling methods. They also consider
some extentions of the MC method to include analytical evalua-
tions exploiting problem structure in probabilistic constraints
estimation.

The evaluation of the gradient (and possibly the Hessian) of (3)
is required in nonlinear optimization routines. In the separable
case gðx;KÞ ¼ K� f ðxÞ this issue boils down to the calculus of nor-
mal distribution functions, since Hessians and gradients can then
be exactly reduced to function values of such distribution functions
(Prékopa, 1995). One can then use the existing techniques for the
estimation of multivariate distribution functions (see the numeri-
cal and simulation techniques proposed by Schervish (1984), Genz
(1992), Deák (1986), Szántai (2001, 2002), or the sharp bounds ob-
tained by Prékopa (1990) using linear programming or by Bukszár
and Prékopa (2001) using graph-theoretical constructions). Our ap-
proach addresses the general model gðx;KÞ, including, but not re-
stricted to, the multiplicative model gðx;KÞ ¼ GðxÞK� f ðxÞ. The
first idea in order to estimate the gradient and Hessian of the prob-
ability PðxÞ for the general model is to use finite differences of esti-
mates of the probability PðxÞ. Of course, these estimates are likely
to be much more precise with the use of advanced (graph-theoret-
ical, bounding, variance-reduction, etc.) techniques described in
the literature than with the use of crude MC (for function values).
However, we want to emphasize the disadvantage of excessive
function calls for finite differences, no matter which specific meth-
od is used for calculating function values.

We consider a situation in which the computational cost of the
estimation of the gradient and Hessian of the probability (3) is pro-
portional to the number of calls of the function g. We propose a
specific MC method to evaluate the gradient and Hessian of the
probability PðxÞ and we implement this method in penalization
optimization routines adapted to stochastic optimization. The pro-
posed MC estimators are based on asymptotic expansions of prob-
abilistic representations of the partial derivatives of the probability
(3) in the case in which the variances of the input random param-
eters Ki are small. MC estimators of the asymptotic expressions can
be implemented and we show that this method reduces the com-
putational cost of the evaluations of the derivatives of the probabil-
ity PðxÞ, hence reduces the total computational cost of chance
constrained programming. More precisely, the proposed MC esti-
mators of the gradient and of the Hessian of the probability PðxÞ
at some point x only requires 1þ 2Nx þ 2NK calls of the function g.

The main contribution of this paper is the description of the
asymptotic expressions of the gradient and Hessian of the proba-
bility PðxÞ for small variances. We then use the crude MC method
in order to build estimators of these asymptotic expressions. In-
deed, these expressions can be expressed as expectations of func-
tions of normal multivariate random vectors. It could be of
interest here to use a more advanced simulation technique, and
in fact we would recommend to do so in practice. However, this
is not relevant for the computational cost as discussed of this pa-
per, which is defined as the number of calls of the function g, while
we assume that the generation of any normal multivariate random
vector is essentially cost-free.

The paper is organized as follows: In Section 2, we introduce the
problem and define the probabilistic constraint. In Sections 3 and
4, we propose complete and approximate expressions of the deriv-
Please cite this article in press as: Garnier, J. et al., Asymptotic formula
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atives of the probability PðxÞ and deduce low-cost MC estimators
for these quantities. We finally apply these methods to a simple
demonstration example (a separable model), an academic example
(a polynomial model), and an industrial case.

2. The probabilistic constraint

In this section, we consider the probabilistic constraint (2) and
(3). From now on we assume that K is a normal multivariate ran-
dom vector with mean 0 and covariance matrix K. In many appli-
cations the Ki’s are independent and have normal distribution
with mean 0 and variance r2

i , so that K is the diagonal NK � NK ma-
trix ðr2

i Þi¼1;...;NK
, but we shall carry out our analysis with a general

covariance matrix.
The main focus of the forthcoming analysis is the multiplicative

model, in which the constraint mapping has the form
gðx;KÞ ¼ GðxÞK� f ðxÞ, where GðxÞ is a matrix field and f ðxÞ is a vec-
tor field. However, the constraint mapping has a general form in the
industrial application we have in mind. In this section, we show how
the general model can be reduced to the multiplicative model in the
case in which the variances of the random parameters are small.

The constraints are of the form (1) where g : RNx � RNK ! RNc is
a function of class C2. In general we can distinguish two types of
constraints:

– n constraints depend on the random vector K:

gpðx;KÞ 6 cp; p ¼ 1; . . . ; n: ð4Þ

– Nc � n constraints are deterministic:

gpðxÞ 6 cp; p ¼ nþ 1; . . . ;Nc: ð5Þ

The Nc � n deterministic constraints will be dealt with sepa-
rately, using standard constrained optimization tools. Of course,
it may happen that Nc ¼ n, i.e. all constraints are random.

As discussed in the introduction, in chance constrained pro-
gramming, the set of random constraints (4) is substituted by the
probabilistic constraint (2) with

PðxÞ ¼ Pðgpðx;KÞ 6 cp; p ¼ 1; . . . ;nÞ: ð6Þ

In the industrial example we have in mind (described in Section
3.7), the function g is a very complex numerical routine. As a conse-
quence, the computational cost of an evaluation method of the
probability PðxÞ, its gradient and Hessian, will be considered to be
proportional to the number of calls of g in this paper. In other
words, we assume that the random number generation of the ran-
dom vector K is essentially cost-free. Note that this may be not al-
ways the case, and the computational cost of the generation of the
random vectors could play a role. Recent numerical procedures to
evaluate normal multivariate distribution functions can be found
in the papers by Szántai (2001) and Gassmann et al. (2002).

Let us fix x and consider the n constraints (4) that depend on K.
We first perform a linearization of these constraints with respect to
K and consider the approximation

gpðx;KÞ ’ gpðx;0Þ þ
XNK

i¼1

ogp

oKi
ðx; 0ÞKi;

for K in the hypercube
QNK

i¼1½�3ri;3ri�. This approximation is valid
when r is small (since g is of class C2). Note that the choice of the
constant 3 is actually determined by the level 1� a of the admissi-
ble set (it could be replaced by the 1� a-quantile of the standard
normal distribution). The set of constraints (4) can then be approx-
imated by the set of inequalities

GðxÞK 6 CðxÞ; ð7Þ
s for the derivatives of probability functions ..., European Journal of
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where GðxÞ is the deterministic n� NK matrix and CðxÞ is the deter-
ministic n-dimensional vector defined by

GpiðxÞ ¼
ogp

oKi
ðx;0Þ; p ¼ 1; . . . ;n; i ¼ 1; . . . ;NK;

CpðxÞ ¼ cp � gpðx; 0Þ; p ¼ 1; . . . ; n:

The computation of C requires one evaluation of g and the one of G
requires 2NK evaluations of g (by second-order finite differences).

The probability PðxÞ defined by (6) can then be approximated by

PðxÞ ¼ PðGðxÞK 6 CðxÞÞ: ð8Þ

In the following we propose probabilistic representations and esti-
mations of the gradient and Hessian of PðxÞ, when PðxÞ has the form
(8). However, we shall apply the proposed estimators to problems
in which PðxÞ has the general form (6).

The random vector GðxÞK has zero-mean multivariate normal
distribution. Its n� n covariance matrix CðxÞ is real, symmetric,
and given by

CðxÞ ¼ GðxÞKGðxÞt; ð9Þ

where K is the covariance matrix of K. We will assume in the fol-
lowing that CðxÞ is an invertible matrix. This is the case in the appli-
cations we have in mind, and this is the main motivation for
introducing the distinction between the n constraints that depend
on K and the ones that do not depend on it. This hypothesis could
be removed, but this would complicate the presentation.

Therefore, the probability PðxÞ can be expressed as the n-dimen-
sional integral

PðxÞ ¼
Z C1ðxÞ

�1
� � �
Z CnðxÞ

�1
pCðxÞðz1; . . . ; znÞdz1 � � �dzn; ð10Þ

where pC is the density of the n-dimensional normal distribution
with mean 0 and covariance matrix C:

pCðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞn det C
p exp �1

2
ztC�1z

� �
:

If CðxÞ were diagonal, then we would have simply

PðxÞ ¼
Yn

p¼1

U
CpðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CppðxÞ

p !
;

where U is the standard normal distribution function. In this case,
the probability PðxÞ can be evaluated with arbitrary precision, as
well as its gradient and Hessian. Unfortunately, this is not the case
in our applications, as well as in many other applications, so that
the evaluations of the multi-dimensional integral (10) and its deriv-
atives are necessary.

Let us discuss briefly the estimation of the probability PðxÞ be-
fore considering the estimation of its derivatives. The problem is
reduced to the evaluation of the cumulative distribution function
of a multivariate normal distribution. This can be done by a crude
MC method. This method is easy to implement and it does not re-
quire any new call of the function g. It is reduced to the generation
of an independent and identically distributed (iid) sequence of nor-
mal random vectors with mean 0 and covariance matrix CðxÞ.
Accordingly, PðxÞ can be evaluated by MC method, and the estima-
tor has the form:

bP ðMÞðxÞ ¼ 1
M

XM

l¼1

Yn

k¼1

1ð�1;CkðxÞ�ðZ
ðlÞ
k Þ

" #
; ð11Þ

where ZðlÞ; l ¼ 1; . . . ;M is an iid sequence of random vectors with
density pCðxÞ. The indicator function 1A is defined such that
1AðzÞ ¼ 1 if z 2 A and 0 otherwise. The computational cost of the
MC method, i.e. the number of calls of the function g, is 1þ 2NK,
which is necessary to evaluate CðxÞ;GðxÞ, and therefore CðxÞ. This
Please cite this article in press as: Garnier, J. et al., Asymptotic formulas
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cost is independent of M, since we assume in this paper that the
random number generation of K is cost-free. Note that:

– a more advanced method (graph-theoretical, bounding, vari-
ance-reduction) could be used to reduce the number M of sam-
ples, but this does not affect the computational cost defined in
terms of calls of g. However, we would recommend to do so in
practice.

– the cost of the full MC estimator of the probability PðxÞ defined
by (3) (the one obtained without linearizing gpðx;KÞ in K) is M:

bP ðMÞfullMCðxÞ ¼
1
M

XM

l¼1

Yn

k¼1

1ð�1;ck �ðgkðx;K
ðlÞ
k ÞÞ

" #
; ð12Þ

where KðlÞ; l ¼ 1; . . . ;M is an iid sequence of multivariate normal
random vectors with mean 0 and covariance K. Indeed, the full
MC estimator calls the function g for each evaluation. Even if one
uses a more advanced simulation technique than the crude MC
method, the cost of the full estimator is far too expensive.

3. The gradient of the probability P(x)

3.1. The probabilistic representation of the gradient

The gradient of the probability PðxÞ is needed in optimization
routines. We can distinguish (at least) two methods:

Method 1. It is possible to approximate the gradient of PðxÞ by
using a second-order standard finite-difference:

oP
oxk
ðxÞ ’ Pðxþ dekÞ � Pðx� dekÞ

2d
; ð13Þ

where x� dek ¼ ðx1; . . . ; xk�1; xk � d; xkþ1; . . . ; xnÞ and d is small. Then
one can use MC estimations of Pðx� dekÞ (or any other advanced
method) to construct an estimator of rPðxÞ. Note that the calibra-
tion of d is not easy in this case.

Method 2. It is possible to carry out MC simulations with an ex-
plicit expression of the gradient. Indeed, explicit expressions of the
gradient of probability functions can be found in many situations
(Kibzun and Uryasev, 1998). Here, the gradient of PðxÞ has the form

oP
oxk
ðxÞ ¼

Xn

i;j¼1

AijðxÞ
oCijðxÞ

oxk
þ
Xn

i¼1

BiðxÞ
oCiðxÞ
oxk

; ð14Þ

for k ¼ 1; . . . ;Nx, where the matrix A and the vector B are given by

AijðxÞ ¼
Z C1ðxÞ

�1
� � �
Z CnðxÞ

�1

opC

oCij
ðz1; . . . ; znÞdz1 � � �dzn

����
C¼CðxÞ

¼
Z C1ðxÞ

�1
� � �
Z CnðxÞ

�1

o ln pC

oCij
ðzÞpCðzÞd

nz
����
C¼CðxÞ

; ð15Þ

BiðxÞ ¼
Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z CnðxÞ

�1

� pCðxÞðz1; . . . ; zi ¼ CiðxÞ; . . . ; znÞdz1 � � �dzi�1dziþ1 � � �dzn

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pCii
p exp �CiðxÞ2

2Cii

 !Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z CnðxÞ

�1

� pCðxÞðz0jzi ¼ CiðxÞÞdn�1z0; ð16Þ

and pCðz0jziÞ is the conditional density of the ðn� 1Þ-dimensional
random vector Z0 ¼ ðZ1; . . . ; Zi�1; Ziþ1; . . . ; ZnÞ given Zi ¼ zi. Therefore,
pCðxÞðz0jzi ¼ CiðxÞÞ is the density of the ðn� 1Þ-dimensional normal
distribution with mean

~lðiÞðxÞ ¼ CiðxÞCjiðxÞ
CiiðxÞ

� �
j¼1;...;i�1;iþ1;...;n

; ð17Þ
for the derivatives of probability functions ..., European Journal of
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and ðn� 1Þ � ðn� 1Þ covariance matrix

~CðiÞðxÞ ¼ CklðxÞ �
CkiðxÞCilðxÞ

CiiðxÞ

� �
k;l¼1;...;i�1;iþ1;...;n

: ð18Þ

The logarithmic derivative of pC has the form

o ln pCðzÞ
oCij

¼ � 1
2 det C

o det C
oCij

� 1
2

zt oC�1

oCij
z

¼ �1
2
ðC�1Þji þ

1
2
ðC�1zÞiðC

�1zÞj: ð19Þ

Finally, ðoCijðxÞÞ=ðoxkÞ and ðoCiðxÞÞ=ðoxkÞ are given explicitly by

oCijðxÞ
oxk

¼
XNK

l;l0¼1

o

oxk

ogiðx;0Þ
oKl0

Kll0
ogjðx;0Þ

oKl

� �
;

oCiðxÞ
oxk

¼ � ogiðx;0Þ
oxk

:

Remark: the expression (14) is obtained by differentiating (10) with
respect to x. This formal derivation can be justified (with the
hypothesis that the matrix CðxÞ is invertible and continuously dif-
ferentiable and CðxÞ is continuously differentiable) by using Remark
2.1 and then Theorem 3.1 of (Kibzun and Uryasev, 1998).

3.2. Monte Carlo estimation

The goal of this subsection is to present the simple and crude
MC estimator for the gradient of the probability PðxÞ. This estima-
tor is based on the representation (14) and is given by (22) below.
Indeed, the matrix AðxÞ can be evaluated by MC simulations, at the
same time as PðxÞ (i.e. with the same samples ZðlÞ;1 6 l 6 M):

bAðMÞij ðxÞ ¼
1

2M

XM

l¼1

ðCðxÞ�1ZðlÞÞiðCðxÞ
�1ZðlÞÞj

Yn

k¼1

1ð�1;CkðxÞ�ðZ
ðlÞ
k Þ

" #

� 1
2
ðC�1

ji ðxÞÞbP ðMÞðxÞ; ð20Þ

where ZðlÞ; l ¼ 1; . . . ;M is an iid sequence of n-dimensional normal
random vectors with mean 0 and covariance matrix CðxÞ.

BðxÞ can be evaluated by Monte Carlo as well, but this requires a
specific computation for each i ¼ 1; . . . ;n. The MC estimator for
BiðxÞ is

bBðMÞi ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pCiiðxÞ
p exp �

C2
iðxÞ

2CiiðxÞ

 !
1
M

XM

l¼1

Yn

k¼1–i

1ð�1;CkðxÞ�ðZ
0ðlÞ
k Þ

" #
;

ð21Þ

where ðZ01
ðlÞ
; . . . ; Z0i�1

ðlÞ
; Z0iþ1

ðlÞ
; . . . ; Z0n

ðlÞÞ, l ¼ 1; . . . ;M is an iid sequence
of ðn� 1Þ-dimensional normal random vectors with mean ~lðiÞðxÞ
and covariance matrix ~CðiÞðxÞ given by (17) and (18).

Using the MC estimators (20) and (21) to evaluate the
expression (14) of the gradient, we obtain the MC estimator for
the gradient of the probability PðxÞ:

doP
oxk
ðxÞ

� �ðMÞ
¼
Xn

i;j¼1

bAðMÞij ðxÞ
oCijðxÞ

oxk
�
Xn

i¼1

bBðMÞi ðxÞ
ogiðx;0Þ

oxk
; ð22Þ

where bAðMÞij is the MC estimator (20) of Aij and bBðMÞi is the MC estima-
tor (21) of Bi.

3.3. First discussion on the computational cost

Remember that we assume that the generation of any normal
multivariate random vector is essentially cost-free. That is why
we can use the crude MC method to estimate (13) and (14) (which
is simply the expectation of a function of a normal multivariate
random vector). It could be of interest here to use a more advanced
Please cite this article in press as: Garnier, J. et al., Asymptotic formula
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technique, but this would not affect the computational cost defined
as the number of calls of the function g.

Let us first discuss the computational cost of the estimation of
the gradient of the probability PðxÞ when using the finite-differ-
ence approximation (13).

If a full MC estimation (12) of the terms Pðx� dekÞ is used (or a
more advanced method using the full expression of gðx;KÞ), then
the method has the computational cost 2MNx. Indeed, we need
2Nx estimators for the terms Pðx� dekÞ; k ¼ 1; . . . Nx, and each esti-
mator has the cost M.

If we use the estimator (11) to estimate Pðx� dekÞ, then the
computational cost of the estimation of (13) is reduced to
ð1þ 2NKÞ2Nx.

Let us now discuss the computational cost of the estimation of
the gradient of the probability PðxÞ when using the representation
(14). The cost of the estimator (22) is ð1þ 2NxÞð1þ 2NKÞ: Indeed,
the computational cost for the evaluations of CðxÞ and CðxÞ is
2NK þ 1, the computational cost for the evaluations of the terms
ðoCiðxÞÞ=ðoxkÞ is 2Nx, and the computational cost for the evaluations
of the terms ðo2gpðx;0ÞÞ=ðoxkoKiÞ is 4NKNx (by finite differences).

Therefore, both the evaluations of the finite-difference approx-
imation and of the probabilistic representation of the gradient of
the probability PðxÞ has computational costs of the order of
4NxNK. In many industrial examples, a cost proportional to NxNK

is too heavy. In the next subsection, we show that the estimation
of the gradient of PðxÞ can be dramatically simplified if the vari-
ances r2

i are small enough.

3.4. Simplified computation of the gradient

If the r2
i ’s are small, of the typical order r2, then the expression

(14) of ðoPÞ=ðoxkÞ can be expanded in powers of r2. We can esti-
mate the order of magnitudes of the four types of terms that ap-
pear in the sum (14). We first note that the order of magnitude
of CðxÞ is r2, because it is linear in K. We have

– AijðxÞ is given by (15). It is of order r�2, because ðo ln pCÞ=ðoCijÞ is
of order r�2.

– ðoCijðxÞÞ=ðoxkÞ is of order r2, because it is linear in K.
– BiðxÞ is given by (16). It is of order r�1, because it is proportional

to 1=
ffiffiffiffiffiffi
Cii
p

.
– ðoCiðxÞÞ=ðoxkÞ is of order 1, because it does not depend on K.

As a consequence, the dominant term in the expression (14) of
ðoPÞ=ðoxkÞ is

oP
oxk
ðxÞ ’

Xn

i¼1

BiðxÞ
oCiðxÞ
oxk

: ð23Þ

Precise arguments are given in the Appendix A to confirm that this
approximation is valid when r is small. The simplified expression
(23) can be evaluated by the MC estimator

doP
oxk
ðxÞ

� �ðMÞ
’ �

Xn

i¼1

bBðMÞi ðxÞ
ogiðx;0Þ

oxk
; ð24Þ

where bBðMÞi is the MC estimator (21) of Bi, or by any other advanced
simulation method to estimate Bi. The advantage of this simplified
estimator is that it requires a small number of calls of the function
g, namely 1þ 2ðNK þ NxÞ, instead of ð1þ 2NxÞð1þ 2NKÞ for (22), be-
cause only the first-order derivatives of g with respect ðx;KÞ at the
point ðx;0Þ are needed. In our industrial application the computa-
tional cost is dramatically reduced. In Section 3.5, we first illustrate
the accuracy of the method on a simple demonstration example,
where the probability PðxÞ and its derivatives are known analyti-
cally. In Section 3.6, we consider an academic example in the form
s for the derivatives of probability functions ..., European Journal of
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of a polynomial model (in x and in K). In Section 3.7, we apply the
method to an industrial case.

3.5. Application to a simple demonstration model

We consider a separable example where the exact values of PðxÞ
and its gradient are known, so that the evaluation of the perfor-
mance of the proposed simplified method is straightforward. We
consider the case where Nx ¼ 2;NK ¼ 5;n ¼ Nc ¼ 5; gpðx;KÞ ¼
fpðxÞ �Kp; cp ¼ 1, with fp given by

f1ðxÞ ¼ x1 þ x2;

f2ðxÞ ¼ x1 � x2;

f3ðxÞ ¼ �x1 þ x2;

f4ðxÞ ¼ �ðx1 þ 1Þ2 � ðx2 þ 1Þ2 þ 2;
f5ðxÞ ¼ �x1 � x2 � 1:

ð25Þ

In the non-random case K � 0, the admissible space is

A ¼ fx 2 RNx : fpðxÞ 6 cp; p ¼ 1; . . . ;Ncg;

which is the domain plotted in the left panel of Fig. 1. It is in fact the
limit of the probabilistic admissible set

A1�a ¼ fx 2 RNx : PðxÞP 1� ag; ð26Þ

when the variances of the Kp’s go to 0, whatever a 2 ð0;1Þ.
We consider the case where the Kp’s are iid zero-mean normal

random variables with standard deviation rp, with rp ¼ r ¼ 0:3
(Figs. 1 and 2). The figures show that the simplified MC estimator
for rPðxÞ is very accurate. The exact expression of PðxÞ is here
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Fig. 1. Left picture: Deterministic admissible domain A for the separable model of Sectio
of the exact expression of the probability (27). The arrows represent the gradient field r
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Fig. 2. The solid lines plot the level sets PðxÞ ¼ 0:1, 0.3, 0.5, 0.7 and 0.9 of the separable m
figure: the exact expression (27) of PðxÞ is used. Right figure: the MC estimator (11) of PðxÞ
the simplified MC estimation of rPðxÞ is approximately 2% (the maximal value of the n
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PðxÞ ¼
Y5

p¼1

U
cp � fpðxÞ

rp

� �
; ð27Þ

where U is the standard normal distribution function.

3.6. Application to a polynomial model

We consider a polynomial example in which the exact values of
the derivatives of PðxÞ are not known analytically. We consider the
case where Nx ¼ 2;NK ¼ 5;n ¼ Nc ¼ 5; cp ¼ 1, and gðx;KÞ is given by

g1ðx;KÞ ¼ ð1þ x2
1ÞK1 � x1K2 þK2

1;

g2ðx;KÞ ¼ x2K1 þ ð1þ x2
2ÞK2 þ x1K3 þ x1K

2
2;

g3ðx;KÞ ¼ �x2K2 þ ð1þ 2x2
1ÞK3 � ðx1 þ x2ÞK4 þ x2K

2
3;

g4ðx;KÞ ¼ ðx1 þ x2ÞK3 þ ð1þ 2x2
2ÞK4 þ ðx2 � x1ÞK5 þ x2

1K
2
4;

g5ðx;KÞ ¼ ðx1 � x2ÞK4 þ ð1þ x2
1 þ x2

2ÞK5 þ x2
2K

2
5:

We consider the case where the Kp are iid zero-mean normal ran-
dom variables with standard deviation rp � r, with r ¼ 0:1 (resp.
0.2, 0.3) in Fig. 3 (resp. 4, 5). In Figs. 3–5, we compare the results
of finite differences of full MC estimates (12) of the probability
PðxÞ (with M ¼ 105 and 105 calls of the function g) with the simpli-
fied MC estimates (that require only 15 calls of the function g). The
figures show that the simplified MC estimator (24) of rPðxÞ is very
accurate for r ¼ 0:1, but the quality of the estimation is slightly re-
duced for r ¼ 0:2 and becomes rather poor for r ¼ 0:3. As predicted
by our theory, the simplified MC estimator of the gradient is accu-
rate when r is small.
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n 3.5. Right picture: The solid lines plot the level sets PðxÞ ¼ 0:1, 0.3, 0.5, 0.7 and 0.9
PðxÞ. Here r ¼ 0:3.

 0.1

 0.1
 0.3

 0.5

 0.7

 0.9

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

 x 1

 x
 2

odel of Section 3.5 with r ¼ 0:3. The arrows represent the gradient fieldrPðxÞ. Left
and the simplified MC estimator (24) ofrPðxÞ are used, with M ¼ 5000. The error of

orm of rP is 2.68 and the maximal absolute error is 0.051).
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Fig. 3. The solid lines plot the level sets PðxÞ ¼ 0:1, 0.3, 0.5, 0.7 and 0.9 of the polynomial model of Subsection 3.6. The arrows represent the gradient field rPðxÞ. Left figure:
the full MC estimator (12) of PðxÞ and finite differences of the full MC estimator are used with M ¼ 105 (and 105 calls of the function g). Right figure: the MC estimator (11) of
PðxÞ and the simplified MC estimator (24) of rPðxÞ are used, with M ¼ 5000 (and 15 calls of the function g). The error of the simplified MC estimation of PðxÞ is of the order
of one percent (the maximal absolute error on the 9� 11 grid is 0.011). The error of the simplified MC estimation ofrPðxÞ is of the order of a few percent (the maximal value
of the norm of rP is 5.8 and the maximal absolute error is 0.39).
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Fig. 4. Same as in Fig. 3, but r ¼ 0:2. The error of the simplified MC estimation of PðxÞ is of the order of 2% (the maximal absolute error on the 9� 11 grid is 0.022). The error of
the simplified MC estimation of rPðxÞ is of the order of 10% (the maximal value of the norm of rP is 3.03 and the maximal absolute error is 0.51).
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3.7. Application to an industrial case

We have applied our method to a industrial case which consists
in optimizing some characteristic parameters of an aircraft at an
early stage of the design process, in which many external parame-
ters are still unknown. In this case, the function g is a big computer
routine, the dimension of the input parameters is Nx ¼ 6, the ran-
dom parameters form a set of NK ¼ 16 independent normal ran-
dom variables with means 0 and standard deviations 0.03 or 0.1,
and Nc ¼ 6 constraints are imposed.

More precisely, the six input parameters (on which optimiza-
tion will be carried out) are associated with aircraft parameters:
the sea level static reference thrust, the bypass ratio, the wing area,
etc.

The 16 random variables correspond to still-unknown or vari-
able parameters (operational empty weight, nominal landing
weight, etc.). The constraints deal with the take-off performance
domain (the aircraft must be able to take off at its maximum
weight within a limited distance), the landing performance domain
(the aircraft must be able to prepare its landing at a speed that
allows the pilot to control properly its trajectory and which is sup-
posed to allow the pilot to stop the aircraft after a distance which is
no longer than its take off field length), the en-route performance
domain (the aircraft must be able to start its cruise at a minimum
altitude), etc. The computations of the constraints g are the compu-
tationally expensive steps of the process. We can admit that the
function g is smooth (at least of class C2), but it is difficult to as-
sume anything more about this black box.
Please cite this article in press as: Garnier, J. et al., Asymptotic formula
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It turns out that the simplified estimator of the gradient of the
probability PðxÞ has given accurate results, allowing for a standard
quadratic penalization routine to be implemented. We here illus-
trate the accuracy of the method by considering a particular test
point x	 2 RNx . The probability Pðx	Þ is 0.372 (evaluated with the
full MC estimator (12)). We compare the estimations of the gradi-
entrPðx	Þ obtained on the one hand with the simplified MC meth-
od (24) and on the other hand with the full MC method (12) and
the finite-difference approximation (13). We report for each meth-
od the results of three independent simulations to illustrate the
dispersion of the results. The simplified MC estimator (24) for
the gradient of P gives:

drPðx	Þð ÞðMÞ ¼

6:5� 10�6

1:41� 10�2

1:27� 10�2

1:07� 10�2

�9:85� 10�2

4:87

0BBBBBBBBB@

1CCCCCCCCCA
;

6:7� 10�6

1:43� 10�2

1:29� 10�2

1:09� 10�2

�1:00� 10�1

4:90

0BBBBBBBBB@

1CCCCCCCCCA
;

6:7� 10�6

1:45� 10�2

1:29� 10�2

1:10� 10�2

�9:76� 10�2

5:10

0BBBBBBBBB@

1CCCCCCCCCA
;
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Fig. 5. Same as in Fig. 3, but r ¼ 0:3. The error of the simplified MC estimation of PðxÞ is of the order of 6% (the maximal absolute error on the 9� 11 grid is 0.063). The error of
the simplified MC estimation of rPðxÞ is of the order of 20% (the maximal value of the norm of rP is 2.24 and the maximal absolute error is 0.48).
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with M ¼ 5000, while the full MC method (with M ¼ 5000) gives:

drPðx	Þð ÞðMÞfullMC ¼

6:6� 10�6

1:28� 10�2

1:19� 10�2

1:06� 10�2

�1:19� 10�1

5:01

0BBBBBBBBB@

1CCCCCCCCCA
;

6:6� 10�6

1:27� 10�2

1:19� 10�2

1:04� 10�2

�1:06� 10�1

4:99

0BBBBBBBBB@

1CCCCCCCCCA
;

6:6� 10�6

1:22� 10�2

1:19� 10�2

1:05� 10�2

�1:18� 10�1

4:97

0BBBBBBBBB@

1CCCCCCCCCA
:

The difference between the simplified and full MC methods is that
the first method requires one to call g exactly 45 times and takes
a few minutes, while the second method requires one to call g
10,000 times and takes a few days. Besides, as we will see, it is
not possible to extend the full MC method to the estimation of
the Hessian of PðxÞ, because this would require a very high degree
of precision in the evaluations of Pðx	 � dekÞ, which means that a
very large number of calls of the function g should be used. On
the other hand, the simplified method can be extended almost
cost-free to the estimation of the Hessian, as we will see in the next
section.

As seen in Fig. 6, the simplified estimator (24) allows us to get in
a straightforward manner the gradient field of the probability PðxÞ.
 0.15
 0.2

 0.25

 0.3

 0.3

 0.35

 0.35

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

 x 5

 x
 6

Fig. 6. The solid lines plot the level sets PðxÞ ¼ 0:15, 0.2, 0.25, 0.3 and 0.35 of the industr
represent the gradient field ðox5 P; ox6 PÞðxÞ estimated with the simplified estimator (24)
normalize its modulus on the right figure to make the gradient direction more visible.
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4. The Hessian of the probability P(x)

The Hessian of the probability PðxÞ is needed (or can be useful)
in some advanced optimization routines. From now on we assume
that g is of class C3. Differentiating (14) with respect to x we obtain
the complete expression of the Hessian. This expression contains a
great many terms, including terms that involve third-order deriva-
tives of the form ðo3giÞðoKloxkoxmÞ, whose evaluations by finite-dif-
ferences or any other method would be very costly (about NKN2

x

calls of g). However, these terms have different orders of magni-
tude with respect to r (assuming that r is small). If we keep only
the higher-order terms, we get the following simplified expression

o2PðxÞ
oxkoxm

’
X

16i;j6n

DijðxÞ
oCi

oxk

oCj

oxm
; ð28Þ

for k;m ¼ 1; . . . ;Nx, where Dij is of order r�2 and ðoCiÞ=ðoxkÞ is of
order 1, so that the overall expression is of order r�2. Terms of order
r�1 and smaller have been neglected, as we show in the next
subsection.

4.1. Derivation of the simplified expression of the Hessian

To get the expression (28), we have noted that the x-derivatives
of the terms in the first sum in (14):Xn

i;j¼1

AijðxÞ
oCijðxÞ

oxk

are of order r�1, and the x-derivatives of the terms of the second
sum
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ial model of Section 3.7, when x5 and x6 are varying around the point x	 . The arrows
with M ¼ 5000. On the left figure the gradient field is plotted as it is, while we
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Xn

i¼1

BiðxÞ
oCiðxÞ
oxk

have contributions of order r�1, namely

Xn

i¼1

BiðxÞ
o2CiðxÞ
oxkoxm

;

and contributions of order r�2, namely

Xn

i¼1

oBiðxÞ
oxm

oCiðxÞ
oxk

;

that give (28). Indeed:

oBiðxÞ
oxm

¼
Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z CnðxÞ

�1

opCðxÞð�zi; zi ¼ CiðxÞÞ
oxm

d�zi

þ
X
j–i

Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z Cj�1ðxÞ

�1

Z Cjþ1ðxÞ

�1
� � �
Z CnðxÞ

�1

� pCðxÞð�zi;j; zi ¼ CiðxÞ; zj ¼ CjðxÞÞd�zi;j �
oCjðxÞ
oxm

;

where �zi ¼ ðz1; . . . ; zi�1; ziþ1; . . . ; znÞ and �zi;j ¼ ðz1; . . . ; zi�1; ziþ1;

. . . ; zj�1; zjþ1; . . . ; znÞ. The partial derivative of the probability density
can be written as

opCðxÞð�zi; zi ¼ CiðxÞÞ
oxm

¼
Xn

k;l¼1

opCð�zi; zi ¼ CiðxÞÞ
oCkl

����
C¼CðxÞ

oCklðxÞ
oxm

þ
opCðxÞð�zi; ziÞ

ozi

����
zi¼CiðxÞ

oCiðxÞ
oxm

:

The first sum is of order pC because ðopCÞ=ðoCklÞ is of order r�2pC

(see (19)) while ðoCklÞ=ðoxmÞ is of order r2.
The second sum is of order r�1pC because ðoCiÞ=ðoxmÞ is of order

1 while ðopCÞ=ðoziÞ is of order r�1pC:

o ln pCðzÞ
ozi

¼ �1
2

o

ozi
ðztC�1zÞ ¼ � ðz

tC�1Þi þ ðC
�1zÞi

2
¼ �ðC�1zÞi:

We only keep the second sum in the simplified expression:

oBiðxÞ
oxm

’
Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z CnðxÞ

�1
�

o ln pCðxÞ

ozi
ð�zi; zi ¼ CiðxÞÞ

� pCðxÞð�zi; zi ¼ CiðxÞÞd�zi �
oCiðxÞ
oxm

þ
X
j–i

Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z Cj�1ðxÞ

�1

Z Cjþ1ðxÞ

�1
� � �
Z CnðxÞ

�1

� pCðxÞð�zi;j; zi ¼ CiðxÞ; zj ¼ CjðxÞÞd�zi;j �
oCjðxÞ
oxm

:

The explicit expressions of DijðxÞ in (28) are the following ones.
When i < j:

DijðxÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj � C2

ij

q
� exp �1

2
CiðxÞ
CjðxÞ

� �t Cii Cij

Cij Cjj

� ��1 CiðxÞ
CjðxÞ

� � !

�
Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z Cj�1ðxÞ

�1

Z Cjþ1ðxÞ

�1
� � �
Z CnðxÞ

�1

� pCðxÞðz00jzi ¼ CiðxÞ; zj ¼ CjðxÞÞdn�2z00: ð29Þ

Here pCðz00jzi; zjÞ is the conditional density of the vector

Z00 ¼ ðZ1; . . . ; Zi�1; Ziþ1; . . . ; Zj�1; Zjþ1; . . . ; ZnÞ;
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given ðZi; ZjÞ ¼ ðzi; zjÞ. Therefore, pCðxÞðz00jzi ¼ CiðxÞ; zj ¼ CjðxÞÞ is the
density of the ðn� 2Þ-dimensional normal distribution with mean
~lðijÞðxÞ

~lðijÞk ðxÞ ¼
CkiðxÞ
CkjðxÞ

� �t CiiðxÞ CijðxÞ
CijðxÞ CjjðxÞ

� ��1 CiðxÞ
CjðxÞ

� �
; ð30Þ

k ¼ 1; . . . ; i� 1; iþ 1; . . . ; j� 1; jþ 1; . . . ;n, and covariance matrix
~CðijÞðxÞ

~CðijÞkl ðxÞ ¼ CklðxÞ �
CkiðxÞ
CkjðxÞ

� �t CiiðxÞ CijðxÞ
CijðxÞ CjjðxÞ

� ��1 CliðxÞ
CljðxÞ

� �
; ð31Þ

k; l ¼ 1; . . . ; i� 1; iþ 1; . . . ; j� 1; jþ 1; . . . ;n.
When i ¼ j:

DiiðxÞ ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pCii
p exp �CiðxÞ2

2Cii

 !Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z CnðxÞ

�1

� pCðxÞðz0jzi ¼ CiðxÞÞððC�1zÞiÞzi¼CiðxÞd
n�1z0:

The expression of DiiðxÞ can also be written as

DiiðxÞ ¼ �ðC�1ÞiiCiðxÞBiðxÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pCii
p

� exp �CiðxÞ2

2Cii

 !Z C1ðxÞ

�1
� � �
Z Ci�1ðxÞ

�1

Z Ciþ1ðxÞ

�1
� � �
Z CnðxÞ

�1

� pCðxÞðz0jzi ¼ CiðxÞÞ
X
k–i

ðC�1Þikz0k

 !
dn�1z0: ð32Þ

Here pCðz0jzi ¼ CiðxÞÞ is the density of the ðn� 1Þ-dimensional nor-
mal random vector with mean ~lðiÞðxÞ and covariance matrix ~CðiÞðxÞ
given by (17) and (18).

4.2. Monte Carlo estimation

Remember that the generation of any normal multivariate ran-
dom vector is essentially cost-free in our setting. Therefore, we use
the crude MC method to estimate (28), which is simply the expec-
tation of a function of a normal multivariate random vector. Once
again, it could be of interest here to use a more advanced simula-
tion technique than the crude MC method, but this does not affect
the computational cost which is defined as the number of calls of
the function g.

The MC estimator for DijðxÞ; i < j, is

bDðMÞij ðxÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjjðxÞ � C2

ijðxÞ
q

� exp �1
2

CiðxÞ
CjðxÞ

� �t CiiðxÞ CijðxÞ
CijðxÞ CjjðxÞ

� ��1 CiðxÞ
CjðxÞ

� � !

� 1
M

XM

l¼1

Yn

k¼1–i;j

1ð�1;CkðxÞ�ðZ
00ðlÞ
k Þ

" #
; ð33Þ

where ðZ001
ðlÞ
; . . . ; Z00i�1

ðlÞ
; Z00iþ1

ðlÞ
; . . . ; Z00j�1

ðlÞ
; Z00jþ1

ðlÞ
; . . . ; Z00n

ðlÞÞ; l ¼ 1; . . . ;M
is an iid sequence of ðn� 2Þ-dimensional normal random vectors
with mean ~lðijÞðxÞ and covariance matrix ~CðijÞðxÞ given by (30) and
(31).

The MC estimator for DiiðxÞ is

bDðMÞii ðxÞ ¼ �ðCðxÞ
�1ÞiiCiðxÞbBðMÞi ðxÞ �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pCiiðxÞ

p exp � CiðxÞ2

2CiiðxÞ

 !

� 1
M

XM

l¼1

X
k–i

ðCðxÞ�1ÞikZ0ðlÞk

 ! Yn

k¼1–i

1ð�1;CkðxÞ�ðZ
0ðlÞ
k Þ

" #
;

where ðZ01
ðlÞ
; . . . ; Z0i�1

ðlÞ
; Z0iþ1

ðlÞ
; . . . ; Z0n

ðlÞÞ, l ¼ 1; . . . ;M is an iid sequence
of ðn� 1Þ-dimensional normal random vectors with mean ~lðiÞðxÞ
s for the derivatives of probability functions ..., European Journal of
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given by (17) and covariance matrix ~CðiÞðxÞ given by (18). The same
sequence as the one used to construct the estimator bBðMÞi by (21) can
be used here for the estimator bDðMÞii . As a result, the MC estimator for
the Hessian of PðxÞ is

d
o2PðxÞ
oxkoxm

 !ðMÞ
¼

X
16i6j6n

bDðMÞij ðxÞ
oCi

oxk

oCj

oxm
: ð34Þ

To summarize, the estimation of the (simplified) Hessian (28) by the
MC estimator (34) does not require any additional call of the func-
tion g (compared to the estimation of the gradient), since only C, the
gradient of C, and the matrix C are needed.

4.3. Numerical illustrations

We illustrate the results with the separable model introduced in
Section 3.5. Figs. 7 and 8 show that the simplified MC estimator for
the Hessian of PðxÞ is very accurate. This means that, with
1þ 2ðNx þ NKÞ calls of the function g, we can get accurate esti-
mates of PðxÞ, its gradient and its Hessian.

Finally, we have implemented the MC estimation of the Hessian
of the probability PðxÞ to the industrial case described in Section
3.7. However, we cannot compare with the full MC method, be-
cause the computational cost of the full MC method to compute
the Hessian is prohibitive. In Fig. 9 we plot the diagonal Hessian
field ðo2

x5
P; o2

x6
PÞðxÞ to show that the method gives what seems to

be acceptable results.
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Fig. 7. The solid lines plot the level sets PðxÞ ¼ 0:1, 0.3, 0.5, 0.7 and 0.9 of the
separable model of Section 3.5 with r ¼ 0:3. The arrows represent the diagonal
Hessian field ðo2

x1
P; o2

x2
PÞðxÞ. Here the exact expression (27) of PðxÞ is used.
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Fig. 8. The solid lines plot the level sets PðxÞ ¼ 0:1, 0.3, 0.5, 0.7 and 0.9 of the separable
ðo2

x1
P; o2

x2
PÞðxÞ. Left figure: the exact expression (27) of PðxÞ is used. Right figure: the MC e

with M ¼ 5000 and 15 calls of the function g.
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5. Application to stochastic optimization

The goal is to solve

min
x2RNx

JðxÞ s:t:
PðxÞP 1� a and
gpðxÞ 6 cp; p ¼ nþ 1; . . . ;Nc

( )
: ð35Þ

The previous sections show how to compute efficiently PðxÞ, its gra-
dient and its Hessian. Therefore, the problem has been reduced to a
standard constrained optimization problem. Different techniques
have been proposed for solving constrained optimization problems:
reduced–gradient methods, sequential linear and quadratic pro-
gramming methods, and methods based on augmented Lagrangians
and exact penalty functions. Fletcher (1987) discusses constrained
optimization theory and sequential quadratic programming. Gill
et al. (1981) discuss reduced–gradient methods. Bertsekas (1982)
presents augmented Lagrangian algorithms.

Penalization techniques are well-adapted to stochastic optimi-
zation (Wang and Spall, 2003). The basic idea of the penalization
approach is to transform the constrained optimization problem
(35)into an unconstrained optimization problem of the form: min-
imize the function eJ defined byeJðxÞ :¼ JðxÞ þ qQðxÞ;

where Q : RNx ! R is the penalty function and q is a positive real
number, referred to as the penalty parameter. The qth order penal-
ization ðq P 2Þ uses the penalty function (Ruszczyński, 2006)

QðxÞ ¼ 1
q

XK

k¼1

maxf0; qkðxÞg
q
;

which is continuously differentiable with

rQðxÞ ¼
XK

k¼1

maxf0; qkðxÞg
q�1rqkðxÞ:

In our case, we have K ¼ Nc � nþ 1; q1ðxÞ ¼ 1� a� PðxÞ, and
qkðxÞ ¼ gkþn�1ðxÞ � ckþn�1; k ¼ 2; . . . ;K . The unconstrained problem
obtained by penalization can be solved using a gradient method
optimization. At each iteration k, k P 1, a descent direction dk of
the cost function eJ at the current state xk is determined. This direc-
tion has the form dk ¼ �Wkgk, where Wk is the current approxima-
tion of the inverse Hessian of the cost function at xk and gk is the
gradient of the cost function at xk. The iteration formula has the
form xkþ1 ¼ xk þ akdk, where ak is a step-size determined along
the direction dk by Wolfe conditions (Nocedal and Wright, 1999).

Example. We minimize the function JðxÞ ¼ ðx1 � 1Þ2 þ 4x2
2 þ 4

subject to the constraints described in Section 3.5, where the Kp

are independent normal random variables with means 0 and stan-
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Fig. 10. Minimization of J for the probability level 1� a ¼ 0:95. The left picture shows that the minimum is obtained at the level set 0.95. The right picture plots the cost
function and level set curves.
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Fig. 9. The solid lines plot the level sets PðxÞ ¼ 0:15, 0.2, 0.25, 0.3 and 0.35 of the model of Section 3.7, when x5 and x6 are varying around the point x	 . The arrows represent
the diagonal Hessian field ðo2
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dard deviations 0:1p; p ¼ 1; . . . ;5. Fig. 10 shows the result of the
optimization routine with quadratic penalization.
6. Conclusion

The original contribution of this paper consists of a rapid and
efficient method to estimate the gradient and Hessian of the
probability

PðxÞ ¼ Pðgpðx;KÞ 6 0;p ¼ 1; . . . ;NcÞ:

This method requires a very small number of calls of the constraint
functions gp, which makes it possible to implement an optimization
routine for the chance constrained problem. The method is based on
(1) particular probabilistic representations of the gradient and Hes-
sian of PðxÞ which can be obtained when the random vector K has
multivariate normal distribution and (2) asymptotic expansions of
these representations when the variances of the input random
parameters Ki are small. Straightforward MC estimators can then
be used for the estimations of these asymptotic expressions. More
advanced methods could be used for the estimation step, which
are available in the literature since the asymptotic expressions
can be expressed as expectations of functions of multivariate nor-
mal vectors.

It should be possible to extend the results to cases in which the
conditional distributions of the vector K given one or two entries
are explicitly known. The idea would be to use the general formu-
las of Kibzun and Uryasev (1998) for the gradients and to expand
these formulas for small variances.

The estimation method presented in this paper could also be
applied to the optimization of a random parameter, which is an-
other type of stochastic problem. Here the constraints are assumed
Please cite this article in press as: Garnier, J. et al., Asymptotic formula
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to be known, as well as the cost function, but the input vector
x 2 RNx is known only approximately. This problem models the
production of an object by a non-perfect machine and takes into
account the unavoidable imperfections of the production process.
In this case the probabilistic constraint has the form PðxÞP 1� a
with

PðxÞ ¼ PðfpðXðxÞÞ 6 0;p ¼ 1; . . . ;NcÞ; ð36Þ

where fp;p ¼ 1; . . . ;Nc are constraint functions, XðxÞ is a random vec-
tor with distribution function Wð� � xÞ:

PðXðxÞp 6 cp; p ¼ 1; . . . ;NxÞ ¼ Wðc1 � x1; . . . ; cNx � xNx Þ;

and W is the distribution function of a zero-mean random vector
that models the fluctuations of the production process. This proba-
bilistic constraint has the same form as (6), since it is possible to
write XðxÞ ¼ xþK with K a random vector with distribution func-
tion W, and then the probability (36) has the form

PðxÞ ¼ Pðgpðx;KÞ 6 0; p ¼ 1; . . . ;NcÞ; with gpðx;KÞ ¼ fpðxþKÞ:

If W is the distribution function of the multivariate normal distribu-
tion with mean 0 and covariance matrix K and if the variations of fp

can be linearized over hypercubes of the formQNx
i¼1½xi � 3ri; xi þ 3ri�, then we can apply the methodology de-

scribed in the paper.
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Appendix A. Complements on the simplified expression of the
gradient

In Section 3.4 we gave a presentation of the simplified expres-
sion (23) of the gradient based on order-of-magnitude consider-
ations. In this Appendix A, we provide rigorous estimates that
confirm this approximation.

We assume that the covariance matrix of K is of the form
K ¼ r2K0 with r� 1. Consequently, the matrix CðxÞ defined by
(9) is also of the form CðxÞ ¼ r2C0ðxÞ.

Estimate for the first sum in (14): We have

AijðxÞ ¼ �
1
2
ðC�1ÞjiPðxÞ þ

1
2

Z
ðC�1zÞiðC

�1zÞj
Yn

k¼1

1ð�1;Ck �ðzkÞpCðzÞd
nz:

Taking the absolute values

jAijðxÞj 6
1
2
jðC�1Þjij þ

1
4

Z
½ðC�1zÞi�

2pCðzÞd
nz

þ 1
4

Z
½ðC�1zÞj�

2pCðzÞd
nz;

and computing the last two terms of the right side gives

jAijðxÞj 6
1
2
jðC�1Þjij þ

1
4
ðC�1Þii þ

1
4
ðC�1Þjj:

Therefore, AijðxÞ is smaller than r�2:

jAijðxÞj 6
1
2
jðC�1

0 Þjij þ
1
4
ðC�1

0 Þii þ
1
4
ðC�1

0 Þjj
� �

1
r2 ;

andX
i;j

Ai;jðxÞ
oCijðxÞ

oxk

�����
����� 6X

i;j

1
2
jðC�1

0 Þjij þ
1
4
ðC�1

0 Þii þ
1
4
ðC�1

0 Þjj
� �

oC0 ijðxÞ
oxk

���� ����;
with the right side independent of r.

Estimate for the second sum in (14): Let us assume that the
deterministic admissible set

A ¼ x 2 RNx : CpðxÞP 0; p ¼ 1; . . . ;n
� 	

is not empty and that its complementary set is non-empty as well.
This is the typical situation in chance constrained programming.
This hypothesis means that, when the uncertainty is reduced to
zero, the admissible set is non-empty, which implies that the con-
strained optimization problem is well posed, and the admissible
set does not extend to RNx , which implies that the constrained opti-
mization problem is really constrained (note: as we show below, if
A ¼ ;, then PðxÞ ! 0 as r! 0 uniformly on the compact sets of RNx ,
which is not a situation interesting in chance constrained
programming).

Let us consider a point x	 that belongs to the boundary of A. For
such a point, there exists i such that Ciðx	Þ ¼ 0 and Cjðx	ÞP 0 for all
other j. Therefore, we have

Biðx	Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pCii
p

Z C1ðx	Þ

�1
. . .

Z Ci�1ðx	Þ

�1

Z Ciþ1ðx	Þ

�1
. . .

Z Cnðx	Þ

�1
p~Cðz0Þd

n�1z0

P
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pCii
p

Z 0

�1
. . .

Z 0

�1
p~Cðz0Þd

n�1z0;

with ~C given by (18). ~C is of the form ~C ¼ r2 ~C0 with ~C0 indepen-
dent of r2, so that

Biðx	ÞP
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pC0 ii

p Z 0

�1
. . .

Z 0

�1
p~C0
ðz0Þdn�1z0

" #
1
r
:
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This shows that BiðxÞ takes values which are typically of order r�1.
Since oCiðxÞ=oxk does not depend on r, this also shows that the sumXn

i¼1

BiðxÞ
oCiðxÞ
oxk

takes values of order r�1.
Remark: Let us briefly consider the situation in which A ¼ ;.

Let R > 0 and denote by BR the ball of RNx with center at 0 and ra-
dius R. We introduce

cR ¼ sup
x2BR

inf
p¼1;...;n

CpðxÞ; cR ¼ sup
x2BR

sup
p¼1;...;n

C0ppðxÞ:

The number cR is negative, since it is the supremum of a negative-
valued function over a compact set. The number cR is positive and
finite. We then have

sup
x2BR

PðxÞ 6 sup
x2BR

inf
p¼1;...;n

U
CpðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CppðxÞ

p !
6 U

cR

r ffiffiffiffifficR
p

� �
;

where U is the distribution function of the standard normal distri-
bution. As r! 0, the right side of this inequality goes to zero. This
calculation proves the assertion that, if A ¼ ;, then PðxÞ ! 0 as
r! 0 uniformly on the compact sets of RNx .
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