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The bright matter-wave soliton propagation through a barrier with a rapidly oscillating position is investi-
gated. The averaged-over rapid oscillations Gross-Pitaevskii equation is derived, where the effective potential
has the form of a finite well. Dynamical trapping and quantum tunneling of the soliton in the effective finite
well are investigated. The analytical predictions for the effective soliton dynamics is confirmed by numerical
simulations of the full Gross-Pitaevskii equation.
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I. INTRODUCTION

The dynamical localization and tunneling of quantum par-
ticles in oscillating in time potentials is one of the problems
of quantum mechanics that has attracted a lot of attention
recently �1,2�. In particular, it is interesting to study the lo-
calization and transmission phenomena under action of time-
dependent barriers. Indeed, experiments with dynamical tun-
neling of cold atoms in time-dependent barriers of the
multiplicative form f�t�V�x� show the possibility for the tun-
neling period control �3,4�. The theory is developed for lin-
ear wave packets in Ref. �5�. Soliton propagation through
such a barrier is investigated in Ref. �6�. Another interesting
problem is to consider a barrier with a rapidly oscillating
position, i.e., a potential of the form V�x− f�t��. In the linear
regime of propagation resonant effects are exhibited in the
transmission process of matter wave packets through an os-
cillating barrier �7,8�. The split of repulsive condensate under
a trap with an oscillating position has been investigated in
Ref. �9�. The dynamical localization of optical wave in the
array of periodically curved optical waveguides has been
demonstrated recently in Refs. �10,11�. This system is de-
scribed by a nonlinear Schrödinger- �NLS� type equation
with a periodic potential with an oscillating position. It is
therefore relevant to investigate the propagation of a nonlin-
ear wave packet and, in particular, the dynamical localization
of wave packets in barriers with time-dependent parameters.
We consider this problem for a bright matter-wave soliton in
an attractive Bose-Einstein condensate �BEC� in the presence
of a barrier potential with an oscillating position. Such a
barrier can be achieved by using a laser beam with a blue-
detuned far-off-resonant frequency. This generates a repul-
sive potential and the laser sheet plays the role of a mirror for
cold atoms. Such a laser sheet has been used to study the
bouncing of a BEC cloud off a mirror �12�. By moving the
position of the mirror we obtain an oscillating barrier.

In this paper we are mainly interested in the study of the
dynamical trapping of soliton in BEC with a rapidly oscillat-
ing barrier potential. The averaged-over rapid oscillations
Gross-Pitaevskii �GP� equation is derived in Sec. II, and we
show that the effective potential has the form of a finite well.
Applying a variational approach to this equation, we analyze

the conditions for soliton trapping by the effective potential
in Sec. III. The analytical predictions are checked by numeri-
cal simulations of the full GP equation in Sec. IV. We ana-
lyze carefully the case of broad solitons in Sec. V. In Sec. VI
we make the important remark that the management tech-
nique based on rapid oscillations of a barrier potential is very
flexible and allows the generation of asymmetric traps. As a
consequence, this technique can be used to investigate soli-
ton tunneling with sub-barrier energies as we now explain. In
Refs. �13,14� the topological soliton tunneling in an asym-
metric well with a finite barrier was investigated. In this
paper we analyze a similar problem for the NLS soliton case
and show that the tunneling in our case has the form of
continuous shedding of tunneling radiation by the soliton
�due mainly to the fact that the NLS soliton is the dynamical
soliton� and formation in the effective well of breather-type
solutions. This phenomenon represents a quantum evapora-
tion of the soliton from the dynamically generated potential.

II. AVERAGED GROSS-PITAEVSKII EQUATION

The BEC wave function � in a quasi-one-dimensional ge-
ometry is described by the GP equation,

i��T +
�2

2m
�XX − Vp�X − fp�T�,T�� − g1D���2� = 0,

where Vp�X ,T� is a barrier potential. Here g1D=2�as�� is
the one-dimensional mean-field nonlinearity constant, as is
the atomic scattering length, �� is the transverse oscillator
period, and a�=�� / �m��� is the transverse oscillator
length. Below we consider the case of BEC with attractive
interactions, i.e., as�0. To avoid collapse in the attractive
BEC, the condition �as�N /a��0.67 should be satisfied, with
N the number of atoms. The barrier potential has an oscillat-
ing position described by the zero-mean time-periodic func-
tion fp�T� with period Tp. We consider the case of a fast-
moving potential in the sense that �ª��Tp�1. We also
allow the barrier potential profile Vp�X ,T� to vary slowly in
time, i.e., with a rate smaller than ��. Introducing the stan-
dard dimensionless variables
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x =
�2X

a�

, t = ��T, u = ��as��, V =
Vp

���

,

we obtain the GP equation with a fast-moving potential

iut + uxx − V�x − f� t

�
	,t
u + 2�u�2u = 0, �1�

where

f�t� =
�2

a�

fp�Tpt�

is a periodic function with period 1 and mean 0. The small
parameter � describes the fast oscillation period in the di-
mensionless variables. We look for the solution in the form

u�x,t� = u�0��x,t,
t

�
	 + �u�1��x,t,

t

�
	 + �2u�2��x,t,

t

�
	 + ¯ ,

�2�

where u�0�, u�1�,…are periodic in the argument �= t /�. We
substitute this ansatz into Eq. �1� and collect the terms with
the same powers of �. We obtain the hierarchy of equations,

iu�
�0� = 0, �3�

iut
�0� + uxx

�0� − V�x − f���,t�u�0� + 2�u�0��2u�0� = − iu�
�1�, �4�

iut
�1� + uxx

�1� − V�x − f���,t�u�1� + 4�u�0��2u�1� + 2�u�0��2u�1�

= − iu�
�2�. �5�

The first equation �3� shows that the leading-order term u�0�

does not depend on �. The second equation �3� gives the
compatibility equation for the existence of the expansion �2�,

iut
�0� + uxx

�0� − �V�x − f�·�,t��u�0� + 2�u�0��2u�0� = 0,

where �·� stands for an average in �. Denoting

Veff�x� = 
0

1

V�x − f���,t�d� , �6�

we obtain the averaged GP equation

iut + uxx − Veff�x,t�u + 2�u�2u = 0. �7�

Equation �5� allows us to compute the first-order correction,
whose amplitude is of order �.

If, for example, f���=a sin�2���, then a straightforward
calculation shows that

Veff�x,t� = Keff � V�x,t� , �8�

where � stands for the convolution product �in x� and Keff is
given by

Keff�x� =
1

�

1
�a2 − x2

1�−a,a��x� . �9�

If, moreover, V�x , t� is a deltalike potential centered at a
position x0�t� that moves slowly in time, then

Veff�x,t� = Keff�x − x0�t��

is a moving double-barrier potential. By this way, one can
generate a moving trap potential to manage the soliton posi-
tion.

III. VARIATIONAL APPROACH FOR THE SOLITON
MOTION

In the absence of effective potential Veff=0 the NLS equa-
tion �7� supports soliton solutions of the form

u0�x,t� = 2	
ei2
�x−xs�t��+4i�
2+	2�t

cosh�2	�x − xs�t���
,

with xs�t�=xs�0�+4
t. In the presence of a stationary poten-
tial Veff�x�, the soliton dynamics can be studied by perturba-
tion techniques. Applying the first-order perturbed inverse
scattering transform �IST� theory �17�, we obtain the system
of equations for the soliton amplitude and velocity

d	

dt
= 0,

d


dt
= −

1

4	
W	��xs�,

dxs

dt
= 4
 ,

where the prime stands for a derivative with respect to x and
W	 has the form

W	�x� = 	
−�

� 1

cosh2�z�
Veff�x −

z

2	
	dz = K	 � Veff�x� ,

�10�

K	�x� =
2	2

cosh2�2	x�
. �11�

Therefore, we can write the effective equation describing the
dynamics of the soliton center as a quasiparticle moving in
the effective potential W	0

,

	0
d2xs

dt2 = − W	0
� �xs� , �12�

where 4	0 is the mass �number of atoms� of the initial soli-
ton. This system has the integral of motion

	0

2
�dxs

dt
	2

+ W	0
�xs� = 8	0
0

2, �13�

where 4
0 is the velocity of the initial soliton. Note that the
first-order perturbed IST takes into account the nonlinear
wave nature of the soliton, but neglects radiations phenom-
ena by considering that the matter wave remains in the form
of a soliton with time-dependent coefficients �velocity, cen-
ter, and phase�. This approach gives the same result as the
adiabatic perturbation theory for solitons, which is a first-
order method as well. This adiabatic perturbation theory was
originally introduced for optical solitons �18,19� and it was
recently applied to matter-wave solitons �20�.

The quasiparticle effective potential W	 is given by
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W	�x� = �K	 � Keff� � V�x� .

In the case where f���=a sin�2���, the kernel Keff is given
by Eq. �9� and the Fourier transform of the quasiparticle
potential has the explicit form

Ŵ	�k� =
�kJ0�ka�

2 sinh��k

4	
	 V̂�k� ,

where V̂ is the Fourier transform of the reference potential V.
The effective quasiparticle potential is plotted in Fig. 1 for a
Gaussian barrier potential V. The potential W	 has a local
minimum at x=0 between two global maxima that are close
to x= ±a. The trap amplitude is

�W	 = max
x

W	�x� − W	�0� .

Let us consider an input soliton at x=0 with parameters
�	0 ,
0�. If the initial soliton velocity is large enough, then
the soliton escapes the trap. There is a critical value 
c for
the initial soliton velocity parameter 
0 defined by


c
2 =

�W	0

8	0
, �14�

which determines the type of motion.
�1� If �
0��
c then the soliton is trapped. Its motion is

oscillatory between the positions ±xf defined by

W	0
�xf� − W	0

�0� = 8	0
0
2. �15�

�2� If �
0�
c, then the soliton motion is unbounded. It
escapes the trap and reaches the asymptotic velocity param-
eter 
a given by


a
2 =

W	0
�0�

8	0
+ 
0

2, �16�

which shows that the transmitted soliton velocity is larger
than the initial soliton velocity.

As we shall see in the numerical simulations, if the initial
soliton parameters are close to the critical case �
0��
c,
then radiation effects become non-negligible. The construc-
tion of an efficient trap requires one to generate a barrier
potential V that is high enough so that �W	0

is significantly
larger than 8	0

2
0.

Finally, if the potential V is not stationary but has an
explicit time-dependence, such as a drift, then the adiabatic
equations derived in this section still hold true if the time-
dependence is slow enough.

IV. NUMERICAL SIMULATIONS FOR DYNAMICAL
LOCALIZATION

In this section we show the motion of a soliton with initial
parameters 	0=
0=0.25 �the soliton velocity is 1�. The ref-
erence barrier potential is V�x�=10 exp�−x2 /4�. Note that in
this case, �W	0

�0.323 and 
c�0.4. Therefore, the quasi-
particle approach predicts trapping.

In Fig. 2 the modulated potential is V�x−10 sin�50t�� �sta-
tionary trap�. Here �=2� /50�0.126 and we check by full
numerical simulations of the GP equation �1� that � is small
enough to ensure the validity of the theoretical predictions
based on the averaged GP equation �7�. We plot the soliton
profile and the soliton mass, which shows that radiative ef-
fects are very small. We also compare the soliton motion
obtained by the numerical simulations with the one predicted
by the quasiparticle approach, which shows very good agree-
ment.

In Fig. 3 the modulated potential is V�x−10 sin�50t�
−0.25t� �moving trap, with velocity 0.25�. We plot the soli-
ton profile and the soliton mass, which shows that radiative
effects are very small.

In Fig. 4 the modulated potential is V�x−10 sin�50t�
+0.25t� �moving trap, with velocity −0.25�. Radiation effects
are small, but not completely negligible. It can be seen that
some radiation is transmitted through the edges of the effec-
tive double-barrier trap. We then double the potential ampli-
tude and consider 2V�x−10 sin�50t�+0.25t�. The new simu-
lation is shown in Fig. 5, where radiation effects are seen to
be negligible.

In Fig. 6 we show the motion of a soliton with initial
parameters 	0=0.25 and 
0=0.5 �the soliton velocity is 2�.
Since we have �W	0

�0.323 and 
c=0.4, the quasiparticle
approach predicts unbounded motion. The results of the nu-
merical simulations confirm this prediction. We can observe
that half the initial soliton mass is transmitted through the
effective barrier during the first interaction, and the transmit-
ted soliton has a velocity that is larger than 4
0.

Let us estimate the typical values of the parameters for an
experimental configuration. We consider the case of a con-
densate with 7Li atoms in the a cigar-shaped trap potential
with ��=2��1 kHz. In this case, �=2� /50 corresponds to

−20 −10 0 10 20
0

0.5

1

1.5

2

2.5
V
ef
f

x
−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

∆ Wν

W
ν

x

FIG. 1. Effective potentials Veff�x� for the
averaged equation �7� and W	�x� for the
quasiparticle motion �12�. Here 	=0.25, V�x�
=10 exp�−x2 /4�, and f���=10 sin�2���.
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1/Tp=50 kHz. The barrier height is V0=10���. The number
of atoms can be taken as N�103 for the scattering
length as=−0.2 nm. The transverse oscillator length is
a�=1.2 
m, so the barrier width is d�2 
m and the
oscillations amplitude of the barrier position is L�10 
m.
The velocity is normalized by the sound velocity, which is
c�4 mm/s, so the soliton velocity parameter 
0=0.25 cor-
responds to a velocity equal to c.

V. BROAD SOLITON DYNAMICS

If the soliton is broad and its width becomes comparable
to �or larger than� the width of the trap generated by the
effective potential Veff, in the sense that 2	a�1, then the
quasiparticle potential W	 does not present any local mini-
mum �see Fig. 7�. Indeed, by Eq. �10� the quasiparticle po-
tential W	 is the convolution of the effective potential with
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FIG. 2. Soliton profile in a nar-
row trap V�x−10 sin�50t�� �top
left�. Mass decay �top right�. Bot-
tom: Soliton motion predicted
by the quasiparticle approach
�dashed� and observed in the nu-
merical simulations �solid�.
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FIG. 3. Soliton profile in a narrow moving trap
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the convolution kernel K	, which is a sech �2� function
scaled by 	. As a result, for large 	, i.e., for narrow soliton,
the quasiparticle potential W	�x� resembles the effective po-
tential Veff�x�. For small 	, i.e., for broad soliton, the convo-
lution with K	 smooths the trap, the local minimum is
washed out, and the quasiparticle potential has the form of a
broad Gaussian barrier centered at 0. In this case, a soliton
centered at 0 with a nonzero velocity escapes the trap. A
soliton centered at 0 with initial zero velocity 
0=0 has a
different dynamics. The quasiparticle approach predicts an
absence of motion. However, for long times, the soliton
emits radiation and then becomes a Gaussian-type breather
whose width periodically oscillates in the trap Veff. After a
long time of the order of a few thousands, these oscillations
are damped and the solution converges to a stationary
Gaussian-type wave function. The periodic oscillations and
the asymptotic Gaussian wave function can be predicted ana-
lytically. The effective potential Veff can be fitted by the qua-
dratic trap

Veff�x� = V0 + V1x2, �17�

where

V1 =
1

2
Veff� �0� = −

1

4�
 V̂�k�K̂eff�k�k2dk

= −
1

4�
 V̂�k�J0�ka�k2dk .

In the linear approximation the width of a stationary Gauss-
ian wave function u�x�=u� exp�−x2 /x�

2 � in the quadratic trap
�17� is

x� = �2V1
−1/4. �18�

This result is in good agreement with the numerically ob-
served asymptotic wave function in Fig. 8, where x��5. It is
possible to take into account both the cubic nonlinearity and
the quadratic trap by using the variational approach with a
chirped Gaussian ansatz �21�,

u�x,t� = A�t�exp�−
x2

w�t�2 + ib�t�x2
 .

Substituting this ansatz into the average Lagrangian of Eq.
�7� with Eq. �17� and equating to zero its variations, we
arrive at the following variational equation for the width w:
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FIG. 5. Soliton profile in the moving trap 2V�x−10 sin�50t�
+0.25t� �top�. Mass decay �bottom�.
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wtt =
16

w3 −
8E

��w2
− 4V1w , �19�

where the conserved quantity is the number of atoms
E=��u�2dx=�� /2�A�2�t�w�t�. This second-order ordinary dif-
ferential equation describes the periodic oscillations of the
wave function observed in the numerical simulations of Fig.
8. It can be used also to predict the width of the stationary
Gaussian wave function u�x�=u� exp�−x2 /x�

2 � in the nonlin-
ear regime,

x� = 25/4�u�
2 + �u�

4 + 8V1�−1/2,

which is very close to the value �18� obtained in the linear
approximation.

VI. ASYMMETRIC TRAPS AND QUANTUM TUNNELING

It is possible to generate asymmetric potentials by the
management technique discussed in the paper. For instance,
if the barrier position f��� is of the form

f��� = a −
a

2
�1 + sin�2����2,

then the convolution kernel in Eq. �8� is given by

Keff�x� =
1

2�

1

�a − x�3/4��2a − �a − x�1/2
1�−a,a��x� .

The corresponding effective potential Veff and quasiparticle
potential W	�x� for a Gaussian barrier potential V are plotted
in Fig. 9, which shows the existence of an asymmetric trap.

The dynamics of a soliton in such a trap is very similar to
the one in a symmetric trap. In particular, if the initial soliton
is centered at 0 with zero velocity, then we do not observe
any soliton tunneling. As shown in Fig. 10 the soliton emits
radiation that escapes the effective trap Veff and transforms
into a breather whose center corresponds to the minimum of

the effective trap Veff. The breather slowly converges to a
stationary Gaussian-type wave function.

It is relevant to compare these results with recent works
on soliton tunneling with sub-barrier energies �13,14�. The
motion of topological soliton in an asymmetric potential well
with a finite barrier has been investigated. When the width of
the well is larger than the soliton width and the width or
height of the barrier is large, the soliton dynamics is the one
of a classical particle. When the soliton width is comparable
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with the well width, soliton tunneling with sub-barrier ki-
netic energies can be observed. Our observations show that,
if the NLS soliton is narrow, then soliton tunneling is absent,
which is analogous to the topological soliton dynamics case
�13�. Increasing the soliton width we observe the continuous
shedding of a small amount of radiation from the soliton,
which leads to the formation of a breather-type solution that
exists for long times in the dynamically generated potential.

VII. CONCLUSION

In conclusion we have studied the propagation of a bright
matter-wave soliton through a barrier potential with a rapidly
oscillating position. We have shown that the soliton can be
dynamically trapped by such a potential if its width is
smaller than the trap width and if its initial velocity is below
a critical value predicted by the perturbed IST theory. If the
soliton width is comparable to the trap width and its initial

velocity is zero, then tunneling radiation emission leads to
the generation of a breather in the effective trap.

It would be interesting to extend this model to the case of
a standing well and an oscillating barrier with a large oscil-
lation amplitude. In this case the effective potential has the
form of a well between two opaque barriers. Applying the
results obtained in Ref. �15� we can expect for the transmis-
sion of the nonlinear matter waves such phenomena as the
instability and quantum turbulence on the time scale of the
quantum dwell time in the well. Another physically relevant
system is an oscillating barrier enclosed in a broad well. The
effective potential in this case simulates a three-well, two-
barrier heterostructure and effective nonlinearities can ex-
hibit chaotic dynamics in the tunneling process �16�. These
problems require a separate investigation.
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