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We predict theoretically and numerically the existence of incoherent dispersive shock waves. They

manifest themselves as an unstable singular behavior of the spectrum of incoherent waves that evolve in a

noninstantaneous nonlinear environment. This phenomenon of ‘‘spectral wave breaking’’ develops in the

weakly nonlinear regime of the random wave. We elaborate a general theoretical formulation of these

incoherent objects on the basis of a weakly nonlinear statistical approach: a family of singular integro-

differential kinetic equations is derived, which provides a detailed deterministic description of the

incoherent dispersive shock wave phenomenon.
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Introduction.—Shock waves play an important role in
many different branches of physics [1]. When dissipative
effects are negligible, the shock wave formation is regu-
larized, owing to dispersion, through the onset of rapidly
oscillating nonstationary structures, the so-called disper-
sive shock waves (DSWs) or undular bores [2]. DSWs have
been constructed mathematically [3] long ago, after pio-
neering investigations in the fields of tidal waves [4] and
collisionless (extremely rarefied) plasma [5–7]. It is only
recently, however, that DSWs have emerged as a general
signature of singular fluid-type behavior in areas as differ-
ent as Bose-Einstein condensed atoms [8], nonlinear optics
[9,10], oceanography [11], quantum liquids [12], nonlinear
chains or granular materials [13], and electrons [14].
Although DSWs are, generally speaking, nonsolitonic
slow modulations of fast periodic waves emerging from
a gradient catastrophe [3,15], in specific cases they can
exhibit pure multisoliton content [6,11,14,16], yet with
solitons emerging only after the breaking time (distance).

A natural question concerns the effect of disorder on
DSWs. So far, only the role of structural disorder of the
medium has been investigated [17], while perfectly deter-
ministic (coherent) wave amplitudes are assumed as in
the rest of the literature body. Our aim in this Letter is to
address the opposite problem, namely, the evolution of
incoherent (random) waves in deterministic (homogene-
ous) media, showing that they can exhibit DSWs of a
fundamental different nature than their coherent counter-
part. Specifically, we show that incoherent DSWs manifest
themselves as a wave-breaking process (‘‘gradient catas-
trophe’’) only in the spectral dynamics of the incoherent
field that evolves in a noninstantaneous nonlinear environ-
ment. These incoherent DSWs develop in the highly inco-
herent regime of the random wave, in which linear
dispersive effects dominate nonlinear effects. This allows
us to develop a general theoretical formulation of incoher-
ent DSWs on the basis of a weakly nonlinear statistical
approach. The theory reveals that that these incoherent

objects are described, as a general rule, by singular
integro-differential kinetic equations (SIDKE), which pro-
vide a detailed description of the mechanism underlying
the formation, or viceversa the inhibition, of spectral
incoherent shocks. This theoretical approach also reveals
unexpected links with the 3D vorticity equation in incom-
pressible fluids [18], or the integrable Benjamin-Ono (BO)
equation [19] originally derived in hydrodynamics for
stratified fluids and investigated in the semiclassical
(coherent breaking) limit recently [20].
We present the theory in the context of nonlinear optics

because fibers [21,22] and waveguides [23] turn out to be
ideal experimental test beds for our predictions, thanks to
the easily tailorable noninstantaneous response via the
well-known Raman effect, as well as other recently inves-
tigated mechanisms involving liquid cores or photoioniz-
able noble gases and surface plasmon polaritons [24].
Nevertheless, given the universality of the nonlinear
Schrödinger equation (NLSE), incoherent DSWs shed
new light on singular nonequilibrium behaviors of a large
variety of turbulent wave systems [25,26]. Furthermore,
our kinetic approach finds applications in biological sys-
tems in the framework of the Lotka-Volterra equation [27],
which is known as a key model for the coupled dynamics
of competing biological species.
NLSE simulations.—The starting point is the NLSE

accounting for a noninstantaneous nonlinearity

i@zc ¼ ��@ttc þ c
Z

Rðt� t0Þjc j2ðt0Þdt0; (1)

where the response function RðtÞ satisfies the causality
condition RðtÞ ¼ 0 for t < 0, and the typical width of
RðtÞ denotes the nonlinear response time, �R. The problem
has been normalized with respect to the ‘‘healing

time’’�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffij�jLnl

p
, where � is the dispersion coefficient

[� ¼ signð�Þ], Lnl ¼ 1=ð��Þ the nonlinear length, � the
nonlinear coefficient, and � the wave intensity. The dimen-
sional variables can be recovered through the substitution
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c ! c
ffiffiffiffi
�

p
, t ! t�0, z ! zLnl. In the following, we con-

sider the highly incoherent (i.e., weakly nonlinear) regime
where Ld � Lnl (or equivalently tc � �0), Ld ¼ t2c=j�j
being the dispersion length and tc the time correlation of
the random field c ðz; tÞ. It is in this regime that incoherent
DSWs develop, at variance with conventional coherent
DSWs, which occur in the opposite nonlinear regime,
Ld � Lnl. According to linear response theory, the real
and imaginary parts of the Fourier transform of RðtÞ satisfy
the Kramers-Kronig relations. The imaginary part is an
odd function known as the nonlinear spectral gain, g! ¼
Im½R1

0 RðtÞe�i!tdt� [inset of Fig. 1(b)]. Its typical width

denotes the natural spectral scale of the problem,
�!g � ��1

R .

In the Supplemental Material [28], we report the theory
of incoherent DSWs developed for a general form of the
response function, RðtÞ ¼ HðtÞ �RðtÞ, where �RðtÞ is a smooth
function while the Heaviside function HðtÞ ensures the
causality property. We illustrate the theory by considering
two physically relevant examples of response functions,
which, respectively, induce and inhibit the formation of
incoherent shock waves. We first present numerical simu-
lations of the NLSE with the example of the damped
harmonic oscillator response, which is known to model a
great variety of nonlinear systems (e.g., the Raman effect),
�RðtÞ ¼ ½ð1þ �2Þ=ð��RÞ� sinð�t=�RÞ expð�t=�RÞ. Figure 1
reports a typical evolution of a broad initial spectrum of the
incoherent wave, �! � �!g [tc � �R, see the inset in

Fig. 1(b)]. The initial condition is a Gaussian-shaped
spectrum with random spectral phases; i.e., c ðz ¼ 0; tÞ is
of zero mean and characterized by fluctuations that are

stationary in time. The broad spectrum exhibits a global
collective deformation on a spectral scale much larger
than �!g, which means that the system exhibits a kind

of ‘‘long-range interaction in frequency space’’[29]. This
evolution features a pronounced self-steepening of the
spectrum at low frequencies, with spectral wave breaking
being ultimately regularized by the onset of fast large-
amplitude spectral oscillations (‘‘incoherent dispersive
shock’’). This behavior is reminiscent of the conventional
phenomenon of DSWs studied for coherent wave ampli-
tudes. Here, the DSW takes place within a genuine inco-
herent wave and manifests itself solely in the spectral
domain, while in the temporal domain, the random field
exhibits stationary fluctuations [see inset in Fig. 1(c)].
Importantly, the incoherent DSWs develop irrespective of
the sign of � ¼ �1 (i.e., in the focusing or defocusing
regime), a feature which is consistent with the weakly
nonlinear regime and the theory developed below. Note
that the rapid oscillatory spectral wave train induced by the
shock cannot be interpreted in this case as a soliton train.
Indeed, contrary to the dynamics ruled by integrable
models where the solitons quickly stabilize as they emerge
[16,20], here the spectral peaks continue to exhibit an
adiabatic growth and temporal narrowing even over long-
term evolution after the catastrophe [see Fig. 1(d)].
Incoherent DSWs develop also in the presence of a

spectral background and even when the spectrum is a
hole, as shown in Fig. 2. In this case, features analogous
to those widely studied for coherent DSWs [30,31] are
exhibited by the incoherent wave in the spectral domain.
The evolving spectrum gives rise indeed to an expansion
(rarefaction) wave on the leading edge and a gradient
catastrophe on the trailing edge, which is resolved by an
expanding dispersive wave train, both features being fully
captured by our theory based on SIDKEs.
In general, the experimental observation of these inco-

herent DSWs is readily accessible by exploiting the natural
Raman effect in photonic crystal fibers pumped, e.g.,
by supercontinuum sources [32] (see the Supplemental
Material [28]).
Singular integro-differential kinetic equations.—The in-

coherent wave evolves in the weakly nonlinear regime
(Ld � Lnl) and thus preserves a Gaussian statistics during
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FIG. 1 (color online). (a) Numerical simulation of the NLSE
(1): the stochastic spectrum j ~c j2ð!; zÞ develops a DSW at z ’
1200 (�R ¼ 3, � ¼ 1, � ¼ 1). Snapshots at z ¼ 1040 (b), z ¼
1400 (c): NLSE outcome (tiny gray) is compared with KE
[Eq. (2)] (green), SIDKE [Eq. (3)] (dashed red), and input (solid
black). (d) First five maxima of n! vs z in the long-term
postshock dynamics: the spectral peaks keep evolving, revealing
the nonsolitonic nature of the incoherent DSW. Insets: (b) gain
spectrum g!; note that �!g � �!; (c) corresponding temporal

profile jc ðtÞj2 showing the incoherent wave with stationary
statistics.
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FIG. 2 (color online). Incoherent DSW from a darklike input
spectrum with background noise (solid black) at (a) z ¼ 6� 103

and (b) z ¼ 40� 103. NLSE (1), tiny gray; KE (2), green; BO
Eq. (4), dashed red. Here �R ¼ 2, � ¼ 1, � ¼ 1.
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the whole shock (a property that we have verified through
the analysis of the kurtosis and the probability density
function of the random wave). To get physical insight
into incoherent DSWs, we thus resort to a weakly nonlinear
statistical approach. On the basis of the random phase
approximation, one obtains a closure of the hierarchy
of moments equations [22,33]: the averaged spectrum of
the wave, n!ðzÞ ¼

R
Bðz; �Þe�i!�d�, where Bðz; �Þ ¼

hc ðz; t� �=2Þc �ðz; tþ �=2Þi is the correlation function,
evolves according to the kinetic equation (KE)

@zn! ¼ 1

�
n!

Z þ1

�1
g!�!0n!0d!0: (2)

This equation conserves N ¼ R
n!ðzÞd! and S ¼R

log½n!ðzÞ�d!. It has been recently considered to

describe spectral incoherent solitons in optics [22]. A
similar equation was considered in plasma physics to
describe weak Langmuir turbulence and stimulated
Compton scattering [26,34,35].

To grasp the properties of incoherent DSWs, we now
look for a reduction of the KE (2) in the regime �R � 1
(i.e., �R � �0 in dimensional units). For this purpose, we
stress the fact that, because of the causality condition of the
response function RðtÞ, its Fourier transform necessarily
decays algebraically at infinity [35,37]. In the example of
the harmonic oscillator response, the spectral gain decays
as g! � 1=!3, while for the exponential response dis-
cussed below g! � 1=!. This algebraic behavior leads to
divergent integrals in the mathematical derivation.We solve
this tricky problem by accurately addressing the singular-
ities involved in the convolution integral of the KE (2). The
rigorous mathematical proof underlying the derivation of
the SIDKEs is reported in detail in the Supplemental
Material [28] for a general form of the response function.
The theory reveals that, as a rule, a singular integro-
differential operator arises systematically in the derivation
of the reduced KE (SIDKE), though under different forms
describing linear or nonlinear dispersive effects, as well as
purely nonlinear effects. The theory is validated by the
excellent agreement exhibited by the numerical simulations
of the NLSE, KE, and SIDKEs obtained without using any
adjustable parameters in all cases.

We first consider the example of the damped harmonic
oscillator response. In this case, the KE (2) can be written
without any approximations in the form of a SIDKE

�2R@zn!¼ð1þ�2Þ
�
n!@!n!� 1

�R
n!H@2!n!þ 1

�2R
I½n!�

�
;

(3)

where I ¼ ½n!=ð��Þ�
R1
0 ½@3!n!þu=�R þ @3!n!�u=�R��

GðuÞdu, with GðuÞ ¼ R1
u ðFðvÞ � �=vÞdv, FðuÞ¼

��=2�ð1=2Þ½varctanðvÞ�ð1=2Þlogð1þv2Þ�uþ�
u��, and the

singular operator H refers to the Hilbert transform,
H fð!Þ ¼ ��1P

Rþ1
�1ðfð!� uÞ=uÞdu, where P denotes

the Cauchy principal value. In the regime �R � 1, the
SIDKE (3) describes the essence of incoherent DSWs
shown in Fig. 1. The leading-order term is reminiscent of

the inviscid Burgers equation and thus drives the formation
of the shock. The singularity is subsequently regularized
by the second nonlinear dispersive term involving the
Hilbert operator. The last (1=�2R) term plays a negligible
role in the development of the incoherent shock, while it
becomes comparable to the other terms in the long-term
postshock dynamics [see Fig. 1(d) and the Supplemental
Material [28]].
BO kinetic equation.—When the incoherent wave

evolves in the presence of a significant background spectral
noise, n!ðzÞ ¼ n0 þ ~n!ðzÞ, a multiscale expansion with
~n!ðzÞ � n0=�R leads to the SIDKE (see the Supplemental
Material [28])

�2R@z~n! � ð1þ �2Þn0@!~n!
¼ ð1þ �2Þ

�
~n!@!~n! � 1

�R
n0H@2!~n!

�
: (4)

Equation (4) has the form of the integrable BO equation,
which was originally derived to model internal waves in
stratified fluids [19]. Here, it unexpectedly provides the
deterministic description of the spectral dynamics of inco-
herent shocks illustrated in Figs. 2 and 3. In particular, the
case illustrated in Fig. 3 is reminiscent of the ‘‘solitonic’’
DSWobtained for the BO equation with positive initial data
vanishing at infinity [20] (as it is the case for ~n! ¼ n! � n0
at z ¼ 0, in Fig. 3). Indeed, the peaks of the wave train
evolve into genuine BO solitons (see the Supplemental
Material [28]), which, at variance with those of the ‘‘non-
solitonic’’ DSW described by the nonintegrable SIDKE (3)
and discussed in Fig. 1, are stabilized by the presence of the
spectral background. From a more general perspective, the
derivation of the deterministic SIDKEs paves the way for
the analysis of spectral incoherent DSWs in a way analo-
gous to conventional coherent DSWs. For instance, one
can consider the Bohr-Sommerfeld limit of the inverse
scattering [1,38] to study the distribution function for
soliton amplitudes in the wave train by using the semiclas-
sical quantization rule from the BO equation or by means
of a modulation theory.
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FIG. 3 (color online). (a), (b) Solitonic incoherent DSW in the
presence of a background noise (harmonic oscillator response):
the shock is regularized by the emission of incoherent BO
solitons. NLSE (1), tiny gray; KE (2), green; BO Eq. (4), dashed
red; input spectrum (solid black). [�R ¼ 5, � ¼ 1, � ¼ 1, (a)
z ¼ 3� 105, (b) z ¼ 7� 105].
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We remark that, in the regime �R � 1 and assuming that
the wave spectrum evolves in the presence of a strong
background noise, a heuristic derivation of the Korteweg–
de Vries (KdV) equation was considered in the context of
plasma physics [26,35,36], although the possible existence
of shocks was not discussed there. A derivation taking into
account the algebraic decay of g! reveals that the validity
of the KdV equation is limited to a gain spectrum which
decays faster than g! � 1=!5 as ! ! �1 (see Ref. [33]
and the Supplemental Material [28]). As discussed above,
usual physical response functions do not lead to such
rapidly decaying spectral gains. A decay faster than
gð!Þ � 1=!5 would require, e.g., an artificial response
function of the form, �RðtÞ � t� expð�t=�RÞ with � 	 3
[37]. This reveals that the KdV equation is not appropriate
to describe incoherent DSWs.

Inhibition of incoherent shocks.—The KdV equation
would also lead to the erroneous conclusion that incoherent
shocks occur unconditionally, irrespective of the form of
the response function RðtÞ. In contrast, we show here that
DSWs can be inhibited. We illustrate this by considering
the widespread example of a purely exponential response
function, �RðtÞ ¼ expð�t=�RÞ=�R. In the regime �R � 1,
we obtain the SIDKE (see the Supplemental Material [28])

�R@zn!¼�n!Hn!� 1

�R
n!@!n!þ 1

2�2R
n!H @2!n!: (5)

Note that the second-order Burgers term produces a shock
toward the high-frequency components (!> 0), so that the
leading-order term is the only one liable to produce a shock.

The first term of the rhs of Eq. (5) was considered as a
one-dimensional model of the vorticity formulation of the
3D Euler equation of incompressible fluid flows [18]. A
detailed analysis of this first term reveals that it does not
produce a shock (see Ref. [18] and the Supplemental
Material [28]). If the initial condition is Lorentzian,
n0! ¼ N!0=½�ð!2

0 þ!2Þ�, then the spectrum propagates

as a solitary-wave solution, n!ðzÞ ¼ N!0=½�ð!2
0 þ ð!�

~czÞ2Þ� with ~c ¼ �N=ð2��RÞ. If the initial condition decays
faster than a Lorentzian and vanishes at ! ¼ !c, the spec-
trum exhibits a genuine collapse at zc ¼ �2�R=ðHn0!¼!c

Þ
[18]. In this case, the last term in Eq. (5) will ultimately
regularize the singularity. If the initial condition decays
without ever vanishing, then the spectrummoves at velocity
~c, while its peak amplitude increases according to
�4�2R=½z2n0ð! ¼ ~czÞ�, a property remarkably confirmed
by the simulations of the NLSE [see Fig. 4(a)].

Periodic behavior.—This collapselike behavior changes
in a dramatic way when the incoherent wave evolves in the
presence of a significant spectral background. A multiscale
expansion with n!ðzÞ ¼ n0 þ ~n!ðzÞ and ~n!ðzÞ � n0=�R
(see the Supplemental Material [28]) leads to the SIDKE

�R@z~n! ¼ �ðn0 þ ~n!ÞH ~n! � 1

�R
ðn0 þ ~n!Þ@!~n!

þ n0
2�2R

H@2!~n!: (6)

Since n0 � ~n!ðzÞ, the spectral dynamics of the incoherent
wave is dominated by the first linear term in the rhs of
Eq. (6), which admits the following analytical solution:

~n!ðzÞ ¼ cosðn0z=�RÞ~n0! � sinðn0z=�RÞH ~n0!; (7)

where ~n0! ¼ ~n!ðz ¼ 0Þ refers to the initial condition. This
unexpected periodic behavior of the incoherent spectrum
has been found in quantitative agreement with the simula-
tions of the whole SIDKE (6), as well as with those of the
KE (2) and the NLSE (1), as remarkably illustrated in
Figs. 4(b) and 4(c).
Conclusion.—We have reported the existence of inco-

herent DSWs, as well as collapselike and periodic behav-
iors in the spectral dynamics of incoherent waves. The
great generality of our mathematical treatment suggests
that these phenomenons could be found in a disparate area
of nonlinear science. For instance, the discrete version of
the KE (2) recovers a form of the Lotka-Volterra equation,
@tnj ¼ nj

P
igjini with gji ¼ �gij, where njðtÞ denotes the

temporal evolution of the population of the jth biological
species (or chemical reacting component) [27]. For a
nearest-neighbor predator-prey interaction (which maps
the limit �R � 1), the numerical simulations indicate the
existence of a ‘‘discrete shock’’ effect whose ‘‘wave break-
ing’’ is regularized by the formation of discrete oscillations
(see the Supplemental Material [28]).
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