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Abstract. It is well known that the travel time or even the full Green’s function between two
passive sensors can be estimated from the cross correlation of recorded signal amplitudes generated
by ambient noise sources. It is also known that the direction of the energy flux from the noise
sources affects the estimation of the travel time. Using the stationary phase method we show here
that the travel time can be effectively estimated when the ray joining the two sensors continues into
the noise source region. We extend this analysis to passive sensor imaging of reflectors with different
ambient noise source configurations by suitably migrating the cross correlations. If in addition there
is multiple scattering in the medium then reflectors can be imaged with passive sensor networks or
arrays by migrating suitable fourth-order cross correlations. Fourth-order cross correlations can also
be used with auxiliary passive sensors in order to enhance travel time estimation in a scattering
medium.
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1. Introduction. The travel time between two sensors in an inhomogeneous
medium can be estimated using the coherent signals emitted by an impulse point
source and recorded by them. It can also be estimated using the ambient incoherent
noise by computing the cross correlation of noisy signals recorded by the sensors. The
ambient noise is generated by sources that are randomly distributed in space and are
statistically stationary in time. The cross correlation of signal amplitudes contains
information about the Green’s function of the wave equation from which the travel
time can be obtained. The background propagation velocity can then be estimated
from the travel times between sensors in a network covering the region of interest.

The first application of this technique was carried out in seismology where the
sensors were seismic stations recording velocity fields, the noise sources came from the
nonlinear interaction of the ocean swell with the coast that generates surface waves
[34], and the goal was to obtain an estimate of the background velocity map of a large
part of the Earth. The idea of exploiting the ambient noise and using the cross corre-
lation of noisy signals to retrieve information about travel times was first proposed in
helioseismology and seismology [18, 24, 31]. It has been applied to background veloc-
ity estimation from regional to local scales [21, 32, 20], volcano monitoring [29, 12, 11],
and petroleum prospecting [17]. In randomly layered media, correlation methods for
imaging are analyzed in [19]. When the support of the random noise sources extends
over all space and they are uncorrelated, that is, their correlation is a delta function,
it has been shown that the derivative of the cross correlation of the recorded signals
is the symmetrized Green’s function between the sensors [26]. This is also true with
spatially localized noise source distributions provided the waves propagate within an
ergodic cavity [15, 16, 2]. At the physical level this result can be obtained in both
open and closed environments provided that the recorded signals are equipartitioned
[22, 37, 25, 33, 23]. In an open environment this means that the recorded signals
are an uncorrelated and isotropic superposition of plane waves of all directions. In
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a closed environment it means that the recorded signals are superpositions of nor-
mal modes with random amplitudes that are statistically uncorrelated and identically
distributed.

In many applications, however, the noise source distribution is spatially limited
and the recorded signals are not equipartitioned. As a result, the waves recorded
by the sensors are dominated by the flux coming from the direction of the noise
sources. The cross correlations of the recorded signals depend on the orientation of
these sensors relative to the direction of the energy flux. This affects significantly the
quality of the estimate for the Green’s function. It is good when the line between the
sensors is along the direction of the energy flux and bad when it is perpendicular to
it [34].

In this paper we use the stationary phase method to analyze the estimation of the
travel time between two sensors from the cross correlation of recorded noisy signals.
This asymptotic approach is valid when the decoherence time of the noise sources is
small compared to the travel time between the two sensors. Using this formulation
we analyze the dependence of the estimate of the travel time on the orientation of the
ray between the sensors to the direction of the energy flux from the noise sources.

We extend the stationary phase analysis to passive sensor imaging of reflectors
with different noise source configurations. In the presence of reflectors, the cross
correlations between any two sensors have, in addition to the main peaks at the travel
times between them, other peaks at lag times related to travel times from the sensors
to the reflectors. We analyze in detail the relation between the secondary peaks in the
cross correlations and travel times between sensors and reflectors for different spatial
noise source distributions. With this information we show how to image the reflectors
by migrating truncated correlations. If we have sensor data both with and without
the reflectors then we can migrate differences of the cross correlations. The resolution
of the images depends in an essential way on the support of the ambient noise source
distribution relative to both the locations of the sensors and the reflectors. These
results are obtained in a medium with a deterministic, smoothly varying background.

If there is multiple scattering in the medium, as in a randomly inhomogeneous
medium, reflectors can still be imaged with passive sensor networks or arrays by
migrating suitable fourth-order cross correlations. In addition to the primary peak
at the travel time between the sensors and the secondary peaks at the travel times
between sensors and reflectors, the cross correlation function has a long oscillatory
tail, a coda, due to the multiple scattering. This coda is difficult to distinguish from
the fluctuations in the correlation due to the noise sources. Following the coherent
interferometric imaging ideas developed for broadband deterministic pulses in [8], we
form space-time local cross correlations of the cross correlations and migrate them.
The space-time window over which these local fourth-order cross correlations are
computed is determined adaptively as described in [8].

Using the stationary phase method we also show that the travel time between
two sensors can be estimated even in unfavorable situations provided that special
fourth-order correlation functions with auxiliary sensors are used. By unfavorable we
mean that the main component of the energy flux from the noise sources is roughly
perpendicular to the ray connecting the two sensors. It is essential that there is scat-
tering in the medium in order that the fourth-order correlations can be used effectively
for enhancing travel time estimation between the two sensors. This result explains
analytically how the iterated cross correlation technique proposed by Campillo and
Stehly [13] works.



Passive Imaging Using Cross Correlations 3

The paper is organized as follows. In Sections 2-3 we present the approach to
travel time estimation and imaging using cross correlations of noisy signals. In Sec-
tions 4-5 we analyze in detail the cross correlation technique. We study the relation
between the cross correlation and the Green’s function in Section 4. In Section 5 we
use the stationary phase method to analyze the estimation of the travel time from the
cross correlation function. In Section 6 we show how this technique can be used for
imaging reflectors using only passive sensors. We show how iterated cross correlations
can be used for imaging in a scattering medium in Section 7, and for travel time
estimation in Section 8.

2. Random sources, random scattering and wave cross correlations.
The wave fields that are recorded by various sensors and are then cross correlated
have properties that are inherited from the nature of the sources that generate them
as well as from the environment in which they propagate. Analytically the simplest
case is that of wave fields due to random sources in a homogeneous medium, which
we discuss in the next subsection. We then discuss wave field cross correlations in
strongly and weakly scattering media in Subsection 2.2.

2.1. Wave cross correlations in a homogeneous medium with random
sources. Let u(t,x1) and u(t,x2) denote the time-dependent wave fields recorded by
two sensors at x1 and x2. Their cross correlation function over the time interval [0, T ]
with time lag τ is given by

CT (τ,x1,x2) =
1
T

∫ T

0

u(t,x1)u(t+ τ,x2)dt . (2.1)

In a homogeneous medium, if the source of the waves is a space-time stationary
random field that is also delta correlated in space and time then it has been shown
[33, 26] that

∂

∂τ
CT (τ,x1,x2) ' G(τ,x1,x2)−G(−τ,x1,x2) , (2.2)

where G is the Green’s function. This approximate equality holds for T sufficiently
large and provided some limiting absorption is introduced to regularize the integral. It
is briefly analyzed mathematically in Subsection 4.3. The main point here is that the
time-symmetrized Green’s function can be obtained from the cross correlation if there
is enough source diversity. In this case the wave field at any sensor is equipartitioned,
in the sense that it is a superposition of uncorrelated plane waves of all directions.
We can recover in particular the travel time τ(x1,x2) from the singular support of
the cross correlation.

The configuration (Figure 2.1) in which the spatial support of the noise sources
extends over all space is rarely encountered in practice. Significant departures from
this ideal situation occur when limited spatial diversity of the sources introduces
directivity into the recorded fields, which affects the quality of the estimate of the
Green’s function. If, in particular, the source distribution is spatially localized, then
the flux of wave energy is not isotropic, and the cross correlation function is not
symmetric (Figure 2.2). In some situations it may be impossible to distinguish the
coherent part of the cross correlation function, which contains information about the
travel time (Figure 2.3). A mathematical analysis is given in Section 5 using the
stationary phase method.
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Fig. 2.1. When the spatial support of the noise sources (circles) extends over all space then the
cross correlation function is symmetric. The positive and negative parts correspond to the Green’s
function between x1 and x2 and its anti-causal counterpart, respectively.
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Fig. 2.2. When the distribution of noise sources is spatially localized then the cross correlation
function is not symmetric.

2.2. Wave cross correlations in a scattering medium. In the case of a
spatially localized distribution of noise sources, directional diversity of the recorded
fields can be enhanced if there is sufficient scattering in the medium. An ergodic cavity
with a homogeneous interior is a good example (Figure 2.4, right): Even with a source
distribution that has very limited spatial support, the reverberations of the waves
in the cavity generate interior fields with high directional diversity [15, 2]. Multiple
scattering of waves by random inhomogeneities can also lead to wave field equipartition
if the transport mean free path is short compared to the distance from the sources
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Fig. 2.3. When the distribution of noise sources is spatially localized then the coherent part of
the cross correlation function can be difficult or even impossible to distinguish if the axis formed by
the two sensors is perpendicular to the main direction of energy flux from the noise sources.
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Fig. 2.4. Configurations in which wave fields have directional diversity. An ergodic cavity (left
figure) and a randomly inhomogeneous medium (right figure).

to the sensors [30, 21, 27]. The transport mean free path is the propagation distance
over which wave energy transport in a scattering medium is effectively isotropic. In
such a scattering medium (Figure 2.4, left), the inhomogeneities can be viewed as
secondary sources in the vicinity of the sensors.

If in a random medium the transport mean free path is short compared to the
distance between the sensors, then the cross correlation function still gives an estimate
of the Green’s function, which is itself random because of the medium. However, its
coherent part that has information about the travel time is essentially unobservable.
The travel time can be estimated in a random medium when the noise sources are
spatially limited provided that (i) the transport mean free path is short compared to
the distance between the sources and the sensors, and (ii) it is long compared to the
distance between the sensors.

3. Background velocity estimation and imaging. In this section we con-
sider the two main reasons for estimating travel times from cross correlations. The first
one, to which most of the recent work in geophysics is devoted, concerns background
velocity estimation and is presented in Subsection 3.1. The second one concerns
imaging of reflectors using passive sensor networks and arrays. This is presented in
Subsection 3.2. In Subsection 3.3 we discuss how iterated cross correlation techniques
can be used in scattering media both for imaging and background velocity estimation.
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3.1. Background velocity estimation. From the travel times between sensors
in a network we can estimate tomographically the background propagation velocity
[3]. In seismic imaging, velocity estimation is usually done by other methods [35, 5].
It is clear that the density and topology of the sensor network, as well as the quality
of the travel times estimates, influence the spatial resolution and the accuracy of the
reconstructed velocity map. Tomographic travel time velocity analysis was applied
successfully for surface-wave velocity estimation in Southern California [28], in Tibet
[38], and in the Alps [34].

3.2. Array and distributed passive sensor imaging. The main purpose of
this paper is to show that travel time estimation using cross correlations can also
be used for passive sensor imaging. Consider an array of passive sensors located at
(xj)j=1,...,N , which record signals emitted by random sources, and point reflectors
located at (zr,j)j=1,...,Nr . The recorded signals are denoted u(t,xj), j = 1, . . . , N . In
imaging we want to estimate the locations of the reflectors from this data set. If the
impulse response matrix P (xj ,xl, t) of the sensor network is known, even partially,
then the usual migration techniques [5, 14] that back propagate the impulse responses
numerically in a fictitious medium give estimates of the locations of the reflectors.
Knowing the impulse response matrix requires, however, an active, broadband sensor
network. This is because each sensor must emit an impulse that propagates in the
medium and is then recorded by all the sensors. In Section 6 we show how the impulse
response matrix of a sensor network with passive sensors can be estimated from the
matrix of cross correlations

CT (τ,xj ,xl) =
1
T

∫ T

0

u(t,xj)u(t+ τ,xl)dt , j, l = 1, . . . , N . (3.1)

In the presence of reflectors, the structure of the cross correlation between two
sensors is more complex because it has additional peaks at arrival times between the
sensors and the reflectors. These peaks are, however, relatively weak. In order that
they can be effective in migration imaging we must either mask the main peaks at the
travel times between the sensors, or subtract them if we have available sensor cross
correlations in the absence of the reflectors.

Background velocity estimation is a preliminary step in implementing travel time
migration, which is done numerically in a background medium with the estimated
velocity. It is important to have some knowledge of the background velocity of the
medium so that the numerical back propagation of the cross correlations will focus
with good resolution near the correct reflector locations.

3.3. Interferometric travel time estimation and imaging in scattering
media with iterated cross correlations. Another contribution presented here, in
Section 7, is the use of iterated cross correlations to image reflectors in a scattering
medium. By a scattering medium we mean a large collection of small random scat-
terers which we do not want to image, but which generate multiply scattered waves.
As a result, the structure of the Green’s functions and, therefore, that of the cross
correlations is more complex. In addition to the singular components corresponding
to the arrival of the direct waves and of the waves interacting with the reflectors,
which we want to image, the Green’s functions and the cross correlations have long
incoherent tails, or coda, that come from the multiply scattered waves.

When migrating these cross correlations numerically using the estimated back-
ground velocity, the resulting images are distorted and have a lot of speckles. The
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reason for this is that the coda due to the multiple scattering is also migrated. It
is not possible to remove the coda from the cross correlations because the singular
components due to the reflectors are buried in it. A natural way to reduce the adverse
effects of multiple scattering is to use iterated cross correlations, after removing the
principal singular components corresponding to the arrival times between the sensors.
In order to be effective, the calculation of the iterated cross correlations must be done
over adaptively estimated space-time windows as is done in coherent interferometric
imaging (CINT) [8]. Adaptive CINT was introduced for active array and distributed
sensor imaging in a scattering medium when the impulse response matrix is known. In
Section 7 we describe how CINT can be used for passive array imaging in a scattering
medium.

Multiple scattering can be advantageous in estimating the travel time between
sensors because it enhances the directional diversity of the wave fields. The enhanced
diversity is, however, in the incoherent coda of the cross correlations. In order to
exploit it we can use iterated cross correlations with auxiliary sensors as suggested
by Campillo and Stehly [13]. This iterated cross correlation technique is analyzed in
Section 8 using the stationary phase method.

4. Extracting the Green’s function from the cross correlation.

4.1. The wave equation with noise sources. We consider the solution u of
the wave equation in a d-dimensional inhomogeneous medium:

1
c2(x)

∂2u

∂t2
−∆xu = nε(t,x) . (4.1)

The term nε(t,x) models a random distribution of noise sources. It is a zero-mean
stationary (in time) Gaussian process with autocorrelation function

〈nε(t1,y1)nε(t2,y2)〉 = F ε(t2 − t1)Γ(y1,y2) . (4.2)

Here 〈·〉 stands for statistical average with respect to the distribution of the noise
sources. We assume that the decoherence time of the noise sources is much smaller
than typical travel times between sensors. If we denote with ε the (small) ratio of
these two time scales, we can then write the time correlation function F ε in the form

F ε(t2 − t1) = F
( t2 − t1

ε

)
, (4.3)

where t1 and t2 are scaled relative to typical sensor travel times. The Fourier transform
F̂ ε of the time correlation function is a nonnegative, even real-valued function. It is
proportional to the power spectral density of the sources:

F̂ ε(ω) = εF̂ (εω) , (4.4)

where the Fourier transform is defined by

F̂ (ω) =
∫
F (t)eiωtdt . (4.5)

The spatial distribution of the noise sources is characterized by the auto-cova-
riance function Γ. It is the kernel of a symmetric nonnegative definite operator. For
simplicity, we will assume that the process n is delta-correlated in space:

Γ(y1,y2) = θ(y1)δ(y1 − y2) , (4.6)
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where θ characterizes the spatial support of the sources. It is possible to consider a
more general form for the spatial auto-covariance function, as in [2], but this compli-
cates the calculations without changing the results qualitatively.

4.2. Statistical stability of the cross correlation function. The stationary
solution of the wave equation has the integral representation

u(t,x) =
∫ ∫ t

−∞
nε(s,y)G(t− s,x,y)dsdy

=
∫ ∫

nε(t− s,y)G(s,x,y)dsdy , (4.7)

whereG(t,x,y) is the time-dependent Green’s function. It is the fundamental solution
of the wave equation

1
c2(x)

∂2G

∂t2
−∆xG = δ(t)δ(x− y) , (4.8)

starting from G(0,x,y) = ∂tG(0,x,y) = 0 (and continued on the negative time axis
by G(t,x,y) = 0 ∀t ≤ 0).

The empirical cross correlation of the signals recorded at x1 and x2 for an inte-
gration time T is

CT (τ,x1,x2) =
1
T

∫ T

0

u(t,x1)u(t+ τ,x2)dt . (4.9)

It is a statistically stable quantity, in the sense that for a large integration time T , CT

is independent of the realization of the noise sources. This is stated in the following
proposition proved in Appendix A.

Proposition 4.1. 1. The expectation of CT (with respect to the distribution of
the sources) is independent of T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2) , (4.10)

where C(1) is given by

C(1)(τ,x1,x2) =
∫
dy

∫
dsds′G(s,x1,y)G(τ + s+ s′,x2,y)F ε(s′)θ(y) , (4.11)

or equivalently by

C(1)(τ,x1,x2) =
∫
dy

∫
dωĜ(ω,x1,y)Ĝ(ω,x2,y)F̂ ε(ω)e−iωτθ(y) . (4.12)

2. The empirical cross correlation CT is a self-averaging quantity:

CT (τ,x1,x2)
T→∞−→ C(1)(τ,x1,x2) , (4.13)

in probability with respect to the distribution of the sources. More precisely, the fluc-
tuations of CT around its mean value C(1) are of order T−1/2 for T large compared
to the decoherence time of the sources. The asymptotic covariance function of CT is
given by (A.4).

Both expressions (4.11) and (4.12) will be used in the following sections.
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4.3. Emergence of the Green’s function for an extended distribution
of sources in a homogeneous medium. We give an elementary proof of the re-
lation between the cross correlation and the Green’s function when the medium is
homogeneous with background velocity c0 and the source distribution extends over
all space, i.e. θ ≡ 1, as in Figure 2.1. In this case the signal amplitude diverges be-
cause the contributions from noise sources far away from the sensors are not damped.
For a well-posed formulation we need to introduce some dissipation, so we consider
the solution u of the damped wave equation:

1
c20

( 1
Ta

+
∂

∂t

)2

u−∆xu = nε(t,x) . (4.14)

A somewhat different form of the following proposition, with delta-correlated in time
sources and with a different definition of dissipation, can be found in [26].

Proposition 4.2. In a three-dimensional open medium with dissipation and if
the source distribution extends over all space θ ≡ 1, then

∂

∂τ
C(1)(τ,x1,x2) = −c

2
0Ta

4
e−

|x1−x2|
c0Ta

[
F ε ∗G(τ,x1,x2)− F ε ∗G(−τ,x1,x2)

]
, (4.15)

where ∗ stands for the convolution in τ and G is the Green’s function of the homoge-
neous medium without dissipation:

G(t,x1,x2) =
1

4π|x1 − x2|
δ
(
t− |x1 − x2|

c0

)
.

If the decoherence time of the sources is much shorter than the travel time (i.e.,
ε� 1), then F ε behaves like a Dirac distribution in (4.15) and we have

∂

∂τ
C(1)(τ,x1,x2) ' e−

|x1−x2|
c0Ta

[
G(τ,x1,x2)−G(−τ,x1,x2)

]
,

up to a multiplicative constant. It is therefore possible to estimate the travel time
τ(x1,x2) = |x1 − x2|/c0 between x1 and x2 from the cross correlation, with an accu-
racy of the order of the decoherence time of the noise sources.

Proof. The Green’s function of the homogeneous medium with dissipation is:

Ga(t,x1,x2) = G(t,x1,x2)e−
t

Ta .

The cross correlation function is given by (4.11):

C(1)(τ,x1,x2) =
∫
dy

∫
dsds′Ga(s,x1,y)Ga(τ + s+ s′,x2,y)F ε(s′) .

Integrating in s and s′ gives

C(1)(τ,x1,x2) =
∫

dy
16π2|x1 − y| |x2 − y|

e−
|x1−y|+|x2−y|

c0Ta F ε
(
τ− |x1 − y| − |x2 − y|

c0

)
.

We parameterize the locations of the sensors by x1 = (h, 0, 0) and x2 = (−h, 0, 0),
where h > 0, and we use the change of variables for y = (x, y, z): x = h sin θ coshφ , φ ∈ (0,∞) ,

y = h cos θ sinhφ cosψ , θ ∈ (−π/2, π/2) ,
z = h cos θ sinhφ sinψ , ψ ∈ (0, 2π) ,
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whose Jacobian is J = h3 cos θ sinhφ(cosh2 ψ− sin2 θ). Using the fact that |x1−y| =
h(coshφ− sin θ) and |x2 − y| = h(coshφ+ sin θ), we get

C(1)(τ,x1,x2) =
h

8π

∫ ∞

0

dφ sinhφ
∫ π/2

−π/2

dθ cos θe−
2h cosh φ

c0Ta F ε
(
τ +

2h sin θ
c0

)
.

After the new change of variables u = h coshφ and s = (2h/c0) sin θ, we obtain

C(1)(τ,x1,x2) =
c20Ta

32πh
e−

2h
c0Ta

∫ 2h/c0

−2h/c0

F ε
(
τ + s

)
ds .

By differentiating in τ , we get

∂

∂τ
C(1)(τ,x1,x2) =

c20Ta

32πh
e−

2h
c0Ta

[
F ε

(
τ +

2h
c0

)
− F ε

(
τ − 2h

c0

)]
,

which is the desired result since |x1 − x2| = 2h. �

4.4. Emergence of the Green’s function for an extended distribution of
sources in an inhomogeneous medium. The cross correlation function is closely
related to the symmetrized Green’s function from x1 to x2 not only for a homogeneous
medium but also for inhomogeneous media, as discussed in the introduction. Here
we give a simple and rigorous proof for an open inhomogeneous medium in the case
in which the noise sources are located on the surface of a sphere that encloses both
the inhomogeneous region and the sensors, located at x1 and x2. The proof is based
on an approximate identity that follows from Green’s identity and the Sommerfeld
radiation condition. This approximate identity can be viewed as a version of the
Helmholtz-Kirchhoff integral theorem (known in acoustics [4, p. 473] and in optics
[10, p. 419]) and it is also presented in [36].

Proposition 4.3. Let us assume that the medium is homogeneous with back-
ground velocity ce outside the ball B(0, D) with center 0 and radius D. Then, for any
x1,x2 ∈ B(0, D) we have for L� D:

Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) =
2iω
ce

∫
∂B(0,L)

Ĝ(ω,x1,y)Ĝ(ω,x2,y)dσ(y) . (4.16)

Proof. We consider the equation satisfied by the time-harmonic Green’s function
with the source at x2 and the complex conjugate form of this equation with the source
at x1:

∆yĜ(ω,y,x2) +
ω2

c2(y)
Ĝ(ω,y,x2) = −δ(y − x2) ,

∆yĜ(ω,y,x1) +
ω2

c2(y)
Ĝ(ω,y,x1) = −δ(y − x1) .

We multiply the first equation by Ĝ(ω,y,x1) and subtract the second equation mul-
tiplied by Ĝ(ω,y,x2):

∇y ·
[
Ĝ(ω,y,x1)∇yĜ(ω,y,x2)− Ĝ(ω,y,x2)∇yĜ(ω,y,x1)

]
= Ĝ(ω,y,x2)δ(y − x1)− Ĝ(ω,y,x1)δ(y − x2)

= Ĝ(ω,x1,x2)δ(y − x1)− Ĝ(ω,x1,x2)δ(y − x2) ,
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where we have used the reciprocity property Ĝ(ω,x2,x1) = Ĝ(ω,x1,x2). We next
integrate over the ball B(0, L) and use the divergence theorem:∫

∂B(0,L)

n ·
[
Ĝ(ω,y,x1)∇yĜ(ω,y,x2)− Ĝ(ω,y,x2)∇yĜ(ω,y,x1)

]
dσ(y)

= Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) ,

where n is the unit outward normal to the ball B(0, L), which is n = y/|y|. The
Green’s function also satisfies the Sommerfeld radiation condition

lim
|y|→∞

|y|
d−1
2

( y
|y|

· ∇y − i
ω

ce

)
Ĝ(ω,y,x1) = 0 ,

uniformly in all directions y/|y|. Under the conditions stated in the proposition,
we can substitute i(ω/ce)Ĝ(ω,y,x2) for n · ∇yĜ(ω,y,x2) in the surface integral over

∂B(0, L), and−i(ω/ce)Ĝ(ω,y,x1) for n·∇yĜ(ω,y,x1), which gives the desired result.
Note that it is important that the medium be homogeneous in the exterior of the

ball B(0, D) in order be able to use the radiation condition. �

The right side of the Helmholtz-Kirchhoff identity (4.16) is related to the represen-
tation (4.12) of the cross correlation function C(1) in the Fourier domain. Therefore,
by substituting (4.16) into (4.12) we get the following corollary.

Corollary 4.4. We assume that
1) the medium is homogeneous with background velocity ce outside the ball B(0, D)
with center 0 and radius D,
2) the sources are localized with a uniform density on the sphere ∂B(0, L) with center
0 and radius L.
If L� D, then for any x1,x2 ∈ B(0, D)

∂

∂τ
C(1)(τ,x1,x2) = −F ε ∗G(τ,x1,x2) + F ε ∗G(−τ,x1,x2) , (4.17)

up to a multiplicative factor. Here ∗ stands for convolution in τ .
If in addition we have ε � 1, then F ε behaves approximately like a delta distri-

bution acting on the Green’s function and we get the form (2.2).
In proving the identity (2.2) in the previous subsections it was necessary that the

noise source distribution generate an isotropic field at the sensors, coming from all
directions. In the next sections we will consider cases in which this isotropy condition
is not fulfilled.

5. Stationary phase analysis for travel time estimation with spatially
localized noise sources. We study in this section the cross correlation function
when the support of the sources is spatially limited. We assume that the fluctuations
of the medium parameters are modeled by a smooth background velocity profile c0(x)
which is homogeneous outside a large sphere that encloses the sensors and the sources.
The outgoing time-harmonic Green’s function Ĝ0 of the medium is the solution of

∆xĜ0(ω,x,y) +
ω2

c20(x)
Ĝ0(ω,x,y) = −δ(x− y) , (5.1)

along with the radiation condition at infinity. When the background is homogeneous
with constant wave speed c0 and wavenumber k = ω/c0, then the homogeneous out-
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going time-harmonic Green’s function is

Ĝ0(ω,x,y) =
eik|y−x|

4π|y − x|
(5.2)

in three-dimensional space, and

Ĝ0(ω,x,y) =
i

4
H

(1)
0

(
k|y − x|

)
(5.3)

in two-dimensional space. Here H(1)
0 is the zeroth order Hankel function of the first

kind. Using the asymptotic form of the Hankel function [1, formula 9.2.3], we see that
the high-frequency behavior of the Green’s function is related to the homogeneous
medium travel time |x− y|/c0:

Ĝ0

(ω
ε
,x,y

)
∼ 1
|x− y|(d−1)/2

ei ω
ε
|x−y|

c0

For a general smoothly varying background with propagation speed c0(x), the high-
frequency behavior of the Green’s function is also related to the travel time and it is
given by the WKB (Wentzel-Kramers-Brillouin) approximation [6]

Ĝ0

(ω
ε
,x,y

)
∼ a(x,y)ei ω

ε τ(x,y) , (5.4)

which is valid when ε� 1. Here the coefficients a(x,y) and τ(x,y) are smooth except
at x = y. The amplitude a(x,y) satisfies a transport equation and the travel time
τ(x,y) satisfies the eikonal equation. It is a symmetric function τ(x,y) = τ(y,x) and
it can be obtained from Fermat’s principle

τ(x,y) = inf
{
T s.t.∃ (Xt)t∈[0,T ] ∈ C1 , X0 = x , XT = y ,

∣∣dXt

dt

∣∣ = c0(Xt)
}
. (5.5)

A curve (Xt)t∈[0,T ] that produces the minimum in (5.5) is a ray and it satisfies Hamil-
ton’s equations (see Appendix B). For simplicity we assume that the background
speed c0(x) is such that there is a unique ray joining any pair of points (x,y) in the
region of interest.

We can now describe the behavior of the cross correlation function between x1

and x2 when ε is small, with and without directional energy flux from the sources.
Proposition 5.1. As ε tend to zero, the cross correlation C(1)(τ,x1,x2) has

singular components if and only if the ray going through x1 and x2 reaches into the
source region, that is, into the support of the function θ. In this case there are either
one or two singular components at τ = ±τ(x1,x2).

More precisely, any ray going from the source region to x2 and then to x1 gives
rise to a singular component at τ = −τ(x1,x2). Rays going from the source region to
x1 and then to x2 give rise to a singular component at τ = τ(x1,x2).

This proposition explains why travel time estimation is bad when the ray joining
x1 and x2 is roughly perpendicular to the direction of the energy flux from the noise
sources, as in the middle of Figure 5.1.

The stationary phase contributions to the singular components of the cross corre-
lation come from pairs of ray segments. The first ray goes from a source point to x2

and the second ray goes from the same source point and with the same initial angle
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x1

x2

x1

x2

y

x1

x2

Fig. 5.1. If the ray going through x1 and x2 (solid line) enters into the source region (left
figure), then the travel time can be estimated from the cross correlation. If this is not the case,
then the cross correlation does not have a peak at the travel time (middle figure). Right figure: The
main contribution to the singular components of the cross correlation is from pairs of ray segments
issuing from a source y going to x1 and to x2, respectively (solid and dashed lines, respectively),
and starting in the same direction.

to x1. The singular component is then concentrated at the difference of the travel
times between these two ray segments. In the configuration on the right in Figure 5.1
the contribution to the singular component is at τ = τ(x1,x2).

Proof. Using (4.12) we have

C(1)(τ,x1,x2) =
1
2π

∫
dy

∫
dωĜ0

(ω
ε
,x1,y

)
Ĝ0

(ω
ε
,x2,y

)
e−i ω

ε τ F̂ (ω)θ(y) .

First we use the WKB approximation (5.4) of the Green’s function and obtain

C(1)(τ,x1,x2) =
1
2π

∫
dyθ(y)

∫
dωF̂ (ω)a(x1,y)a(x2,y)ei ω

ε T (y) ,

where the rapid phase is

ωT (y) = ω[τ(x2,y)− τ(x1,y)− τ ] . (5.6)

By the stationary phase method [6], the dominant contribution comes from the sta-
tionary points (ω,y) of the phase which satisfy

∂ω

(
ωT (y)

)
= 0 , ∇y

(
ωT (y)

)
= 0 .

This implies that

τ(y,x2)− τ(y,x1) = τ , ∇yτ(y,x2) = ∇yτ(y,x1) .

By Lemma B.1 in the appendix, the second condition requires that x1 and x2 lie on
the same side of a ray issuing from a point y. If the points are aligned along the
ray as y → x1 → x2, then the first condition is equivalent to τ = τ(x1,x2). If the
points are aligned along the ray as y → x2 → x1, then the first condition is equivalent
to τ = −τ(x1,x2). The stationary points y contribute to the integral only if they
are in the support of θ, which is the source region. This completes the proof of the
proposition. �

6. Passive sensor imaging with cross correlations. In this section we show
using again the stationary phase method that it is possible to image reflectors by cross
correlations of signal amplitudes generated by ambient noise sources and recorded by
passive sensors. We assume here that the background medium is homogeneous or
smoothly varying. Background media with random inhomogeneities and multiple
scattering are considered in Section 7.
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xN

zr

Surround light Daylight Backlight

Fig. 6.1. Left figure: The noise sources are distributed throughout the medium, which is the
surround light imaging configuration. Middle figure: the sensors (xj)j=1,...,N are between the noise
sources and the reflector zr, which is the daylight imaging configuration. Right figure: the reflector
is between the noise sources and the sensors, which is the backlight imaging configuration.

6.1. Identification of singular components of cross correlations for dif-
ferent configurations of sources sensors and reflectors. The stationary phase
analysis in the following subsection indicates that we should distinguish three types
of configurations of sources, sensors and reflectors (Figure 6.1). We use terminology
from analogous situations in photography but it should be kept in mind that imaging
is coherent here, which means that the recorded signals are time-resolved amplitudes
and not just intensities.
1) The noise sources surround both the sensors and the reflectors. We call this the
surround light configuration.
2) The noise sources are spatially localized and the sensors are between the sources
and the reflectors. More precisely, these are configurations in which the rays go-
ing through reflectors and sensors reach into the source region, and the sources are
between the reflectors and the sensors along these rays. We call this the daylight
configuration.
3) The noise sources are spatially localized and the reflectors are between the sources
and the sensors. We call this the backlight configuration, in analogy with photography.

We will show that imaging of reflectors can be done by migration of cross cor-
relations. However, the migration imaging functional depends on the configuration
of sources, sensors and reflectors. The stationary phase analysis in the next subsec-
tion makes clear which is the appropriate imaging functional in each configuration.
This can also be done more informally using our understanding from Section 5 of
how singular components appear in cross correlations. As noted in that section, the
main contributions to the cross correlations C(1)(τ,x1,x2) come from pairs of ray
segments starting from a point in the noise source region and going through x2 and
x1, respectively, with the same initial angle. When there is a reflector at zr then we
must also consider rays that are reflected at zr. Since the reflectors are assumed to
be weak, the important pairs of ray segments are those with one direct ray and one
broken ray going from the source region to x1 and x2, respectively. In the daylight
configuration, the singular component of C(1)(τ,x1,x2) due to the reflector comes
from two pairs of ray segments, as shown in Figure 6.2. From this figure we see that
the difference in travel times of the two ray segments is ±[τ(x2, zr) + τ(x1, zr)], with
+ for the pair of ray segments in the left figure and − for the pair of ray segments
in the right figure. We show in Figure 6.3 two pairs of ray segments that contribute
to the singular components of the cross correlation due to a reflector in the backlight
configuration. From this figure we see that the differences in travel time of the two
ray segments are τ(x2, zr)− τ(x1, zr).
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y

Fig. 6.2. Pairs of ray segments that contribute to the singular component of the cross correlation
of signals between x1 and x2 due to the reflector at zr, in a daylight configuration. The ray segments
start from a point y in the noise source region with the same angle. One goes to x1 (solid) and the
other one goes to x2 (dashed).
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zry

Fig. 6.3. Same as in Figure 6.2 but in a backlight configuration.

From these considerations we conclude that there is an important difference be-
tween daylight and backlight configurations. In daylight configurations the singu-
lar components of the cross correlations are concentrated at the total travel time
τ(x2, zr) + τ(x1, zr), while in backlight configurations they are concentrated at the
difference travel time τ(x2, zr)− τ(x1, zr). This determines the form of the migration
imaging functional and its resolution.

6.2. Stationary phase analysis of the cross correlation with reflectors.
We carry out the analysis when the background medium is smoothly varying and
there is a point reflector at zr. Since we assume that the reflectors are weak, we use
the Born approximation for the Green’s function evaluated at high frequencies (see
Appendix C):

Ĝ
(ω
ε
,x,y

)
= Ĝ0

(ω
ε
,x,y

)
+ ω2σrĜ0

(ω
ε
,x, zr

)
Ĝ0

(ω
ε
, zr,y

)
. (6.1)

Here Ĝ0 is the Green’s function (5.1) of the background medium, that is, in the
absence of reflector, and σr is the reflectivity of the reflector.

Proposition 6.1. When there is a point reflector at zr with small reflectivity
σr then the cross correlation C(1)(τ,x1,x2) has two types of singular components, of
order O(1) with respect to σr and O(σr) as follows.

1) Terms of order O(1):
If the ray going through x1 and x2 extends into the source region, that is, into the
support of the function θ, then there are either one or two singular components at
τ = ±τ(x1,x2).

2) Terms of order O(σr):
If the ray going through x1 and zr extends into the source region and if x1 is between
zr and the sources, then there is a singular component at τ = τ(x1, zr) + τ(x2, zr).
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If the ray going through x1 and zr extends into the source region and if zr is between
x1 and the sources, then there is a singular component at τ = τ(x2, zr)− τ(x1, zr).
If the ray going through x2 and zr extends into the source region and if x2 is between
zr and the sources, then there is a singular component at τ = −τ(x1, zr)− τ(x2, zr).
If the ray going through x2 and zr extends into the source region and if zr is between
x2 and the sources, then there is a singular component at τ = τ(x2, zr)− τ(x1, zr).

The non-singular components of order O(1) of the cross correlation function
C(1)(τ,x1,x2) are supported in the interval (−τ(x1,x2), τ(x1,x2)).

The components of order O(1) are the contributions of the direct waves that have
not been reflected by the reflector at zr. To summarize, to leading order in σr, we
have the following:

1) In a daylight imaging configuration, the leading-order singular components are
of order O(σr) and at τ = ±(τ(x1, zr) + τ(x2, zr)).

2) In a backlight imaging configuration, the leading-order singular component is
of order O(σr) and at τ = τ(x2, zr)− τ(x1, zr).

3) In a surround light imaging configuration, the leading-order singular compo-
nents are of order O(1) and at τ = ±τ(x1,x2). They correspond to direct waves that
have not been reflected at zr. There are also singular components of order O(σr) at
τ = τ(x2, zr)− τ(x1, zr) and at τ = ±(τ(x1, zr) + τ(x2, zr)).

Proof. Using (6.1) and the WKB approximation, the Green’s function has the
form

Ĝ
(ω
ε
,x1,x2

)
∼ a(x1,x2)ei ω

ε τ(x1,x2) + ω2ar(x1,x2)ei ω
ε τr(x1,x2) . (6.2)

Here τr(x1,x2) is the travel time from x1 to x2 with a reflection at zr

τr(x1,x2) = τ(x1, zr) + τ(zr,x2) ,

and the corresponding amplitudes are a(x1,x2) and ar(x1,x2). The reflected ampli-
tude ar is much smaller than a since it is proportional to the reflectivity σr of the
reflector at zr.

Using (4.12) and the WKB approximation (6.2) of the Green’s function we have,
up to terms of order σr,

C(1)(τ,x1,x2) ' C
(1)
dd (τ,x1,x2) + C

(1)
dr (τ,x1,x2) + C

(1)
rd (τ,x1,x2) ,

with

C
(1)
dd (τ,x1,x2) =

1
2π

∫
dyθ(y)

∫
dω F̂ (ω)a(x1,y)a(x2,y)ei ω

ε Tdd(y) ,

C
(1)
dr (τ,x1,x2) =

1
2π

∫
dyθ(y)

∫
dω ω2F̂ (ω)a(x1,y)ar(x2,y)ei ω

ε Tdr(y) ,

C
(1)
rd (τ,x1,x2) =

1
2π

∫
dyθ(y)

∫
dω ω2F̂ (ω)ar(x1,y)a(x2,y)ei ω

ε Trd(y) .

Here the subscript d denotes direct waves and r reflected waves. The rapid phases
are given by

ωTdd(y) = ω[τ(y,x2)− τ(y,x1)− τ ] , (6.3)
ωTdr(y) = ω[τ(y,x2)− τr(y,x1)− τ ] = ω[τ(y,x2)− τ(y, zr)− τ(zr,x1)− τ ] ,
ωTrd(y) = ω[τr(y,x2)− τ(y,x1)− τ ] = ω[τ(y, zr) + τ(zr,x2)− τ(y,x1)− τ ] .
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The term C
(1)
dd is of the same form as the function C(1) in the proof of Proposition

5.1. It has singular components only if x1, x2 and y are on the same ray. These
singular components are supported on ±τ(x1,x2) and they are of order O(1).

The dominant contribution to the term C
(1)
dr comes from the stationary points

(ω,y) satisfying

∂ω

(
ωTdr(y)

)
= 0 , ∇y

(
ωTdr(y)

)
= 0 ,

which gives the conditions

τ(y,x2)− τ(y, zr)− τ(zr,x1) = τ , ∇yτ(y,x2) = ∇yτ(y, zr) .

By Lemma B.1 in the appendix, the second condition implies that x2 and zr are on
the same side of a ray issuing from y. If the points are aligned along the ray as
y → x2 → zr, then the first condition is equivalent to τ = −τ(zr,x2) − τ(zr,x1).
If the points are aligned along the ray as y → zr → x2, then the first condition is
equivalent to τ = τ(zr,x2) − τ(zr,x1). The analysis of the term C

(1)
rd goes along the

same lines. The terms C(1)
dr and C(1)

rd are both of order O(σr).
The last statement of the proposition concerns the support of the non-singular

component of the cross-correlation Cdd. Even without applying the stationary phase
method, information about the support of Cdd can be obtained from the form (6.3)
of Tdd(y) and the triangle inequality |τ(y,x1)− τ(y,x2)| ≤ τ(x1,x2). Therefore, the
support of Cdd as a function of τ is in the interval (−τ(x1,x2), τ(x1,x2)). �

6.3. Migration imaging of cross correlations. In order to image the reflec-
tors, we first assume that we know the medium, in the sense that the travel times
between the sensors and points in the region around the reflectors to be imaged are
known. If in particular the medium is homogeneous then τ(x,y) = |x− y|/c0.

The primary data for imaging is the set {C(τ,xj ,xj)} of cross correlation of
signals recorded at the sensors located at xj , j = 1, . . . , N . Even when the signal
to noise ratio (SNR) at the sensors is large, this primary data set cannot be used
directly for imaging because peaks in the cross correlations due to the reflectors are
very weak compared both to the peaks of the direct waves and to the non-singular
components due to the directional energy flux. It is therefore necessary to process the
cross correlations before migration imaging.

There are two ways to process the primary cross correlations:
1) If data sets {C} and {C0} with and without the reflectors, respectively, are available
then we can compute the differential cross correlations {C − C0} at the sensors and
migrate them. This takes out noise source and sensor location effects regardless of
the type of illumination.
2) If only the data set {C} with the reflectors is available then we can mask the part
of the cross correlations in the interval between travel times among the sensors. This
includes elimination of the main peaks at the travel times between sensors. We refer
to the resulting masked cross correlations as coda cross correlations, {Ccoda}.

The form of the migration imaging functional for both differential and coda cross
correlations depends in an essential way on the type of illumination as explained in
the next subsection.

We note also that we need to distinguish the two parts of the cross correlations
supported by the positive time axis and by the negative time axis:

C+(τ,xj ,xl) = C(τ,xj ,xl)1(0,∞)(τ) , C−(τ,xj ,xl) = C(τ,xj ,xl)1(−∞,0)(τ) .
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This is because C+ is an estimate of the causal Green’s function, while C− is an
estimate of the anti-causal Green’s function. Therefore migration or back propagation
imaging is different for C− and C+.

6.4. Migration imaging with daylight illumination. We consider first mi-
gration of differential cross correlations with daylight illumination. The Kirchhoff
migration (KM) imaging functional at a search point zS is

IKM(zS) =
1
2π

∫
dω

N∑
j,l=1

e−iω[τ(zS ,xl)+τ(zS ,xj)]
[
Ĉ+(ω,xj ,xl)− Ĉ+

0 (ω,xj ,xl)
]

+
1
2π

∫
dω

N∑
j,l=1

eiω[τ(zS ,xl)+τ(zS ,xj)]
[
Ĉ−(ω,xj ,xl)− Ĉ−0 (ω,xj ,xl)

]
. (6.4)

This functional uses the positive and negative parts of the cross correlations, which
as already noted correspond to the causal and anti-causal Green’s functions. That is
why the ”back” propagation in the functional is backward for the positive part, hence
the minus sign for the travel times in the exponent, and forward for the negative
part, hence the plus sign. It is a consequence of the stationary phase analysis of the
previous subsection that the matched filter should be chosen as an exponential at the
sum of the travel times τ(zS ,xl) + τ(zS ,xj).

By a simple change of variables in the second integral the KM imaging functional
(6.4) can be written as

IKM(zS) =
1
2π

∫
dω

N∑
j,l=1

e−iω[τ(zS ,xj)+τ(zS ,xl)]
[
Ĉsym(ω,xj ,xl)− Ĉsym

0 (ω,xj ,xl)
]
,

where Csym(τ,xj ,xl) = [C(τ,xj ,xl) + C(−τ,xj ,xl)]1(0,∞)(τ), and with a similar
expression for Csym

0 (τ,xj ,xl).
Migration imaging of coda cross correlations with daylight illumination is entirely

analogous. The KM imaging functional at a search point zS is

IKM(zS) =
1
2π

∫
dω

N∑
j,l=1

e−iω[τ(zS ,xj)+τ(zS ,xl)]Ĉsym
coda(ω,xj ,xl) , (6.5)

where now Csym
coda(τ,xj ,xl) = [C(τ,xj ,xl) + C(−τ,xj ,xl)]1(τ(xj ,xl),∞)(τ). As noted

in the previous subsection, it is necessary to remove the central part of the cross cor-
relation function because the contribution of the cross correlation C0(τ,xj ,xl) in the
absence of the reflectors is large but concentrated in the interval (−τ(xj ,xl), τ(xj ,xl)).
By removing this part the imaging functional has the same behavior as the one us-
ing differential cross correlations. The coda truncation should be done with a small
margin beyond the travel time τ(xj ,xl), roughly equal to a few times the background
speed times the decoherence time. We note that when the sensors form an array then
migration with coda cross correlations cannot image reflectors in the shadow area
located close to the array, at a distance smaller than its aperture.

The KM imaging functional (6.4) (or (6.5)) has the same form as the KM imag-
ing functional that is used when the reflectors are illuminated by active sensors at
(xj)j=1,...,N and the data set consists of the response matrix P (t,xl,xj). The sensor
at xj emits an impulse with a specified bandwidth, the sensor at xl records the signal
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Fig. 6.4. Numerical simulations for daylight migration imaging with an array of five passive
sensors (triangles on the top left figure). The reflector to be imaged (diamond) is located at (xr =
0, zr = 100) and is illuminated by noise sources (circles). The coda correlation and the differential
correlation of the signals recorded by the two sensors at the ends of the array are shown at the top
right figure. The migration imaging functional (6.4) using differential cross correlations is shown at
the bottom left figure. Migration imaging with coda cross correlations (6.5) is shown at the bottom
right figure. Here the image window in which zS varies is 40× 40 range resolution units around the
reflector.

P (t,xl,xj), and the KM migration functional is

IKM(zS) =
1
2π

∫
dω

N∑
j,l=1

e−iω[τ(zS ,xj)+τ(zS ,xl)]P̂ (ω,xj ,xl) . (6.6)

It is remarkable that daylight migration imaging with passive sensor cross corre-
lations is essentially equivalent to migration imaging with active sensors.

A resolution analysis of migration imaging with active sensor arrays has been car-
ried out in detail [6, 7]. It applies directly to migration imaging with cross correlations
as introduced here. We see that the cross range resolution for a linear sensor array
with aperture a is given by λa/L. Here L is the distance between the sensor array and
the reflectors and λ is the central wavelength. The range resolution is proportional
to the background velocity times the inverse of the bandwidth.

In Figure 6.4 we show the results of numerical simulations for a sparse array of
5 sensors and with one reflector. There are 200 point noise sources distributed over
the domain [−50, 50] × [0, 15]. The power spectral density of the noise sources is a
Gaussian exp(−ω2/2). The speed and the bandwidth are normalized to one so that
the range resolution is also normalized to one. The image window is 40 × 40 range
resolutions. It is clear that passive imaging with coda cross correlations gives very
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good results.

6.5. Migration imaging with backlight illumination. We consider first mi-
gration imaging with backlight illumination when we have differential cross correlation
sensor data {C − C0}. The KM imaging functional at a search point zS is

IKM(zS) =
1
2π

∫
dω

N∑
j,l=1

e−iω[τ(zS ,xl)−τ(zS ,xj)]
[
Ĉ(ω,xj ,xl)− Ĉ0(ω,xj ,xl)

]
. (6.7)

The signs of the travel times in the exponent of the matched filter are determined
by the analysis of Subsection 6.2. It is shown there that the singular component of
(C − C0)(τ,xj ,xl) is at τ = τ(zr,xl) − τ(zr,xj). A better version of this imaging
functional that distinguishes between positive and negative parts of the differential
cross correlations is

IKM(zS) =
1
2π

∫
dω

N∑
j,l=1

e−iω[τ(zS ,xl)−τ(zS ,xj)]

×
{[
Ĉ+(ω,xj ,xl)− Ĉ+

0 (ω,xj ,xl)
]
1(0,∞)(τ(zS ,xl)− τ(zS ,xj))

+
[
Ĉ−(ω,xj ,xl)− Ĉ−0 (ω,xj ,xl)

]
1(−∞,0)(τ(zS ,xl)− τ(zS ,xj))

}
.

We note that (6.7) has the same form as the incoherent interferometric imaging
functional that is used when zr is a source emitting an impulse that is recorded by
passive sensors at (xj)j=1,...,N and the data is the vector P (t,xj). The incoherent
interferometric functional (IINT) has the form

IIINT(zS) =
1
2π

∫
dω

∣∣∣ N∑
l=1

e−iωτ(zS ,xl)P̂ (ω,xl)
∣∣∣2

=
1
2π

∫
dω

N∑
j,l=1

e−iω[τ(zS ,xl)−τ(zS ,xj)]P̂ (ω,xl)P̂ (ω,xj) ,

which is identical to a matched field imaging functional. A resolution analysis of it has
already been carried out [7] and can be directly used here. We see that backlight cross
correlation imaging with passive sensor arrays does not provide any range resolution,
as in incoherent interferometric imaging. When the sensors are distributed or when
the array is large then range resolution can be obtained by geometric triangulation.

Let us consider backlight imaging when we only have data in the presence of
reflectors. The main contribution of the reflector in the cross correlation C(τ,xj ,xl)
is at τ = τ(zr,xl) − τ(zr,xj). It is buried in the interval (−τ(xj ,xl), τ(xj ,xl)) that
contains the main contributions from the noise sources. This is because of the triangle
inequality |τ(zr,xl)− τ(zr,xj)| ≤ τ(xj ,xl). Therefore it is impossible to use masking
so as to amplify the effect of the reflectors. The only thing that can be done is to
back propagate the full cross correlations. The KM imaging functional at a search
point zS has the form

IKM(zS) =
1
2π

∫
dω

N∑
j,l=1

e−iω[τ(zS ,xl)−τ(zS ,xj)]Ĉ(ω,xj ,xl) .

We see in Figure 6.5 that the quality of this image is inferior to the one obtained with
the functional (6.7) using differential cross correlations.
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Fig. 6.5. Numerical simulations for backlight migration imaging with an array of five passive
sensors (triangles on the top left figure). The reflector to be imaged (diamond) is located at (xr =
0, zr = 50) and is illuminated by noise sources (circles). The coda correlation and the differential
correlation of the signals recorded by the two sensors at the ends of the array are shown at the top
right figure. The migration imaging functional (6.7) using differential cross correlations is shown
at the bottom left figure. It is not possible to use the coda cross correlation here as was done with
daylight imaging in Figure 6.4. Now we back propagate the full cross correlation function with
formula (6.8) and we get the bottom right figure. The search window is 80 × 80 range resolution
units around the reflector.

6.6. Migration imaging with surround light illumination. With surround
light illumination the noise sources are distributed everywhere around the passive sen-
sors and the reflectors. The imaging functional (6.4) with differential cross correlations
has the same properties as in the one with daylight illumination. Similarly, the imag-
ing functional (6.7) has the same properties as the one with backlight illumination.
Therefore both imaging functionals can be used so as to possibly enhance the signal
to noise ratio. However the daylight imaging functional (6.4) has a much better range
resolution than (6.7) and so it should be used exclusively if possible. In migration
imaging with coda cross correlations it is clearly preferable to use the daylight imaging
functional (6.5).

We note that when imaging with cross correlations it may also be possible to
estimate the propagation speed of the background medium when it is not known but
is smoothly varying. The sensor array must in such cases be distributed in a suitable
way in the region of interest. We must first use the cross correlations to estimate
travel times between sensors. Then we can estimate the background velocity with
a least squares tomographic method [3]. Migration imaging can now be done with
travel times based on the estimated background velocity.
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7. Passive sensor imaging with cross correlations in a scattering med-
ium. In this section we consider imaging by cross correlations, as in the previous
section, but in addition to the smoothly varying background speed there are random
inhomogeneities that cause multiple scattering. There are both advantages and disad-
vantages when imaging reflectors in such an environment. One important advantage
is that even localized noise sources can appear to have considerably enhanced direc-
tional diversity because of the scattering medium. An inevitable disadvantage is loss
of resolution and blurring because of the environmental inhomogeneities.

A qualitative way to assess this trade-off is by using the transport mean free
path as a measure of distances over which coherent wave propagation transforms
into incoherent wave energy transport. Coherent sensor imaging as introduced in
the previous section cannot be expected to work unless distances between sensors
and reflectors are of the order of the transport mean free path or shorter. It is also
expected that the directional diversity of the noise sources will be enhanced if the
distances between sensors and reflectors to noise sources are large compared to the
transport mean free path. Under these circumstances, coherent sensor imaging will
benefit from enhanced directional diversity of the noise sources without too much loss
of resolution and blurring.

7.1. Structure of the cross correlation in a scattering medium. There
are two different contributions in the empirical cross correlations CT (τ,x1,x2), in
addition to the singular component at τ = ±τ(x1,x2) corresponding to the direct
waves from the noise sources.

One contribution comes from the residual fluctuations of the noise sources, which
emit stationary random signals. The empirical correlations CT are random functions
with standard deviation of order T−1/2, as described in Appendix A. These fluctua-
tions decay as the integration time T becomes larger. The other contribution comes
from the multiple scattering of waves by the inhomogeneities in the environment.
These contributions are there because even though the identity (2.2) does not hold,
the cross correlations contain information beyond an estimate of the travel time be-
tween the sensors. We expect that for T large, the tails of CT capture approximately
the tails of the Green’s function that are generated by the scattered waves. The
tails of CT contain information about both coherent waves, due the reflectors that we
want to image, as well as incoherent superpositions of waves multiply scattered by
the random inhomogeneities.

In the remainder of this section we assume that the integration time T is large
enough so that the residual fluctuations from the noise sources are negligible compared
to those from multiple scattering.

7.2. Iterated cross correlations and coherent interferometry. As in the
case of imaging in a smoothly varying medium discussed in Section 6, the sensor cross
correlations {C(τ,xj ,xl), j, l = 1, . . . , N} need to be processed in order to amplify the
contribution of the reflectors. We assume here that we have sensor data in the same
environment in the absence of the reflectors, and for simplicity we let C stand for
differential cross correlations. It is unlikely that imaging in a scattering environment
can be done without having differential cross correlations. We need to take out the
effects of the environment as much as possible if migration in a fictitious, smoothly
varying background is to be at all successful.

We noted in Subsection 6.4, below equation (6.6), that with favorable illumina-
tion the passive sensor cross correlations, or differential cross correlations, provide an
estimate for the bandlimited impulse response, or differential impulse response, of an
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Fig. 7.1. Schematic of typical forms of the empirical cross correlation CT (τ,x1,x2) in a
scattering medium, with a reflector embedded in it at zr. We see clearly the singular component at
lag time τ = τ(x1,x2), corresponding to the direct waves from the noise sources. We also see a
smaller singular component at lag time τ = τr(x1,x2) = τ(zr,x1) + τ(zr,x2), corresponding to the
waves reflected at zr. The coda beyond τ = τ(x1,x2) comes from waves scattered by the random
inhomogeneities of the medium. The near coda is dominated by single-scattered waves while the far
coda is due to multiply-scattered waves. These components can be identified if the integration time
T is long enough so that the residual fluctuations from the noise sources are small. This is the case
on the right figure but not on the left one.

equivalent active sensor network. This is true in a smoothly varying background and
in the presence of weak scatterers when the single scattering approximation can be
used, as we show in a similar context in Section 8. It is expected to be true even
with strong multiple scattering but coherent sensor imaging in such an environment
is unlikely to be successful.

Assuming that the passive sensor differential cross correlations provide a good es-
timate of the equivalent active sensor differential impulse response, we can implement
the coherent interferometric imaging techniques (CINT) developed for active sensors
[8]. The key idea in CINT is to migrate cross correlations of the impulse response,
rather than the impulse response itself. In the present context this translates into
migrating cross correlations of the differential cross correlations C(τ,xj ,xl), which
means that we use fourth-order cross correlations. It is important, however, to com-
pute these fourth order cross correlations locally in time and space, and not over the
whole time interval and the whole set of pairs of sensors, as we now explain.

In the time domain, the components of the cross correlations C(τ,xj ,xl) associ-
ated with the reflectors do not appear as clean peaks at travel times corresponding
to those between sensors and reflectors. They have, in addition, codas generated by
the inhomogeneities of the scattering medium. The typical duration of such a coda is
called delay spread. We segment the cross correlations C(τ,xj ,xl) into time intervals
and compute their cross correlations locally in each interval. The width Td of the
time intervals should be chosen to be comparable to the delay spread. If Td is small
compared to the delay spread, then the fourth order local cross correlations cannot
compress the coda and the images have speckles. If Td is large compared to the delay
spread, then the images are smooth but there is too much loss of resolution and blur-
ring. However, the delay spread is usually not known since it depends on the random
medium. It is shown in [7] that the reciprocal of the delay spread is proportional to
the decoherence frequency of the Fourier transform of C(τ,xj ,xl). Therefore, the de-
lay spread could be estimated by exploiting this remark, and then used to determine
the time windows over which local fourth order cross correlations are computed. It
is more efficient, and the images have better resolution, if we choose the width Td of
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the time intervals adaptively, as we discuss at the end of this subsection. Given Td,
the CINT daylight imaging functional has the form

ICINT(zS) =
N∑

j,j′,l,l′=1

∫∫
|ω−ω′|≤T−1

d

Ĉ(ω,xj ,xl)Ĉ(ω′,xj′ ,xl′)

×e−iω[τ(xj ,zS)+τ(xl,z
S)]eiω′[τ(xj′ ,z

S)+τ(xl′ ,z
S)]dωdω′ . (7.1)

We can compare this expression to the square of the KM imaging functional (6.4),
which has the form

∣∣IKM(zS)
∣∣2 =

N∑
j,j′,l,l′=1

∫∫
Ĉ(ω,xj ,xl)Ĉ(ω′,xj′ ,xl′)

×e−iω[τ(xj ,zS)+τ(xl,z
S)]eiω′[τ(xj′ ,z

S)+τ(xl′ ,z
S)]dωdω′ , (7.2)

where we recall that here C stands for differential cross correlation. We see that the
CINT imaging functional (7.1) and the square of the KM functional (7.2) differ only
in that the frequencies |ω − ω′| > T−1

d , where fourth order correlations are weak, are
eliminated in CINT.

It is often possible to go one step further in specializing the CINT imaging func-
tional in the case of passive sensor arrays. There is a characteristic decoherence length
in the spatial domain, which is similar to the decoherence frequency. This decoherence
length is the distance between sensors beyond which the coda that can be recorded
at them are not correlated. The cross correlations of such coda tend to increase the
fluctuations of the imaging functional. We therefore remove them. The resulting
CINT imaging functional at a search point zS has the form

ICINT(zS) =
N∑

l,j,l′,j′=1
|xj−xj′ |≤Xd,|xl−xl′ |≤Xd

∫∫
|ω−ω′|≤T−1

d

dωdω′Ĉ(ω,xj ,xl)Ĉ(ω′,xj′ ,xl′)

×e−iω[τ(xj ,zS)+τ(xl,z
S)]eiω′[τ(xj′ ,z

S)+τ(xl′ ,z
S)] .

After a change of variables it can be seen more clearly that the fourth order cross
correlations are computed only over nearby frequencies and sensors:

ICINT(zS) =
N∑

j,j′=1
|xj−xj′ |≤Xd

N∑
l,l′=1

|xl−xl′ |≤Xd

∫∫
|Ω|≤T−1

d

dΩdωĈ
(
ω +

Ω
2
,xj ,xl

)
Ĉ

(
ω − Ω

2
,xj′ ,xl′

)

×e−i ω
2 [τ(xj ,zS)−τ(xj′ ,z

S)]−i ω
2 [τ(xl,z

S)−τ(xl′ ,z
S)]−i Ω

2 [τ(xj ,zS)+τ(xj′ ,z
S)]−i Ω

2 [τ(xl,z
S)+τ(xl′ ,z

S)]

It is shown in [8] that the range resolution of CINT is of the order of Td times
the background speed and the cross range resolution of the order of λL/Xd.

An adaptive procedure for estimating optimally the unknown parameters Td and
Xd is based on minimizing a suitable norm of the image to improve its quality, both
in terms of resolution and signal-to-noise ratio. This norm should penalize speckle
fluctuations and also should minimize blurring. A possible choice [8] is a sum of the L1

norm of the functional and of the L1 norm of the gradient of the normalized functional√
|ICINT(zS)|/ supz

√
|ICINT(z)|. This normalization is chosen so that when there is

no smoothing, Xd →∞ and T−1
d →∞, then we recover the KM functional.
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8. Iterated cross correlations for travel time estimation in a weakly
scattering medium. For travel time tomography to be successful it is necessary
to have good estimates of the travel times between pairs of sensors that cover well
the region of interest. When the noise sources are spatially localized and there is a
strong directional energy flux at the sensors, then travel time estimates will be poor
for sensor pairs in directions perpendicular to this flux. In this section we show that it
is possible to exploit scattering from random inhomogeneities so as to enhance travel
time estimation.

8.1. The use of auxiliary sensors. We consider distributions of noise sources
that are spatially localized and media with scattering that is not strong enough for
equipartition of the fields at the sensors [34]. Therefore, even with scattering, the
signals depend strongly on the spatial localization of the noise sources, which affects
the quality of travel time estimation. However, the coda of the cross correlations are
generated by scattered waves, which have more directional diversity than the direct
waves from the noise sources. By cross correlating the coda of the cross correlations,
which produces fourth order cross correlations, it is possible to exploit scattered waves
and their enhanced directional diversity. Campillo and Stehly [13] suggest a way to
estimate the Green’s function between x1 and x2 as follows.
1) Calculate the cross correlations between x1 and xa,j and between x2 and xa,j for
a large number N of auxiliary sensors (xa,j)j=1,...,N that are distributed over the
medium

CT (τ,xa,j ,xl) =
1
T

∫ T

0

u(t,xa,j)u(t+ τ,xl)dt , l = 1, 2 .

2) Cross correlate the coda (i.e. the tails) of these cross correlations and sum them
over all auxiliary sensors to form the coda cross correlation between x1 and x2:

CT ′,T (τ,x1,x2) =
N∑

j=1

∫
[−T ′,−Tcoda]∪[Tcoda,T ′]

CT (τ ′,xa,j ,x1)CT (τ ′ + τ,xa,j ,x2)dτ ′ .

(8.1)
Here the time Tcoda is chosen so as to eliminate the coherent part of CT . In general,
Tcoda should be larger than max(τ(xa,j ,x1), τ(xa,j ,x2)).

Using the stationary phase method we show in the next subsections that the
algorithm proposed by Campillo and Stehly can exploit the enhanced directivity of
scattered waves. We show in particular that the coda cross correlation CT ′,T , defined
by (8.1), has singular components at the travel time between the sensors even in the
unfavorable case in which the ray joining x1 and x2 does not reach into the source
region, as discussed in Section 5.

8.2. A model for the scattering medium and the auxiliary sensors. In
order to analyze the coda (fourth-order) cross correlation (8.1) we first introduce a
model for the inhomogeneous medium. A simple single-scattering model is sufficient
for this purpose. We assume that the medium has of a smoothly varying background
speed c0(x), which we want to image, and a large collection of point scatterers at
(zs,j)j≥1. Their reflectivities σj are assumed to be zero-mean independent random
variables with small variance σ2. In the Born (single-scattering) approximation (see
Appendix C) the full Green’s function at scaled high frequencies is given by

Ĝ
(ω
ε
,x,y

)
= Ĝ0

(ω
ε
,x,y

)
+ Ĝ1

(ω
ε
,x,y

)
, (8.2)
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Fig. 8.1. When noise sources (circles in the left figure) are spatially localized, we form cross
correlations between the recorded signals at x1 and x2 (solid triangles) and those at auxiliary sensors
at xa,j (empty triangles). We then compute cross correlations of the tails of these correlations (here,
Tcoda = 250) and sum over the auxiliary sensors. This gives the coda cross correlation (8.1) from
which the travel time between x1 and x2 can be better estimated, as indicated in the schematic figure
on the right.

where Ĝ0 is the Green’s function (5.1) of the background medium and Ĝ1 is given by

Ĝ1

(ω
ε
,x,y

)
= ω2

∑
j

σjĜ0

(ω
ε
,x, zs,j

)
Ĝ0

(ω
ε
, zs,j ,y

)
. (8.3)

We also assume that:
1) The auxiliary sensors at (xa,j)j=1,...,N are distributed with a continuum density
χ(xa). This means that we can approximate sums over the auxiliary sensors by
integrals with density χ: ∑

j

ψ(xa,j) '
∫
dxaχ(xa)ψ(xa) , (8.4)

for any real-valued test function ψ.
2) The scatterers at (zs,j)j≥1 are distributed with a continuum density ρ(zs). Since
the reflectivities σj are zero-mean independent random variables with variance σ2,
by the central limit theorem we can approximate the distribution of vectors by a
Gaussian ( ∑

j

σjψ1(zs,j), . . . ,
∑

j

σjψn(zs,j)
)
' N

(
0, Q

)
, (8.5)

for any real-valued test functions ψ1, . . . , ψn. Here N (0, Q) stands for the multivariate
normal distribution with zero-mean and covariance matrix Q given by

Qjl = σ2

∫
dzsρ(zs)ψj(zs)ψl(zs) .

8.3. Stationary phase analysis for coherent fourth-order cross correla-
tions. We distinguish two components in the cross correlation function C(1) defined
by (4.10):
1) The coherent component C(1)

coh is associated with the direct waves that have not
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been scattered. From the representation (8.2) of the Green’s function, the coherent
component C(1)

coh of the cross correlation function is given by

C
(1)
coh(τ,x1,x2) =

∫
dyθ(y)

∫
dsds′F ε(s′)G0(s,x1,y)G0(τ + s+ s′,x2,y) ,

where G0 is the Green’s function of the smoothly varying background.
2) The remaining coda component C(1)

coda, which is the contribution of the waves
scattered by the inhomogeneities:

C
(1)
coda(τ,x1,x2) = C(1)(τ,x1,x2)− C

(1)
coh(τ,x1,x2) . (8.6)

We consider first the coherent fourth-order cross correlation function

C(2)(τ,x1,x2) = lim
T ′→∞

∫ T ′

−T ′
dτ ′

∑
j

C
(1)
coh(τ ′,xa,j ,x1)C

(1)
coh(τ ′ + τ,xa,j ,x2)

= lim
T ′→∞

∫ T ′

−T ′
dτ ′

∫
dxaχ(xa)C

(1)
coh(τ ′,xa,x1)C

(1)
coh(τ ′ + τ,xa,x2) . (8.7)

The following proposition is analogous to Proposition 5.1.
Proposition 8.1. The cross correlation C(2)(τ,x1,x2) has singular components

if and only if the ray going through x1 and x2 extends into the source region. If this
is the case, then there are one or two singular components at τ = ±τ(x1,x2).

Proof. We consider the coherent fourth-order cross correlation function and write
it as

C(2)(τ,x1,x2) =
∫
dxaχ(xa)

∫
dτ ′C

(1)
coh(τ ′,xa,x)C(1)

coh(τ ′ + τ,xa,x2)

=
∫
dxady1dy2χ(xa)θ(y1)θ(y2)

∫
dτ ′dsduds′du′F ε(s′)F ε(u′)

×G0(s,xa,y1)G0(τ ′ + s+ s′,x1,y1)G0(u,xa,y2)G0(τ ′ + τ + u+ u′,x2,y2) .

In the Fourier domain it has the form

C(2)(τ,x1,x2) =
1
2π

∫
dxady1dy2χ(xa)θ(y1)θ(y2)

∫
dωF̂ ε(ω)2e−iωτ

×Ĝ0(ω,xa,y1)Ĝ0(ω,x1,y1)Ĝ0(ω,xa,y2)Ĝ0(ω,x2,y2) .

It is remarkable that all four Green’s functions are evaluated at the same frequency,
which comes from the fact that only cross correlation operations are involved. We
analyze this expression in the high-frequency regime by using the WKB approxima-
tion (5.4) of Ĝ0. We find that C(2) has singular components (at τ = ±τ(x1,x2)) only
if we can find stationary phase configurations in which the source points y1, y2, the
auxiliary sensor xa and the main sensors x1, x2 are along the same ray. In particular,
there must be a ray starting inside the source region and going through x1 and x2,
as in Proposition 5.1. �

We see, therefore, that there is no gain in using the function C(2) in place of C(1)

for travel time estimation.
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8.4. Stationary phase analysis for coda (fourth-order) cross correla-
tions. As shown in Proposition 8.1, the singular component of the coherent fourth-
order cross correlation C(2) has the same properties as the one of the standard cross
correlation C(1). We now consider the coda cross correlation, as suggested by Campillo
and Stehly, which is given by

C(3)(τ,x1,x2) = lim
T ′→∞

∫ T ′

−T ′
dτ ′

∑
j

C
(1)
coda(τ

′,xa,j ,x1)C
(1)
coda(τ

′ + τ,xa,j ,x2)

= lim
T ′→∞

∫ T ′

−T ′
dτ ′

∫
dxaχ(xa)C

(1)
coda(τ

′,xa,x1)C
(1)
coda(τ

′ + τ,xa,x2) .(8.8)

Proposition 8.2. There are two (and only two) high-frequency (singular) com-
ponents in C(3), at times t = ±τ(x1,x2), if the two following conditions hold:
1) There are scatterers located along the ray going through x1 and x2, but not on
the segment between x1 and x2. These scatterers are the basic ones for the enhanced
travel time estimation.
2) There are auxiliary sensors located along rays going from the source region (the
support of the function θ) to the basic scatterers (see Figure 8.2).

The important point here is that it is not required that the ray joining the sen-
sors x1 and x2 should extend into the source region as in Propositions 5.1 and 8.1.
Therefore the configurations for which the coda cross correlation C(3) has a singular
component at the travel time between x1 and x2 are much more general than the
ones for which the standard cross correlation has a singular component. Propositions
8.1 and 8.2 show that there is no additional information about the travel time in the
coherent fourth-order cross correlation, but that there is such information in the coda
(fourth-order) cross correlation. Therefore, the coda cross correlation is the one that
should be used. The full fourth-order cross correlation function, obtained by cross-
correlating the full cross correlation functions C(1) = C

(1)
coh + C

(1)
coda, is the sum of the

coherent fourth-order cross correlation C(2), the coda fourth-order cross correlation
C(3), and cross correlations between the coherent C(1)

coh and the coda C
(1)
coda. Using

again the stationary phase method, we see that these cross correlations have singular
components only at τ = ±τ(x1,x2), and only if the ray joining x1 and x2 extends into
the source region. Therefore, while the interesting singular component of the coda
fourth-order cross correlation is present in the full fourth-order cross correlation, it
is buried in many other uninteresting terms, especially when the scattered waves are
much weaker than the direct waves. That is why it is much better, in terms of the
signal-to-noise ratio, to use only the coda fourth-order cross correlations.

Proof. We consider the coda cross correlation C(3) in the form

C(3)(τ,x1,x2) =
1
2π

∫
dxady1dy2χ(xa)θ(y1)θ(y2)

∫
dωF̂ ε(ω)2e−iωτ

×
(
Ĝ(ω,xa,y1)Ĝ(ω,x1,y1)− Ĝ0(ω,xa,y1)Ĝ0(ω,x1,y1)

)
×

(
Ĝ(ω,xa,y2)Ĝ(ω,x2,y2)− Ĝ0(ω,xa,y2)Ĝ0(ω,x2,y2)

)
=

1
2π

∫
dxady1dy2χ(xa)θ(y1)θ(y2)

∫
dωF̂ ε(ω)2e−iωτ

×
(
Ĝ0(ω,xa,y1)Ĝ1(ω,x1,y1) + Ĝ1(ω,xa,y1)Ĝ0(ω,x1,y1)

)
×

(
Ĝ0(ω,xa,y2)Ĝ1(ω,x2,y2) + Ĝ1(ω,xa,y2)Ĝ0(ω,x2,y2)

)
+O(σ3) , (8.9)
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x1

x2
ray
source
scatterer
auxiliary sensor
sensor

Fig. 8.2. Schematic of a configuration of noise sources (circles), scatterers (squares), and
auxiliary sensors (empty triangles) that give enhanced travel time estimation between x1 and x2

(solid triangles). First, there are scatterers along the ray going through x1 and x2. Second, there
are auxiliary sensors along rays going from the source region into the scatterer region.

where Ĝ1 is given by (8.3). We analyze the expectation E[C(3)] with respect to the
random medium. By keeping only the leading order terms in σ, which are here of
order σ2, there are four contributions to E[C(3)]:

C
(3)
1 (τ,x1,x2) =

σ2

2π

∫
dxady1dy2dzsχ(xa)θ(y1)θ(y2)ρ(zs)

∫
dω ω4F̂ (ω)2e−i ω

ε τ

×Ĝ0

(ω
ε
,xa,y1

)
Ĝ0

(ω
ε
,x1, zs

)
Ĝ0

(ω
ε
, zs,y1

)
×Ĝ0

(ω
ε
,xa,y2

)
Ĝ0

(ω
ε
,x2, zs

)
Ĝ0

(ω
ε
, zs,y2

)
,

C
(3)
2 (τ,x1,x2) =

σ2

2π

∫
dxady1dy2dzsχ(xa)θ(y1)θ(y2)ρ(zs)

∫
dω ω4F̂ (ω)2e−i ω

ε τ

×Ĝ0

(ω
ε
,xa, zs

)
Ĝ0

(ω
ε
, zs,y1)

)
Ĝ0

(ω
ε
,x1,y1

)
×Ĝ0

(ω
ε
,xa,y2

)
Ĝ0

(ω
ε
,x2, zs

)
Ĝ0

(ω
ε
, zs,y2

)
,

C
(3)
3 (τ,x1,x2) =

σ2

2π

∫
dxady1dy2dzsχ(xa)θ(y1)θ(y2)ρ(zs)

∫
dω ω4F̂ (ω)2e−i ω

ε τ

×Ĝ0

(ω
ε
,xa,y1

)
Ĝ0

(ω
ε
,x1, zs

)
Ĝ0

(ω
ε
, zs,y1

)
×Ĝ0

(ω
ε
,xa, zs

)
Ĝ0

(ω
ε
, zs,y2

)
Ĝ0

(ω
ε
,x2,y2

)
,

C
(3)
4 (τ,x1,x2) =

σ2

2π

∫
dxady1dy2dzsχ(xa)θ(y1)θ(y2)ρ(zs)

∫
dω ω4F̂ (ω)2e−i ω

ε τ

×Ĝ0

(ω
ε
,xa, zs

)
Ĝ0

(ω
ε
, zs,y1

)
Ĝ0

(ω
ε
,x1,y1

)
×Ĝ0

(ω
ε
,xa, zs

)
Ĝ0

(ω
ε
, zs,y2

)
Ĝ0

(ω
ε
,x2,y2

)
.

We will analyze each of these four contributions in the high-frequency regime
using the stationary phase method.
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We consider the first contribution C
(3)
1 . Using the WKB approximation (5.4) of

the background Green’s function, we obtain:

C
(3)
1 (τ,x1,x2) =

σ2

2π

∫
dxady1dy2dzsχ(xa)θ(y1)θ(y2)ρ(zs)

∫
dω ω4F̂ (ω)2

×a(xa,y1)a(x1, zs)a(zs,y1)a(xa,y2)a(x2, zs)a(zs,y2)ei ω
ε T (xa,y1,y2,zs) .

The rapid phase is

ωT (xa,y1,y2, zs) = ω
[
τ(xa,y1)− τ(x1, zs)− τ(zs,y1)

−τ(xa,y2) + τ(x2, zs) + τ(zs,y2)− τ
]
.

The dominant contribution comes from the stationary phase points satisfying(
∂ω,∇xa ,∇y1 ,∇y2 ,∇zs

)(
ωT (xa,y1,y2, zs)

)
=

(
0,0,0,0,0

)
,

which give the five conditions

τ(xa,y1)− τ(x1, zs)− τ(zs,y1)− τ(xa,y2) + τ(x2, zs) + τ(zs,y2) = τ ,

∇xaτ(xa,y1) = ∇xaτ(xa,y2) ,
∇y1τ(y1,xa) = ∇y1τ(y1, zs) ,
∇y2τ(y2,xa) = ∇y2τ(y2, zs) ,
∇zsτ(zs,x1) +∇zsτ(zs,y1) = ∇zsτ(zs,x2) +∇zsτ(zs,y2) .

It turns out that there do exist such stationary points for C(3)
1 . They are de-

termined by using Lemma B.1. The second condition means that y1 and y2 lie on
the same side of a ray issuing from xa. The third one means that xa and zs lie on
the same side of a ray issuing from y1. Therefore, y1, y2, zs and xa are on the
same ray, with the pairs (y1,y2) and (zs,xa) on opposite sides. There are four pos-
sibilities: y1 → y2 → zs → xa, y2 → y1 → zs → xa, y1 → y2 → xa → zs, and
y2 → y1 → xa → zs.

The fourth condition is now automatically satisfied and the last condition can
be simplified to ∇zsτ(zs,x1) = ∇zsτ(zs,x2), which means that x1 and x2 are on the
same side of a ray issuing from zs. There are two possibilities here: zs → x1 → x2

and zs → x2 → x1. Consequently, there are eight types of configurations of points
satisfying the last four conditions (Figure 8.3). They all contribute to the term C

(3)
1

if in addition the first condition is satisfied, which is simply τ = τ(x1,x2) if x1 is
between zs and x2, and τ = −τ(x1,x2) if x2 is between zs and x1. Therefore, there
are only two singular components in C

(3)
1 , which are at times τ = ±τ(x1,x2). By

considering the Hessian of ωT (with respect to ω, xa, y1, y2, zs) we find that the
multiplicative factors given by the stationary phase theorem for these stationary maps
are of order ε3(d−1)/2 (this will be used below).

We examine next the three other terms C(3)
j , j = 2, 3, 4. They also have stationary

points that give peaks at times τ = ±τ(x1,x2), but only in configurations for which
a source point (y1 or y2), a scatterer point (zs) and the two sensors x1 and x2 are
along the same ray, while the other source point, the scatterer zs and the auxiliary
sensor xa are along another ray. In particular, a source and the sensors x1 and x2

must be on the same ray. If this is the case the stationary phase approximation gives
a factor of order ε3(d−1)/2.



Passive Imaging Using Cross Correlations 31

Fig. 8.3. Four contributions to the stationary phase of C
(3)
1 when the support of the noise

sources is the ellipse shown and y1 and y2 are two points in it. The main sensors are at x1 and
x2. An auxiliary sensor is at xa and a scatterer at zs. The points y1,y2, zs,xa are along the
same ray, as are zs,x1,x2. The two configurations on the top contribute at τ = τ(x1,x2). The
two configurations on the bottom contribute at τ = −τ(x1,x2). The other four configurations are
obtained by interchanging y1 and y2.

To complete the proof we need to show that the fluctuations of C(3) due to
the random medium are small. The calculations carried out for the expectation
E[C(3)] give then correct results for C(3) itself. We analyze the variance Var(C3)) =
E[(C(3))2]−E[C(3)]2 and show that it is much smaller than E[C(3)]2. Using (8.9), the
property (8.5), and the standard rule for the calculations of fourth-order moments of
Gaussian processes, we find that the leading order term of the variance is of order σ4

and consists of 32 contributions (there are 48 contributions for E[(C(3))2], and among
them 16 are canceled by E[C(3)]2). One of these contributions is

V
(3)
41 =

σ4

4π2

∫
dxady1dy2dzsχ(xa)θ(y1)θ(y2)ρ(zs)

∫
dω ω4F̂ (ω)2e−i ω

ε τ

×
∫
dx′ady

′
1dy

′
2dz

′
sχ(x′a)θ(y

′
1)θ(y

′
2)ρ(z

′
s)

∫
dω′ ω′4F̂ (ω′)2ei ω′

ε τ

×Ĝ0

(ω
ε
,xa,y1

)
Ĝ0

(ω
ε
,x1, zs

)
Ĝ0

(ω
ε
, zs,y1

)
×Ĝ0

(ω
ε
,xa,y2

)
Ĝ0

(ω
ε
,x2, z′s

)
Ĝ0

(ω
ε
, z′s,y2

)
×Ĝ0

(ω′
ε
,x′a,y

′
1

)
Ĝ0

(ω′
ε
,x1, z′s

)
Ĝ0

(ω′
ε
, z′s,y

′
1

)
×Ĝ0

(ω′
ε
,x′a,y

′
2

)
Ĝ0

(ω′
ε
,x2, zs

)
Ĝ0

(ω′
ε
, zs,y′2

)
.

Using the WKB approximation of the background Green’s function, we obtain an
expression in which the rapid phase is

φ = ω
[
τ(xa,y1)− τ(x1, zs)− τ(zs,y1)− τ(xa,y2) + τ(x2, z′s) + τ(z′s,y2)− τ

]
−ω′

[
τ(x′a,y

′
1)− τ(x1, z′s)− τ(z′s,y

′
1)− τ(x′a,y

′
2) + τ(x2, zs) + τ(zs,y′2) + τ

]
.

Stationary points for this exist only if all points are along the same ray. Consequently
it is necessary that the ray going through x1 and x2 reach into the source region, and
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then the factor given by the stationary phase theorem is of order ε8(d−1)/2. This is
much smaller than ε6(d−1)/2, which is the order of magnitude of the main contribu-
tions of the square of E[C(3)]. The other 31 components of the variance of C(3) behave
similarly, and some have even smaller contributions. This shows that the fluctuations
of C(3) due to the random medium are small when we consider singular components. �

8.5. Statistical stability of fourth-order cross correlation functions. For
completeness, we analyze also the role that the fluctuations CT−〈CT 〉, due to the noise
sources, play in fourth-order cross correlations. We show that, as may be expected,
they are negligible. More precisely, we consider the fluctuations of the cross correlation

C̃T (τ,x1,x2) = CT (τ,x1,x2)− 〈CT (τ,x1,x2)〉 , (8.10)

we compute the cross correlations between (x1,xa,j) and (x2,xa,j), for all auxiliary
sensors xa,j , and we study the cross correlation of the fluctuations

C̃
(2)
T ′,T (τ,x1,x2) =

∫ T ′

−T ′
dτ ′

∑
j

C̃T (τ ′,xa,j ,x1)C̃T (τ ′ + τ,xa,j ,x2)

=
∫ T ′

−T ′
dτ ′

∫
dxaχ(xa)C̃T (τ ′,xa,x1)C̃T (τ ′ + τ,xa,x2) . (8.11)

Proposition 8.3. The cross correlation fluctuations C̃(2)
T ′,T (τ,x1,x2) converge to

zero in probability as T, T ′ →∞.
More precisely, TC̃(2)

T ′,T (τ,x1,x2) is self-averaging as T, T ′ →∞:

TC̃
(2)
T ′,T (τ,x1,x2)

T,T ′→∞−→ C̃(2)(τ,x1,x2) .

The normalized cross correlation C̃(2)(τ,x1,x2) has a singular component if and only
if the ray going through x1 and x2 reaches into the source region. There are then one
or two singular components at τ = ±τ(x1,x2).

This proposition shows that the fluctuations in the fourth-order cross correlations
due to the noise sources decay to zero as T−1. Propositions 5.1 and 8.3 show also
that C̃(2)(τ,x1,x2) and C(1)(τ,x1,x2) carry the same information in their singular
components. In other words, the small fluctuations of the cross correlations due
to the noise sources have no new information regarding travel times. As shown by
Proposition 8.2, it is the tails (or coda) of the cross correlations generated by the
inhomogeneities of the medium that contain buried information about travel times,
and this information can be extracted by computing the C(3) cross correlation.

8.6. Higher-order cross correlations. We have considered an inhomogeneous
medium with weak, randomly distributed point scatterers. Waves scattered by point
scatterers are spherical and have no directional memory of the incident waves. This
complete isotropization of the scattered field is desirable in order to have good recon-
struction of the Green’s function from coda cross correlations. However, enhanced
travel time estimation using iterated cross correlations can occur in other scattering
media as well. It may be necessary to use higher-order cross correlations in media in
which scattering is not isotropic, as we now explain.

A possible way to use higher-order cross-correlations is to iterate further coda
cross correlations as follows:
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1) Compute the cross correlation between all pairs of sensors, including between pairs
of auxiliary sensors.
2) Cross correlate the coda of the cross correlations in order get fourth-order cross
correlation functions:

CT,T ′(τ,xj ,xa,l) =
N∑

k=1

∫
[−T ′,−Tcoda]∪[Tcoda,T ′]

CT (τ ′,xa,k,xj)CT (τ ′ + τ,xa,k,xa,l)dτ ′ ,

for j = 1, 2 and for all auxiliary sensors at xa,l, l = 1, . . . , N .
3) Cross correlate the coda of the fourth-order cross correlation functions in order to
get the eighth-order cross correlation function:

CT,T ′,T ′′(τ,x1,x2) =
N∑

l=1

∫
[−T ′′,−Tcoda]∪[Tcoda,T ′′]

CT,T ′(τ ′,x1,xa,l)

×CT,T ′(τ ′ + τ,x2,xa,l)dτ ′ .

The coda cross correlation CT,T ′(τ,x1,x2) proposed by Campillo and Stehly and stud-
ied in this paper removes contributions of the direct waves and exploits the scattered
waves. Higher-order cross correlations, such as CT,T ′,T ′′(τ,x1,x2) remove contribu-
tions of direct waves and of those from single scattering. They exploit mainly multiply-
scattered waves. When single scattering is not isotropic then multiply scattered waves
tend to be more isotropic than direct and single-scattered waves. When single scat-
tering is essentially isotropic then it is unlikely that higher-order cross correlations
will give better results. A more quantitative analysis, including signal-to-noise ratios,
is needed in order to substantiate these comments.

9. Summary and conclusions. We have presented and analyzed an integrated
framework for reflector imaging and travel time estimation with passive sensor net-
works, using cross correlations of signals generated by ambient noise sources.

We have shown that imaging of reflectors by migrating cross correlations can be
effective provided that it is done appropriately, depending on the positions of the
reflectors to be imaged relative to the sensors and the noise sources. More precisely:
1) In daylight configurations (Subsection 6.3), we have shown that the imaging func-
tional is similar to Kirchhoff or travel time migration for passive reflectors illuminated
by active sensors. It is, therefore, possible to assess resolution rather well in daylight
imaging. In particular, the range resolution is inversely proportional to the bandwidth
and the cross range resolution is proportional to the Rayleigh resolution formula for
sensor arrays (Subsection 6.4). We can also consider optimal illumination in the cross
correlation context following the ideas proposed in [8, 9] in the active array context.
This means that weights could be introduced in the daylight imaging functional to
compensate for possible imbalances between the illuminations of the different sensors
from the ambient noise sources.
2) In backlight configurations (Subjection 6.5), we have shown that the imaging func-
tional is similar to Kirchhoff migration for imaging active sources recorded by passive
sensors. Because of this analogy, we know that range resolution is very poor and that
only the direction of arrival can be estimated with sensor arrays.
3) We have shown (Section 7) how coherent interferometric imaging (CINT) could be
implemented when there is scattering in the medium, and how background velocity
estimation, which is necessary for migration, could be carried out using the same
passive sensor network.
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We have also analyzed travel time estimation by cross correlation of noisy signals.
We have shown analytically how directionality of the energy flux from the noise sources
affects the quality of the travel time estimates. We have shown how iterated cross
correlations with auxiliary sensors in a scattering medium can enhance the quality of
the travel time estimates (Section 8). We have identified configurations of scatterer
and the auxiliary sensor locations that play a significant role in this enhancement:
1) Scatterers that are along the ray joining the principal sensors.
2) Auxiliary sensors that are along rays connecting source points and scatterers iden-
tified in 1).

As noted in the introduction, most applications of cross correlation techniques
with passive sensor data are, so far, in geophysics. They may, however, be useful
in other contexts, in microwave regimes in particular. Wireless cell phones in an
urban environment, or in an indoor environment, could be considered as statistically
stationary, spatially distributed noise sources. At a central frequency of 2.4 GHz
(12 centimeter wavelength) and a bandwidth of 20 MHz the expected travel time
resolution is about 10 meters. With a 200 MHz bandwidth the expected resolution is
about 1 meter. Exploiting multiple scattering could make possible the use of passive
microwave sensor networks to monitor changes in the environment with differential
cross correlations. This would have the advantage of being both passive and rather
sensitive but will likely require additional information about the environment, such as
indoor floor plans or the location of buildings in an urban setting. A detailed analysis,
taking into account the relatively small bandwidth and the scattering properties of
microwaves in such environments, is currently under study.

Acknowledgments. The work of G. Papanicolaou was partially supported by
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Appendix A. Proof of Proposition 4.1. In this appendix we prove Propo-
sition 4.1. It establishes statistical stability of the cross correlations with respect to
noise source fluctuations.

By the stationarity of the process n, the product u(t,x1)u(t + τ,x2) is itself a
stationary random process in t. Therefore the mean of CT is independent of T and is
given by

〈CT (τ,x1,x2)〉 = 〈u(0,x1)u(τ,x2)〉 .

Using (4.7) we get the following integral representation for the average of the cross
correlation function:

〈CT (τ,x1,x2)〉 =
∫
dy1dy2

∫
ds′dsG(s,x1,y1)G(s′,x2,y2) 〈n(−s,y1)n(τ − s′,y2)〉 .

Using the form (4.2) of the autocorrelation function of the sources, we obtain

〈CT (τ,x1,x2)〉 =
∫
dy1dy2

∫
ds′dsG(s,x1,y1)G(τ + s+ s′,x2,y2)F ε(s′)Γ(y1,y2) .

Using the spatial delta-correlation property (4.6) we obtain (4.11), which in the
Fourier domain is (4.12).

In order to prove the self-averaging property of the cross correlation function
CT we compute its variance. The principle of this computation is the following one.
We first write the covariance function of CT as a multiple integral which involves
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the fourth-order moment of the random process n. Since n is Gaussian, this fourth-
order moment can be written as the sum of products of second-order moments, which
makes the computation tractable. Using (4.7) and (4.9), the complete expression of
the covariance function is

Cov
(
CT (τ,x1,x2), CT (τ + ∆τ,x1,x2)

)
=

1
T 2

∫ T

0

∫ T

0

dtdt′
∫
dsds′dudu′

∫
dy1dy′1dy2dy′2

×G(s,x1,y1)G(u− τ,x1,y2)G(s′,x2,y′1)G(u′ − τ −∆τ,x2,y′2)

×
(
〈nε(t− s,y1)nε(t− u,y2)nε(t′ − s′,y′1)n

ε(t′ − u′,y′2)〉

− 〈nε(t− s,y1)nε(t− u,y2)〉 〈nε(t′ − s′,y′1)n
ε(t′ − u′,y′2)〉

)
. (A.1)

The product of second-order moments of the random process n is

〈nε(t− s,y1)nε(t− u,y2)〉 〈nε(t′ − s′,y′1)n
ε(t′ − u′,y′2)〉

= F ε(s− u)F ε(s′ − u′)θ(y1)δ(y1 − y2)θ(y′1)δ(y
′
1 − y′2) .

The fourth-order moment of the Gaussian random process n is

〈nε(t− s,y1)nε(t− u,y2)nε(t′ − s′,y′1)n
ε(t′ − u′,y′2)〉

= F ε(s− u)F ε(s′ − u′)θ(y1)δ(y1 − y2)θ(y′1)δ(y
′
1 − y′2)

+F ε(t− t′ − s+ s′)F ε(t− t′ − u+ u′)θ(y1)δ(y1 − y′1)θ(y2)δ(y2 − y′2)
+F ε(t− t′ − s+ u′)F ε(t− t′ − u+ s′)θ(y1)δ(y1 − y′2)θ(y2)δ(y′1 − y2) .

Consequently, we have that for any T > 0

1
T 2

∫ T

0

∫ T

0

dtdt′
(
〈nε(t− s,y1)nε(t− u,y2)nε(t′ − s′,y′1)n

ε(t′ − u′,y′2)〉

− 〈nε(t− s,y1)nε(t− u,y2)〉 〈nε(t′ − s′,y′1)n
ε(t′ − u′,y′2)〉

)
= Sε

T (s′ − s, u′ − u)θ(y1)δ(y1 − y′1)θ(y2)δ(y2 − y′2)
+Sε

T (u′ − s, s′ − u)θ(y1)δ(y1 − y′2)θ(y2)δ(y′1 − y2) , (A.2)

where

Sε
T (s, u) =

1
4π2

∫ ∫
dωdω′F̂ ε(ω)F̂ ε(ω′)sinc2

( (ω − ω′)T
2

)
eiωs−iω′u .

Substituting into (A.1), we obtain for all T > 0 the following expression for the
covariance function:

Cov
(
CT (τ,x1,x2), CT (τ + ∆τ,x1,x2)

)
=

1
4π2

∫
dx0dy0θ(y1)θ(y2)

∫
dωdω′F̂ ε(ω)F̂ ε(ω′)eiω′∆τ

×Ĝ(ω,x1,y1)Ĝ(ω,x2,y1)Ĝ(ω′,x1,y2)Ĝ(ω′,x2,y2)sinc2
( (ω − ω′)T

2

)
+

1
4π2

∫
dy1dy2θ(y1)θ(y2)

∫
dωdω′F̂ ε(ω)F̂ ε(ω′)ei(ω′+ω)τ+iω′∆τ

×Ĝ(ω,x1,y1)Ĝ(ω,x2,y1)Ĝ(ω′,x1,y2)Ĝ(ω′,x2,y2)sinc2
( (ω − ω′)T

2

)
. (A.3)
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Taking the limit T →∞, we see that the variance is of order 1/T :

TVar
(
CT (τ,x1,x2)

) T→∞−→
1
2π

∫
dωF̂ ε(ω)2

∣∣∣ ∫
dy1θ(y1)Ĝ(ω,x1,y1)Ĝ(ω,x2,y1)

∣∣∣2
+

1
2π

∫
dωF̂ ε(ω)2e2iωτ

∣∣∣ ∫
dy1θ(y1)Ĝ(ω,x1,y1)Ĝ(ω,x2,y1)

∣∣∣2 ,
which quantifies the convergence rate in (4.13). Note that the first term of the asymp-
totic variance does not depend on τ , which means that it corresponds to fluctuations
for the cross correlation around its mean C(1) that are stationary and extend over
the whole time axis. The second term corresponds to local fluctuations. The time
scale of the fluctuations of the cross correlation can be quantified from the asymptotic
covariance function

TCov
(
CT (τ,x1,x2), CT (τ + ∆τ,x1,x2)

) T→∞−→
1
2π

∫
dωF̂ ε(ω)2eiω∆τ

∣∣∣ ∫
dy1θ(y1)Ĝ(ω,x1,y1)Ĝ(ω,x2,y1)

∣∣∣2
+

1
2π

∫
dωF̂ ε(ω)2eiω∆τe2iωτ

∣∣∣ ∫
dy1θ(y1)Ĝ(ω,x1,y1)Ĝ(ω,x2,y1)

∣∣∣2 , (A.4)

which shows that the decoherence time of the fluctuations of CT is proportional to
the decoherence time of the sources.

Appendix B. A remark on the ray equations. The rays are solutions of
Hamilton’s equations [6]

dXt

dt
= c20(Xt)ξt , X0(x, ξ) = x ,

dξt

dt
= −1

2
∇[c20](Xt)|ξt|2 , ξ0(x, ξ) = ξ ,

which derives from the Hamiltonian H(x, ξ) = 1
2c

2
0(x)|ξ|2. The quantity |ξt|c0(Xt) =

|ξ|c0(x) = 1 is constant along the ray. We assume that any pair of points in the region
of interest is connected with only one ray. In other words, for any starting point y
and any sensor x, there exists a unique vector ξ with norm |ξ|c0(y) = 1 such that
Xt(y, ξ) = x at some time t, and then the travel time τ(x,y) is equal to this time t.

Lemma B.1. 1. If ∇yτ(y,x1) = ∇yτ(y,x2), then x1 and x2 lie on the same
side on the same ray issuing from y, and

|τ(y,x1)− τ(y,x2)| = τ(x1,x2) .

2. If ∇yτ(y,x1) = −∇yτ(y,x2), then x1 and x2 lie on the opposite sides of the same
ray issuing from y, and

τ(y,x1) + τ(y,x2) = τ(x1,x2) .

Proof. The travel time from y to x1 is associated to a unique ray. We can first look
at this ray as starting from y, and denote by ξ0 the initial angle vector of this ray,
starting from y. We can also look at the same ray starting from x1, and we denote
by ξ1 the initial angle vector of this ray starting from x1 (see Figure B.1). We have

Xt(y, ξ0) = Xτ−t(x1, ξ1) , ξt(y, ξ0) = −ξτ−t(x1, ξ1) .
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Fig. B.1. The ray connecting y and x1 is the ray starting from y with the angle vector ξ0 or
equivalently the ray starting from x1 with the angle vector ξ1.

For any time t, the angle vector is given by

ξt(x1, ξ1) = ∇2τ(x1,Xt(x1, ξ1)) ,

where the gradient is taken with respect to the second point. Applying this identity
at time t = τ(x1,y):

−ξ0 = ξτ (x1, ξ1) = ∇2τ(x1,Xτ (x1, ξ1)) = ∇2τ(x1,y) = ∇yτ(y,x1) .

If the two points x1 and x2 are such that ∇yτ(y,x1) = ∇yτ(y,x2), then the last
equality implies that the ray connecting y to x1 and the ray connecting y to x2 must
start with the same angle. This means that x1 and x2 lie on the same ray issuing
from y. �

Appendix C. The single-scattering approximation. We describe briefly
the single-scattering model used in Subsection 6.2 to calculate cross correlations in
the presence of reflectors, and in Section 8 to analyze coda cross correlations. We
assume that the medium is characterized by a smoothly varying background velocity
c0(x) and a set of localized scatterers around (zj)j≥1. We model these scatterers as
fluctuations V (x) in the propagation speed as follows:

1
c2(x)

=
1

c20(x)
+ V (x) , V (x) =

∑
j

1
c2j

1Bj
(x− zj) .

Here Bj are compactly supported domains. The solution of the full wave equation
(4.1) can be written as a sum

u(t,x) = u0(t,x) + u1(t,x) ,

where the direct field u0 satisfies the wave equation (4.1) with the background velocity
c0(x) and it is given by:

u0(t,x) =
∫ ∫

G0(t− s,x,y)n(s,y)dsdy , (C.1)

where G0 is the Green’s function of the background medium whose Fourier transform
is solution of (5.1). The scattered field u1 is given by

u1(t,x) =
∫ ∫

G0(t− s,x,y)V (y)
∂2u

∂s2
(s,y)dsdy .

This expression is exact. The Born approximation (or single scattering approxima-
tion) consists in replacing u on the right side by the field u0 [10]:

u1(t,x) =
∫ ∫

G0(t− s,x,y)V (y)
∂2u0

∂s2
(s,y)dsdy . (C.2)
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This approximation is valid if the scattered field u1 is small compared to the incident
field u0. We assume that the diameters of the scattering regions Bj are small compared
to typical wavelength and that the velocity contrasts are such that c−2

j Vol(Bj) = ε2σj ,
with σj small. We can then model the scatterers by point scatterers with scattering
volumes ε2σj :

1
c2j

1Bj
(x− zj) ≈ ε2σjδ(x− zj) .

Substituting (C.1) into (C.2) we write the scattered field u1 and the total field u in
the form

u1(t,x) =
∫ ∫

G1(t− s,x,y)n(s,y)dsdy ,

u(t,x) =
∫ ∫

G(t− s,x,y)n(s,y)dsdy ,

where the full Green’s function G = G0 +G1 and G1 is given by

Ĝ1(ω,x,y) = ε2ω2
∑

j

σjĜ0(ω,x, zj)Ĝ0(ω, zj ,y) .

Appendix D. Proof of Proposition 8.3. We first write the complete expres-
sion for the expectation〈

C̃
(2)
T ′,T (τ,x1,x2)

〉
=

∫ T ′

−T ′
dτ ′

1
T 2

∫ T

0

∫ T

0

dtdt′
∫
dsds′dudu′

∫
dy1dy′1dy2dy′2dxa

×χ(xa)G(s,xa,y1)G(u− τ ′,x1,y2)G(s′,xa,y′1)G(u′ − τ ′ − τ,x2,y′2)

×
(
〈nε(t− s,y1)nε(t− u,y2)nε(t′ − s′,y′1)n

ε(t′ − u′,y′2)〉

− 〈nε(t− s,y1)nε(t− u,y2)〉 〈nε(t′ − s′,y′1)n
ε(t′ − u′,y′2)〉

)
. (D.1)

We now use the fact that the fourth-order moments of Gaussian processes can be
expanded as sums of products of second-order moments, as in the proof of Proposition
4.1. Substituting (A.2) into (D.1) we see that the limit as T, T ′ →∞ of T

〈
C̃

(2)
T ′,T

〉
is

equal to

C̃(2)(τ,x1,x2) =
1
2π

∫
dy1dy2dxaχ(xa)θ(y1)θ(y2)

∫
dωF̂ ε(ω)2

×Ĝ(ω,xa,y1)Ĝ(ω,x1,y2)Ĝ(ω,xa,y1)Ĝ(ω,x2,y2)e−iωτ .

If we keep only the leading order terms in σ, which are here of order 1, then we obtain

C̃(2)(τ,x1,x2) =
1
2π

∫
dy1dy2dxaχ(xa)θ(y1)θ(y2)

∫
dωF̂ (ω)2

×Ĝ0

(ω
ε
,xa,y1

)
Ĝ0

(ω
ε
,x1,y2

)
Ĝ0

(ω
ε
,xa,y1

)
Ĝ0

(ω
ε
,x2,y2

)
e−i ω

ε τ + 0(σ) .

Using the WKB approximation (5.4) of the background Green’s function, we obtain:

C̃(2)(τ,x1,x2) =
1
2π

∫
dy1dy2dxaχ(xa)θ(y1)θ(y2)

∫
dωF̂ (ω)2

×a(xa,y1)a(x1,y2)a(xa,y1)a(x2,y2)ei ω
ε T (y2) ,
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where the rapid phase is

ωT (y2) = ω[τ(x1,y2)− τ(x2,y2)− τ ] .

The analysis of the stationary points of the rapid phase is the same as in the proof of
Proposition 5.1, since the rapid phase has the same expression. There are stationary
points only if the points y2, x1 and x2 are along the same ray.

Thus, the proof of statistical stability goes along the same lines as the one of
Proposition 4.1 (Appendix A), using the decomposition of the eighth-order moments
of Gaussian processes as sums of products of second-order moments.
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