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Time reversal in attenuating acoustic media

Habib Ammari, Elie Bretin, Josselin Garnier, and Abdul Wahab

Abstract. In this paper we consider the problem of reconstructing sources
in attenuating acoustic media using a time-reversal technique. We first justify
the use of the adjoint of the attenuated wave operator instead of the ideal
one for modifying the time-reversal process as a first order correction of the
attenuation effect. Then we present a modified approach for higher order

corrections. We use a thermo-viscous law model for the attenuation losses.

1. Introduction

Many inverse problems in biomedical imaging are concerned with the deter-
mination of strength and location of sources causing perturbations in the medium
[1, 3, 4, 6, 17]. Given the measurements on a detection surface, these problems
are equivalent to find the “initial conditions” on the wavefield. The goal of finding
such initial conditions, can be achieved by using the so-called “time reversibility”
of the wave equations in a non-dissipative medium. It is possible to reverse a wave
from a “final state” in such a way that it retraces its original path back through
the medium and refocusses on the source location. This provides the basis of the
time-reversal technique. See for instance [15, 16, 21, 14, 10, 11, 1, 17, 12] and
references therein for comprehensive details. See also [8, 7, 23] for applications of
time reversal techniques in biomedical imaging.

In acoustic imaging, a challenging problem is to model the attenuation and to
compensate its effect in image reconstruction [5, 19]. In this paper, we consider
the problem of reconstructing sources in attenuating acoustic media using a time-
reversal technique. It is motivated by the recent works on hybrid imaging using
acoustics such as photoacoustic imaging [3, 4, 2], magneto-acoustic imaging [6],
and radiation force imaging [7]; see also [1] and [9]. Classical time-reversal methods,
without taking account of the attenuation effect, produce blurring in reconstructing
source terms. Indeed attenuation is a key issue as it breaks the time reversibility of
the wave equation. Some recent works propose to modify the time-reversal process,
using the adjoint of the attenuated wave operator instead of the ideal one [22, 13].
In this paper, we aim to justify this technique as a first order correction of the
attenuation effect. At the same time, we also present a modified approach for higher
order corrections. We use a thermo-viscous law model for the attenuation losses.

2010 Mathematics Subject Classification. Primary 35L05, 35R30; Secondary 47A52, 65J20.
Key words and phrases. Time reversal, wave propagation, attenuation.

c©XXXX American Mathematical Society

151

Contemporary Mathematics
Volume 548, 2011

c©2011 American Mathematical Society

151



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

152 HABIB AMMARI, ELIE BRETIN, JOSSELIN GARNIER, AND ABDUL WAHAB

However, our analysis can be extended to more generalized power law attenuation
models with fractional exponents.

The rest of the paper is organized as follows. In Section 2, we recall two clas-
sical time reversal methods for the acoustic wave equation in an ideal acoustic
medium. In Section 3, we propose and analyze a time reversal method for atten-
uating acoustic media. In Section 4, we present an alternative approach which
consists of preprocessing the data before applying classical time reversal algorithm.
In Section 5, we present some numerical illustrations to compare different variants
of the time reversal and to highlight the potential of our approach. Finally, the
paper ends with a short discussion and a conclusion.

2. Time Reversal in Homogeneous Acoustic Media Without
Attenuation

Let Ω be a smooth bounded domain in R
d, d = 2 or 3. Consider the acoustic

wave equation

(2.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2p

∂t2
(x, t)−Δp(x, t) =

dδ0
dt

(t)f(x), (x, t) ∈ R
d × [0,∞[,

p(x, t) = 0 and
∂p(x, t)

∂t
= 0, t � 0,

where δ0 is the Dirac mass at t = 0 and the source f is smooth and has a smooth
support K ⊂⊂ Ω. We assume that f is a real-valued function. Equation (2.1)
models photoacoustic imaging with f being the absorbed optical energy density
[3].

Let g(y, t) be defined as g(y, t) := p(y, t) for all y ∈ ∂Ω and t ∈ [0, T ], where T

is supposed to be sufficiently large such that p(x, t) = 0 =
∂p(x, t)

∂t
for t ≥ T and

x ∈ Ω. It is easy to see that g is smooth. Our aim in this section is to reconstruct
an approximation of the source f from g on ∂Ω× [0, T ].

We need the following notation. Let F denote the Fourier transform

F [v](x, ω) =

ˆ
R

v(x, t) exp(iωt)dt.

We also introduce

Γ(x, y, τ, t) = F−1[Γω(x, y)](t− τ ) =
1

2π

ˆ
R

Γω(x, y) exp(−iω(t− τ ))dω,

where Γω is the outgoing fundamental solution to the Helmholtz equation −(Δ+ω2)
in R

d:

(Δ + ω2)Γω(x, y) = −δx in R
d,

subject to the outgoing radiation condition.

2.1. Ideal Time Reversal Imaging Technique. Introduce the solution v
of the following wave problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2v

∂t2
(x, t)−Δv(x, t) = 0, (x, t) ∈ Ω× [0, T ],

v(x, 0) =
∂v

∂t
(x, 0) = 0, x ∈ Ω,

v(x, t) = g(x, T − t) (x, t) ∈ ∂Ω× [0, T ].
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The time-reversal imaging functional I1(x) reads
I1(x) = v(x, T ), x ∈ Ω.

In order to explicit I1(x), introduce the Dirichlet Green functionG(x, y, τ, t) defined
as the solution of the following wave equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2G

∂t2
(x, y, τ, t)−ΔyG(x, y, τ, t) = δxδτ , (y, t) ∈ Ω× R,

G(x, y, τ, t) = 0,
∂G

∂t
(x, y, τ, t) = 0, t � τ,

G(x, y, τ, t) = 0, (y, t) ∈ ∂Ω× R,

where δx and δτ are the Dirac masses at x and at τ .
Using the reversibility of the wave equation, we arrive at

(2.2) I1(x) = v(x, T ) =

ˆ T

0

ˆ
∂Ω

∂G(x, y, T, t)

∂νy
g(y, T − t)dσ(y)dt,

where ∂/∂νy denotes the normal derivative at y ∈ ∂Ω. In identity (2.2), the depen-
dence of the time-reversal functional I1 on the boundary data g is explicitly shown.
Moreover, since

g(y, s) =

ˆ
Ω

∂Γ

∂t
(z, y, 0, s)f(z) dz

∣∣∣∣
y∈∂Ω

,

it follows that

I1(x) =
ˆ
Ω

f(z)

ˆ T

0

ˆ
∂Ω

∂G(x, y, T, t)

∂νy

∂Γ

∂t
(z, y, 0, T − t)dσ(y)dt dz.

2.2. A Modified Time-Reversal Imaging Technique. In this section, we
present a modified approach to the time-reversal concept using “free boundary
conditions”. Introduce a function vs as the solution to the wave problem⎧⎪⎨⎪⎩

∂2vs
∂t2

(x, t)−Δvs(x, t) =
dδs
dt

(t)g(x, T − s)δ∂Ω(x), (x, t) ∈ R
d × R,

vs(x, t) = 0, ∂tvs(x, t) = 0, x ∈ R
d, t � s.

Here, δ∂Ω is the surface Dirac measure on ∂Ω and g is the measured data.
We define a modified time-reversal imaging functional by

I2(x) =
ˆ T

0

vs(x, T )ds, x ∈ Ω.

Note that

vs(x, t) =

ˆ
∂Ω

∂Γ

∂t
(x, y, s, t)g(y, T − s) dσ(y).

Consequently, the functional I2 can be expressed in terms of the free-space Green
function Γ as follows

I2(x) =
ˆ T

0

ˆ
∂Ω

∂Γ

∂t
(x, y, s, T )g(y, T − s)dσ(y)ds, x ∈ Ω.

Note that I2 is not exactly equivalent to I1 but is an approximation. Indeed, with

gω(y) = F [g](y, ω) = −iω

ˆ
Ω

Γω(z, y)f(z) dz,
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Parseval’s relation gives

I2(x) =

ˆ T

0

ˆ
∂Ω

∂Γ

∂t
(x, y, s, T )g(y, T − s)dσ(y)ds

= − 1

2π

ˆ
R

ˆ
∂Ω

iωΓω(x, y)gω(y)dσ(y)dω,

=
1

2π

ˆ
Rd

f(z)

ˆ
R

ˆ
∂Ω

ω2Γω(x, y)Γω(z, y)dσ(y)dωdz

Using the Helmholtz-Kirchhoff identity [1]ˆ
∂Ω

Γω(x, y)Γω(z, y)dσ(y) �
1

ω
Im {Γω(x, z)}

which is valid when Ω is a sphere with a large radius in R
d, we find

I2(x) �
1

2π

ˆ
Rd

f(z)

ˆ
R

ωIm {Γω(x, z)} dωdz.

Using the identity
1

2π

ˆ
R

ωIm {Γω(x, z)} dω = δz,

which follows from the fact that ∂Γ/∂t(x, z, 0, 0) = δz, we finally find that

I2(x) � f(x).

Remark 2.1. Our interest in this new time-reversal imaging functional is due
to its usefulness for viscous media. Moreover, numerical reconstructions of sources
using I1 or I2 are quite similar; see the numerical illustrations in Figure 1. In
fact, formally, if we let Gω = F [G], then

I1(x) = − i

2π

ˆ
Ω

f(z)

ˆ
R

ω

ˆ
∂Ω

∂Gω

∂νy
(x, y)Γω(z, y)dσ(y) dz dω.

But by integrating by parts over Ω and recalling that Gω is real-valued, we have

Im

ˆ
∂Ω

∂Gω

∂νy
(x, y)Γω(z, y)dσ(y) = Im {Γω(x, z)} ,

and therefore,

I1(x) = f(x),

which yields

I2(x) � I1(x).

Remark 2.2. Note also that the operator T : f → g can be expressed in the
form

T (f)(y, t) = g(y, t) = −
ˆ
Rd

∂Γ

∂t
(x, y, 0, t)f(x)dx, (y, t) ∈ ∂Ω× [0, T ].

Then its adjoint T ∗ satisfies

T ∗(g)(x) =

ˆ T

0

ˆ
∂Ω

∂Γ

∂t
(x, y, t, T )g(y, T − t)dσ(y)dt,

which is clearly identified to be the time-reversal functional I2.
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3. Time-Reversal Algorithm for Attenuating Acoustic Media

In this section, we present and analyze the concept of time reversal in attenu-
ating acoustic media. We consider the thermo-viscous wave model to incorporate
viscosity effect in wave propagation. Let pa be the solution of the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2pa
∂t2

(x, t)−Δpa(x, t)− a
∂

∂t
Δpa(x, t) =

dδ0
dt

f(x), (x, t) ∈ R
d × R,

pa(x, t) = 0 =
∂pa
∂t

(x, t), t � 0,

and let ga(y, t) = pa(y, t), (y, t) ∈ ∂Ω × [0,+∞[. Again, it is easy to see that ga
is smooth. The problem is to reconstruct the source f from ga. The strategy of
time-reversal is to consider the functional

I2,a(x) =
ˆ T

0

vs,a(x, T )ds, x ∈ Ω,

where vs,a should now be the solution of the time-reversed attenuated wave equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2vs,a
∂t2

(x, t)−Δvs,a(x, t) + a
∂

∂t
Δvs,a(x, t) =

dδs
dt

(ga(x, T − s)δ∂Ω) , (x, t) ∈ R
d × R,

vs,a(x, t) = 0 =
∂

∂t
vs,a(x, t), x ∈ R

d, t � s.

Unfortunately, this problem is ill-posed. Rigorously, we need to regularize
the time-reversed attenuated wave equation, for instance by truncating the high
frequencies in time or in space.

Introduce the free space fundamental solution Γ̃a,ω of the Helmholtz equation

ω2Γ̃a,ω(x, y) + (1 + iaω)ΔΓ̃a,ω(x, y) = −δx in R
d.

We have

vs,a(x, t) = − 1

2π

ˆ
R

{ˆ
∂Ω

iωΓ̃a,ω(x, y)ga(y, T − s)dσ(y)

}
exp(−iω(t− s))dω,

and we can define an approximation vs,a,ρ of the function vs,a as follows

vs,a,ρ(x, t) = − 1

2π

ˆ
|ω|≤ρ

{ˆ
∂Ω

iωΓ̃a,ω(x, y)ga(y, T − s)dσ(y)

}
exp(−iω(t− s))dω,

where ρ is a regularization parameter. The regularized time-reversal imaging func-
tional defined by

(3.1) I2,a,ρ(x) =
ˆ T

0

vs,a,ρ(x, T )ds

is then given by

I2,a,ρ(x) =
ˆ
∂Ω

ˆ T

0

∂

∂t
Γ̃a,ρ(x, y, s, T )ga(y, T − s)dσ(y)ds,

where

Γ̃a,ρ(x, y, s, t) =
1

2π

ˆ
|ω|≤ρ

Γ̃a,ω(x, y) exp(−iω(t− s))dω.

155



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

156 HABIB AMMARI, ELIE BRETIN, JOSSELIN GARNIER, AND ABDUL WAHAB

Remark 3.1. Let S ′ be the space of tempered distributions, i.e., the dual of
the Schwartz space S of rapidly decreasing functions (see for instance [18]). The
function vs,a,ρ(x, t) can be identified as the solution of the following wave equation:

∂2vs,a,ρ
∂t2

(x, t)−Δvs,a,ρ(x, t) + a
∂

∂t
Δvs,a,ρ(x, t) = Sρ

[
dδs
dt

]
(ga(x, T − s)δ∂Ω) ,

where Sρ is the operator defined on the space S ′ by

Sρ[ψ](t) =
1

2π

ˆ
|ω|≤ρ

exp(−iωt)F [ψ](ω)dω.

3.1. Analysis of Regularized Time-Reversal Functional. Recall that
pa(x, t) and p(x, t) are respectively solutions of the wave equations

∂2pa
∂t2

(x, t)−Δpa(x, t)−a
∂

∂t
Δpa(x, t) =

dδ0
dt

f(x), and
∂2p

∂t2
(x, t)−Δp(x, t) =

dδ0
dt

f(x),

and the functions pa,ω(x) = F [pa](x, ω) and pω(x) = F [p](x, ω) are solutions of the
Helmholtz equations(

κ(ω)2 +Δ
)
pa,ω(x) = i

κ(ω)2

ω
f(x), and

(
ω2 +Δ

)
pω(x) = iωf(x),

respectively, where κ(ω) =
ω√

1− iaω
. It can be seen that

pω,a(x) =
κ(ω)

ω
pκ(ω)(x), or pa(x, t) = La[p(x, .)](t),

where

La[φ](t) =
1

2π

ˆ
R

κ(ω)

ω

{ˆ
R

φ(s) exp{iκ(ω)s}ds
}
exp{−iωt}dω.

The following result holds.

Proposition 3.2. Let φ(t) ∈ S([0,∞[) (where S is the Schwartz space). Then,

La[φ](t) = φ(t) +
a

2
(tφ′)

′
(t) + o(a).

Proof. Formally, it follows that

La[φ](t) =
1

2π

ˆ
R

[1 + ia/2ω]

{ˆ ∞

0

[1− ω2a/2s]φ(s) exp{iωs}ds
}
exp{−iωt}dω

+o(a)

= φ(t) +
a

2
(−φ′(t) + (tφ)′′(t)) + o(a) = φ(t) +

a

2
(tφ′)′(t) + o(a).

This result can be rigorously justified using the stationary phase theorem [5]. �

Similarly, introduce the operator L̃a,ρ defined by

L̃a,ρ[φ](t) =
1

2π

ˆ ∞

0

φ(s)

{ˆ
|ω|≤ρ

κ̃(ω)

ω
exp{iκ̃(ω)s} exp{−iωt}dω

}
ds,

where κ̃(ω) =
ω√

1 + iaω
. By definition, we have

∂Γ̃a,ρ

∂t
= L̃a,ρ

[
∂Γ

∂t

]
.
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Moreover, the adjoint operator of L̃a,ρ reads

L̃∗
a,ρ[φ](t) =

1

2π

ˆ
|ω|≤ρ

κ̃(ω)

ω
exp{iκ̃(ω)t}

{ˆ ∞

0

φ(s) exp{−iωs}ds
}
dω.

Proposition 3.3. Let φ(t) ∈ D([0,∞[), where D([0,∞[) is the space of C∞-
functions of compact support on [0,∞[. Then for all ρ,

L̃∗
a,ρ[φ](t) = Sρ[φ](t)−

a

2
Sρ[(tφ

′)′] + o(a) as a → 0.

Proof. Note that, as φ(t) ∈ D([0,∞[), the support of φ ⊂ [0, Tmax],

L̃∗
a,ρ[φ](t) =

1

2π

ˆ
|ω|≤ρ

κ̃(ω)

ω
exp{iκ̃(ω)t}

{ˆ Tmax

0

φ(s) exp{−iωs}ds
}
dω

=
1

2π

ˆ
|ω|≤ρ

ˆ Tmax

0

[1− ia/2ω]
[
1 + ω2a/2t

]
φ(s) exp{−iω(s− t)}dsdω

+o(a)

= Sρ[φ(t)]−
a

2
Sρ [(tφ

′)′] (t) + o(a).

�

As an immediate consequence of Propositions 3.2 and 3.3, the following result
holds.

Proposition 3.4. Let φ(t) ∈ D([0,∞[), then

L̃∗
a,ρLa[φ](t) = Sρ[φ](t) + o(a) as a → 0.

We also have the following proposition which shows that using the adjoint of
the attenuated wave operator instead of the ideal one is a first order correction of
the attenuation effect.

Proposition 3.5. The regularized time-reversal imaging functional defined by
( 3.1) satisfies

I2,a,ρ(x) = −
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y, T − s, T )Sρ[g(y, ·)](s)dσ(y)ds+ o(a),

for a small enough.

Proof. The integral I2,a,ρ can be rewritten in the form

I2,a,ρ(x) = −
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y, T − s, T )L̃∗

a,ρ[ga(y, ·)](s)dσ(y)ds.

Recall as well that ga = La[g], so that

I2,a,ρ(x) = −
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y, T − s, T )L̃∗

a,ρLa[g(y, ·)](s)dσ(y)ds

= −
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y, T − s, T )Sρ[g(y, ·)](s)dσ(y)ds+ o(a),

by using Proposition 3.4. �
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Finally, observe that the function δρ(z) defined by

δρ,x(z) =
1

2π

ˆ
|ω|≤ρ

ωIm {Γω(x, z)} dω,

is an approximation of the Dirac delta distribution, i.e., δρ,x → δx as ρ → +∞.
This implies that

−
ˆ
∂Ω

ˆ T

0

∂

∂t
Γ(x, y, T − s, T )Sρ[g(y, ·)](s)dσ(y)ds � δρ,x ∗ f

ρ→+∞−→ f(x),

when x is far away from the boundary ∂Ω.

4. A higher-order reconstruction alternative

In the previous section, we have shown that the time reversal method using
the adjoint of attenuated wave operator can be justified as a first order correction
of attenuation effect. The algorithm I2,a,ρ can be seen as a classical time reversal

method applied to ”preprocessed” data L̃∗
a,ρga. Moreover, Proposition 3.4 indicates

that the operator L̃∗
a,ρ is an order one approximation of the inverse of attenuation

operator La. A higher order correction of attenuation effect can be given using
a preprocessed data L−1

a,kga instead of using time reversal method with adjoint

of attenuated wave operator. Here, the filter L−1
a,k can be defined as an order k

approximation of the inverse of operator La.
As in our previous work [5], the idea is to use an approximation of operator

La obtained by a classical argument of stationary phase theorem. More precisely,
in the simplified case where κ(ω) � ω + ia2ω

2, we have from [5] that

La[φ](t) =

k∑
m=0

am

m! 2m
(tmφ′)

(2m−1)
(t) + o(ak).

An approximation of order k of the inverse of operator La can then be given as

L−1
a,kφ =

k∑
m=0

amφk,m(t),

where φk,m is recursively defined by⎧⎪⎨⎪⎩
φk,0 = φ,

φk,m = −
m∑
l=1

Dl[φk,m−l],
and Dmφ(t) =

1

m! 2m
(tmφ′)

(2m−1)
(t).

Thus, a higher-order reconstruction alternative can finally be described in two
steps:

Step 1: Preprocess the measured data ga using the filter L−1
a,k;

Step 2: Use the classical time-reversal functional I1 or I2 for the reconstruction
of the source f .
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5. Numerical Illustrations

5.1. Description of the Algorithm. All the wave equations are solved in
the box [−L/2, L/2]2 with periodic boundary conditions, where L is supposed to be
sufficiently large to prevent any reflection on the boundary. Numerical integrations
of each equation are then performed exactly in the Fourier space.

As the solution vs,a,ρ(x, t) is very difficult to obtain numerically, we regularize
the problem by truncating high-frequency components in space. This can be seen
as an approximation ṽs,a,ρ of vs,a,ρ, defined as the solution of

∂2ṽs,a,ρ
∂t2

(x, t)−Δṽs,a,ρ(x, t) + a
∂

∂t
Δṽs,a,ρ(x, t) =

dδ0
dt

χρ [(ga(y, T − s)δ∂Ω)] ,

where the operator χρ is given by

χρ [f ] (x) =
1

L2

∑
|j|≤ρ

ˆ
[−L/2,L/2]2

f(z) exp
(
i
2π

L
(z − x) · j

)
dz.

The numerical approximation of pa(x, t) is obtained by using its spatial Fourier
decomposition. Indeed, recall that pa(x, t) is the solution of wave equation

∂2pa
∂t2

(x, t)−Δpa(x, t)− a
∂

∂t
Δpa(x, t) =

dδ0
dt

f(x).

Therefore, when

f(x) =
∑
j∈Z2

fj exp

(
−i

2π

L
j · x

)
,

the function pa(x, t) can be expanded as

pa(x, t) =
∑
j∈Z2

pj(t) exp

(
−i

2π

L
j · x

)
,

with

pj(t) = exp

(
−a

2

(2π
L

)2|j|2t) cos

(
t

√(2π
L

)2|j|2 − a2

4

(2π
L

)4|j|4) fj .

The function ṽs,a,ρ can similarly be approximated numerically.

5.2. Experiments. In the sequel, for numerical illustrations Ω is defined in
polar coordinate by

Ω = {(r, θ) ∈ [0,∞[×[0, 2π[ ; r ≤ 0.95 + 0.05 cos(8θ)},
and its boundary is discretized by 1024 sensors. The solutions p and ṽs,a,ρ are also
calculated over (x, t) ∈ [−L/2, L/2]2 × [0, T ] with L = 4 and T = 2, and we used a
step of discretization given by dt = T/210 and dx = L/29.

Figure 1 presents a comparison between the two time reversal imaging func-
tionals I1 and I2 for non attenuating acoustic media. One can observe that the
two reconstructions are almost identical.

Figure 2 shows some reconstructions using I2 for an attenuating medium. As
expected, the two images obtained respectively with an attenuation coefficient a =
0.0005 and a = 0.001 appear to be blurred.

Figure 3 presents some reconstructions using I2,a,ρ for an attenuating medium.
The images corresponding to I2,a,ρ are computed for different values of ρ. It appears
that I2,a,ρ gives a better reconstruction of f than the functional I2 provided that
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the regularization parameter ρ is chosen sufficiently large in order to insure the
stability of the algorithm.

Figure 4 presents some reconstructions obtained by preprocessing the data with
the filter L−1

a,k followed by the time reversal using the imaging functional I2 in an
attenuating medium. This approach is tested by varying the approximation order
k. It clearly provides a better reconstruction of f than by using the functional
I2. Moreover, this approach has no instability issues, at least in the numerical
simulations presented here.

Figure 1. Comparison between I1 and I2 without attenuation
a = 0. Left: source f(x); Middle: reconstruction using I1; Right:
reconstruction using I2.

Figure 2. Reconstruction using I2 from attenuated data ga. Left:
source f(x); Middle: reconstruction using I2 with a = 0.0005;
Right: reconstruction using I2 with a = 0.001.

6. Discussion and Conclusion

In this work, the attenuation coefficient is assumed to be homogeneous and
known a priori. However, in practical situations, this is not the case and an esti-
mation of attenuation coefficient is necessary. An estimation can be done easily if
the source f and the data ga are known simultaneously. Indeed, in this situation,
the ideal data g can be recovered from f and a can be estimated as the minimizer
of the discrepancy functional J given by

J(a) =

{ˆ
∂Ω

ˆ T

0

|ga(y, t)− Lag(y, t)|2 dσ(y)dt
}
.

In fact, numerical tests using Newton algorithm for solving this optimization prob-
lem are quite successful. Figure 5 shows reconstructions of different values of the
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Figure 3. Reconstruction using I2,a,ρ from attenuated data ga.
First line: a = 0.0005; Second line: a = 0.001; Left: ρ = 15;
Middle: ρ = 20; Right: ρ = 25.

Figure 4. Reconstruction by preprocessing the data with the fil-
ter L−1

a,k followed by the functional I2 from attenuated data ga.
First line: a = 0.0005; Second line: a = 0.001; Left: k = 1; Mid-
dle: k = 2; Right: k = 4.

attenuation coefficient a when the source term f is respectively the phantom, a
Gaussian, or a Dirac mass. It turns out that the lower the attenuation coefficient
is, the better is the reconstruction. Moreover, The most reliable coefficient recon-
struction corresponds to a Dirac mass.

A more involving scenario is when only the data ga is known. We tried to re-
cover the attenuation coefficient a and the source f simultaneously as the minimizer
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Figure 5. Reconstructions of the attenuation coefficient a. Left:
the source term f is the phantom; Middle: f is a Gaussian; Right:
f is a Dirac mass.

(a∗, f∗) of the discrepancy functional

J(a, f) =

{ˆ
∂Ω

ˆ T

0

|ga(y, t)− La [T f(y, t)]|2 dσ(y)dt
}
,

where T : f �→ g. However, this optimization problem seems to have an inherent
instability issue. This point will be addressed in a future investigation. Another
challenging problem is to extract the Green function of attenuating media by cor-
relating waves excited by random sources that are recorder at two locations [20].
It is expected that our results in this paper would lead to an efficient approach for
solving this problem.

To conclude, the time reversal technique using adjoint attenuated wave operator
has clearly provided better resolution in image reconstruction than the classical one
without attenuation consideration. We analyzed this approach and proved that it
provides a first order correction of the attenuation effects. Unfortunately, this
technique is ill-posed and even if a regularization is used, it appears to be unstable
and inefficient when the attenuation coefficient a becomes too large. We, therefore,
proposed another approach which consists to apply a filter to the measured data
followed by a classical time reversal method. This method seems to be more stable
and accurate as illustrated in our numerical experiments. However, this approach
can not be adapted when a depends on spatial variable. In this situation, the
attenuated time reversal technique seems to be the best option for attenuation
compensation.
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