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Abstract. The goal of this paper is to illustrate the efficiency and the stability
of the near-cloaking structures proposed in [4] and [5]. These new structures
are, before using transformation optics, layered structures and are designed so
that their first contracted generalized polarization tensors (in the quasi-static
limit) or scattering coefficients (in the case of the Helmholtz equation) vanish.
Inside the cloaking region, any target has near-zero boundary or scattering
cross section measurements. We numerically show that this new construction
significantly enhances the invisibility cloaking effect for the conductivity and
the Helmholtz equations and is quite robust with respect to random fluctua-

tions of the material parameters around their theoretical values. We finally
extend our multi-coated construction to the enhanced reshaping problem. We
show how to make any target look like a disc with homogeneous physical pa-
rameters.

1. Introduction

The cloaking problem is to make a target invisible from far-field wave measure-
ments [22, 15, 10, 9, 16, 18]. Many schemes are under active current investigation.
These include exterior cloaking in which the cloaking region is outside the cloaking
device [19, 20, 8, 7, 2, 1], active cloaking [11], and interior cloaking, which is the
focus of our study.

In interior cloaking, the difficulty is to construct material parameter distribu-
tions of a cloaking structure such that any target placed inside the structure is
undetectable to waves. One approach is to use transformation optics [22, 10, 9,
27, 12, 23]. It takes advantage of the fact that the equations governing electro-
statics, electromagnetism, and acoustics have transformation laws under change of
variables. This allows one to design structures that steel waves around a hidden re-
gion, returning them to their original path on the far side. The change of variables
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based cloaking method uses a singular transformation to boost the material prop-
erties so that it makes a cloaking region look like a point to outside measurements.
However, this transformation induces the singularity of material constants in the
transversal direction (also in the tangential direction in two dimensions), which
causes difficulty both in the theory and applications. To overcome this weakness,
so called ‘near cloaking’ is naturally considered, which is a regularization or an
approximation of singular cloaking. In [14], instead of the singular transformation,
the authors use a regular one to push forward the material constant in the con-
ductivity equation describing the static limit of electromagnetism, in which a small
ball is blown up to the cloaking region. In [13], this regularization point of view is
adopted for the Helmholtz equation. See also [17, 21].

In [4, 5], a new cancellation technique in order to achieve enhanced invisibil-
ity from measurements of the Dirichlet-to-Neumann map in electrostatics and the
scattering cross section in electromagnetism is proposed. The approach is to first
design a multi-coated structure around a small perfect insulator to significantly
reduce its effect on boundary or scattering cross section measurements. One then
obtains a near-cloaking structure by pushing forward the multi-coated structure
around a small object via the standard blow-up transformation technique.

The purpose of this paper is to study the performances of the invisibility cloaks
proposed in [4] and [5], and compare them with those based on (regularized) trans-
formation optics [14, 13]. We show that they are quite robust with respect to
random fluctuations of their material parameters around the theoretical values.
We also extend the new construction in [4] and [5] to reshaping problems.

Practical performances of cloaks can be evaluated in terms of invisibility and
complexity. Invisibility tells how difficult it is to detect the cloaked object. Com-
plexity reflects how difficult it is to produce the cloak in practice. It takes into
account possible singularities, high or low values, and anisotropy of the parameter
distributions.

The approach developed in [4] and [5] is to drastically reduce the visibility of
an object by making contracted generalized polarization tensors (GPT) or scat-
tering coefficients of the multi-coated structure vanish (up to some order). This
is achieved using a properly designed layered-structure, combined with the usual
change of variable. To compare (in)visibility, we use scalar functions. For the
conductivity problem, we choose the eigenvalues of the Dirichlet-to-Neumann map
which are linked to the contracted generalized polarization tensors. Similarly, for
the Helmholtz problem, we consider the singular values of the far-field operator
which are functions of the scattering coefficients. Given bounded material proper-
ties and a finite signal-to-noise ratio, we show that the new structures proposed in
[4] and [5] yield significantly better invisibility than those based on standard trans-
formation optics. Indeed, we show that the newly proposed cloaks are sufficiently
stable with respect to their basic features (values of the parameters and width of
the layers).

When considering near cloaking for the Helmholtz equation, we prove that it
becomes increasingly difficult as the cloaked object becomes bigger or the operat-
ing frequency becomes higher. The difficulty scales inversely proportionally to the
object diameter or the frequency. Another important observation is that the reduc-
tion factor of the scattering cross section is higher in the backscattering region than
in the forward one. This is due to the creeping waves propagating in the shadow
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region. We show that the cloaking problem becomes easier if only scattered waves
at certain angles are visible.

Finally, we extend our construction to the enhanced reshaping problem. We
show how to make any target look like a disc with homogeneous physical parameters.

2. Enhancement of near cloaking in the quasi-static limit

2.1. Principles. To explain the principle of our new construction of cloaking
structures, we review the results on the conductivity equation obtained in [4].

Let Ω be a domain in R
2 containing 0 possibly with multiple components with

Lipschitz boundary. For a given harmonic function H in R
2, consider

(2.1)

{
∇·

(
σ0χ(R

2 \ Ω) + σχ(Ω)
)
∇u = 0 in R

2,

u(x)−H(x) = O(|x|−1) as |x| → ∞,

where σ0 and σ are conductivities (positive constants) of R2\Ω and Ω, respectively.
Here and throughout this paper, χ(Ω) (resp. χ(R2\Ω)) is the characteristic function
of Ω (resp. χ(R2 \ Ω)).

If the harmonic function H admits the expansion

H(x) = H(0) +
∞∑

n=1

rn
(
acn(H) cosnθ + asn(H) sinnθ)

)
with x = (r cos θ, r sin θ), then we have the following formula

(u−H)(x) = −
∞∑

m=1

cosmθ

2πmrm

∞∑
n=1

(
M cc

mna
c
n(H) +M cs

mna
s
n(H)

)
−

∞∑
m=1

sinmθ

2πmrm

∞∑
n=1

(
Msc

mna
c
n(H) +Mss

mna
s
n(H)

)
as |x| → ∞.(2.2)

The coefficients M cc
mn,M

cs
mn,M

sc
mn, and Msc

mn are called the contracted generalized
polarization tensors.

In [4], we have constructed structures with vanishing contracted generalized
polarization tensors for all |n|, |m| ≤ N . We call such structures GPT-vanishing
structures of order N . For doing so, we use a disc with multiple coatings. Let Ω
be a disc of radius r1. For a positive integer N , let 0 < rN+1 < rN < . . . < r1 and
define

(2.3) Aj := {rj+1 < r = |x| ≤ rj}, j = 1, 2, . . . , N.

Let A0 = R
2 \ Ω and AN+1 = {r ≤ rN+1}. Set σj to be the conductivity of Aj for

j = 1, 2, . . . , N + 1, and σ0 = 1. Let

(2.4) σ =

N+1∑
j=0

σjχ(Aj).

Because of the symmetry of the disc, one can easily see that

(2.5) M cs
mn[σ] = Msc

mn[σ] = 0 for all m,n,

(2.6) M cc
mn[σ] = Mss

mn[σ] = 0 if m �= n,

and

(2.7) M cc
nn[σ] = Mss

nn[σ] for all n.
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Let Mn = M cc
nn, n = 1, 2, . . ., for the simplicity of notation. Let

(2.8) ζj :=
σj − σj−1

σj + σj−1
, j = 1, . . . , N + 1.

The following is a characterization of GPT-vanishing structures. See [4].

Proposition 2.1. If there are non-zero constants ζ1, . . . , ζN+1 (|ζj | < 1) and
r1 > . . . > rN+1 > 0 such that

(2.9)
N+1∏
j=1

[
1 ζjr

−2l
j

ζjr
2l
j 1

]
is an upper triangular matrix for l = 1, 2, . . . , N,

then (Ω, σ), given by ( 2.3), ( 2.4), and ( 2.8), is a GPT-vanishing structure of
order N , i.e., Ml = 0 for l ≤ N . More generally, if there are non-zero constants
ζ1, ζ2, ζ3, . . . (|ζj | < 1) and r1 > r2 > r3 > . . . such that rn converges to a positive
number, say r∞ > 0, and

(2.10)
∞∏
j=1

[
1 ζjr

−2l
j

ζjr
2l
j 1

]
is an upper triangular matrix for every l,

then (Ω, σ), given by ( 2.3), ( 2.4), and ( 2.8), is a GPT-vanishing structure with
Ml = 0 for all l.

Let (Ω, σ) be a GPT-vanishing structure of order N of the form (2.4). We take
r1 = 2 so that Ω is the disk of radius 2, and rN+1 = 1. We assume that σN+1 = 0
which amounts to that the structure is insulated along ∂B1. For small ρ > 0, let

(2.11) Ψ 1
ρ
(x) =

1

ρ
x, x ∈ R

2.

Then, (B2ρ, σ ◦Ψ 1
ρ
) is a GPT-vanishing structure of order N and it is insulated on

∂Bρ.
For a given domain Ω and a subdomain B ⊂ Ω, we introduce the DtN map

ΛΩ,B[σ] as

(2.12) ΛΩ,B [σ](f) = σ
∂u

∂ν

∣∣∣∣
∂Ω

where u is the solution to

(2.13)

⎧⎪⎪⎨⎪⎪⎩
∇ · σ∇u = 0 in Ω \B,
∂u

∂ν
= 0 on ∂B,

u = f on ∂Ω

where ν is the outward normal to ∂B. Note that with Ω = B2, ΛΩ,Bρ
[σ ◦ Ψ 1

ρ
]

may be regarded as small perturbation of ΛΩ,∅[1]. In fact, a complete asymptotic
expansion of ΛΩ,Bρ

[σ ◦Ψ 1
ρ
] as ρ → 0 is obtained and it is proved that∥∥∥ΛΩ,Bρ

[
σ ◦Ψ 1

ρ

]
− ΛB2,∅[1]

∥∥∥ ≤ Cρ2N+2

for some constant C independent of ρ, where the norm is the operator norm from
H1/2(∂Ω) into H−1/2(∂Ω). We then push forward σ◦Ψ 1

ρ
by the change of variables
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Fρ,

(2.14) Fρ(x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 3− 4ρ

2(1− ρ)
+

1

4(1− ρ)
|x|

) x

|x| for 2ρ ≤ |x| ≤ 2,(1
2
+

1

2ρ
|x|

) x

|x| for ρ ≤ |x| ≤ 2ρ,

x

ρ
for |x| ≤ ρ,

in other words,

(2.15) (Fρ)∗(σ ◦Ψ 1
ρ
) =

(DFρ)(σ ◦Ψ 1
ρ
)(DFρ)

T

|det(DFρ)|
◦ F−1

ρ .

Note that Fρ maps |x| = ρ onto |x| = 1, and is the identity on |x| = 2. So by
invariance of the DtN map, we have

(2.16) ΛB2,B1

[
(Fρ)∗(σ ◦Ψ 1

ρ
)
]
= ΛB2,Bρ

[
σ ◦Ψ 1

ρ

]
.

Thus we obtain the following theorem, which shows that, using GPT-vanishing
structures we achieve enhanced near-cloaking.

Theorem 2.2. ([4]) Let the conductivity profile σ be a GPT-vanishing structure
of order N such that σN+1 = 0. There exists a constant C independent of ρ such
that

(2.17)
∥∥∥ΛB2,B1

[
(Fρ)∗(σ ◦Ψ 1

ρ
)
]
− ΛB2,∅[1]

∥∥∥ ≤ Cρ2N+2.

2.2. Performances. The purpose of this section is to compare through nu-
merical computations the cloaking effect of the near cloaking of Kohn et al [14]
and the enhanced near cloaking proposed in [4] and reviewed in the previous sub-
section. The comparison is done by means of the eigenvalues of the DtN maps
ΛB2,B1

[(Fρ)∗(1)] and ΛB2,B1
[(Fρ)∗(σ ◦ Ψ 1

ρ
)] where Fρ is the diffeomorphism de-

fined by (2.14) and σ is the GPT-vanishing structure of order N as defined in (2.4).
The first one is the DtN map of the near cloaking structure and the latter one is
that of the enhanced near cloaking structure. We assume that the core is insulated,
namely, σN+1 = 0 for the GPT-vanishing structure σ of order N .

Recall from [4] that
(2.18)(
ΛB2,B1

[(Fρ)∗(σ ◦Ψ 1
ρ
)]− ΛB2,∅[1]

)
(e±ikθ) =

kρ2kMk[σ]

πk2−2k+1 −Mk[σ]ρ2k
e±ikθ, k ∈ N,

where Mk[σ] is the contracted GPT of order N associated with the structure σ. It
is worth emphasizing that here we used (2.16). In particular, one can see that

(2.19)
(
ΛB2,B1

[(Fρ)∗(1)]− ΛB2,∅[1]
)
(e±ikθ) = −k

2

2(ρ2 )
2k

1 + (ρ2 )
2k

e±ikθ, k ∈ N.

Let λk, j = 1, 2, . . ., be the eigenvalues of ΛB2,∅[1] in decreasing order. Let λk
WC,

λk
NC and λk

EC be the eigenvalues (in decreasing order) of ΛB2,B1
[1], ΛB2,B1

[(Fρ)∗(1)]
and ΛB2,B1

[(Fρ)∗(σ ◦ Ψ 1
ρ
)], respectively. (WC, NC and EC stand for ‘Without

Cloaking’, ‘Near Cloaking’ and ‘Enhanced Cloaking’, respectively.) Here ΛB2,B1
[1]

is the DtN map where the conductivity of the annulus B2 \B1 is 1 and the core B1

is insulated.
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One can compute λk and λk
WC explicitly, and λk

NC using (2.19). The compu-
tation of λk

EC using (2.18) requires an explicit form of σ, which is quite difficult
if N is large. So we compute it numerically. For that we use the GPT-vanishing
structure of order N for N = 1, . . . , 6, which was computed numerically in [4]. Fig-
ure 2.1 shows the results of computation when N = 3 and 6. We emphasize that
the conductivity fluctuates on coatings near the core. When N = 3, the maximal
conductivity is 5.5158 and the minimal conductivity is 0.4264; When N = 6, they
are 11.6836 and 0.1706.
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Figure 2.1. Conductivity profile (left) and GPTs (right) of the
GPT-vanishing structure of order N with the core conductivity
being 0. The first row is when N = 3 and the second one for
N = 6.

Figure 2.2 shows the log10 of (1, 1)-entry of the conductivities (matrices) ob-
tained by applying the transform (2.15) to cloaking structures, i.e., log10((Fρ)∗(σ ◦
Ψ 1

ρ
))11 for different N . The structures for different values of N are quite similar.

They are obtained by segmenting the structure for N = 0 into concentric layers and
multiplying the anisotropic conductivity in each layer by the corresponding value
in the conductivity profile of the GPT-vanishing structure.

Figure 2.3 shows the log10 of the discrepancies of the eigenvalues of the DtN
maps for different structures. The black line represents log10 |λk

WC − λk|, the blue
one log10 |λk

NC−λk|, and the other colored ones log10 |λk
EC−λk| when GPT-vanishing

structures of order N = 1, . . . , 6 are used. We observe, in accordance with (2.19),
the quasi-geometric discrepancy of the perturbation triggered by a hole with ratio(
ρ
2

)2
. We also see that the DtN map associated with the GPT-vanishing cloaking
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log
10

(σ
11

), blow−up of a small hole

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

log
10

(σ
11

), blow−up of a 6 layer structure

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−1

−0.5

0

0.5

1

Figure 2.2. log10 of (1, 1)-entry of the conductivities (matrices)
obtained by applying the transform (2.15) to the GPT-vanishing
structures of different N : N = 0, 6, from left to right. N = 0
means no coating.

structure of order N has almost the same first N eigenvalues as the one for homo-
geneous background with conductivity 1. Moreover, GPT-vanishing structures are
much less visible than those obtained by the blow-up of an uncoated small hole.
Note that the supk |λk

NC − λk| is reached at k = 1 for the near cloaking (pertur-
bation of eigenvalues is non-increasing) and supk |λk

EC − λk| at k = N + 1 when a
GPT-vanishing structure of order N is used.

Another important remark is in connection with [23], where the anisotropic
conductivity of the cloaking structure is segmented into concentric isotropic ho-
mogeneous coatings. By optimizing the thickness and material parameters of the
isotropic layers, one can achieve a good invisibility performance. From a homog-
enization point of view, this construction is intriguing. In view of the discussion
below, it seems that such a constructing using concentric isotropic layers (rank one
structures in homogenization) is an approximation of the anisotropic conductivity
in the sense that it minimizes the relative discrepancy between the DtN maps for
only the first eigenvectors. The formalization of this new approximate homogeniza-
tion concept will be the subject of a forthcoming work.

2.2.1. Comparison of invisibility. Based on previous observation, we introduce,
for small ρ, the following measure of the invisibility of a cloak: for a GPT vanishing
structure σ of order N , let

(2.20) βN
EC(ρ) := sup

k
|λk

EC − λk|.

It is worth emphasizing that λk
EC depends on the radius ρ since it is an eigenvalue

of ΛB2,B1
[(Fρ)∗(σ ◦Ψ 1

ρ
)]. For a given ρ, let

(2.21) βNC(ρ) := sup
k

|λk
NC − λk|.

The measures of invisibility βNC(ρ) and βN
EC(ρ) are the largest perturbation due to

the cloaking structure of the eigenvalues of the DtN map when the hole of radius
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Figure 2.3. Perturbations of the eigenvalues of the DtN map.
The black line is for log10 |λk

WC−λk|, the blue one for log10 |λk
NC−

λk|, and the other colored ones for log10 |λk
EC−λk| for N = 1, . . . , 6.

ρ is used for the near cloaking and the enhanced near cloaking, respectively. We
note that βNC(ρ) is achieved when k = 1 as (2.19) shows.

To achieve invisibility without using layers (near cloaking) which is equivalent
to the enhanced cloaking of order N with the radius ρ, one has to use the hole of
radius ρeq(N) such that

(2.22) βNC(ρeq(N)) = βN
EC(ρ).

One can see from (2.19) that

(2.23) ρeq(N) = 2

√
βN
EC(ρ)

1− βN
EC(ρ)

.

To obtain the same invisibility as a multi-coated structure of order 6 with
ρ = 0.25 by using the near cloaking (without layers), one has to transform the hole
of radius ρeq ≈ 1.5× 10−6, which will result in a much more singular conductivity
distribution.

2.2.2. Behavior with respect to noise in the conductivity values. In this section
we study the stability of the proposed invisibility cloak with respect to errors on
the conductivities of the coatings. The number of layers is fixed to be 6. First
we perturb all values of the conductivity profile with a normal error of standard
deviation proportional to the value:

σper
j ≡ σj(1 +N (0, η2)), j = 1, . . . , N,

with η ∈ [0, 0.5]. For each noise level, 5000 realizations are drawn and the corre-
sponding invisibility measure is computed.
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Mean and standard deviation of the invisibility measure of the perturbed cloaks
are plotted in Figure 2.4 as a function of noise level.
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Figure 2.4. Mean and standard deviation of the invisibility mea-
sure as function of the noise level: the conductivity values are
simultaneously perturbed. The line in dots is the visibility of the
near cloaking (without layers) for ρ = 0.25.
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High values of the standard deviation for high noise levels may cause some
problems. While most of the realizations remain invisible (low mean value), a few
ones may get quite visible.

We then perturb the value in each layer j0 individually keeping the others at
their correct values:

σper
j0

= σj0(1 +N (0, η2)), σper
j = σj , j �= j0.

Figure 2.5 shows that the most sensitive conductivity value is the one of the outer-
most layer.

We now perform a statistical sensitivity analysis of the invisibility measure us-
ing Sobol indices. The goal is to explain the fluctuations of the invisibility measure
β(σ1, . . . , σN ) of the multi-layer cloak in terms of the conductivities (σj)

N
j=1. The

problem can be formulated as Y = f(X), where Y is a scalar output, the input
X is a vector of random variables, and f is a deterministic but complex function.
The Sobol indices are a set of nonnegative numbers that describe quantitatively the
effects of the input variables [24, 25]. They are based on the decomposition of the
variance of Y . See Appendix A.

In Figure 2.6 we choose all σi to be independent uniform random variables in
the interval [0.05, 5]. Figure 2.6 shows that the values of the conductivities have
a direct (not throughout their interaction) effect on the invisibility measure βN

EC

since the total indices are close to the first-order indices. Indeed, the outermost
layer has the highest effect on the invisibility measure.

In Figure 2.7 we choose the conductivities to be uniform fluctuations of the
optimal conductivities which give invisibility. The mean values are chosen to be
the optimal conductivity values and the variance is 0.1 times the optimal value.

Figure 2.7 shows that around the optimal conductivity values, the interaction
of the layers is very high since the total indices are much larger than the first-order
indices. The layers affect the invisibility measure much more through their inter-
action than individually as in Figure 2.6. This is because of the high-nonlinearity
of the invisibility measure in terms of the conductivities.

3. Enhancement of near cloaking for the Helmholtz equation

3.1. Principles. In this subsection we review the principles of the enhanced
near cloaking by means of the far-field pattern or the scattering cross section for
the Helmholtz equation, which was obtained in [5].

Let D be a bounded domain in R
2 with Lipschitz boundary ∂D, and let (ε0, μ0)

be the pair of electromagnetic parameters (permittivity and permeability) of R2\D
and (ε1, μ1) be that of D. Then the permittivity and permeability distributions are
given by

(3.1) ε = ε0χ(R
2 \D) + ε1χ(D) and μ = μ0χ(R

2 \D) + μ1χ(D).

Given a frequency ω, set k = ω
√
ε1μ1 and k0 = ω

√
ε0μ0. For a plane wave eik·x,

where k = k0(cos θk, sin θk), we consider the scattered wave u, i.e., the solution to
the following equation:

(3.2)

⎧⎨⎩ ∇ · 1
μ
∇u+ ω2εu = 0 in R

2,

u− eik·x satisfies the outgoing radiation condition.
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Figure 2.5. Mean and standard deviation of the invisibility mea-
sure as function of the noise level: the conductivity values are
perturbed individually. In dot is the visibility of the near cloaking
(without layers) for ρ = 0.25.

The far-field pattern A∞[ε, μ, ω] is defined to be

(3.3) u(x)− eik·x = −ie−
πi
4

eik0|x|√
8πk0|x|

A∞[ε, μ, ω](θk, θx)+ o(|x|− 1
2 ) as |x| → ∞.
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Let um,m ∈ Z, be the solution to the following equation:

(3.4)

⎧⎨⎩ ∇ · 1
μ
∇um + ω2εum = 0 in R

2,

um(x)− Jm(k0|x|)eimθx satisfies the outgoing radiation condition,

where Jm is the Bessel function of order m. The scattering coefficients Wnm,
m,n ∈ Z, associated with the permittivity and permeability distributions ε, μ and
the frequency ω are defined by

(3.5) Wnm = Wnm[ε, μ, ω] :=

∫
∂D

Jn(k0|y|)e−inθyψm(y)dσ(y),

where ψm ∈ L2(∂D) is the unique potential such that

(3.6) um(x) = Jm(k0|x|)eimθx + Sk0

D [ψm](x), x ∈ R
2 \ D̄.

Here Sk0

D is the single layer potential defined by the fundamental solution to the
operator Δ + k20 . We refer to [5] for a precise definition of ψm.

The following proposition, which says that the scattering coefficients are basi-
cally the Fourier coefficients of the (doubly periodic) far-field pattern, holds.

Proposition 3.1. Let θ and θ′ be respectively the incident and scattered direc-
tion. Then we have

(3.7) A∞[ε, μ, ω](θ, θ′) =
∑

n,m∈Z

i(m−n)einθ
′
Wnm[ε, μ, ω]e−imθ.

Moreover, the scattering cross section S[ε, μ, ω], defined by

(3.8) S[ε, μ, ω](θ′) :=

∫ 2π

0

∣∣A∞[ε, μ, ω](θ, θ′)
∣∣2 dθ,

has the following representation in terms of the scattering coefficients Wnm:

(3.9) S[ε, μ, ω](θ′) = 2π
∑
m∈Z

∣∣∣∣∑
n∈Z

i−nWnm[ε, μ, ω]einθ
′
∣∣∣∣2.

Note that the optical theorem [6, 26] leads to a natural constraint on Wnm.
In fact, we have
(3.10)


m
∑

n,m∈Z

im−nei(n−m)θ′
Wnm[ε, μ, ω] = −

√
πω

2

∑
m∈Z

∣∣∣∣∑
n∈Z

i−nWnm[ε, μ, ω]einθ
′
∣∣∣∣2,

for θ′ ∈ [0, 2π].
In [5], we have designed a multi-coating around an insulated inclusion D, for

which the scattering coefficients vanish. Such structures are transformed (by the
transformation optics) to enhance near cloaking for the Helmholtz equation. Any
target placed inside such structures will have nearly vanishing scattering cross sec-
tion S, uniformly in the direction θ′. Let L be a positive integer. For positive
numbers r1, . . . , rL+1 with 2 = r1 > r2 > · · · > rL+1 = 1, let

Aj := {x : rj+1 ≤ |x| < rj}, j = 1, . . . , L, A0 := R
2 \A1,

and

AL+1(= D) := {x : |x| < 1}.
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Let (μj , εj) be the pair of permeability and permittivity of Aj for j = 0, 1, . . . , L+1.
Set μ0 = 1 and ε0 = 1. Let

(3.11) μ =

L+1∑
j=0

μjχ(Aj) and ε =

L+1∑
j=0

εjχ(Aj).

Exactly like the quasi-static regime, one can show using symmetry that

(3.12) Wnm = 0 if m �= n.

by

(3.13) Wn := Wnn.

Given L (the number of layers), the radii, r2, . . . , rL, N , and ω, our purpose is to
find, μ and ε so that Wn[μ, ε, ρω] = 0 for |n| ≤ N . Here ρ be a small parameter. We
call such a structure (μ, ε) an S-vanishing structure of order N at low-frequencies.
Such a structure will be transformed by the change of variables (2.15) to a cloaking
structure for all frequencies less than ω. Similarly to the GPT-vanishing structure,
we fix the radii of the layers and their number, and make the optimization over
the material parameters. Note that, for the GPT-vanishing structure, the number
of the layers is equal to the order of the structure. The following proposition was
obtained in [5].

Proposition 3.2. For n ≥ 1, let Wn be defined by ( 3.13). We have

(3.14) Wn[μ, ε, t] = t2n

⎛⎝W 0
n [μ, ε] +

(N−n)∑
l=1

Mn,l∑
j=0

W l,j
n [μ, ε]t2l(ln t)j

⎞⎠+ o(t2N ),

where t = ρω, Mn,l := (L + 1)(N − n) (L being the number of layers), and the
coefficients W 0

n [μ, ε] and W l,j
n [μ, ε] are independent of t.

In view of Proposition 3.2, to construct an (semi-)S-vanishing structure of order
N at low frequencies, we need to have a pair (μ, ε) of the form (3.11) satisfying
(3.15)

W 0
n [μ, ε] = 0, and W l,j

n [μ, ε] = 0 for 0 ≤ n ≤ N, 1 ≤ l ≤ (N − n), 1 ≤ j ≤ Mn,l.

Such a structure can be constructed numerically for smallN . The following theorem
holds.

Theorem 3.3. If (μ, ε) is an S-vanishing structure of order N at low frequen-
cies, then there exists ρ0 such that

(3.16) A∞
[
(Fρ)∗(μ ◦Ψ 1

ρ
), (Fρ)∗(ε ◦Ψ 1

ρ
), ω

]
(θ, θ′) = o(ρ2N ),

and

(3.17) S
[
(Fρ)∗(μ ◦Ψ 1

ρ
), (Fρ)∗(ε ◦Ψ 1

ρ
), ω

]
(θ′) = o(ρ4N ),

for all ρ ≤ ρ0, uniformly in θ and θ′.

Note the cloaking enhancement is achieved for all the frequencies smaller than
ρ0ω.
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3.2. Performances. A good scalar measure of the invisibility of a scatterer
(for a given frequency) may be the maximum of the scattering cross-section:

(3.18) β(μ, ε, ω) = sup
θ∈ [0 2π]

S[μ, ε, ω](θ).

If we consider a discretization of the directions θ, θ′ with Nθ values, then because
of the behavior of the scattering coefficients Wn, only a few coefficients will be
significantly non-zero. The vectors einθ (where θ = (θ1, . . . , θNθ

)) are orthogonal
(for n �= m) in L2(]0, 2π[). Thus, from the expression (3.7) of the far-field pattern,
the singular values of the discretized operator are given by

σj = Nθ|Wn(j)|,
where n(j) is just sorting the Nθ largest scattering coefficients. Hence, we have a
direct correspondence between the scattering coefficients of the cloaking structure
and the SVD of its far-field pattern. Note that symmetry implies W−n = Wn, and
we expect one singular value of multiplicity 1 (for n = 0) and a series of singular
values with multiplicity 2.

3.2.1. Comparisons of the performance. We give in Figure 3.1 the (real part
of the) outer full field u, the outer scattered field us (the field inside the cloak
is not computed) and the scattering cross-section for the hole of unit radius with
Neumann boundary conditions in the three following situations: uncloaked hole,
usual near cloaking (with using layers), and S-vanishing structure of order 1. The
source wave is a plane wave in the direction [1 0] (θ = 0) at frequency ω = π and
ρ = 0.05. A few remarks are in order:

• while the change of variables-based cloak shows good performance (it
makes the hole with radius 1 looks like a hole with radius ρ), using an
S-vanishing structure greatly improves invisibility. This can be seen by
inspecting the second and third rows in Figure 3.1

• the uncloaked hole has stronger forward scattering (on the right), while the
cloaked structures have stronger back-scattering (on the left). Actually,
the cloaking structure reduces forward scattering with higher order than
backscattering. This seems to happen because the hole is of the size of the
wavelength, thus leaves a shadow. The cloaked holes ”appear” of size ρ
which is much smaller than the wavelength 2π/ω and act mostly as weak
reflectors.

3.2.2. Behavior with respect to noise in the permeability and permittivity values.
In this subsection we study stability of the proposed invisibility cloaks with respect
to errors in the permeabilities and permittivities of the vanishing S-structure. The
number of layers is fixed to be 1. First we perturb the permeability value with a
normal error of standard deviation proportional to the value:

μper
1 = μ1(1 +N (0, η2))

with η ∈ [0, 0.5]. Mean and standard deviation of the invisibility measure, given
by (3.18), of the perturbed cloaks are plotted in Figure 3.2 as a function of noise
level. Then we perturb the permittivity value as follows

εper1 = ε1(1 +N (0, η2))

with η ∈ [0, 0.5]. Mean and standard deviation of the visibility of the perturbed
cloaks are plotted in Figure 3.3 as a function of noise level. It is expected that,
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Figure 3.1. Top: outer full field; middle: outer scattered field;
bottom: scattering cross-section; left: uncloaked hole; center:
usual change of variables-based cloak; right: S-vanishing cloaking
structure of order one.

as in the conductivity case, the most sensitive parameter values are those of the
outermost layer.

3.3. Invisibility from limited-view measurements. In this subsection we
consider the problem of designing a cloaking structure that makes any target placed
inside it invisible to waves for certain incidence and/or scattered directions.

Assume in Proposition 3.1 that θ ∈ (−φs, φs) and θ′ ∈ (φc−φi, φc+φi), where
0 < φs, φi < π. Consider the multi-coated concentric disc structure. From (3.7), it
follows that the scattering cross section S[ε, μ, ω] of the multi-coated structure has
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Figure 3.2. Mean and standard variation of the invisibility mea-
sure as a function of the noise level in the permeability value. The
line in dots is the visibility of the near cloaking (without layers)
for ρ = 0.05.

the following representation in terms of the scattering coefficients Wn:
(3.19)∫ φc+φi

φc−φi

S[ε, μ, ω](θ′) dθ′ =
4π4

φiφs

∑
n,l∈Z

WnWlsinc(n− l)φi sinc(n− l)φs e
−i(n−l)φc .
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Figure 3.3. Mean and standard variation of the invisibility mea-
sure as function of the noise level in the permittivity value. In dot
is the visibility of the near cloaking (without layers) for ρ = 0.05.

We contrast this with the full-aperture case (φs = φi = π), where S[ε, μ, ω](θ′) is
given by

S[ε, μ, ω](θ′) = 2π
∑
n∈Z

|Wn|2
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and is, by symmetry, independent of θ′. Therefore, in the limited-view case, in
order to enhance the near cloaking, one should make the first coefficients in the
Taylor expansion of∑

n,l∈Z

Wn[μ, ε, t]Wl[μ, ε, t]sinc(n− l)φisinc(n− l)φse
−i(n−l)φc ,

in terms of t equal zero. Compared to the full-aperture case, combinations of
scattering coefficients are made to vanish.

3.4. Reshaping problem. In this subsection we propose to use a construc-
tion similar to the one in the last section to generate a general illusion such that an
arbitrary target appears to be like some other object of our choice from scattering
cross-section measurements. For simplicity, we take the object to be B2 with given
constant electromagnetic parameters ε2, μ2. Inside B2 we place a small hole ρB1. It
is known that ρB1 has a small effect on the scattering cross-section measurements.
Now, using the transformation optics, we push forward ρB1 to B1 keeping the
boundary ∂B2 invariant. The obtained electromagnetic distributions in B2 \B1 are
anisotropic and any target placed inside B1 has the same scattering cross-section
than B2 with electromagnetic parameters ε2, μ2. In order to enhance the illusion
effect, one can extend the idea of multi-coating. Here, we construct the concentric
disc structure in exactly the same manner as in the previous subsection but taking
in A0 (ε2, μ2) to be the pair of electromagnetic parameters instead of (1, 1).

4. Concluding remarks

The numerical stability study we presented is conclusive but some aspects may
be improved.

First, the noise acts on variables in the virtual space B2 \ ρB1 (i.e., before
applying transformation optics). Indeed, the perturbed profiles (conductivity, per-
meability, permittivity) are in this virtual space. To get in the real space, B2 \B1,
we have to compose them with the (anisotropic, non-radially symmetric) change of
variables. What we study is then the effect of an error (or an approximation) in
the algorithm to get the profile. It could also be practical and interesting to study
the effects of errors in the realization of the physical cloaks. The second point is
that the study is purely numerical. It would be interesting to better understand the
functions that gives the contracted GPTs (or the scattering coefficients) in terms
of the material parameters and then to show that a small variation in the material
parameters results in a small variation in the contracted GPTs (or the scattering
coefficients), and thus in the invisibility. In other words, we have to show that
the function is at the very least locally convex around its local minima. Figure
4.1 shows such a function for a 2-layer structure in the quasi-static limit. The
white × is the value we obtain by the optimization algorithm. Figure 4.1 confirms
the numerical observation that the invisibility measure is more sensitive to σ1 (the
outermost value) than to σ2.

Finally, since a GPT-vanishing structure has a stepwise constant conductivity
σ ◦Ψ 1

ρ
◦F−1

ρ , it would be interesting to try to replace each anisotropic layer of the

cloaking structure by two equivalent isotropic layers as done in [23]. Using this
idea we would end up with an isotropic radially symmetric conductivity. It would
be interesting to see its invisibility performance.
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Figure 4.1. The contracted GPTs of a two-layered structure as
a function of the material parameters.

Appendix A. Statistical sensitivity analysis

The goal is to explain the fluctuations of a scalar output Y in terms of the input
random variables X, when they are related through a deterministic but complex
function f : Y = f(X). The Sobol indices are a set of nonnegative numbers that
describe quantitatively the effects of the input variables. They are based on the
decomposition of the variance of Y .

A.1. Sobol indices. Let us assume that the output is of the form

Y = f(X1, . . . , XN ),

where f is a deterministic function and the input random variables are real-valued
and independent. Then there exist functions such that the output can be written
as
(A.1)

f(X1, . . . , XN ) = f0 +

N∑
i=1

fi(Xi) +
∑

1≤i<j≤N

fij(Xi, Xj) + · · ·+ f1...N (X1, . . . , XN ),

where

E[fi1...is(Xi1 , . . . , Xis)fj1...jt(Xj1 , . . . , Xjt)] = 0 if (i1 . . . is) �= (j1 . . . jt).
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In fact there is a unique solution to this problem which can be written in terms of
the conditional expectations of Y :

f0 = E[Y ],

fi(Xi) = E[Y |Xi]− f0,

fij(Xi, Xj) = E[Y |Xi, Xj ]− fi(Xi)− fj(Xj)− f0,

...

Using formula (A.1) the variance of Y , D = Var(Y ), can be written as

D =

N∑
i=1

Di +
∑

1≤i<j≤N

Dij + · · ·+D1...N ,

where

Di = Var
(
E[Y |Xi]

)
,

Dij = Var
(
E[Y |Xi, Xj ]− E[Y |Xi]− E[Y |Xj ]

)
,

...

The Sobol sensitivity indices are defined by

Si =
Di

D
, Sij =

Dij

D
, . . . .

Note that we have

Si ≥ 0 , Sij ≥ 0 , and

N∑
i=1

Si +
∑

1≤i<j≤d

Sij + · · ·+ S1...N = 1.

We can interpret the indices as follows:

• Si is the first-order index. It explains the part of the variance of Y that
can be explained by the fluctuations of Xi.

• Sij is the second-order index. It explains the part of the variance of Y that
can be explained by the interaction of the fluctuations of the variables Xi

and Xj .
• The total number of Sobol indices is 2N −1, which can be large and which
makes the sensitivity analysis not easy to interpret. One then introduces
the N total sensitivity indices

STi = sum of all indices relative to Xi =
N∑

p=1

∑
{i}⊂(j1...jp)

Sj1...jp ,

which expresses the sensitivity of Y with respect to Xi by itself or through
its interactions with other variables.

In practice one computes the first-order indices Si and the total indices STi for
i = 1, . . . , N .
- If STi is small, then this means that the variable Xi has a negligible effect.
- If Si is large, then this means that the variable Xi has an important effect by
itself.
- If Si is small and STi is large, then this means that the variable Xi has important
effects but only through its interaction with other variables.
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A.2. Monte Carlo estimation of the Sobol indices. The first-order index
is

Si =
Di

D
=

Var(E[Y |Xi])

Var(Y )
.

The mean f0 = E[Y ] and variance D = Var(Y ) can be estimated by

f̂0 =
1

n

n∑
k=1

f(X
(k)
1 , . . . , X

(k)
i−1, X

(k)
i , X

(k)
i+1, . . . , X

(k)
N ),

D̂ =
1

n

n∑
k=1

f(X
(k)
1 , ..., X

(k)
i−1, X

(k)
i , X

(k)
i+1, . . . , X

(k)
N )2 − f̂2

0 ,

where (X
(k)
1 , . . . , X

(k)
N )k=1...n is a sample of size n of the input variables.

Di = Var(E[Y |Xi]) can be estimated by

D̂i =
1

n

n∑
k=1

f(X
(k)
1 , . . . , X

(k)
i−1, X

(k)
i , X

(k)
i+1, . . . , X

(k)
N )

×f(X̃
(k)
1 , . . . , X̃

(k)
i−1, X

(k)
i , X̃

(k)
i+1, . . . , X̃

(k)
N )− f̂2

0 ,

where (X̃
(k)
1 , . . . , X̃

(k)
N )k=1...n is a second sample of the input variables (independent

of the first one).
The total sensitivity index is

STi =
D̃i

D
, D̃i =

N∑
p=1

∑
{i}⊂(j1...jp)

Dj1...jp .

Using the same two samples as above, D̃i can estimated by

̂̃
Di =

1

n

n∑
k=1

f(X
(k)
1 , . . . , X

(k)
i−1, X

(k)
i , X

(k)
i+1, . . . , X

(k)
N )

×f(X
(k)
1 , . . . , X

(k)
i−1, X̃

(k)
i , X

(k)
i+1, . . . , X

(k)
N )− f̂2

0 .
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Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, sub-
mitted.

[3] H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to Inverse
Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162, Springer-
Verlag, New York, 2007. MR2327884 (2009f:35339)

[4] H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of near cloaking using generalized
polarization tensors vanishing structures. Part I: the conductivity problem, Comm. Math.
Phys., to appear.

[5] H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of near cloaking. Part II: the
Helmholtz equation, Comm. Math. Phys., to appear.

[6] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, In-
terference and Diffraction of Light, Cambridge University Press, 6 edition, Cambridge, 1997.
MR0198807 (33:6961)
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