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We revisit the process of optical wave thermalization through supercontinuum generation in pho-
tonic crystal fibers. We report theoretically and numerically a phenomenon of ‘truncated thermal-
ization’: The optical wave exhibits an irreversible evolution toward a Rayleigh-Jeans thermodynamic
equilibrium state characterized by a compactly supported spectral shape. This phenomenon sheds
new light on the mechanism underlying the formation of bounded SC spectra in photonic crystal
fibers.
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Introduction.– The propagation of partially coherent non-
linear optical waves is a subject of growing interest in differ-
ent fields of investigations, such as, e.g., wave propagation
in homogeneous [1–3] or periodic media [4], nonlinear imag-
ing [5], cavity systems [6–8], or nonlinear interferometry [9].
Owing to their highly nonlinear properties, photonic crystal
fibers (PCF) offer unique perspectives for the experimental
study of incoherent optical waves over large nonlinear prop-
agation lengths. Indeed, light propagation in PCFs nearby
a zero-dispersion wavelength (ZDW) is characterized by a
dramatic spectral broadening, a phenomenon termed super-
continuum (SC) generation [10]. Although the interpreta-
tion of the mechanisms underlying SC generation in PCFs
are rather well understood, a satisfactory theoretical descrip-
tion of SC generation is still lacking, due to the multitude of
nonlinear effects underlying this process. However, there is
a growing interest in developing new theoretical approaches
aimed at describing SC generation in more details, such as,
e.g., soliton induced dispersive wave generation [11–14], the
effective three-wave mixing theory [15], or the second-order
coherence theory for nonstationary light [16].

From a different perspective, we recently provided a
nonequilibrium thermodynamic formulation of SC genera-
tion on the basis of the wave turbulence (WT) theory [17–20].
In this framework, the spectral broadening process inherent
to SC generation can be interpreted as a consequence of the
natural thermalization of the optical field to the state of ther-
modynamic equilibrium. Although originally formulated for
the description of forced-dissipative turbulent systems, the
kinetic equations of theWT theory also describe the nonequi-
librium evolution of random nonlinear waves in a conserva-
tive and reversible (Hamiltonian) system. In analogy with
the kinetic gas theory, an isolated system of incoherent non-
linear waves exhibits, as a rule, a process of thermalization,
which is characterized by an irreversible evolution of the
wave system toward a thermodynamic equilibrium state, i.e.,
the Rayleigh-Jeans (RJ) distribution that realizes the max-
imum of nonequilibrium entropy [21, 22]. This irreversible
behavior is expressed by a H−theorem of entropy growth
[22], in analogy with the celebrated Boltzmann H−theorem
relevant for gas kinetics. The kinetic wave equations then
provide a detailed description of the nonequilibrium proper-
ties of this process of thermalization.

Our aim in this Brief Report is to show that this irre-

versible process of wave thermalization to the RJ spectrum
can be truncated within some specific frequency interval.
We consider a PCF whose dispersion curve is character-
ized by two ZDWs, so that the essential properties of light
propagation in this fiber can be modelled by the nonlinear
Schrödinger (NLS) equation including fourth-order disper-
sion effects [23]. In these conditions, the kinetic wave theory
reveals the existence of an irreversible evolution toward a RJ
equilibrium state characterized by a compactly supported
spectral shape. This phenomenon of truncated thermaliza-
tion can shed new light on the mechanisms underlying the
formation of bounded spectra in SC generation [12, 13, 18].
Besides its natural relevance in the context of SC genera-

tion, this phenomenon is also important from a fundamental
point of view. It is indeed well-known that the thermody-
namic equilibrium state of a system of classical waves (i.e.,
RJ spectrum) is not properly defined, in the sense that it
leads to diverging expressions for the power or the energy at
equilibrium. This problem refers to the well-known ‘ultravio-
let catastrophe’, which was originally solved by the Plack law
and subsequently by a self-consistent thermodynamic formu-
lation of quantum electromagnetic radiation. On the other
hand, when one deals with an ensemble of classical opti-
cal waves, such a divergence is regularized by a frequency
cut-off, which is often introduced in a rather artificial way
[17, 18, 24], although it can be justified in some particular
cases [25]. In this work we show how a genuine frequency cut-
off arises naturally in a system of classical waves described
by the generalized NLS equation accounting for higher-order
dispersion effects.
Model.– We consider the dimensionless NLS equation ac-

counting for third- and fourth-orders dispersion effects

i∂zψ = −σ∂2t ψ + iα∂3t ψ + β∂4t ψ + |ψ|2ψ. (1)

We normalized the problem with respect to the nonlin-
ear length L0 = 1/(γP ) and the ‘healing time’ τ0 =
(|β2|L0/2)

1/2, where γ is the nonlinear coefficient, P the av-
erage power of the wave, β2 the second-order dispersion coef-
ficient with σ = sign(β2). In these units, the normalized dis-
persion parameters read α = β3/

(
6τ30

)
, and β = β4/

(
24τ40

)
,

β3 and β4 being the third- and fourth-order dispersion co-
efficients. The NLS Eq.(1) conserves three important quan-
tities, the normalized power N =

∫
|ψ(t)|2dt, the momen-

tumM =
∫
ω|ψ̃(ω)|2dω and the total ‘energy’ (Hamiltonian)



2H = E+U , which has a linear (dispersive) kinetic contribu-

tion E(z) =
∫
k(ω)|ψ̃(ω)|2dω and a nonlinear contribution

U(z) = 1
2

∫
|ψ(t)|4dt, where k(ω) = σω2 + αω3 + βω4 is the

dispersion relation [ψ̃(z, ω) = 1√
2π

∫
ψ(z, t) exp(−iωt) dt].

Simulations.– We recall that for α = β = 0, Eq.(1) re-
covers the integrable NLS equation, which does not exhibit
wave thermalization [3]. The introduction of third-order dis-
persion (α 6= 0) leads to a process of anomalous thermaliza-
tion toward an equilibrium state of a different nature than
the RJ distribution [2]. The influence of higher-order disper-
sion on wave thermalization was considered in the context of
SC generation through the analysis of the generalized NLS
equation [17, 18, 20]. Here, we revisit these previous works
by truncating the dispersion relation of the generalized NLS
equation up to the fourth-order polynomial.
The initial condition considered in the simulations is a co-

herent cw-pump wave, whose wavelength lies between the
ZDWs in the anomalous dispersion regime. We report in
Fig. 1 a typical evolution of the spectrum during the propa-
gation which has been obtained by solving the NLS Eq.(1).
In this example, we considered a relatively high pump power
(200W), which is in the range of the powers considered in
the experiments reported in Refs.[18, 20]. In this highly
nonlinear regime the optical field exhibits rapid and random
temporal fluctuations, which prevent the formation of robust
and persistent coherent soliton structures. The optical field
then exhibits an incoherent turbulent dynamics, in which co-
herent soliton and dispersive waves do not play a significant
role, as previously discussed in high-power cw-SC generation
Refs.[17, 18, 20, 26].
In this incoherent regime, the central part of the SC spec-

trum relaxes toward the RJ distribution, as predicted by the
kinetic wave theory (see Fig. 1a). The RJ spectrum is char-
acterized by a double peaked structure, which results from
the presence of two ZDWs in the dispersion curve of the
PCF (see Fig. 1c) [17, 18]. However, a careful analysis re-
veals the remarkable aspect that this thermalization process
is not achieved in a complete fashion: The tails of the SC
spectrum are characterized by abrupt spectral edges, which
are preserved for long propagation lengths and thus do not
relax toward the expected RJ spectral tails. Our aim in this
paper is to grasp the physical origin of such abrupt spectral
edges in the generated SC spectrum.

Kinetic approach: RJ spectrum.– The kinetic theory relies
on a natural asymptotic closure of the hierarchy of moments
equations which is induced by the dispersive properties of
the waves [22]. Then assuming that the random nonlinear
wave evolves in the weakly nonlinear regime, |U/E| ≪ 1,
the wave statistics turns out to be Gaussian, which leads to
an irreversible kinetic equation describing the evolution of
the averaged spectrum of the wave, n(z, ω)δ(Ω) =

〈
ψ̃(ω +

Ω/2) ψ̃∗(ω − Ω/2)
〉
[17, 21, 22]

∂zn(z, ω) = Coll[n], (2)

where the collision term Coll[n] = 1
π

∫
dω1,2,3 W Nω1ω2ω3

(n)
provides a kinetic description of the Kerr

FIG. 1: (a) Numerical simulation of the NLS Eq.(1) showing

the evolution of the spectrum |ψ̃|2(ω, z) during the propagation

(in dimensional units). (b) Comparison of |ψ̃|2(ω, z) with the
corresponding RJ spectrum [Eq.(3)]. (c) Dispersion curve of the
PCF. (d) MI spectrum after 1m of propagation through the PCF.
The vertical red lines denote the frequency bounds, ω±, given by
Eq.(7). Corresponding normalized parameters: σ = −1, α =
−0.0453, β = 0.4186.

effect in Eq.(1), with Nω1ω2ω3
(n) =

n(ω)n(ω1)n(ω2)n(ω3)
[
n−1(ω) + n−1(ω1)− n−1(ω2)− n−1(ω3)

]
.

The phase-matching conditions underlying the four-
wave mixing are expressed by the Dirac δ−functions in
W = δ(ω + ω1 − ω2 − ω3) δ[k(ω) + k(ω1) − k(ω2) − k(ω3)].
The kinetic Eq.(2) conserves the densities of power,
N0/T =

∫
n(z, ω)dω, of ‘energy’ E0/T =

∫
k(ω)n(z, ω)dω,

and of ‘momentum’ M0/T =
∫
ωn(z, ω)dω of the wave,

where T0 denotes the numerical time window [17]. The
irreversible character of Eq.(2) is expressed by a H-theorem
of entropy growth, dS/dz ≥ 0, where the nonequilibrium
entropy reads S(z) =

∫
log[n(z, ω)]dω. The RJ equilibrium

spectrum nRJ(ω) realizing the maximum of S[n], subject to
the constraints of conservation of E,M and N , is obtained
by introducing the corresponding Lagrange’s multipliers,
1/T, λ/T and −µ/T

nRJ(ω) =
T

k(ω) + λω − µ
, (3)

where T denotes the temperature and µ the chemical poten-
tial by analogy with thermodynamics [22].
Kinetic approach: Refined analysis.– As discussed above

through Fig. 1, this process of thermalization to the RJ spec-
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FIG. 2: Spectra |ψ̃|2(ω, z) in Log10−scale obtained by solving the
NLS Eq.(1) for σ = −1, α = 0.1, β = 0.02: (a) z = 25, (b)
z = 200, (c) z = 5× 105, (d) z = 106. After a long transient, the
wave eventually relaxes toward a truncated RJ distribution (d).

trum (3) is not achieved in a complete way. Here we show
that this effect can be described by a refined analysis of the
kinetic Eq.(2). Using the property [27], we integrate the col-
lision term of the kinetic Eq.(2) over ω1,

∂zn(z, ω) =
1

2π

∫ Ñω2ω3
(n)

|ω2 − ω| |ω3 − ω| δ[φω(ω2, ω3)] dω2,3 (4)

where Ñω2ω3
(n) is the functional Ñω1ω2ω3

(n) in which nω1
(z)

has been changed with nω2+ω3−ω(z), and φω(ω2, ω3) =
3
2α(ω2 +ω3) + β[2(ω2

2 + ω2
3) + 3ω2ω3 − ω(ω2 + ω3) +ω2]− 1.

The function φω(ω2, ω3) is a quadric in the two dimensional
space (ω2, ω3). It can be recast into its canonical form with
the following change of variables:

(
Ω2 = 1√

2
(ω2 + ω3), Ω3 =

1√
2
(ω2 − ω3)

)
, and then

(
Ω̃2 = Ω2 + q/(7β), Ω̃3 = Ω3

)
, with

q = 3α/
√
2−

√
2βω. The kinetic Eq.(4) then takes the form

∂zn(z, ω) =

∫ ÑΩ̃2 Ω̃3
(n) δ

[
(Ω̃2/a2)

2 + (Ω̃3/a3)
2 − ρ

]

π|Ω̃2 + Ω̃3 − rω | |Ω̃2 − Ω̃3 − rω |
dΩ̃2,3(5)

where a2 =
√
2/(7β), a3 =

√
2/β and rω = 6

√
2ω/7 +

3
√
2α/(14β). It becomes apparent that the condition

ρ = 1− 3

28

(
8βω2 + 4αω − 3α2

β

)
≥ 0 (6)

must be satisfied in Eq.(5). This reveals that the resonant
four-wave interaction underlying the Kerr effect can only
take place within a specific frequency interval defined by the
bounds, ω ∈ [ω−, ω+], with

ω± = − α

4β
±

√
21

12β

√
3α2 + 8β. (7)
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FIG. 3: (Color online) PFD of the wave intensity, I = |ψ|2, cor-
responding to the simulation of Fig. 2 at z = 25 (blue), z = 200
(red) (a); z = 5 × 105 (blue), z = 106 (blue) (b): The random
wave eventually enters the kinetic regime of Gaussian statistics.

Finally remark that, by introducing the following
parametrization of the ellipse,

(
Ω̃2 = ã2 cos(θ), Ω̃3 =

ã3 sin(θ)
)
, with ã2,3 = a2,3

√
ρ, and making use again of

the property [27], the kinetic Eq.(5) can be recast in the
following compact form

∂zn(z, ω) =
ã2ã3
2π|ρ|

∫ 2π

0

Ñcos(θ) sin(θ)(n)

Fω(θ)
dθ, (8)

where Fω(θ) = |ã2 cos(θ) + ã3 sin(θ) − rω| × |ã2 cos(θ) −
ã3 sin(θ)− rω|.

Discussion.– There is an appreciable discrepancy between
the simulation of the NLS Eq.(1) reported in Fig. 1 and the
frequency interval, ω±, predicted by the kinetic theory in
(7). Actually, the pump power considered in Fig. 1 is quite
elevated, so that the MI side-bands are located far away from
the carrier pump frequency. As a result, the cascade of MI
side-bands generated in the early stage of propagation go
beyond the frequency interval predicted by the theory, as
clearly illustrated in Fig. 1d. Since the MI process is inher-
ently a coherent nonlinear phase-matching effect, it is not
described by the kinetic Eq.(2), whose validity is restricted
to the weakly nonlinear regime (|U/E| ≪ 1). This explains
why the numerical simulations reported in previous works
[17, 18] did not evidence a signature of this phenomenon of
truncated thermalization. In order to analyze our theoretical
predictions in more detail, we decreased the injected pump
power so as to maintain the (cascaded) MI side-bands within
the frequency interval (7).
We have performed intensive numerical simulations of the

NLS Eq.(1) in this regime of reduced pump power. This
study reveals that the nonlinear dynamics slows down in a
dramatic way, so that the expected process of thermalization
requires in fact huge nonlinear propagation lengths and huge
CPU time computations. This results from the fact that the
parameters α and β decrease as the pump power decreases,
so that Eq.(1) approaches the integrable limit of the NLS
equation, which does not exhibit any thermalization effect
[3]. We report in Fig. 2 the wave spectra at different prop-
agation lengths obtained by solving the NLS Eq.(1) with



4α = 0.1 and β = 0.02. In the early stage of propagation,
z ∼ 200, the spectrum remains confined within the frequency
interval [ω−, ω+] predicted by the theory [Eq.(7)], although
the spectrum exhibits a completely different spectral pro-
file than the expected RJ distribution. As a matter of fact,
the process of thermalization requires enormous propagation
lengths, as illustrated in Fig. 2d, which shows that the wave
spectrum eventually relaxes toward a truncated RJ distribu-
tion. Here, the Lagrangian multipliers (µ, λ, T ) have been
calculated from the conserved quantities (N,M,E), without
using adjustable parameters [28].
Note however in Fig. 2d that, despite the good agreement,

the whole spectrum spans a frequency band which exceeds
the frequency interval [ω−, ω+] predicted by the kinetic the-
ory in Eq.(7). Indeed, in the first stage of evolution (see
Fig. 2a-c for 200 < z < 5× 105), the SC spectrum exhibits a
slow process of spectral broadening, so that the correspond-
ing SC edges go beyond the frequency bound [ω−, ω+]. Such
a discrepancy with the theory can be ascribed to the fact that
the statistics of the wave is not strictly Gaussian. Indeed,
we report in Fig. 3 the PDF of the wave intensity calculated
at different propagation lengths. A deviation from Gaussian
statistics is clearly visible for z < 200, which can merely
explain the slow process of spectral broadening beyond the
frequency interval (7) predicted by the theory. This conclu-

sion has been corroborated by the analysis of the kurtosis of
the intensity distribution, K =

〈
I2
〉
/(2 〈I〉2) − 1 (data not

shown). The value of K, as well as the variance of its fluc-
tuations, are shown to slowly decay during the propagation
to zero. Then as the system evolves, it eventually reaches a
kinetic regime of Gaussian statistics, which is subsequently
preserved in the further evolution. It is interesting to un-
derline that, once the state of Gaussian statistics is reached,
the incoherent wave does not exhibit any significant spectral
broadening (for z > 5× 105), while its spectral profile slowly
relaxes toward the truncated RJ distribution, as described by
the kinetic theory.

Finally note that we have performed the same numerical
study for α = 0 (data not shown), for which the frequency

bounds (7) reduce to ω± = ±
√
7/(6β). This study confirms

the process of relaxation toward a spectrally truncated RJ
distribution for the incoherent wave.

Conclusion.– We have reported a phenomenon of ‘trun-
cated thermalization’ which is characterized by the forma-
tion of a RJ distribution with a compactly supported spec-
tral shape. From a broader perspective, this work is related
to the wide question underlying the physics of dynamical
thermalization of nonlinear systems, in line with the Fermi-
Pasta-Ulam problem [29].
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