
PHYSICAL REVIEW A 83, 033838 (2011)

Condensation and thermalization of classsical optical waves in a waveguide

P. Aschieri,1 J. Garnier,2 C. Michel,3 V. Doya,1 and A. Picozzi3
1Laboratoire de Physique de la Matière Condensée, CNRS, University of Nice Sophia-Antipolis, F-06108 Nice, France
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We consider the long-term evolution of a random nonlinear wave that propagates in a multimode optical
waveguide. The optical wave exhibits a thermalization process characterized by an irreversible evolution toward
an equilibrium state. The tails of the equilibrium distribution satisfy the property of energy equipartition among
the modes of the waveguide. As a consequence of this thermalization, the optical field undergoes a process of
classical wave condensation, which is characterized by a macroscopic occupation of the fundamental mode of
the waveguide. Considering the nonlinear Schrödinger equation with a confining potential, we formulate a wave
turbulence description of the random wave into the basis of the eigenmodes of the waveguide. The condensate
amplitude is calculated analytically as a function of the wave energy, and it is found in quantitative agreement with
the numerical simulations. The analysis reveals that the waveguide configuration introduces an effective physical
frequency cutoff, which regularizes the ultraviolet catastrophe inherent to the ensemble of classical nonlinear
waves. The numerical simulations have been performed in the framework of a readily accessible nonlinear fiber
optics experiment.
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I. INTRODUCTION

Statistical nonlinear optics (i.e., the study of nonlinear
optics with incoherent waves) is a subject of growing interest
this last decade. In particular, it has received renewed interest
since the first demonstration of incoherent solitons [1–4]
whose existence was theoretically predicted in the context
of plasma physics [5]. More recently, incoherent nonlinear
optics has also been studied in various fields of investigation,
including wave propagation in homogeneous [6–9] or periodic
media [10], nonlinear imaging [11], cavity systems [12–17],
or nonlinear interferometry [18]. In particular, the process of
optical wave condensation attracted some significant recent
interest in different experiments realized in dissipative laser
systems [12,13] and in a conservative (Kerr-like) system [19].
In this latter example, the mechanism underlying wave conden-
sation finds its origin in the natural thermalization of the optical
field toward a thermodynamic equilibrium state. Optical wave
thermalization [7,8,17] is characterized by an irreversible
evolution of the wave toward the “most disordered” state
[i.e., the Rayleigh-Jeans (RJ) equilibrium state that realizes
the maximum of entropy]. Wave turbulence (WT) theory is
known to provide a detailed description of this nonequilibrium
thermalization process [20–22]. In particular, it predicts the
existence of a condensation process for the random nonlinear
wave [23–26], whose thermodynamic properties are analogous
to those of quantum Bose-Einstein condensation, in spite
of the classical nature of the nonlinear wave [24,26]. More
specifically, wave condensation is characterized by the spon-
taneous formation of a large-scale coherent structure (plane
wave) starting from an initial incoherent field: The plane-wave
solution (“condensate”) remains immersed in a sea of small-
scale fluctuations (“uncondensed quasiparticles”), which store
the information necessary for the reversible evolution of the
wave.

The WT description of wave condensation has been
essentially developed in the ideal situation in which the random

wave is supposed to be “infinitely extended in space,” (i.e., its
random fluctuations are assumed statistically homogeneous
in space [23,24,26]). As a matter of fact, a spatially localized
random optical beam experiences incoherent diffraction during
its propagation, which thus inevitably affects the processes of
wave thermalization and condensation. Our aim in this article
is to stimulate a novel class of optical turbulence experiments
in a spatial waveguide geometry. In the guided configuration,
incoherent diffraction is compensated by a confining potential,
thus allowing to study the thermalization and the condensation
of the optical field over large propagation distances.

As a result of the guided geometry, the incoherent optical
beam is confined in space and thus exhibits spatial fluctuations
that are statistically inhomogeneous. Considering the nonlin-
ear Schrödinger (NLS) equation with a confining potential
V (r), we formulate a WT description of the random wave into
the basis of the eigenmodes of the waveguide (i.e., potential’s
eigenmodes), instead of the usual plane-wave Fourier basis
relevant to statistically homogeneous random waves [V (r) =
0]. The theory reveals a macroscopic occupation of the
fundamental mode of the waveguide for an energy of the
wave smaller than a critical value. The condensate fraction
is calculated analytically as a function of the energy of the
wave. It is found in quantitative agreement with the numerical
simulations, without using adjustable parameters. In particular,
the simulations confirm a key property of the thermalization
process, namely the emergence of an equipartition of the
energy among the modes of the waveguide. Furthermore, the
conventional WT description of wave condensation requires
the introduction of a frequency cutoff in the theory [24,26].
This regularizes the ultraviolet catastrophe inherent to classical
nonlinear waves, a feature that has been analyzed in detail in
the framework of the classical description of the condensation
of dilute Bose gases [27]. From the physical point of view, such
a frequency cutoff is not properly justified for classical waves.
It turns out that an effective frequency cutoff arises naturally
in the guided-wave configuration of the optical beam. The
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frequency cutoff plays a key role in wave condensation since it
prevents the divergence of the critical energy for condensation.
Moreover, it has been shown that in two dimensions, wave
condensation does not occur in the thermodynamic limit
[24,26]. We show that a parabolic waveguide configuration
reestablishes wave condensation in two dimensions, in analogy
with quantum Bose-Einstein condensation. Accordingly, wave
condensation and thermalization can be studied accurately
through the analysis of the two-dimensional spatial evolution
of a guided optical beam. To motivate the experimental
confirmation of our predictions, the numerical simulations
have been performed in the framework of a realistic nonlinear
optics experiment that can be realized with currently available
technology.

II. NLS MODEL

The experiment we have in mind refers to the propagation
of an incoherent (speckle) beam in a multimode optical
waveguide. We briefly sketch the derivation of the NLS model
equation governing the propagation of the optical field [28].
The optical wave propagates along the z axis of the waveguide,
which we assume to be translationally invariant along z. The
propagation of the field amplitude is known to be ruled by the
Helmholtz equation

∂zzφ + ∇2φ + ñ2(r)k2
0φ = 0, (1)

where r = (x,y) denotes the position in the transverse plane
and ∇2 denotes the corresponding transverse Laplacian. The
index of refraction is ñ(r) and k0 = 2π/λ is the wave number,
λ being the vacuum wavelength of the monochromatic source.
We assume that the variations of the linear refractive index
n(r) are relatively small (i.e., the so-called weak-guidance
approximation). The small nonlinear contribution n2 to the
refractive index can be introduced as follows, ñ2(r) � n2(r) +
2n0n2I (r), where I = |φ|2 is the intensity and n0 is a refractive
index of reference [see Fig. 1(a)]. Under the assumption of
the paraxial approximation, Eq. (1) then recovers the NLS
equation [28]

i∂zA + 1

2k0n0
∇2A + k0

2n0

[
n2(r) − n2

0

]
A + k0n2|A|2A = 0,

(2)

where A(r,z) = φ(r,z) exp(ik0n0z). As schematically illus-
trated in Fig. 1(a), we suppose that the optical waveguide
exhibits a truncated shape, with a revolution symmetry
with respect to the z axis. With the change of variable
ψ(r,z) = A(r,z) exp(−iV0z), where V0 = k0(n2

1 − n2
0)/(2n0)

is the potential depth and n1 the core refractive index at r = 0
[Fig. 1(a)], Eq. (2) can be written in the following conventional
form:

i∂zψ = −α∇2ψ + V (r)ψ + γ |ψ |2ψ, (3)

where α = 1/(2k0n0), γ = k0n2, and

V (r) = k0

(
n2

1 − n2(r)

2n0

)
, (4)

is the waveguide potential depicted in Fig. 1(b). Note that
the depth of the waveguide potential is usually small, [n2

1 −

n2(r)]/2n0 � n1 − n(r), so that V (r) � k0[n1 − n(r)]. We
recall that the NLS Eq. (3) conserves the power of the optical
field

N =
∫

|ψ |2 d r, (5)

and the total energy (Hamiltonian) H = E + U , which has a
linear contribution

E =
∫

α|∇ψ |2 d r +
∫

V (r)|ψ |2 d r, (6)

and a nonlinear Kerr contribution

U = γ

2

∫
|ψ |4 d r. (7)

.

III. NUMERICAL SIMULATIONS

A. Experimental optical setting

Although this work is general and can be applied to
different types of waveguide geometries characterized by
different index profiles, we shall present below the numerical
simulations within the concrete example of the parabolic
index profile. Besides its natural importance for Bose-Einstein
condensates [29], the parabolic potential is known to find a
direct application in the propagation of an optical beam in a
graded-index multimode optical fiber [28]. In the following we
shall thus consider this optical setting in detail. In particular,
we shall consider a parabolic index profile, as schematically
depicted in Fig. 1(a). The corresponding potential reads
V (r) = V0( r

a
)2 for |r| � a, V (r) = V0 for |r| > a, where a

is the fiber radius. We shall note V (r) = qr2, with q = V0/a
2.

Also, we shall assume that the number of modes of the
multimode optical fiber is rather large, M � V 2

0 /(2β2
0 ) �

1, where β0 = 2
√

αq is the eigenvalue associated to the
fundamental Gaussian mode.

The experimental configuration is conceptually simple. A
(quasi)monochromatic beam is passed through a random phase
mask to produce spatial random fluctuations. The beam is
subsequently injected into the graded-index multimode optical
fiber and we are interested in the evolution of the spatial
coherence properties of the wave during its propagation. In
the numerical simulations we considered realistic parameters
that refer to typical multimode optical fibers available in the
commerce. More precisely, we considered a fiber radius of
a = 15 µm and an index difference of n1 − n0 = 6 × 10−3,

FIG. 1. (Color online) (a) Refractive index profile n(r) of the
optical waveguide and (b) corresponding confining potential V (r) in
the NLS Eq. (3).
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FIG. 2. (Color online) (a) Initial field intensity |ψ |2(r,z = 0), and (b) corresponding intensity distribution at z = 7 m obtained by integrating
numerically the NLS Eq. (3) (in 10Log10 scale). (c) Evolution of the fraction of condensed power n0/N vs the propagation distance z.
The horizontal dashed red line denotes the value of the condensate amplitude n

eq
0 /N predicted by the theory [see Eqs. (23) and (24)].

(d) Corresponding evolution of the nonequilibrium entropy S. Parameters of the simulation are given in the text.

with a refractive index of reference n0 = 1.45. With these
parameters the number of modes is M = 66.

It is important to note that silica fibers exhibit a focusing
nonlinearity, γ < 0 in Eq. (3). The incoherent beam may thus
exhibit filamentation effects (i.e., speckle beam fragmentation)
during its propagation in the fiber. However, as revealed by the
numerical simulations, the beam does not exhibit filamentation
effects because we consider the weakly nonlinear regime
of propagation, in which the linear energy dominates the
nonlinear energy, U/E � 1. Note that this assumption will
allow us to formulate a weak-turbulence theoretical description
of the condensation process (see Sec. IV). This means that
the nonlinearity plays a perturbative role when compared to
linear effects resulting from the confining potential or from
diffraction. The weakly nonlinear condition (U/E � 1) can
easily be satisfied in the framework of the considered optical
fiber system since the nonlinearity of silica fibers is known to
be relatively small as compared to other types of commonly
used nonlinear optical media. In the numerical simulations
we considered the following standard value of the nonlinear
silica coefficient n2 = −2 × 10−8 µm2/W, together with a
power of the beam of N = 94 kW. With these parameters
we verified that, regardless of the initial degree of coherence
of the wave injected into the fiber, the weakly nonlinear regime
is still satisfied (i.e., the condition U/E � 1 is verified for all
numerical points reported in the condensation curve in Fig. 4).

Note that the relatively high value of the power N of
the beam is experimentally accessible by using laser sources
delivering long pulses at a low-repetition rate. For instance,
if one considers (quasimonochromatic) optical pulses in the

nanosecond range, the power of the beam can be increased
significantly, while temporal dispersion effects can be ignored.
Indeed, the influence of group-velocity dispersion is known
to be negligible with nanosecond optical pulses [28]. On
the other hand, different optical modes travel with different
group velocities into the fiber, thus leading to an effective
temporal broadening of the pulse, a process known as “modal
dispersion” [30]. With the parameters of the multimode fiber
given above, the maximum temporal broadening due to modal
dispersion is typically in the piscosecond range (∼0.9 ps) for a
fiber length of about 15 meters. Considering that fiber lengths
of L � 7 m should be sufficient to get wave condensation (see
the numerical simulation reported in Fig. 2), modal dispersion
effects are negligible in the nanosecond pulse regime. Note
that the power N considered in the simulations can be
decreased substantially by simply increasing the fiber length.
Accordingly, temporal dispersion effects can be ignored in
the experimental configuration discussed above, which thus
validates a posteriori the purely spatial NLS model considered
in Sec. II [Eq. (3)].

Finally, it is important to underline that in the weakly
nonlinear regime considered here (U/E � 1), the eigenmodes
of the nonlinear problem are well approximated by the
corresponding Gauss-Hermite modes of the linearized NLS
Eq. (3) relevant to the ideal parabolic potential (V0 → ∞).
However, because of the truncation of the parabolic potential
[see Fig. 1(b)], the higher-order modes exhibit some deviations
from the Gauss-Hermite modes (see, e.g., Fig. 5 in the
Appendix). For this reason, we have calculated numerically the
exact eigenmodes and eigenvalues of the truncated potential.
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FIG. 3. (Color online) Numerical simulation of the NLS Eq. (3) showing the establishment of energy equipartition among the modes of
the waveguide: Energy per mode Em = βmnm [see Eq. (13)] vs the mode m = (mx,my), in (a) the initial condition and (b) averaged over
the propagation once the equilibrium state is reached, i.e., ∂zS � 0. The amount of power nm in the mode m = (mx,my) is calculated by
projecting the field amplitude into the corresponding eigenmode [see Eq. (12)]. Energy almost reaches an equipartition among all modes except
the fundamental condensed mode mx = my = 0 [not shown in (a–b)]. Parameters are the same as in Fig. 2 (see the text in Sec. III A). In
particular, we considered a truncated parabolic potential (Fig. 1), so that βmx,my

� β0(mx + my + 1) and only modes whose eigenvalue verifies
βmx,my

� V0 are guided.

B. Numerical results

The numerical scheme used to integrate Eq. (3) is based
on a standard beam propagation method. The accuracy of the
numerical simulations increases significantly when the initial
condition ψ(r,z = 0) is a random superposition of the modes
of the truncated potential V (r). Indeed, in this way the initial
condition does not excite radiative modes that are not preserved
during the propagation of the wave. We verified the accuracy of
the simulations through the conservation of the Hamiltonian H

and the total power N . The conservation of this latter quantity
has also been checked by means of its modal expansion.
Specifically, we verified the conservation of N by projecting
the field amplitude ψ(r,z) on each guided mode of the
truncated potential and then we added all modal contributions,
as expressed by Eqs. (11) and (12) below. Along the same
way, we verified that, during the propagation, the calculation
of the linear energy E by means of its modal expansion (13)
coincides with the corresponding integral expression given
in Eq. (6).

A typical evolution of the intensity of the field |ψ |2(r,z)
is reported in Figs. 2(a) and 2(b). The initial condition is a
random superposition of the modes of the truncated potential,
as expressed by Eq. (8) below. The evolution of the field
reported in Figs. 2(a) and 2(b) shows two main features of
wave condensation. On the one hand, small-scale fluctuations
carrying a negligible amount of power tend to populate
higher-order modes. On the other hand, the power of the
wave tends to concentrate into the center of the waveguide, so
that the fundamental mode gets “macroscopically” populated.
This condensation process is a consequence of the natural
irreversible thermalization of the optical wave to equilibrium.
This aspect was originally pointed out in the framework of
extensive numerical simulations of the so-called “projected
Gross-Pitaevskii equation,” whose study was aimed at provid-
ing a classical description of thermal (i.e., finite temperature)
Bose-Einstein condensed gases [27]. The condensation effect

is illustrated in Fig. 2(c), which reports the evolution of the
fraction of power condensed into the fundamental mode n0/N

as a function of the propagation distance z. The amount
of condensed power is calculated by projecting the field
amplitude ψ into the fundamental mode [see below Eq. (12) for
details]. As illustrated in Fig. 2(c), n0/N increases and slowly
saturates as the optical field reaches the equilibrium state.
This irreversible process of thermalization is corroborated by
the saturation of the production of (nonequilibrium) entropy
reported in Fig. 2(d), a peculiar property described by the H

theorem of entropy growth (see Sec. IV B). The main feature
that characterizes this thermalization of the wave becomes
apparent through the analysis of the distribution of the energy
among the modes of the waveguide. As remarkably illustrated
in Fig. 3, the optical field relaxes toward an equilibrium state
in which the energy is equipartitioned among all the modes on
average, except for the fundamental condensed mode which is
macroscopically populated (not shown in Fig. 3). In this figure,
the energy per mode Em [m = (mx,my)] has been calculated by
projecting the field amplitude on all the modes of the truncated
potential [see Eqs. (12) and (11)], and then an average over
the propagation distance has been taken once the equilibrium
state was reached.

To summarize, the condensation process is characterized
by an irreversible transfer of the power of the field toward
the fundamental mode (“condensate”). Note that all the
power of the initial incoherent wave cannot be completely
transferred to the fundamental mode because such evolution
would imply a loss of information for the field, which would
violate the formal reversibility of the system. Actually, the
fundamental mode remains immersed in a sea of small-scale
fluctuations (uncondensed “quasiparticles”), whose energy is
equipartitioned among all the modes of the waveguide. These
thermalized small-scale fluctuations store the information
necessary for a reversible evolution of the wave, consistent
with the formal reversibility of the NLS Eq. (3). The theoretical
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analysis of this condensation process is the subject of the next
section.

IV. WAVE TURBULENCE APPROACH

To describe this condensation process analytically, we
formulate a WT description of the random field into the basis
of the eigenmodes of the potential V (r). This approach differs
from the conventional WT approach [20–22] in which the
random wave exhibits a homogeneous statistics [V (r) = 0 in
Eq. (3)], so that the wave amplitude is expanded into the usual
Fourier (plane-wave) basis with periodic boundary conditions
(see the Appendix, Sec. 2) [31]. Note that, although we
considered the concrete example of the parabolic index profile
in the simulations, the theoretical approach we are going to
present can be applied to different types of potentials V (r).

A. Basic considerations

We assume that the initial random field ψ(z = 0,r) can be
expanded into the orthonormal basis of the eigenmodes of the
linearized NLS equation [Eq. (3) with γ = 0]

ψ(r,z = 0) =
∑
m

cm(z = 0) um(r), (8)

where the index {m} labels the two numbers (mx,my) needed
to specify the mode that um(r) refers to. The modal coefficients
are random variables uncorrelated with one another, 〈cm(z =
0)c∗

n(z = 0)〉 = nm(z = 0) δK
n,m, δK

n,m being the Kronecker’s
symbol. We remark that this formalism is also known as
the Karhunen-Loeve expansion [32]. The eigenmodes um(r)
are orthonormal,

∫
um(r) u∗

n(r) d r = δK
n,m, and satisfy the

“stationary” (i.e., z independent) Schrödinger equation

βmum(r) = −α∇2um(r) + V (r)um(r), (9)

with the corresponding eigenvalues βm. In the ideal
parabolic potential (V0 → ∞), um(r) refer to the
normalized Hermite-Gaussian functions with corresponding
eigenvalues βm = βmx,my

= β0(mx + my + 1), umx,my
(x,y) =

κ(πmx! my! 2mx+my )−1/2 Hmx
(κx) Hmy

(κy) exp[−κ2(x2+y2)
/2], where κ = (q/α)1/4.

As it propagates through the waveguide the incoherent field
ψ(z,r) can be represented as a superposition of modal waves
with random coefficients cm(z), which denotes the respective
modal occupancy

ψ(r,z) =
∑
m

cm(z) um(r) exp(−iβmz). (10)

In the linear regime of propagation γ = 0, we have cm(z) =
cm(z = 0). In the nonlinear regime, we shall follow in the
next section the procedure of the random phase approximation
underlying the WT theory [20–22]. In particular, the modal
occupancies cm(z) are still random variables uncorrelated with
one another, 〈cm(z)c∗

n(z)〉 = nm(z) δK
n,m. The modal occupan-

cies nm(z) satisfy a coupled system of nonlinear equations that
we shall describe in Sec. IV B.

The average local power of the field is 〈|ψ(r,z)|2〉 =∑
m nm(z) |um(r)|2, which depends on the spatial variable r

because the statistics of the field is not homogeneous. A spatial
integration over r gives the total average power of the beam

N =
∑
m

nm(z), (11)

which is a conserved quantity. The parameter nm(z) thus
denotes the amount of power in the mode {m}. It can be
obtained by projecting the field ψ(z,r) on the corresponding
eigenmode um(r)

nm(z) =
〈∣∣∣∣

∫
ψ(r,z) u∗

m(r) d r

∣∣∣∣
2〉

= 〈|cm(z)|2〉. (12)

Wave condensation takes place when the fundamental mode
becomes macroscopically populated (i.e., when n0 � nm for
m �= 0) [29,33].

In the same way, by substituting the modal expansion of the
incoherent field ψ(z,r) into the expression of the linear energy
(6), one obtains

E(z) =
∑
m

Em(z) =
∑
m

nm(z) βm. (13)

The total linear energy is the sum of the modal energies
weighted by the corresponding modal occupancy nm(z).

B. Kinetic equation

We now study the influence of a weak nonlinear coupling
among the modes, so that the modal occupancies defined by
Eq. (12) depend on z, nm(z). This weakly nonlinear regime
precisely corresponds to the regime investigated numerically
in Sec. III B. Substituting the modal expansion (10) into the
NLS Eq. (3), one obtains

i∂zam = βmam + γ
∑
p,q,s

Wmpqsapa∗
qas, (14)

where am(z) = cm(z) exp(−iβmz), and the fourth-order tensor
is defined by the overlap integral

Wmpqs =
∫

u∗
m(r)up(r)u∗

q(r)us(r) d r. (15)

Equation (14) conserves the total power N = ∑
m |am|2 and

the Hamiltonian

H =
∑
m

βm|am|2 + γ

4

∑
m,p,q,s

(Wmpqsa
∗
mapa∗

qas

+W ∗
mpqsama∗

paqa
∗
s ). (16)

Starting from Eq. (14) and following the procedure of
the random phase approximation [21,22], we derive in the
Appendix an irreversible kinetic equation governing the
nonlinear evolution of the modal occupancies. For this pur-
pose, we take the continuum limit of the discrete sum over
the modes {m}, which is justified when one deals with a
large number of modes (i.e., V0/β0 � 1). The substitution
of the discrete sums by continuous integrals corresponds to
the so-called “semiclassical description of the excited states”
[29]. Its validity implies that the relevant excitation energies
contributing to the discrete sum are much larger than the level
spacing β0 (i.e., the spreading of the modal occupancies is
much larger than β0). In the Appendix we derive the following

033838-5



ASCHIERI, GARNIER, MICHEL, DOYA, AND PICOZZI PHYSICAL REVIEW A 83, 033838 (2011)

kinetic equation governing the irreversible evolution of the
modal occupancies

∂zñκ (z)= 4πγ 2

β6
0

∫∫∫
dκ1dκ2dκ3δ

(
β̃κ1+β̃κ3−β̃κ2−β̃κ

)
× ∣∣W̃κκ1κ2κ3

∣∣2
ñκ ñκ1 ñκ2 ñκ3

(
ñ−1

κ +ñ−1
κ2

−ñ−1
κ1

−ñ−1
κ3

)
+ 8πγ 2

β2
0

∫
dκ1δ

(
β̃κ1 − β̃κ

)∣∣Ũκκ1 (ñ)
∣∣2(

ñκ1 − ñκ

)
,

(17)

where

Ũκκ1 (ñ) = 1

β2
0

∫
dκ ′ W̃κκ1κ ′κ ′ ñκ ′ . (18)

The functions with a tilde refer to the natural continuum exten-
sion of the corresponding discrete functions, that is, ñk(z) =
n[k/β0](z), β̃κ = β[κ/β0], W̃κκ1κ2κ3 = W[κ/β0][κ1/β0][κ2/β0][κ3/β0]

and so on, where [x] denotes the integer part of x. The kinetic
Eqs. (17) and (18) are general and, in principle, relevant to
different types of waveguide configurations (see the Appendix,
Sec. 3). In the particular case of the ideal parabolic potential
of infinite depth, we have β̃κ = κx + κy + β0. This expression
plays the role of a generalized anisotropic dispersion relation
whose wave vector reads κ = β0(mx,my).

The kinetic Eqs. (17) and (18) differs from the conventional
wave turbulence kinetic equation in some various respects.
First, we remark the presence of the new second term in
Eq. (17). Note that this term vanishes when the occupation
of a mode depends only on its energy β̃. Actually, this term
enforces an isotropization of the mode occupancies among
the modes with the same modal energy. Another important
property of the kinetic Eq. (17) is the presence of the function
W̃κκ1κ2κ3 in the collision term. To comment on this function,
let us consider the homogeneous problem [V (r) = 0 in
Eq. (3)], where the field amplitude (10) is usually expanded
in the plane-wave basis umx,my

(r) = 1
L

exp[2iπ (mxx +
myy)/L], L being the box size. In this case the function
|Wκκ1κ2κ3 |2 recovers the familiar Dirac δ function (see the
Appendix, Sec. 2), which guarantees momentum conservation
at each elementary collision of two quasiparticles. This is
consistent with the fact that the presence of the inhomogeneous
potential V (r) in Eq. (3) breaks the conservation of the
momentum. Also note that, in the particular case of the Fourier
plane-wave expansion, the second term in the kinetic Eq. (17)
vanishes identically, so that it recovers the conventional WT
kinetic equation (see the Appendix, Sec. 2).

The kinetic Eqs. (17) adn (18) conserve the power N =
β−2

0

∫
dκ ñκ and the energy E = β−2

0

∫
dκ β̃κ ñκ . The irre-

versible property of the kinetic equation (17) is expressed
by a H theorem of entropy growth dS/dz � 0, where the
nonequilibrium entropy reads S(z) = β−2

0

∫
dκ ln(ñκ ). Actu-

ally, the first term of Eq. (17) enforces the mode occupancies
to reach the “most disordered” stationary distribution. The
Rayleigh-Jeans equilibrium state ñ

eq
κ realizing the maximum

of entropy, subject to the constraints of conservation of E and
N , is obtained by introducing the corresponding Lagrange’s
multipliers

ñeq
κ = T

β̃κ − µ
, (19)

where, by analogy with thermodynamics, T denotes the
temperature and µ the chemical potential. In particular, the
temperature denotes the amount of energy Ẽκ that is equiparti-
tioned among the modes of the waveguide. Indeed, in the tails
of the equilibrium distribution (19) (i.e., β̃κ � |µ|) we have
Ẽκ = β̃κ ñ

eq
κ ∼ T [see Eq. (13)]. This equilibrium property

of energy equipartition was confirmed by the numerical
simulations in Fig. 3. Also note that the equilibrium state
(19) cancels both collision terms of the kinetic Eqs. (17)
and (18). Finally, we remark that the equilibrium distribution
(19) exhibits a divergence for µ = β0. This property entails
condensation into the fundamental (Gaussian) mode of the
waveguide irrespective of the sign of the nonlinearity, which
may be either focusing or defocusing. This is consistent with
the fact that the kinetic Eq. (17) is not sensitive to the sign
of the nonlinearity (i.e., it only depends on γ 2). Note that
this contrasts with the usual condensation process in the
homogeneous problem [V (r) = 0]: depending on the sign of
the nonlinearity, wave condensation manifests itself either by
the generation of a soliton (focusing regime) [34] or a plane
wave (defocusing regime) [23,24]. Below we shall analyze the
process of condensation in a waveguide in more detail.

C. Frequency cutoff, density of states, and thermodynamic limit

The number of modes involved in the dynamics is finite
because of the truncation of the potential (V0 < ∞). In this
way the truncated potential introduces an effective frequency
cutoff for the classical nonlinear wave because modes whose
eigenvalues exceed the potential depth β̃κ > V0 are not guided
during the propagation. A more rigorous justification of this
aspect is given in the Appendix, Sec. 4. Note that this is in
contrast with the homogeneous problem [V (r) = 0 in Eq. (3)]
where the wave amplitude ψ is expanded into the plane-wave
basis. In this case, the frequency cutoff kc is introduced in
an artificial way through the spatial discretization (dx) of the
NLS equation (i.e., kc = π/dx) so that in the continuous limit
kc → ∞ (see, e.g., Ref. [24]).

Let us discuss the importance of the truncation of the
potential (V0 < ∞) through the example of the parabolic
potential considered in the numerical simulations in Sec. III B.
Considering the constraint β0 � β̃(κ) � V0, as well as the
assumption β0 � V0 (i.e., M � 1), the power of the field
at equilibrium reads N = (T/β2

0 )
∫ V0

0 dκx

∫ V0−κx

0 (κx + κy +
β0 − µ)−1 dκy , which gives

N = T

β2
0

[
V0 − µ̃ ln

( −µ̃

V0 − µ̃

)]
, (20)

where we defined µ̃ = µ − β0. To comment on expression
(20), we recall that in the homogeneous problem [V (r) = 0 in
Eq. (3)] wave condensation was shown to only occur in three
dimensions (3D), while in two dimensions (2D) the chemical
potential was shown to reach zero for a vanishing temperature
[8,24,26]. In analogy with Bose-Einstein condensation in
quantum gases, this means that wave condensation does not
occur in the thermodynamic limit in 2D. Conversely, Eq. (20)
reveals that µ̃ → 0 for a nonvanishing critical temperature,
Tc = 4αNq/V0, which indicates that the presence of a
parabolic potential V (r) reestablishes wave condensation in
the thermodynamic limit in 2D. Indeed, the thermodynamic
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limit for a parabolic potential corresponds to taking N → ∞
and q → 0, keeping constant the product Nq [29]. This
result is in complete analogy with the well-known fact that a
parabolic potential reestablishes Bose-Einstein condensation
in 2D [29]. There is, however, a difference with quantum
condensation. Bose-Einstein condensation is known to be
reestablished in a parabolic potential of infinite depth V0 →
∞, while here Tc tends to zero in the limit V0 → ∞. Contrary
to the quantum case, one also needs to introduce a finite depth
of the potential V0 < ∞ to get wave condensation in 2D.
This condition is obviously satisfied for any optical waveguide
configuration.

Note that the same conclusion is reached through the
analysis of the density of states, ρ(β) = 1

β2
0

∫∫
D d2κ δ(β −

κx − κx − β0), where the domain of integration D denotes∫∫
D d2κ = ∫ V0

0 dκx

∫ V0−κx

0 dκy . As for quantum Bose gases,
the presence of a parabolic potential leads to ρ(β) ∝ β.
Specifically, in the limit β0/V0 � 1, we have ρ(β) = β/β2

0
for β � V0, and ρ(β) = 0 for β > V0. Note that the num-
ber of modes simply reads M � ∫ V0

0 ρ(β) dβ = V 2
0 /(2β2

0 ).
According to this expression of ρ(β) and considering the
limit µ̃ → 0, the infrared convergence of the integral N =∫ V0

0 dβ ρ(β) n
eq
β = T

∫ V0

0 dβ ρ(β)/β is ensured by the linear
dependence of the density of states ρ(β) ∝ β. However, the
ultraviolet convergence of N requires V0 < ∞, while it is
ensured by the exponential term of the Bose distribution in the
quantum case.

D. Condensate fraction

We shall now look for a relation between the fraction of
condensed power n0/N and the temperature T or the energy
E. Note that, to avoid cumbersome notations, in the following
we shall denote by n0 the condensate amplitude that the field
has reached at equilibrium (i.e., n

eq
0 ≡ n0). As in the usual

interpretation of Bose-Einstein condensation, we set µ = β0

in the equilibrium distribution (19). Note that the assumption
µ̃ = µ − β0 = 0 for T � Tc can be justified rigorously in the
2D thermodynamic limit. Isolating the fundamental mode,
one has N − n0 = (T/β2

0 )
∫∫

D 1/(κx + κy) d2κ , where n0 =
T/[β2

0 (β0 − µ)]. We thus readily obtain N − n0 = T V0/β
2
0 .

Proceeding in a similar way for the energy, one obtains

E − n0β0 = T V 2
0

2β2
0

(1 + 2β0/V0). Eliminating the temperature

from the expressions for E and N gives the following
expression of the condensate fraction

n0

N
= 1 − E − E0

NV0/2
, (21)

where E0 = Nβ0 refers to the minimum energy (i.e., the energy
of the field when all the power is condensed, n0/N = 1).
The condensate amplitude n0/N increases as the energy
E decreases, and condensation arises below the critical
energy

Ec = E0 + NV0/2 = NV0

2

(
1 + 2β0

V0

)
. (22)

This expression deserves to be commented on in two respects.
First, because of the truncation of the waveguide potential
(V0 < ∞), the value of Ec does not diverge to infinity. This is in

contrast with the homogeneous problem [V (r) = 0 in Eq. (3)]
and the plane-wave expansion (see the Appendix). In this case
the critical value of the energy behaves as Ehom

c ∼ Nk2
c /ln(kc),

where kc = π/dx is the arbitrary frequency cutoff. In the
continuous limit in which the spatial discretization of the
NLS equation tends to zero, dx → 0, the critical value of
the energy Ehom

c diverges to infinity (see, e.g., Refs. [24,26]).
A second point that could be remarked in Eq. (22) is that
wave condensation is reestablished in the thermodynamic
limit in 2D. Indeed, writing Eq. (22) in the following
form, Ec/S = Nq(1 + 2β0/V0)/(2π ), where S = πa2 is the
waveguide surface, it becomes apparent that the energy density
Ec/S does not tend to zero in the thermodynamic limit
(N → ∞,q → 0, keeping Nq constant). As discussed in
Sec. IV C, this is again in contrast with the homogeneous
problem and the plane-wave expansion of the field, in which
Ehom

c /S tends to zero logarithmically in the thermodynamic
limit [8,26].

The simple analysis of Eqs. (21) and (22) outlined above
provides physical insight into the process of wave conden-
sation. However, a direct quantitative comparison with the
numerical simulations requires an improved treatment. For
this purpose, we shall follow the procedures outlined in
Refs. [24,26] to improve Eq. (21). In the previous works
[24,26] wave condensation was considered in the absence of a
confining potential [V (r) = 0 in Eq. (3)]. We generalize here
these approaches by considering the modal expansion (10) into
the eigenmodes of the potential V (r).

Equation (21) can be improved along three lines. (i) It
proves convenient to replace the continuous integrals by a
discrete sum over the modes of the waveguide, a feature that
was discussed in detail in Ref. [24]. Proceeding in a way
similar as above, one obtains n0/N = 1 − (E − E0)

∑′(mx +
my)−1/[E0(M − 1)], where M is the number of modes of the
waveguide, and

∑′ denotes the sum over all modes {m =
(mx,my)} excluding the fundamental mode m = 0. In the con-
tinuous limit we have

∑′ 1
mx+my

→ β−1
0

∫∫
D

d2κ
κx+κy

= V0/β0

and the number of modes M = β−2
0

∫∫
D d2κ = V 2

0 /(2β2
0 ), so

that the above equation recovers Eq. (21). (ii) A generalization
of the expression of the condensate fraction, n0/N versus E,
can be done beyond the thermodynamic limit [8,26] (i.e.,
without the implicit assumption µ̃ = 0 for T � Tc). From
the physical point of view, this means that we take into
account the finite size of the optical waveguide. (iii) We
include the contribution of the nonlinear energy U into the
expression of the condensation curve. For this purpose, we
split the contribution of the fundamental mode into the modal
expansion of the field ψ(z,r) = ψ0(z,r) + ε(z,r), where
ψ0(z,r) = c0(z)u0(r) exp(−iβ0z) is the coherent condensate
contribution and ε(z,r) = ∑

m�=0 cm(z)um(r) exp(−iβmz) is
the incoherent contribution. This expansion can be substi-
tuted into the expression of U in Eq. (7), and making
use of the random phase approximation, we obtain 〈U 〉 =
γ ( 1

2n2
0ρ + 2n0

∑
j �=0 njW00jj + ∑

j �=0,k �=0 njnkWjjkk), where
ρ = ∫

u4
0(r)d r = κ2/(2π ). At equilibrium, nj and nk in the

above sum can be substituted by the corresponding equilibrium
distributions.

The generalizations (i), (ii), and (iii) finally lead to the
following expression of the condensation curve beyond the
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thermodynamic limit, including the nonlinear contribution of
the energy

n0

N
(µ̃) = 1

−µ̃
∑

m
1

βm−β0−µ̃

, (23)

〈H 〉(µ̃) = N

∑
m

βm

βm−β0−µ̃∑
m

1
βm−β0−µ̃

+ 〈U 〉(µ̃), (24)

where

〈U 〉(µ̃) = γ

[
ρ

2
n2

0 − 2n2
0µ̃

∫
|u0|2(r)

′∑
m

|um(r)|2
βm − β0 − µ̃

d r

+ n2
0µ̃

2
∫ ( ′∑

m

|um(r)|2
βm − β0 − µ̃

)2

d r

⎤
⎦ . (25)

The fraction of condensed power n0/N is thus coupled to the
total energy 〈H 〉 through the nonvanishing chemical potential
µ̃ = µ − β0 �= 0. The parametric plot of Eqs. (23) and (24)
with respect to µ̃ is reported in Fig. 4 (continuous line). It is
important to note the long tail in the condensation curve at
high energies H , which is due to the nonvanishing chemical
potential µ̃ �= 0. In the thermodynamic limit µ̃ → 0, the
condensation curve (23) and (24) recovers the straight line
discussed above through Eqs. (21) and (22) (see the dashed
line in Fig. 4). Let us remark the good agreement between the
theoretical condensation curve and the simulations, without
using adjustable parameters. Note, however, that, due to the

1000 2000 3000
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n 0/N

 

 

 

Numerics

µ = β0

µ = β0

FIG. 4. (Color online) Fraction of power condensed in the
fundamental mode at equilibrium n0/N vs the energy of the field
H for a truncated parabolic potential (parameters are given in
Sec. III A). The red points refer to the results of the numerical
simulations. They have been obtained by averaging n0/N over
the propagation distance once the equilibrium state is reached,
i.e., ∂zS � 0. The “error-bars” denote the amount of fluctuations
(standard deviation) of n0/N once equilibrium is reached. The
continuous blue line refers to the theoretical condensation curve
given in Eqs. (23)–(25), while the dashed green line refers to the
corresponding thermodynamic limit [µ̃ → 0 in Eqs. (23)–(25)]. In
these plots the eigenvalues βm and eigenmodes um(r) in Eqs.(23)–(25)
account for the truncation of the potential (V0 < ∞). Note that the
units of the Hamiltonian H are determined from its definition [see
Eqs. (6) and (7)].

very long times required to reach equilibrium, this good agree-
ment has not been confirmed with waveguides characterized
by a larger number of modes. Indeed, the simulations reveal
that the thermalization process slows down significantly as the
number of modes of the waveguide is increased. A qualitative
analysis of the kinetic Eq. (17) indicates that the long transients
required to achieve wave thermalization are due to the intricate
properties of the function W̃κ1κ2κ3κ4 involved in the collision
term.

We also note that the expression of 〈U 〉 in Eq. (25) is
rather involved. This is due to the nontrivial modal expansion
(10) of the field ψ , which prevents the factorization of the
integration over r with respect to the sum over the modes {m}.
In the usual homogeneous problem [V (r) = 0] and the plane-
wave expansion, Eq. (25) recovers the following simplified
expression obtained in Ref. [26], namely 〈U 〉 = γ (n2 − 1

2n2
0),

where n and n0 refer here to the densities of the power and of
the condensate, respectively.

We finally underline that Eqs. (23) and (24) are valid for var-
ious different types of waveguide index profiles, provided one
makes use of the appropriate eigenvalues βm and eigenmodes
um(r). We note in this respect that we used the eigenvalues
and eigenmodes of the truncated parabolic potential to plot
Eqs. (23) and (24) in Fig. 4. The values of βm and um(r) for the
truncated potential have been calculated numerically and they
have been found to be well approximated by the corresponding
analytical expressions given by the Gauss-Hermite expansion
(V0 → ∞).

V. CONCLUSION AND PERSPECTIVES

In summary, we studied the thermalization and the conden-
sation of a random nonlinear wave that propagates in an optical
waveguide. The guided configuration provides a physical
meaning to the frequency cutoff, which is usually introduced
in an arbitrary way in the conventional description of wave
condensation in the homogeneous problem. We formulated a
wave turbulence description of the random nonlinear wave
into the basis of the eigenmodes of the waveguide. As a
result of the inhomogeneous statistics of the spatially confined
random field, the kinetic Eq. (17) exhibits a novel term, which
enforces an isotropization of the mode occupancies among the
modes with the same energy. The analysis of the equilibrium
distribution reveals that a parabolic potential reestablishes
wave condensation in the thermodynamic limit in 2D. This is in
analogy with quantum Bose-Einstein condensation. However,
for classical wave condensation the parabolic potential also
needs to be truncated, so as to ensure the ultraviolet conver-
gence of N , and to prevent the divergence of the critical energy
for condensation Ec. A closed relation between the condensate
amplitude n0 and the energy of the wave H has been
derived, and has been found in quantitative agreement with
the numerical simulations without adjustable parameters. The
simulations have been performed in a realistic experimental
configuration in which a speckle beam is injected in a graded
index multimode optical fiber. In particular, they confirm the
emergence of an energy equipartition among the modes of
the waveguide, as described by the theoretical equilibrium
distribution. Note that the thermal nonlinearity of silica fibers
may also be exploited to enhance the nonlinear coefficient
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[35]. Besides the optical fiber system, the experimental study
of wave condensation can be envisaged in other types of
waveguides (e.g., by exploiting the high nonlinearity of liquid
crystals or photorefractives).

We finally briefly comment on some natural possible
extensions of this work. For instance, the important problem
of understanding the effect of disorder in nonlinear wave
systems is the subject of current intense investigations, in
particular, in the context of Bose-Einstein condensates [36].
The WT theory can provide some new physical insights
into this vast problem. In particular, the thermalization of
the nonlinear wave in a random potential V (r) is expected
to be highly affected by the spatially localized nature of
Anderson modes, a feature that can be described by the
collision term of the kinetic Eq. (17). On the other hand,
the WT theory is known to provide an accurate description
of fully developed turbulence in the weakly nonlinear regime
[22]. It would be interesting to study optical turbulence in
the waveguide configuration, in the presence of sources and
sinks so as to drive the system far from equilibrium. A
starting point to consider this problem could be the study
of the existence of stationary nonequilibrium distributions
(i.e., Zakharov-Kolmogorov spectra) in the kinetic equation
derived here. This approach can also be relevant to the analysis
of the dynamics of random lasers [12,16]. Finally, another
nontrivial extension of the present work could be the study of
optical wave thermalization and condensation in a waveguide
characterized by a “chaotic” multimode cross section [37].
Indeed, the vast issue of “wave chaos” has been only studied
in the context of the linear propagation of the waves, while
the nonlinear regime has not been considered so far. More
precisely, chaotic waveguides are known to be characterized
by the existence of peculiar modes, termed “scar modes” [38].
It would be interesting to study the role of these modes in
the process of nonlinear wave thermalization discussed here.
These aspects will be the subject of future investigations.
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APPENDIX

1. Derivation of the kinetic equation (17)

Starting from Eq. (14), one obtains the following equation
for the evolution of n(z) = (nm(z))m

∂znm(z) = 2γ
∑
p,q,s

Im[WmpqsJmpqs(z)], (A1)

where Jmpqs = 〈a∗
mapa∗

qas〉 denotes the fourth-order moment.
The equation governing the evolution of Jmpqs depends on the
corresponding sixth-order moment. In this way one obtains
an infinite hierarchy of moment equations, in which the
nth order moment depends on the n + 2-order moment. The
closure of the hierarchy can be achieved following the random
phase approximation [22]. Assuming that |U/E| � 1, linear
dispersive effects dominate the interaction and bring the field
close to Gaussian statistics [20]. By virtue of the factorizability
property of statistical Gaussian fields, the sixth-order moment
in the equation for Jmpqs can be factorized as a product of
second-order moments. We obtain in this way

∂zJmpqs(z) = i
mpqsJmpqs(z) + 2iγW ∗
mpqsMmpqs(n(z))

+ 2iγRmpqs(n(z)), (A2)

with


mpqs = βm + βq − βp − βs, (A3)

Mmpqs(n) = nmnpnqns

(
n−1

m + n−1
q − n−1

p − n−1
s

)
, (A4)

Rmpqs(n)

= δK
q,sUpm(n)(np − nm)nq+δK

q,pUsm(n)(ns − nm)np

+ δK
m,sUpq(n)(np − nq)ns+δK

m,pUsq(n)(ns − nq)nm,

(A5)

Upq(n) =
∑

s

Wpqssns =
∫

u∗
p(r)uq(r)

∑
s

ns |us(r)|2d r,

(A6)

where δK
q,s denotes the Kronecker symbol δK

q,s = 1 if the mode
index {q} equals {s}, δK

q,s = 0 otherwise. We recall here that
{q} labels the two numbers (qx,qy) that specify the eigenmode
uqx,qy

(r) and its eigenvalue βqx,qy
.

We integrate the equation for Jmpqs

Jmpqs(z) = ei
mpqszJmpqs(0) + 2iγ

∫ z

0
ei
mpqs (z−ζ )[W ∗

mpqsMmpqs(n(ζ )) + Rmpqs(n(ζ ))]dζ,

and substitute into the equation for n

∂znm(z) = 2γ
∑
p,q,s

Im[ei
mpqszWmpqsJmpqs(0)] + 4γ 2
∑
p,q,s

∫ z

0
dζ cos[
mpqs(z − ζ )]{Re[WmpqsRmpqs(n(ζ ))]

+ |Wmpqs |2Mmpqs(n(ζ ))} − 4γ 2
∑
p,q,s

∫ z

0
dζ sin[
mpqs(z − ζ )]Im[WmpqsRmpqs(n(ζ ))].
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Under the assumption V0/β0 � 1, we can take the continuum limit. If we denote ñk(z) = n[k/β0](z), then

∂zñκ (z) = 2γ

β6
0

∫ ∫ ∫
dκ1dκ2dκ3Im

[
ei
̃κκ1κ2κ3 zW̃κκ1κ2κ3 J̃κκ1κ2κ3 (0)

] + 4γ 2

β6
0

∫ ∫ ∫
dκ1dκ2dκ3

∫ z

0
dζ cos

[

̃κκ1κ2κ3 (z − ζ )

]
× {

Re
[
W̃κκ1κ2κ3R̃κκ1κ2κ3 (ñ(ζ ))

] + |W̃κκ1κ2κ3 |2M̃κκ1κ2κ3 (ñ(ζ ))
}

− 4γ 2

β6
0

∫ ∫ ∫
dκ1dκ2dκ3

∫ z

0
dζ sin

[

̃κκ1κ2κ3 (z − ζ )

]
Im

[
W̃κκ1κ2κ3R̃κκ1κ2κ3 (ñ(ζ ))

]
,

where β̃κ = β[κ/β0], 
̃κκ1κ2κ3 = 
[κ/β0][κ1/β0][κ2/β0][κ3/β0], and so on, [x] being the integer part of x. The presence of the rapid
phase allows us to use the following results:

m

∫ ∫ z

0
cos(m
y)dyφ(
)d
 =

∫
sinc(v)φ

(
v

mz

)
dv

m→∞−→ πφ(0),

m

∫ ∫ z

0
sin(m
y)dyφ(
)d
 = 2

∫
sin2(v)

v
φ

(
2v

mz

)
dv

m→∞−→ 0,

and we find

∂zñκ (z) = 4πγ 2

β6
0

∫ ∫ ∫
dκ1dκ2dκ3δ

(

̃κκ1κ2κ3

){
Re

[
W̃κκ1κ2κ3R̃κκ1κ2κ3 (ñ(z))

] + ∣∣W̃κκ1κ2κ3

∣∣2
M̃κκ1κ2κ3 (ñ(z))

}
.

We remark that the Kronecker symbol involved in R̃κκ1κ2κ3 (ñ(z)) can be converted to a Dirac δ function δK
[κ1/β0],[κ2/β0] →

β2
0δ(κ1 − κ2). The contribution of the first term of R̃κκ1κ2κ3 (ñ(z)) can thus be written as

I1 =
∫ ∫ ∫

dκ1dκ2dκ3δ
(

̃κκ1κ2κ3

)
Re

[
W̃κκ1κ2κ3δ

K
[κ2/β0],[κ3/β0]U[κ1/β0][κ/β0](n)

(
n[κ1/β0] − n[κ/β0]

)
n[κ2/β0]

]
= β2

0

∫
dκ1δ

(
β̃κ1 − β̃κ

)
Re

[(∫
dκ2W̃κκ1κ2κ2n[κ2/β0]

)
U[κ1/β0][κ/β0](n)

(
n[κ1/β0] − n[κ/β0]

)]

= β4
0

∫
dκ1δ

(
β̃κ1 − β̃κ

)|U[κ1/β0][κ/β0](n)|2 (
n[κ1/β0] − n[κ/β0]

)
.

We also made use of the fact that U[κ1/β0][κ/β0](n) = Ũκ1κ (ñ) = 1
β2

0

∫
dκ ′W̃κ1κκ ′κ ′ ñκ ′ , and Ũκ1κ (ñ) = Ũ ∗

κκ1
(ñ). Proceeding similarly

for the second term of R̃κκ1κ2κ3 (ñ(z)), one obtains I1 = I2. The contributions of the third and fourth terms of R̃κκ1κ2κ3 (ñ(z)) lead
to

I3 = I4 = β4
0

∫
dκ1dκ2δ

(
β̃κ1 − β̃κ2

)
Re

[
W̃κκκ2κ1Ũκ1κ2 (n)

(
ñκ1 − ñκ2

)
ñκ

]
.

A permutation of the variables κ1 and κ2 in this expression
readily gives I3 = I4 = 0. Collecting all terms, we finally
obtain the irreversible kinetic Eq. (17) governing the evolution
of ñκ (z).

2. Homogeneous case V (r) = 0: usual WT kinetic equation

We show that the kinetic Eq. (17) recovers the conventional
wave turbulence equation when the field is expanded in the
usual plane-wave basis with periodic boundary conditions

umx,my
(r) = 1

L
exp[2iπ (mxx + myy)/L],

where L is the box size. This expansion is relevant to
the homogeneous problem, that is, in the absence of the
confining potential [V (r) = 0 in the NLS Eq. (3)]. In this
case the tensor Wmpqs recovers the following Kronecker
Wmpqs = 1

L2 δ
K
m+q,p+s , so that the tensor Rmpqs(n(z)) vanishes

identically in Eq. (A2). It proves convenient here to make use
of the conventional wave vector defined by k = 2π

L
(mx,my) =

κL/(2πα), where we recall that κ = β0(mx,my), βmx,my
=

α(2π )2(m2
x + m2

y)/L2 = αk2 and β0 = α(2π/L)2. In the con-
tinuum limit, the tensor Wmpqs then recovers the familiar

Dirac δ function |W̃κκ1κ2κ3 |2 = α2 (2π)4

L8 δ(κ1 + κ3 − κ2 − κ) =
(2π)2

L6 δ(k1 + k3 − k2 − k). Because of this Dirac δ function, the
second term in the kinetic Eq. (17) vanishes, which thus leads
to the usual wave turbulence kinetic equation [20–22]

∂zñk(z) = 4πγ 2

(2π )2

∫ ∫ ∫
dk1dk2dk3δ

(
α
(
k2

1 + k2
3 − k2

2 − k2
))

× δ(k1 + k3 − k2 − k)N (ñ),

with

N (ñ) = ñkñk1 ñk2 ñk3

(
ñ−1

k + ñ−1
k2

− ñ−1
k1

− ñ−1
k3

)
.

Owing to the Dirac δ function over the momenta k, this kinetic
equation also conserves the total momentum P = ∫

k ñk dk.

3. Application to other waveguide configurations

The kinetic Eq. (17) is general and can be applied to
different waveguide geometries or index profiles. We briefly
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FIG. 5. (Color online) Representation of the eigenvalues (energies) of the modes of the system as a function of the mode number. (a) Modes
of the parabolic core and the first few modes of the cladding. The inset depicts the potential V (r) including the parabolic core and the cladding
of respective radii a = 21 µm and acl = 120 µm. (b) Eigenvalues of the modes of the cladding for an energy close to βcl = 12 × β0. The two
circled modes can resonate with those modes in the core that verify the condition (A7), i.e., βm11 + βm11 = βm10 + βcl.

illustrate this by considering the example of a circular
waveguide of radius R whose index of refraction is supposed to
be constant for r < R (“step-index” waveguide). Moreover, we
assume the waveguide to be of infinite depth for simplicity. The
field can be expanded into the orthonormal basis of the Bessel
functions ψ(r,z) = ∑

l,s cl,s(z)ul,s(r) exp(−iβl,sz), with

ul,s(r) = 1√
πR2J 2

l+1(xl,s)
Jl(xl,sr/R) exp(ilθ ),

where Jl(x) is the Bessel function of the first kind, xl,s is the sth
zero of Jl(x), and (r,θ ) are the polar coordinates. With these
notations, the eigenvalues read βl,s = αx2

l,s/R
2. In a similar

way as above, the passage to the continuum limit can be done
by defining the wave vector κ = β0,1(l,s), which thus leads to
the kinetic equation for the evolution of ñκ (z). Note that with
this parametrization of the wave vectors κ the density of states
ρ(β) is uniform.

4. Physical origin of the frequency cutoff

The existence of a frequency cutoff for the classical
nonlinear wave finds its origin in the fact that modes whose
eigenvalues exceed V0 are not guided during the propagation.
One may object, however, that this does not prevent a possible
loss of power N due to the nonlinear excitation of modes
with eigenvalues βcl > V0 (i.e., modes in the cladding of the
multimode fiber). In this Appendix we show that the efficiency
of the generation of such modes is several orders of magnitude
smaller than the conversion efficiency between guided modes,
so that their excitations can be neglected. This provides a
physical signification to the frequency cutoff discussed in this
article.

According to the kinetic Eq. (17), new modes can be
generated provided that they verify the condition of energy
conservation given by the term δ(β̃κ1 + β̃κ3 − β̃κ2 − β̃κ ). The
efficiency of the generation of such modes is determined by
the corresponding mode overlap, |W̃κκ1κ2κ3 |2. We first consider
the case in which all modes in the core have been excited and
we assess the efficiency of the generation of a single mode

in the cladding. For this purpose, we model the cladding by
a step-index waveguide whose radius acl is supposed much
larger than the corresponding radius of the core, acl � a. The
respective potential V (r) is depicted in the inset of Fig. 5(a).
Figure 5(a) represents the eigenvalues of the modes of the
system normalized to β0 for the potential V (r). Note that all
the modes have not been reported here. We only report the
modes of the parabolic core and the first 30 modes of the
cladding, while Fig. 5(b) reports those modes of the cladding
that resonate with the higher-order modes of the core (see the
caption of Fig. 5). Also note that higher-order modes of the
parabolic potential “feel” the presence of the cladding, and the
corresponding eigenvalues slightly deviate from the analytical
expression relevant to the infinite parabolic potential.

In the following we denote by βmp
the eigenvalues of

the modes in the core, where {mp} labels the two numbers
(mx,my) verifying mx + my + 1 = p. The conservation of
energy then reads

βmp1
+ βmp2

= βmp3
+ βcl. (A7)

As illustrated in Fig. 5(a), we have 11 distinct energy levels in
the core. In a first approximation, we consider that only those
modes with energies βm11 = 11 × β0 and βm10 = 10 × β0 can
generate a mode of energy βcl = 12 × β0. This latter mode
corresponds to the lower-energy mode in the cladding verify-
ing the condition (A7), namely βm11 + βm11 = βm10 + βcl.

We now compare the efficiency of the generation of
this cladding mode with the corresponding efficiency of the
generation of a mode in the core. The efficiency of generation
of a mode in the parabolic core is calculated by assuming that
all modes with p � 10 have been excited. We thus calculate
the efficiency of generation of a single mode with eigenvalue
βm11 verifying the condition βm10 + βm10 = βm9 + βm11 . For
this purpose, we calculate the coefficientsWcl andWco defined
as follows

Wcl = 1

N cl

∑
{m10}

∑
{m11}

∑
{m11}

∑
{mcl}

∣∣Wm10,m11,m11,mcl

∣∣2
, (A8)
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Wco = 1

N11

∑
{m9}

∑
{m10}

∑
{m10}

∑
{m11}

∣∣Wm9,m10,m10,m11

∣∣2
, (A9)

where
∑

{mj } denotes a sum over all modes with the eigenvalue
βmj

(j = 9,10,11). Note that, to compare these two quantities,
we normalized the calculation by the corresponding degenera-
cies of the energies β11 and βcl (i.e., N11 = 11 and N cl = 2
denote the number of modes of energies βm11 = 11 × β0 and

βcl = 12 × β0). The computation of the sums (A8) and (A9)
provides the following values

Wcl

Wco
= 6.4 × 10−11

1.9 × 10−5
∼ 10−6. (A10)

Accordingly, the generation of a mode in the cladding is
six orders of magnitude less efficient than the corresponding
efficiency of generation of a mode in the core. This significant
difference stems from the poor spatial overlap between a mode
in the parabolic core and a mode in the cladding.
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