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A weakly nonlinear model is proposed for the Rayleigh—Taylor instability in presence of ablation
and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included
the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling
in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The
exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The
saturation amplitude is around Q.for long wavelengths, but higher for short instable wavelengths

in the ablative regime. @005 American Institute of PhysidDOI: 10.1063/1.1927542

I. INTRODUCTION performed with a two-dimensionglD) Lagrangian code
which confirm the theoretical predictions.

The Rayleigh—Taylor(RT) instability occurs when a
fluid accelerates another fluid of higher density. This phe“_ WEAKLY NONLINEAR ANALYSIS
nomenon may dramatically reduce the performance of iner-
tial confinement fusio{ICF) experiments by degrading the In the standard case where the ablative flow is subsonic
symmetry of implosiorl. In ICF ablation plays a central We can apply the isobaric approximatfoso that the fluid
role? It has been shown by several authors that the ablativelynamics is governed by the system of conservation laws for
RT instability growth is stabilized relative to classical RT massx andy momenta, and energy,

during the linear stage, where the growth is exponential in 5, + 4 (pu) +V,.(pv) =0, (1)
time. The self-consistent theory has shown a complicated

dependence of the growth rate on the plasma paran?e‘ters. A(pu) + a(pu? + p) + V,.(puv) = pg, (2)
In this paper a weakly nonline@WNL) theory is developed

for the ablative RT instability. The first WNL analysis in a a(pv) + d(puv) + Vy.(pv ® v+ p) =0, (3)
simplified framework was performed in Ref. 5. We aim at

deriving closed-form expressions for the most important  C,[d(pT) + dx(puT) + Vy.(pvT)] = deax + Vy.0y, (4)

hysical quantities. The simplest and most studied case is . . . . L
fha% of a sc:ngle—mode perturbStion. A third-order WNL analy-Wherep is the densityw (resp.v) is the fluid velocity in the

sis of the single-mode case was presented in Ref. 6 in the (resp. y direction, p is the pressureT is the temperature,

limit of a very large density ratio. We derive in Sec. llI G=AdT and gy =\V,T are the heat flows in the (resp. y

. . . direction, C, is the specific heat per unit mass at constant
analytic formulas for the second and third harmonic generabressure and is the thermal conductivity. Gravitg points
tion efficiency and the nonlinear correction to the exponens . thex,direction

tial growth of the fundamental modulation for arbitrary At- Our model belongs to the family of the sharp boundary

wood numbers. A suitable choice of the Self'conSiStenhodels(SBM).S‘loThe forthcoming analysis is based on a

Atwood number then gives accurate results relevant to ICFqet of three hypotheses. First we assume that the unperturbed

In the multimode case we also give in Sec. IV the expressiofq,y is stationary and one dimensional. The ablation front is
of the interface elevation taking into account the mode cOUepresented as a zero-thickness surface for the hydrodynamic
pling. Recently a WNL theory was presented in the frame-ariaples (p,u,v,p) which separates a cool material with
work of a finite bandwidth where the results can only be high densityp, on the left side and a blowoff plasma with
integrated numerically. We show that it is necessary to compgy densitypg on the right side. In the point of view of the
pute the third-order WNL corrections in the multimode casetemperature the ablation front is an isotherm. The SBM ap-
to capture the first statistical corrections. We get expressiorgroximation is applied to the hydrodynamic variables and
for the saturation amplitudes which show that short-not to the temperature. As a result the temperature and heat
wavelength modes saturate at a significantly higher amplifiow are continuous. Second, we assume that the depsity
tude (compared to the wavelengtlihan long-wavelength and the thermal conductivity are constant on both sides of
modes. We finally report in Sec. V the results of simulationsthe ablation front(see Fig. 1 Finally we assume that the
thermal transport is small in the overdense region, and that it
dElectronic mail: garnier@math.jussieu.fr is large in the blowoff region. This hypothesis reads as
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di k| <1<dglk|, wherek is the typical wave number of the [\(é,T - Vyn.V,T)],=0. (7)

interface modulationd, g=\ r/(MCy) are the left and right
thermal diffusion lengths, anth is the mass ablation rate. i ; o
This model has been shown to reproduce accurately the [irfE'S Of 9 then provides the jump conditions for the perturba-
ear growths of RT instabilities obtained by the self-consistentions Tj of the temperature. _
linear theor§” if the jump density is calculated in a self- _ ItiS convenient for the linear and WNL regimes to con-
consistent way"'?We show in this paper that a WNL analy- Sider the Fourier modes of the interface
sis of this model can be performed at any order without any
more assumption. 7(ty) :j d’k explik - y) 7(t,k).

We study the growth of a small-amplitude perturbation
of the interface whose displacement with respect to the uni this paper we first address the single-mode case
perturbed frontx=0 is described byk=7(t,y). The typical _
amplitudes of the initial disturbance is assumed to be small mly) = 5 codkp -y), )
(i.e., smaller than its typical wavelengtiThe interface dis- which reads in the Fourier domain as
placements, the hydrodynamic variabled=(u,v,p), and A
the temperaturd can be expanded in powers éfas 70(k) = (812)[ ok —kp) + Go(k +kp)], 9

Collecting the terms of Eq$5) and(7) with the same pow-

wheredy is the Dirac function at 0. We then focus our atten-

n(ty) = Sm(ty) + Snaty) + Eas(ty) + O(8%, tion to the multimode case. We model the initial perturbation
no(y) of the interface elevation as the realization of a spa-
U(t,x,y) = Ug(x) + 8U1(t,x,y) + PU,(t,x,y) tially random process with Gaussian statistics. The statistical
+ U4t xy) + O(8Y). distribution of this process is characterized by the first two
moments
Substituting these ansatze into the syst@n(4) and col- (¥ =0, (oY) 70(y")) = Coly = y')

lecting the terms with the same powersdnwe get for terms

of order 6 the system governing the linear stability of the where the brackets stand for a statistical average Gy
unperturbed solutioiiU,, Ty, 770=0). The terms of orde®®>  the so-called autocorrelation function. An equivalent defini-
(resp.&®) give the second-ordéresp. third-orderWNL cor-  tion of the random process in terms of Fourier modes is that
rections. The governing equations and the jump conditiong(k) has Gaussian statistics characterized by

satisfied by the hydrodynamic variables are derived from - _ A AT — /

Egs.(1)—(3) in the . Equation(4) then ditermines the tem- (mo(k)y =0, (oK) 70(k D) = (k) dolk +k7),

perature profilesT; in the two regions. The interface is de- whereI'y(k) is the so-called power spectral dens{BSD.

fined as the isotherM=T., so the continuity of the tempera- As shown in Ref. 13 the PSD is proportional to the Fourier

ture imposes transform of the autocorrelation function. A limit case is the
white noise model where the correlation radius of the process
Telt,x= 7(ty)* Y] = T [tx = 7(ty) ", y] = T. (5) is assumed to be very small. The autocorrelation function is

then reduced to a Dirac distributidbo(y)zozoéo(y) and the
Besides the continuity of the heat flow reads at the interfac®SD is identically equal to the constan@/(Zw)Z. Please
[An-VT],=0  where [¢],=¢[t,x=7(t,y)",y]-¢[t,x  note thatoy is not a rms, butoZ has the dimension of a

=y(t,y)”,y] andn is the unit normal vector, length to the power 4.
The choice of a statistical description for the multimode
_ 1 1 interface is both mathematically and physically relevant. In-
V1 +Vy7;2 -Vyn deed the initial modulation of the surface is only known

approximatively. The statistical model takes into account the
so that the continuity condition for the heat flow can beavailable datarms, spectrumand completes the unknown
reduced to data by putting a statistical distribution on them. This distri-
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bution should be chosen in a natural way, and the most natwhich merges with a thermal conduction mode, and two vor-
ral model(maximizing the entropywhen only the first two ticity modes in the blowoff regio)n9 The amplitudes of the
moments are specified is the Gaussian statistics. Finally, thmodes are four free parameters. They can be expressed in
choice of the Gaussian statistics is also consistent with theerms of the modulation interfacg, by the four linearized
empirical picture that the initial interface perturbation origi- jump conditions satisfied by the hydrodynamic variables at
nates from many small imperfections: we can then invokehe interface. It is necessary to exhibit one more relation to
the central limit theorem which claims that the Gaussian stafix the growth rate. This relation is obtained by studying the
tistics always results from the contribution of many indepen-thermal flow.T; consists of five modes which depend on the
dent effects. hydrodynamic parameters and two more free parameters.
Before introducing the equations governing the dynam-The jump conditions for the temperature and the heat flow
ics, we would like to comment on the interpretation of theread as three complicated relations that can be dramatically
results. We consider a set of possible realizations of the inisimplified by using a separation of scales technique based on
tial perturbation of the interface. From a practical point ofthe assumptiord, |k| <1<dgk|. Accordingly, the two free
view we seek information which holds true for an arbitrary parameters of; are eliminated, and a new relation is estab-
realization of the interface. We are going to perform calcu-lished between the parameter of the sonic mode of the blow-
lations to compute statistical averages. Throughout the papeff region and»,. This provides a compatibility condition for
we focus our attention to the PSD of the modulation. Thisthe instability growth ratey that does not depend on the
function actually contains all the information about the spa-values of the thermal diffusion lengths,
tial processy. The ergodic principle gives the equivalence I
betveeen th;}7 theoreti?:al ststisticgl a?/erage andqthe experi- ¥(K) = VAgIK| = k[ upA” = (1 + A k]uy, (10
mental local or global spatial averages, such as the spati@here u,=m/p, (resp. ug=m/pg) is the ablation velocity
spectrum or the rms. It is equivalent to compute a statisticalresp. blowoff velocity, and A=(p_—pr)/ (prt+pL)=(Ug
average over all possible realizations in a fixed point and te-u,)/(ug+u,) is the Atwood number. Note that the expres-
compute a spatial average for an arbitrary realization. Actusion of the growth ratey is in complete agreement with the
ally, the statistical theory provides accurate results dependingne derived in Ref. 9y is positive for any wave number
only on the autocorrelation function. For instance, the locabelow the cutoff wave numbek.=g/(u ug) X (ug—u,)/(u_
shape of a local maximum can be computed theoretically, asug). y is maximal for a modulation with wave number
well as the density of local maxima above a given value, etc. —
(see, for instance, Ref. 13 Koot = 9 M (11)
2UL Ur VU + VUR

If |k|<kope then we get the classical RT growth ragék)
We first address the case of a single-mode initial distur=+Agk|.

bance with wave numbeéc: 7(t=0,y)=6cogk -y). The lin-

ear stability analysis establishes that in the early steps of the. Second-order weakly nonlinear regime

dynamics the interface modulation is single mode and grows

exponentially in time with the characteristic growth rate

y(k).** The WNL analysis exhibits mode coupling that

drives up harmonic modés.The WNL problem is reduced

to the identification of a finite set of Fourier coefficients

IIl. SINGLE-MODE PERTURBATION

The second-order WNL analysis consists in collecting
the terms of ordes” in the system of conservation laws and
in the jump conditions for the hydrodynamic variables and
the temperature. As shown in the Appendix the system of
conservation laws provides a system of linear equations for

(k) = ot k) + st k), the hydrodynamic variabled, with source terms which are
guadratic functions of the first-order perturbatidog This

7(t,2k) = it 2K), system is solved in Ref. 16 with the use of a symbolic ma-
niupulator program{imaple. The existence of five hydrody-

7(t,3k) = 8%73(t, 3K). namic modes with four free parameters is derived. In particu-

Here 7, is given by the linear stability analysis. The term lar, fch_ere IS no vorticity mode in t_he overdense region, while
vorticity plays an important role in the blowoff region. The

7,(t,2k) originates from a second-order WNL effect

(second-harmonic generatjorCalculations show that there four free p.a_rameters df, can be rglated to’? by the four

is no excitation of a zeroth harmonic in the sense thal"™mP cor_ldltlons tha_t also read as linear relations bew‘.""‘?“

7(t,0k) is vanishing. The terms(t,3k) originates from a and 7, with quadratic source terms Wy and ;. T consists

third-order WNL effect (third-harmonic generation The of seven modes containing two free parameters. The jump

third-order WNL term7s(t,k) gives the nonlinear correction gondltlons for thg temperature gnd the heat flow read as three

to the exponential growth of the fundamental modulation. linear refations in terms_ of with source terms depending
onTq,U,, and ;. Accordingly, the two free parameters Bf

can be eliminated, and a compatibility condition fgy can

be obtained. Ifk| <Koy, then7,(2k) =Alk| 7. This result is

The linear stability analysis shows the existence of fourconsistent with those obtained in the framework of incom-
possible linear modes for the hydrodynamic variables — pressible, inviscid, irrotational, and immiscible fluifs.’ If
(one sonic mode in the overdense region, one sonic mod&|=k,,, then

A. Linear stability analysis
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FIG. 2. SHG efficiencyi,(2k) divided by 7%k| as a function ofA (a) and FIG. 3. Nonlinear correctiofi;(k) divided by 75|k|? as a function ofA (a)

Ik|/Kopt (b). and|k|/kop (b).
2V1-AZ-1+A which is the same expression as the one derived in Ref. 17
72(2Kopd) = 23ﬁkopt — . (12)  for the dynamics of the interface of two incompressible, in-
VI-AT+3+3A viscid, irrotational, and immiscible liquids. This observation,

If |k| is of the order 0kypy then Eq(10) shows that ablation together with the corresponding one for SHG,_ shows that our
reduces the linear growth rate, while Ef2) establishes that Model could be useful to extend the saturation formulas of
it also strongly modifies the second-harmonic generatiofiaart which are based on these simplified models. Note
(SHO) efficiency. This feature is in dramatic contrast with that, if ; is complex valued, then the factas; should be
the case of a classical RT system with surface tension. In thagPlaced by|7,|*7; because it is the produch(k)7(k)
case the SHG efficiency is not affected by surface tensior< 71(~k) and 7;(=k)=7,(k)".

and it is equal to the classical efficienayk| 7.’ If |k|=Kopr, then s(kopd = 7Kg f(A). The functionf is
More generally,7,(2k)/(#/k|) is a function ofA and  Plotted in Fig. 3a). For A=1 it can be expanded &%A)

|k|/kopt only. If A=1 then =—(2/3)y1-A. Note thatf is negative valued, which shows
. . that the nonlinear correction helps reducing the exponential
72(2K) = 7[K[ (1 = [K[/kop) (13) growth of the fundamental modulation.

for [k|<k.. Note thatk,= 2Ky, for A=1. The sign of the More generally, the expression 6fy(k)/(7i]k[?) is a

SHG efficiency changes when going froji <k to [k|  function of A and |k|/kyy If A=1, then the expression of
> kope This involves an inversion of the bubble-spike asym-7s(k) can be simplified into
metry. This inversion has recently been described in Ref. 6in A (4 = |K|/Kgp) (L = [K|/Kopp)
a self-consistent approach whepg is substituted for a na(k) = = Pk (4—p2|k|/k09 .
|k|-dependentp, that is assumed to bep,. Figure Zb) P
shows that, ifA<1, then the inversion occurs for sorfié  for |k|<k022kopt, which shows that the nonlinear correction
> Kopt: reduces instability fork| < Kopw Ut enhances instability for
The analysis of the second-order WNL regime is com-|k|>k, as observed in Ref. 6. k<1, then the stabilizing
pleted by adding that there is no zeroth-harmonic generatiosffect is stronger as it concerns a broader band of wave num-
for the modulation interface, but the pressure and the tembers includingk,, [Fig. 3(b)]. We can thus state that, [i|

(14)

perature have zeroth-harmonic components. <kype then the ablation process plays no role in the linear
and WNL regimes. Ifk| is of the order ok, then ablative

C. Third-order weakly nonlinear regime effects have to be taken into account in the linear and WNL
regimes.

The third-order WNL analysis follows the same lines as ™ The third-order WNL corrections also involve third-

the second-order analysis. We get linear systems for thgarmonic generatiofifHG). Following the same strategy as
third-order perturbationdJs, 75, and Tz in which source  gp6ve, we get the expression of the Fourier coefficient
terms depending on the first-order and second-order perturﬁs(3k)_ If |k|<kopt then 373(3k):(4A2—1)|k|237§/2 in
bations are coming. On the one hand, it appears that thgyeement with the result obtained in Ref. 17 JKf=Kops
hydro.dynamlcs is r.ath.er_3|mple in the qverdense regian  han ;73(3k0pt):A7]1k§ptf33(A)' The functionfss is plotted in
vorticity mode, while it is complicated in the blowoff re- Fig. 4. More generally, the expression ®§(3k)/(9;f|k|2)

gion. On the other hand, the thermal transport is simple iNg 5 function ofA and|k|/k0pt. If A=1, then the expression
the blowoff region, but complicated in the overdense region 74(3K) can be simplified into

with the existence of a thin boundary layer. L K K

The third-order WNL modes for a single-mode perturba- A DS T PP W S IKD
tion contains Fourier coefficients at the fundamental fre- 75(3k) = 277l|k| (1 ZkOpt><3 zkop) (19
quency and at the third-harmonic frequency. The evolutior}Or k| < ko= 2k,
equations for the WNL correction to the fundamental mode pt
give expressions fobJ; and T5 containing six free param-
eters, and we are able to write seven jump relations depen
ing also on7s(k). This consequently establishes the expres-  The SBM model is the simplest model for the ablation
sion of (k). If [k| <kgp then 7s(k) =-[(1+3A2)/4][k[?%3,  front. It remains to specify the self-consistent density jump

5)_. Self-consistent analysis
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1.5 — kom 1.5 (k) ’gko |k| n ( |k| )2—(1/n) (16)
L k <« k "" o ‘y = V t T a4 T 1
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3 o & 5\ wherek,, corresponds to the most instable wave number
- <o n/(n-1) 1/(n-1)
s Py I a7
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(a) Atwood number (b) K/ Ky
and Fr:uﬁ/(gdL) is the Froude number. Note that the cutoff

FIG. 4. THG efficiency?,(3k) divided by 73k |? as a function ofA (a) and  wave number ik, = kop[(Z—lln)”’(”‘D. The SHG efficiency

I/ kope (0)- for a single-mode perturbation with wave numlkeis
i i on [ |K| )l—(l/n)
2k) = 77k|[1 —c,(k k)= —
7,(2K) 771| |[ ch(k)],  cq(k) on— 1( kopt

across the frontor eq_uwalently the Atwood numbkrThis Note that#,(2k) >0 for [k|<kyy, while 75(2kss) <O0. This
follows from the choice of a corona model for the unper- . . P ; P
shows the inversion of the bubble-spike asymmetry that has

turbed flow and a characteristic length associated with th%lready been obtained in Ref. 6. Similarly the THG effi-

instability process. The density of the dense region is easy to. .
estimate as the maximum density of the corona. The densit(f/Iency IS
of the blowoff plasma can be calculated by a measure of the  7,(3k) = S| - 26,(k)1[3 - 26,(K)].
density at a distanc€ from the front. The expression for the
density profile can be obtained from a simple corona model ~ Finally the nonlinear correction to the fundamental
p(X)=p,(nx/d )Y, x>0, wheren is the Spitzer exponent of Modulation is

the thermal conductivit9t=;<T".4’8 Since we are dealing with [4
surface modes that decay as exf|x), the characteristic (k) = - ik
length used to calculate the density must be of the order of

|k|™. According to the resul_ts of Refs. 3 19, and 20, excelyte thati(k)/ 72 <0 for |K| <kop; Which shows that modu-
lent agreement with numerical simulations by Kbilin the lations with long wavelengths are stabilized by WNL cou-
linear regime is obtained by taking=1/(2|k|) which gives pling. Howevers(ky,)/ 73> 0 which means that the third-
the jump densitypr=p,(2|k|d, /n)*". Note that|k|d, has N : -

) X L 79> order nonlinear correction enhances the instability of the
been assumed to be small in the SBM analysis which implieg, ,amental modulation. This observation can also be found
that pr<p_. All the previous quantities are functions of the j, pet 6. However we shall get a very different result in the
Atwood numberA and the wave numbek, it remains to . itimode case.
substitute the self-consisteAtk) to get the desired results.

Let us first address the linear regime and derive the expres-
sion of the growth rate which reads

—Cy(K)J[1 —cy(k)]
4 -2c,(k)

IV. MULTIMODE PERTURBATION
A. Linear regime

Let us consider an initial multimode disturbance with

! Gaussian statistics. In the linear regime, the Fourier modes
. 71 grow independently from each other. df5(t=0,k)=0,
< then 7,(t,k) = 75(k)cosh y(k)t]. After a short transition pe-
3 riod we have
“ 05 R .

1 m(tk) =3 p(K)exd y(k)t] (18)
(b} so that the PSD is

2

Tin(t,k) = §To(k)exd 2(k)t]. (19
:g ! The gain curve has a maximumigy. If the initial modula-
3 tion is broadband’o(k) =Ty, and if y(k,p)t>1, then the
< 0 PSD is a Gaussian curve centeredkg,
TR T L , 1 (K| = kop®
o, T e P, 8 Tin(tk) = 7T edey(kOpot]exp<— T" :

FIG. 5. Growth ratey(k) divided by y,= \% (), SHG efficiency,(2k) Note that the W|dthkt:kop[/\ y(kopt)t decayS as time in-

divided by 7%/k| (b), THG efficiency?;(3k) divided by 73k |? (c), nonlinear L ) ’ .
correction (k) divided by 7|2 (d) as a function ofik|/k.y n is the ~ Créa@ses, which is a manifestation of the spectral gain narrow-

Spitzer exponent. ing effect.
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B. Statistical analysis of the nonlinear regime G,(kq,k,) is the sum-frequency generati¢BFG efficiency
for the two-mode conversidk, +k,, andGs(k4,k», k) is the
SFG efficiency for the three-mode conversibptk,+ka.
Explicit formulas are given in Sec. IV C. The second mo-

By computing the third-order correction we get that the
Fourier modes of the interface can be expanded as

(t,K) = S (t,K) + (k) + st k) + O(8Y, ment can be expanded as
where 7,(t,k) is the linear mode given by Eq18) and (k) (k")) = (k) (k")) + 8Xapa(k) ok "))
7;(t,k),j=2, 3, results from all possible combinations jof + 8 Cpa(K) a(k "))
linear modes, o .
+ 8 (k) pa(k')").
7(t,K) :f Ga(ky,k —kq) (k) 7a(k —ky)d%ky,  (20) Terms of the types®(7,%,) are vanishing because they

only contain odd-order moments @f which is a zero-mean
Gaussian process.This equation shows that the lowest-

73(t,K) :f Gk, ko k = kq = ko) 771(kq) 771(Kp) order WNL correction for the PSD depends on the second-
and third-order terms of the WNL expansion. That is why it
X 7y (k = kq — ko) d?k ;0% (21) is necessary to develop a third-order WNL analysis to cap-

ture the WNL regime in the multimode case. The frequency
with G, and G; being symmetric in their arguments. autocorrelation function then reads

(k) k")) = k) (k)

+ 54f J Galky,k = kp)Ga(ka k = k) (k) Tu(k = k) (ko) Mk’ — ko) Ydkadk,
+ 54] J Ga(ka kg k = kg = k) (F1(ka) (ko) (k —ky = ko) (k") Hdkadk,

+ 54] f Galka, ko k' —ky = k)(T(ky) (ko) Fu(k’ = kg~ ko) (k) Ydkydks.

The fluctuations of the interface elevation are initially Gauss- 1 g, L[ = )
ian distributed, so that we can express the fourth-order mo- I'(t.k) = ZFO(k)eZ + 3_2f Ga(ky,k = kq)To(ky)
ments as sums of products of second-order monténts,

XFo(k _ kl)eZy(kl)HZy(k—kl)tdel
(k) 70(k2) 70(k) (K ) +1—16 Gk, K)To(k)Tglk ) 2760202l
= {(70(K1) 70(K2) X 70(K3) 770(K 4))
+(70(K1) 70(K3) X 70(K2) 770(K4))
+(mo(K1) 7o(K2) X 70(K2) 70(K3))

(22)
with

Gaky,kp) = 2Gy(k1,Kp),  Ga(ky,kp) = 6Gs(ky, Ky ko).
so that (23

The statistical analysis shows that we need only to compute
(70(K1) 770(K2) 70(K = kg = Ko) 7o(k")") the third-order SFG efficiency for configuratiokg—k;+ko,
and not for all combinations of three modegtk,+ks. Fur-
= do(ky +k2) Go(k = k")To(ky)To(k) thermore, we can distinguish two different types of initial
+ 8o(k — kp) 8o(k — k" )To(k)To(k) configurations. If the initial spectrum is narrow and contains
4 850k ~ k)8 (K — Ko (k)L (K) only short wave numberi&| <k, then we should focus our
0 Voo OVR2/ OV attention to the computations @,(k;,k,) and Gs(ky,k,)
for [kj|<kop. If the initial spectrum is broad and contains
Using Eq. (18) and substituting into the expression of modes with wave number&|~k,,, then the spectral gain
(7t K)7(t, k") vyields (p(t,k)7(t,k"))=T(t,k)d(k-k’)  enhances these modes during the linear regime, so that they
where the PSO'(t,k) is given by prevail at the early steps of the WNL regime. In such a
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configuration, the important quantities to compute are , =5
Galky, k) andGy(ky ko) for [Ky|= ksl =kop Y I -
S 12~ Topt < 0 A-1 Haan | -
04[] e K1 << Koy ™
<
C. Sum-frequency generation e

The SFG efficiencyf_sz(kl,kz) for the conversionk, 0 05 1 o 05 1 15 2
+k, can be computed by using the same strategy as the on@ Atwood number () Kio/ Kopt
applied for the calculation of the SHG efficiency in the

single-mode case, but by considering a bimode initial disturf!C: 6. SFG efficienciG,(ks,k,) for two wave vectors, k, with wave
numbers close td,,. The dotted line in(b) is based on Haan's mode-

bance, coupling formula.
70(Y) = & 170,1€09K - Y) + 19 ,€09K - ) ]. (24)
The second-order WNL corrections then contain a mode with ~— 7(t,kp) = 871(K2) + 8395 1(K2) + 3393 oK1, K2) (27)

- i 25
wave numbek ,=k; +k; and amplitudes™,(ky)) that can where7s 1(k,) is the feedback of mode; on itself. It results

.be com-puted by the same way we have complﬁ?qg(Zk) from the interactiork,—k,+k, and it is the term computed
in the single-mode case. By Eq20) and(23) the efficiency for the single-mode perturbation. The WNL tef Ak 1,k ,)

Ga(ky, ko) is obtained from the identity results from the interactiok,+k;—ky. By Eqs.(21) and(23)
R — . . the SFG efficiencyG; is obtained from the identity
72(K12) = Go(Ky, ko) 71(K1) 71(K),

. — 73,2K1,K2) = Ga(K1,K2) 71(K2) 71(K 1) 72(— K).
where 7,(k;) = 7o; exd ¥(kj)t]/2. The expression 06, al- i Ik Kl < h
lows a precise description of mode coupling in the multi- [kl ~ k2] Kopu then
mode spectrum. E(k K,) = |K,|2F (A, ). (29)

If |Kq], kol <kope then we get the same formula as in $ _1' 2) =] _2| S

Ref. 17, which means that ablation plays no role. If we focugiereFz is a function that depends only on the Atwood num-
our attention to the conversion configurations with waveber A and the angled between the wave vectoky andky:
numbergk,| and|k,| close tok,y, then the SFG efficiency is Fo(A, 6) = AZF3 1(Cy) + F31(5)] + [Fa.sCp) + Fa.oSy)],
of the form Gz(kl,k2)=|k12|F12(A,|k12|/kopt). For Azl,Gz (29)

becomes simple:
) where c,=|cog6/2)|,s,=|sin(6/2)|,F3 1(c)=c(2-2c+3c)(2

(K 12l/kopy® — 4 _ (25 -2c-c?), and F3,(¢)=5(~3+802-4¢%). If |Kq|~[Ka| ~Kop
(I 12/ kop)* = 2/K ol Koy + 4 thenG; is still given by Eq.(28), whereF; is a complicated
Previous papers have developed mode-coupling formuf_unctlon that depends only oA and 6. In particular, if A
las based on classical RT systems with surface tension, 1, then
which is a system much simpler than the ablative RT system. ] J2-1
In a second step, these formulas are applied to ablative RT by Fs(A, 6) = —sin(6)? 1-A (30
substitution of the ablative linear growth rate, for instance, v
the Takabe formuld® This approach is interesting in that it which is negative valued for ar§ This shows that the WNL
gives a first simple estimate of the mode-coupling effects irterm 7; 5(k1,k») in Eq. (27) helps reducing the exponential
ablative RT systems. It has been widely appfiedspecially ~ growth of the modek,. In the case of a bimode initial dis-
for the design of ICF targets. Haan has proposed in Ref. 15 turbance with wave numbers close kg, the total third-
mode-coupling formula that can be applied with an arbitraryorder WNL term is the sum of the feedback tef (k,)
dispersion relation/(k). Applying this formula with Eq(10)  that can be destabilizingsee Sec. Il € and of the stabiliz-

for A=1 we get

Gy(kq,kp) = |k12|

[kl (| 12/ kop)* + 4K 12l/Kopi— 8
2 (|k12|/k0pt)2 - 2|k12|/k0pt+ 4

Comparing with the exact WNL expressi¢?b), we can see

that Haan’s formula gives a right estimate for the low-

frequency modulations, but overestimates high-frequency

conversion Fig. 6(b)]. -4 -2
Let us now comput&;(k,k»). For this, we consider the (@) 0 (rad) (b) 0 (rad)

bimode initial disturbanc¢24) and we look for the EXpres- FIG. 7. FunctionF; describing the nonlinear feedback of modigsand

sion of the Fourier mode(t,k,) taking into account all the 5 modek, in the casek| ~ [ky| <kop: (@) and in the castk| ~[Ks| ~ ke (b).
third-order WNL corrections. We get 6 is the angle betweek andk;.

Gu(ky,ky) = (26)

Downloaded 26 Jun 2005 to 134.157.51.244. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



062707-8 J. Garnier and L. Masse Phys. Plasmas 12, 062707 (2005)

ing term 73 o(k1,ky). The total WNL effect can thus be sta-
bilizing or destabilizing depending on the initial values of
70,1 and 77 ,, the wave numbers and the Atwood number. In
the following we consider a continuous spectrum. In this
case the WNL ternis 4(k,) which results from the interac-
tion ko+k,—k, is negliglible compared to the sum of the
numerous contributionsys »(k1,k,) which result from the
interactionsk,+k,—k; with all the linear mode&,. Conse-
quently the total third-order WNL term in the multimode
case is always stabilizing. The following section is devoted
to a quantitative analysis of the WNL stabilization.

Giolky ko) 7Ky

FIG. 8. Self-consistent SFG efficiency in the céisg~ [K,| ~ ko, compared
with Haan’s formula(26).

D. Saturation amplitude

Let us assume that the initial spectrum is narrow band —
with a typical wave numbeky<k,y. Integrating Eq.(22) thg SFG eﬁlCleqcﬁZ(kl,kz? cannot be reduced to the sub-
yields that the nonlinear feedback to the fundamental modustitution of a unique effective value of the Atwood number
lations reduces the exponential growth into the previously determine®,. Indeed, some of the

B ) modes with the wave vectok,, decay as exXp(|k]

L (k) = Pin (LKL + [k *fa(A)rms, (1], (32) +|k,|)x], and some other decay as €éxj,/x), and thus they
where rmg, is the interface elevation rms computed in the do not probe the blowoff plasma at the same depth. For each
linear regime[rms,zin(t):fr“n(t,k)de] and f3(A)=-0.17 generated mode the value of the density should be taken as
~0.58A2. If the initial spectrum is broadband, then the pre- pr=pi(2kd_/n)*" with the suitable value fok (that is, k
vailing modes in the early steps of the WNL regime are the=|kq|+|k1J for the first type of modes, arléi;,| for the sec-
ones aroundt,, by spectral gain narrowing. |k|~ kg, then  ond typg. This method should be used as well to choose for
the PSD reads as E(B1) with f3(A):-(V'E_1)/(2V'1_A) if ~ each generated mode the correct value of the thermal diffu-
A=1. The sign off3(A) <0 shows that the nonlinear correc- sion lengthdz~ pg". Applying this method we get the SFG
tion slows down the exponential growth of the fundamentaefficiency. If both|k,| and |k,| are smaller thark,, then
modulations. The saturation occurs when the growth of on@blation plays no role and the standard formllean be
of the modes is stopped. At this time rms applied. The interesting case corresponds to two wave num-

"’)\/(277\/2|f3(A)|), or in terms of the local rms bers |kj|~k0pt Figure 8 shows that the SFG efﬁCiency is
larger(in absolute valugthan the efficiency predicted by Eq.

Msed(t) = T(t,k)d?k (26). In particular, the generation of long-wavelength modu-

0.75y=/k|<1.2%, lations|k 1| <kop is strongly enhanced as pointed out in Ref.

the saturation amplitude is rigs~\o/ (4y|fs(A)]). For The computation of the feedbacks to the fundamental

long W%vglg?\nths 'an'chzfl th? ssturegion amplituded Ibs modulations can be computed as wellKf~ |k | <kop, then
rMSoc~0.09,. A similar formula has been proposed by — . .= . T
Haan'® He was the first one to suggest that neighboringG3 is still given by Eqgs.(28) and (29), and if |k|~ k|

modes with similar wavelengths add up to create an effective” Kopy then
local amplitude, and that nonlinear saturation should occur Gk ko) = k|32 ir?
when this collective amplitude reaches some vatyg\. alkky) == \s"dLFrC(n)SI (6),

Haan has fixed the constany,by comparisons with numeri-
cal simulations. The literature contains a lot of references fokvhere c(n) depends only om (see Fig. 9. In particular,
the value ofc, for an Atwood numbeA=12*>°which are  ¢(5/2)=0.3.

in the range 0.06-0.1. The statistical WNL analysis allows us  In the case of an initially narrow-band disturbance with
to recover analytically the form of the equation that charactypical long-wavelength Ao, the saturation amplitude
terizes nonlinear saturation, as well as the value of the con-

stantcg,=0.09 forA=1.
0.4

E. Self-consistent analysis

. . . . 0.35
The self-consistent analysis in the multimode case is not

as simple as in the single-mode case. The principle is still to
specify a self-consistent value for the density of the blowoff 0.3
plasma. This value is taken from the corona model at some
distance from the front corresponding to the spatial extent of

c(n)

. o . 0.25
the surface modes. The choice of this distance is the key 2 0 25 3
issue. Consider, for instance, the sum-frequency generation
k,+k,—Kkq,. The computation of the self-consistent value of FIG. 9. Parametet(n) as a function of the Spitzer exponent.
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1.2 . . . 2 0.8
a spike o spike
1] 15 a bubble 0.6 & bubble
-~ 081 £ 1
‘-1';) A=60 um
£ 06} 05
>
0.4 obes
0 1 2 3 4 5 5
0.2 (a) t(ns)
0 lg—u . . . . . FIG. 11. Time variation of the product of the wave number with the spike
30 60 90 120 150 180 amplitude(squarg, the bubble amplitudétriangle), and the peak-to-valley
A=2n/k (um) half amplitude of the ablation fror(solid line) with k#,=6x 1072 for (a)

60 um and(b) 30 um up to the WNL regime.
FIG. 10. Linear growth rate spectrufgrowth rate vs wavelengttirom the
results of the 2D FCI2 simulationglotg, and from the linear theory Eq.
(10) (solid line).

tion of the wavelength, obtained on the one hand from the
numerical simulationgdots and on the other hand from Eq.
rmsec(t) ~0.09\,. In case of a broadband disturbance the(10) (solid line).

spectral gain enhances modes arolggand the saturation As illustrated, we managed to perform one simulation
is effective when with a wave numbef\ =6 um) greater than the cuttoff wave
A"W number predicted by the linear theofy. =22 um). In this
rMSoc(t) ~ \—%)\Opp (32) case the ablation front amplitude does not grow but it oscil-
2my2c(n) lates even after the break out of the rarefraction wave. In the

In the case of a broadband pulse, we need to specify t
parameters of the unperturbed flow. We apply our results in
typical ICF  configuratioh  d =0.04um,n=2.1u,
=3.3 um/ns g=60 um/ns. We haveF,=4.5 \,,=10 um,
and the saturation amplitude is rgpé)=0.11\y,. If we
consider a different configuration with a shorter optimal
wavelength, such ad, =0.2 um, thenF =1 A;=2.4 um,
and rmg,(t) =0.17\ gy

eory does not apply. Indeed in this case the boundary ef-
ects affect the exponential growth of the linear reg%e.
Accordingly, simulations have been performed only for
wavelengths smaller than §om.

The initial front-surface amplitudey, was varied in or-
der to probe different growth regimes. The nonlinear regime
can be observed witkz,=6x 1072 in Fig. 11 where the time
variation of the product of the wave number with the spike
amplitude(square, the bubble amplitudétriangle, and the

peak-to-valley half amplitude of the ablation frofgolid
V. NUMERICAL SIMULATIONS line) are plotted for(a) 60 um and(b) 30 wm. During the

In this section we compare the model predictions withtransient period0<t<2.3 ng the ablation front appears to
the results of simulations performed with the two- oscillate. In the 3Qum case the period is approximatively
dimensional(2D) Lagrangian code FCIZ We consider a half the 60um case in agreement with Ref. 28. The value of
planar 80um thick CHOB foil irradiated by a constant and this period (~2.3 ng is in agreement with the theoretical
uniform x-ray flux of 3< 1013 W/cn?. After a transient pe-  predictionTag ,m=27/ wsg,m=2m(Ku_\p_/ pr) 1=2.5 ns. As
riod of 2.3 ns during which the ablation front oscillatege predicted by the theory discussed in this paper and as previ-
Fig. 11), the rarefraction wave breaks out at the ablationously noticed by Sanet al,® the inversion of the bubble-
front and the foil starts to accelerate with the average accebpike asymmetry in the early stage of growtB.3<t
erationg=45 um/ng and the average ablation velocity =~ <3.5 ng is exhibited in Fig. 11. Indeed in this stage the
=3.1 um/ns. The ablation front is numerically determined bubble amplitude is greater than the spike one. We can also
as the location of the density maximum. It could be definedobserve that this inversion is more apparent for 30(k
as well as the location of the maximum of the density gradi->K,,) than for 60um(k=K,,) in agreement with the theory
ent length scale without significant modification of the nu-that predicts that the SHG efficiency is proportional kg,
merical results. The density jumps is assessed from the ratiek) for A=1 [see Eq(13)].
of the density at the ablation front to the density calculated at  Figure 12 shows the enhancement of the ablation front
a distance of 1(2k) from this ablation front[p /pgr  instability by the third-order nonlinear correction in the
=(n/pd)¥". We obtain, respectively, for 60 and WNL regime with respect to the linear regime. The linear
30 um,p /pr=17.5 andp, / pg=14.6 leading tcA=0.9. results which are plotted correspond to the numerical fits

First of all, results from the model and from the simula- (ag”t+be ™) starting at 2.3 ns and multiplied by the ratio of
tions are compared in the linear regime. To ensure that ththe initial amplitudes, where the growth rajeis obtained
simulations remain in the linear regime, the product of thefrom the numerical results reported in Fig. 10. The theory
wave number with the initial front-surface amplitulle, is  predicts that the WNL correction to the fundamental mode is
taken as low as I8. In Fig. 10, a good agreement is shown proportional to(k— Kopy for A=1[see Eq(14)]. This predic-
between the variations of the linear growth rates as a function is confirmed by the simulations which show that the

hgnit of a wavelength larger than the foil thickness the linear
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03 —  Simulation 03 _ Simu]aﬁon‘ Ua(t = O,X,Y) = UO,O(X) + 5U1,0(X,y) .

0.26 — . Linear 0.25( — . Linear

U? satisfies Eq(A1) and we assume thdi® possesses a
discontinuity along the interface?,

x 0.15
- SP={(txy)x= 7ty)t=0y e kY
0 with 7°(t=0,y)=8n, o(y). We consider the frame moving
@) tns) () tns) with the interface

FIG. 12. Time variation of the product of the wave number with the peak- - s

to-valley half amplitude of the ablation front witky;,=1072 for (a) 60 um X=x-7(ty),

and (b) 30 um from the 2D FCI2 simulationssolid lines, up to the WNL

regime, and the linear resultdashed lines Oscillations superimposed on -

the curves are numerical artefacts. U‘S(t,’)"(,y) = U‘S[t,')"( + nﬁ(t,y),y]_

In this frameU? is discontinuous along the constant interface

WNL feedback enhances the instability with respect to thé=0 so we can expand® and 7’ as
linear regime for 3Qum and produces no effect for gom. _ _ _ ~
Uﬁ(tis‘(!y) = UO(tIS‘() + &Jl(t!‘s‘(!y) + 52U2(t17(1y) + O(é\g)l

VI. CONCLUSION 7(ty) = dmu(ty) + Ema(ty) + ().
To conclude, the analytical formulas that we have de- Obviously we havay(t, %)= Uq(t.X) andU,,J—O 1.2 isthe

rived show the influence of ablation on RT instability in the .
sum of a smooth function and a distribution whose support is
linear and WNL regimes. The statistical analysis of the mul-
the surfacex=0. Let us introduce a notation. Given a func-

timode case has allowed us to derive simple expression for
the saturation amplitude giving the threshold value for thell®" X (%) which is smooth except at the poixit0 where
local rms which corresponds to the WNL stabilization of theit Presents a jump discontinuity, we defifg; B} by o
exponential growth of the modulations. The limit of large ={d}+[ dold, Where[do]=¢(0*)~4(07). In other words,
wavelength rmg.~0.I\ is in agreement with previously {&¢} is the “function part” of the distribution derivativée
known results derived by Haan. The case of short waveof ¢. It appears that it is convenient to work with the vari-
lengths in the ablative regime is more interesting, in that WeablesU defined by

have shown that the saturation amplitude is above Haan’s
prediction. This shows that ablation reduces the linear
growth rate, but it also increases the duration of the linear
phase.

Us(t%y) = Us(t%y) = nedokUoh(t.X),

Ua(t%y) = Unlt,%y) = mad 0o (t%) = mu{ kU HEXY)
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APPENDIX: EXPANSIONS OF SOLUTIONS d
OF NONLINEAR HYPERBOLIC SYSTEMS T 1 0
a[Dh(Ug)Us] + &{Df(Ug)Us] + 2 4,[Dg;(U)U1]
In this appendix we report and extend the results pre- =

sented in Ref. 29. We consider a system of conservation —DS(UO)Ulzo, (A2)
laws,
with the nonzero initial conditiont);(t=0,X,y)=U; o(X,y)
alh(U)]+a,Jf(U)]+ > &yj[gj(U)] =s(U), (A1) and the Rankine Hugoniot jump conditionsxat0,
=1

where x [resp. y=(yj)j-1,.. 4] stands for the longitudinal DEUNU: + 75U = | al meh(U
(resp. transvergespatial variables. We first consider a one- [BfUgUs+ ms(Uollo Lmh(Uo)]
dimensional solution

alh(Ug) ]+ a,{f(Ug)]=s(Up), Ug(t=0,x)=Ug X)), +2 ‘9yj[7719j(U0)]:| . (A3)

=1

which possesses a discontinuity on the plane surfase(x : 0 _
=0}. We next consider a small perturbatior of the solution Second-order weakly nonlinear perturbatiatu,, 7,)
Uo, satisfies the linear systefh=0,y € RY,X# 0)
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A[Dh(Ug)U,] + &{Df(Ug)U,]
d
+ 2. 4,[Dg;(Ug)U] — Ds(Ug) U
j=1

1 1 S
=- Eat[Dzh(Uo)(Ulyul)] - El%“([sz(Uo)(Ulyul)]
d

1 — — 1 — —
= 52 3 [D?Gi(Ug) (U, Up] + 2 D?S(Ug) (U, Uy), (A4)
j=1

with zero-initial conditionsﬁz(tzo,?(,y):o, source terms quadratic El, and the jump conditions &=0:
[ Df(UQ)U, + 2D2(Ug) (U1, Up) m5(Ug) + mDS(Ug)U; + 1 2DS(Ug)ixUo
= | a(mh(Ug) + 7:DN(Ug)Uy + 3 ZDh(Ug) o)

d
+> l?yj(ﬂzgj(Uo) + 7,Dgj(Ug)U, + %U%DQJ(UO)@UO) . (A5)
=1
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