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A weakly nonlinear model is proposed for the Rayleigh–Taylor instability in presence of ablation
and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included
the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling
in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The
exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The
saturation amplitude is around 0.1l for long wavelengths, but higher for short instable wavelengths
in the ablative regime. ©2005 American Institute of Physics. fDOI: 10.1063/1.1927542g

I. INTRODUCTION

The Rayleigh–TaylorsRTd instability occurs when a
fluid accelerates another fluid of higher density. This phe-
nomenon may dramatically reduce the performance of iner-
tial confinement fusionsICFd experiments by degrading the
symmetry of implosion.1 In ICF ablation plays a central
role.2 It has been shown by several authors that the ablative
RT instability growth is stabilized relative to classical RT
during the linear stage, where the growth is exponential in
time. The self-consistent theory has shown a complicated
dependence of the growth rate on the plasma parameters.3,4

In this paper a weakly nonlinearsWNLd theory is developed
for the ablative RT instability. The first WNL analysis in a
simplified framework was performed in Ref. 5. We aim at
deriving closed-form expressions for the most important
physical quantities. The simplest and most studied case is
that of a single-mode perturbation. A third-order WNL analy-
sis of the single-mode case was presented in Ref. 6 in the
limit of a very large density ratio. We derive in Sec. III
analytic formulas for the second and third harmonic genera-
tion efficiency and the nonlinear correction to the exponen-
tial growth of the fundamental modulation for arbitrary At-
wood numbers. A suitable choice of the self-consistent
Atwood number then gives accurate results relevant to ICF.
In the multimode case we also give in Sec. IV the expression
of the interface elevation taking into account the mode cou-
pling. Recently a WNL theory was presented in the frame-
work of a finite bandwidth7 where the results can only be
integrated numerically. We show that it is necessary to com-
pute the third-order WNL corrections in the multimode case
to capture the first statistical corrections. We get expressions
for the saturation amplitudes which show that short-
wavelength modes saturate at a significantly higher ampli-
tude scompared to the wavelengthd than long-wavelength
modes. We finally report in Sec. V the results of simulations

performed with a two-dimensionals2Dd Lagrangian code
which confirm the theoretical predictions.

II. WEAKLY NONLINEAR ANALYSIS

In the standard case where the ablative flow is subsonic
we can apply the isobaric approximation8 so that the fluid
dynamics is governed by the system of conservation laws for
mass,x andy momenta, and energy,

]tr + ]xsrud + ¹y·srvd = 0, s1d

]tsrud + ]xsru2 + pd + ¹y·sruvd = rg, s2d

]tsrvd + ]xsruvd + ¹y·srv ^ v + pd = 0, s3d

Cpf]tsrTd + ]xsruTd + ¹y·srvTdg = ]xqx + ¹y·qy, s4d

wherer is the density,u sresp.vd is the fluid velocity in the
x sresp. yd direction,p is the pressure,T is the temperature,
qx=l]xT andqy=l¹yT are the heat flows in thex sresp. yd
direction, Cp is the specific heat per unit mass at constant
pressure, andl is the thermal conductivity. Gravityg points
into thex direction.

Our model belongs to the family of the sharp boundary
modelssSBMd.8–10 The forthcoming analysis is based on a
set of three hypotheses. First we assume that the unperturbed
flow is stationary and one dimensional. The ablation front is
represented as a zero-thickness surface for the hydrodynamic
variables sr ,u,v ,pd which separates a cool material with
high densityrL on the left side and a blowoff plasma with
low densityrR on the right side. In the point of view of the
temperature the ablation front is an isotherm. The SBM ap-
proximation is applied to the hydrodynamic variables and
not to the temperature. As a result the temperature and heat
flow are continuous. Second, we assume that the densityr
and the thermal conductivityl are constant on both sides of
the ablation frontssee Fig. 1d. Finally we assume that the
thermal transport is small in the overdense region, and that it
is large in the blowoff region. This hypothesis reads asadElectronic mail: garnier@math.jussieu.fr
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dLuk u!1!dRuk u, wherek is the typical wave number of the
interface modulation,dL,R=lL,R/ sṁCpd are the left and right
thermal diffusion lengths, andṁ is the mass ablation rate.
This model has been shown to reproduce accurately the lin-
ear growths of RT instabilities obtained by the self-consistent
linear theory3,4 if the jump density is calculated in a self-
consistent way.11,12We show in this paper that a WNL analy-
sis of this model can be performed at any order without any
more assumption.

We study the growth of a small-amplitude perturbation
of the interface whose displacement with respect to the un-
perturbed frontx=0 is described byx=hst ,yd. The typical
amplituded of the initial disturbance is assumed to be small
si.e., smaller than its typical wavelengthd. The interface dis-
placementh, the hydrodynamic variablesU=su,v ,pd, and
the temperatureT can be expanded in powers ofd as

hst,yd = dh1st,yd + d2h2st,yd + d3h3st,yd + Osd4d,

Ust,x,yd = U0sxd + dU1st,x,yd + d2U2st,x,yd

+ d3U3st,x,yd + Osd4d.

Substituting these ansätze into the systems1d–s4d and col-
lecting the terms with the same powers ind, we get for terms
of order d the system governing the linear stability of the
unperturbed solutionsU0,T0,h0=0d. The terms of orderd2

sresp.d3d give the second-ordersresp. third-orderd WNL cor-
rections. The governing equations and the jump conditions
satisfied by the hydrodynamic variablesUj are derived from
Eqs. s1d–s3d in the . Equations4d then determines the tem-
perature profilesTj in the two regions. The interface is de-

fined as the isothermT=T̄* , so the continuity of the tempera-
ture imposes

TRft,x = hst,yd+,yg = TLft,x = hst,yd−,yg = T̄* . s5d

Besides the continuity of the heat flow reads at the interface
fln ·=Tgh=0 where ffgh=fft ,x=hst ,yd+,yg−fft ,x
=hst ,yd−,yg andn is the unit normal vector,

n =
1

Î1 + ¹yh
2S 1

− ¹yh
D s6d

so that the continuity condition for the heat flow can be
reduced to

fls]xT − ¹yh . ¹yTdgh = 0. s7d

Collecting the terms of Eqs.s5d ands7d with the same pow-
ers ofd then provides the jump conditions for the perturba-
tions Tj of the temperature.

It is convenient for the linear and WNL regimes to con-
sider the Fourier modes of the interface

hst,yd =E d2k expsik ·ydĥst,kd.

In this paper we first address the single-mode case

h0syd = d cosskp ·yd, s8d

which reads in the Fourier domain as

ĥ0skd = sd/2dfd0sk − kpd + d0sk + kpdg, s9d

whered0 is the Dirac function at 0. We then focus our atten-
tion to the multimode case. We model the initial perturbation
h0syd of the interface elevation as the realization of a spa-
tially random process with Gaussian statistics. The statistical
distribution of this process is characterized by the first two
moments

kh0sydl = 0, kh0sydh0sy8dl = C0sy − y8d,

where the brackets stand for a statistical average andC0 is
the so-called autocorrelation function. An equivalent defini-
tion of the random process in terms of Fourier modes is that
ĥ0skd has Gaussian statistics characterized by

kĥ0skdl = 0, kĥ0skdĥ0sk8dl = G0skdd0sk + k8d,

whereG0skd is the so-called power spectral densitysPSDd.
As shown in Ref. 13 the PSD is proportional to the Fourier
transform of the autocorrelation function. A limit case is the
white noise model where the correlation radius of the process
is assumed to be very small. The autocorrelation function is
then reduced to a Dirac distributionC0syd=s0

2d0syd and the
PSD is identically equal to the constants0

2/ s2pd2. Please
note thats0 is not a rms, buts0

2 has the dimension of a
length to the power 4.

The choice of a statistical description for the multimode
interface is both mathematically and physically relevant. In-
deed the initial modulation of the surface is only known
approximatively. The statistical model takes into account the
available datasrms, spectrumd and completes the unknown
data by putting a statistical distribution on them. This distri-

FIG. 1. Unperturbed one-dimensional
stationary flow in dimensionless units.
x=0 sresp.x=2d is the position of the
ablation frontsresp. absorption frontd.
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bution should be chosen in a natural way, and the most natu-
ral modelsmaximizing the entropyd when only the first two
moments are specified is the Gaussian statistics. Finally, the
choice of the Gaussian statistics is also consistent with the
empirical picture that the initial interface perturbation origi-
nates from many small imperfections: we can then invoke
the central limit theorem which claims that the Gaussian sta-
tistics always results from the contribution of many indepen-
dent effects.

Before introducing the equations governing the dynam-
ics, we would like to comment on the interpretation of the
results. We consider a set of possible realizations of the ini-
tial perturbation of the interface. From a practical point of
view we seek information which holds true for an arbitrary
realization of the interface. We are going to perform calcu-
lations to compute statistical averages. Throughout the paper
we focus our attention to the PSD of the modulation. This
function actually contains all the information about the spa-
tial processh. The ergodic principle gives the equivalence
between the theoretical statistical average and the experi-
mental local or global spatial averages, such as the spatial
spectrum or the rms. It is equivalent to compute a statistical
average over all possible realizations in a fixed point and to
compute a spatial average for an arbitrary realization. Actu-
ally, the statistical theory provides accurate results depending
only on the autocorrelation function. For instance, the local
shape of a local maximum can be computed theoretically, as
well as the density of local maxima above a given value, etc.
ssee, for instance, Ref. 13d.

III. SINGLE-MODE PERTURBATION

We first address the case of a single-mode initial distur-
bance with wave numberk :hst=0,yd=d cossk ·yd. The lin-
ear stability analysis establishes that in the early steps of the
dynamics the interface modulation is single mode and grows
exponentially in time with the characteristic growth rate
gskd.14 The WNL analysis exhibits mode coupling that
drives up harmonic modes.15 The WNL problem is reduced
to the identification of a finite set of Fourier coefficients

ĥst,kd = dĥ1st,kd + d3ĥ3st,kd,

ĥst,2kd = d2ĥ2st,2kd,

ĥst,3kd = d3ĥ3st,3kd.

Here ĥ1 is given by the linear stability analysis. The term
ĥ2st ,2kd originates from a second-order WNL effect
ssecond-harmonic generationd. Calculations show that there
is no excitation of a zeroth harmonic in the sense that
ĥst ,0kd is vanishing. The termĥ3st ,3kd originates from a
third-order WNL effect sthird-harmonic generationd. The
third-order WNL termĥ3st ,kd gives the nonlinear correction
to the exponential growth of the fundamental modulation.

A. Linear stability analysis

The linear stability analysis shows the existence of four
possible linear modes for the hydrodynamic variablesU1

sone sonic mode in the overdense region, one sonic mode

which merges with a thermal conduction mode, and two vor-
ticity modes in the blowoff regiond.9 The amplitudes of the
modes are four free parameters. They can be expressed in
terms of the modulation interfaceh1 by the four linearized
jump conditions satisfied by the hydrodynamic variables at
the interface. It is necessary to exhibit one more relation to
fix the growth rate. This relation is obtained by studying the
thermal flow.T1 consists of five modes which depend on the
hydrodynamic parameters and two more free parameters.
The jump conditions for the temperature and the heat flow
read as three complicated relations that can be dramatically
simplified by using a separation of scales technique based on
the assumptiondLuk u!1!dRuk u. Accordingly, the two free
parameters ofT1 are eliminated, and a new relation is estab-
lished between the parameter of the sonic mode of the blow-
off region andh1. This provides a compatibility condition for
the instability growth rateg that does not depend on the
values of the thermal diffusion lengths,

gskd = ÎAguk u − uk u2uLuRA2 − s1 + Aduk uuL, s10d

where uL=ṁ/rL sresp. uR=ṁ/rRd is the ablation velocity
sresp. blowoff velocityd, and A=srL−rRd / srR+rLd=suR

−uLd / suR+uLd is the Atwood number. Note that the expres-
sion of the growth rateg is in complete agreement with the
one derived in Ref. 9.g is positive for any wave number
below the cutoff wave numberkc=g/ suLuRd3 suR−uLd / suL

+uRd. g is maximal for a modulation with wave number

kopt =
g

2uLuR

ÎuR − ÎuL

ÎuL + ÎuR

. s11d

If uk u!kopt, then we get the classical RT growth rategskd
=ÎAguk u.

B. Second-order weakly nonlinear regime

The second-order WNL analysis consists in collecting
the terms of orderd2 in the system of conservation laws and
in the jump conditions for the hydrodynamic variables and
the temperature. As shown in the Appendix the system of
conservation laws provides a system of linear equations for
the hydrodynamic variablesU2 with source terms which are
quadratic functions of the first-order perturbationsU1. This
system is solved in Ref. 16 with the use of a symbolic ma-
niupulator programsmapled. The existence of five hydrody-
namic modes with four free parameters is derived. In particu-
lar, there is no vorticity mode in the overdense region, while
vorticity plays an important role in the blowoff region. The
four free parameters ofU2 can be related toh2 by the four
jump conditions that also read as linear relations betweenU2

andh2 with quadratic source terms inU1 andh1. T2 consists
of seven modes containing two free parameters. The jump
conditions for the temperature and the heat flow read as three
linear relations in terms ofT2 with source terms depending
on T1,U1, andh1. Accordingly, the two free parameters ofT2

can be eliminated, and a compatibility condition forh2 can
be obtained. Ifuk u!kopt, thenĥ2s2kd.Auk uĥ1

2. This result is
consistent with those obtained in the framework of incom-
pressible, inviscid, irrotational, and immiscible fluids.15,17 If
uk u=kopt, then
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ĥ2s2koptd = 2ĥ1
2kopt

2Î1 − A2 − 1 +A
Î1 − A2 + 3 + 3A

. s12d

If uk u is of the order ofkopt, then Eq.s10d shows that ablation
reduces the linear growth rate, while Eq.s12d establishes that
it also strongly modifies the second-harmonic generation
sSHGd efficiency. This feature is in dramatic contrast with
the case of a classical RT system with surface tension. In that
case the SHG efficiency is not affected by surface tension
and it is equal to the classical efficiencyAuk uĥ1

2.17

More generally,ĥ2s2kd / sĥ1
2uk ud is a function ofA and

uk u /kopt only. If A.1 then

ĥ2s2kd . ĥ1
2uk us1 − uk u/koptd s13d

for uk u,kc. Note thatkc.2kopt for A.1. The sign of the
SHG efficiency changes when going fromuk u,kopt to uk u
.kopt. This involves an inversion of the bubble-spike asym-
metry. This inversion has recently been described in Ref. 6 in
a self-consistent approach whererR is substituted for a
uk u-dependentrk that is assumed to be!rL. Figure 2sbd
shows that, ifA,1, then the inversion occurs for someuk u
.kopt.

The analysis of the second-order WNL regime is com-
pleted by adding that there is no zeroth-harmonic generation
for the modulation interface, but the pressure and the tem-
perature have zeroth-harmonic components.

C. Third-order weakly nonlinear regime

The third-order WNL analysis follows the same lines as
the second-order analysis. We get linear systems for the
third-order perturbationsU3,h3, and T3 in which source
terms depending on the first-order and second-order pertur-
bations are coming. On the one hand, it appears that the
hydrodynamics is rather simple in the overdense regionsno
vorticity moded, while it is complicated in the blowoff re-
gion. On the other hand, the thermal transport is simple in
the blowoff region, but complicated in the overdense region
with the existence of a thin boundary layer.

The third-order WNL modes for a single-mode perturba-
tion contains Fourier coefficients at the fundamental fre-
quency and at the third-harmonic frequency. The evolution
equations for the WNL correction to the fundamental mode
give expressions forU3 and T3 containing six free param-
eters, and we are able to write seven jump relations depend-
ing also onĥ3skd. This consequently establishes the expres-
sion of ĥ3skd. If uk u!kopt then ĥ3skd.−fs1+3A2d /4guk u2ĥ1

3,

which is the same expression as the one derived in Ref. 17
for the dynamics of the interface of two incompressible, in-
viscid, irrotational, and immiscible liquids. This observation,
together with the corresponding one for SHG, shows that our
model could be useful to extend the saturation formulas of
Haan18 which are based on these simplified models. Note
that, if ĥ1 is complex valued, then the factorĥ1

3 should be
replaced byuĥ1u2ĥ1 because it is the productĥ1skdĥ1skd
3ĥ1s−kd and ĥ1s−kd=ĥ1skd* .

If uk u=kopt, then ĥ3skoptd=ĥ1
3kopt

2 fsAd. The functionf is
plotted in Fig. 3sad. For A.1 it can be expanded asfsAd
.−s2/3dÎ1−A. Note thatf is negative valued, which shows
that the nonlinear correction helps reducing the exponential
growth of the fundamental modulation.

More generally, the expression ofĥ3skd / sĥ1
3uk u2d is a

function of A and uk u /kopt. If A.1, then the expression of
ĥ3skd can be simplified into

ĥ3skd . − ĥ1
3uk u2

s4 − uk u/koptds1 − uk u/koptd
s4 − 2uk u/koptd

s14d

for uk u,kc.2kopt, which shows that the nonlinear correction
reduces instability foruk u,kopt, but enhances instability for
uk u.kopt as observed in Ref. 6. IfA,1, then the stabilizing
effect is stronger as it concerns a broader band of wave num-
bers includingkopt fFig. 3sbdg. We can thus state that, ifuk u
!kopt, then the ablation process plays no role in the linear
and WNL regimes. Ifuk u is of the order ofkopt, then ablative
effects have to be taken into account in the linear and WNL
regimes.

The third-order WNL corrections also involve third-
harmonic generationsTHGd. Following the same strategy as
above, we get the expression of the Fourier coefficient
ĥ3s3kd. If uk u!kopt, then ĥ3s3kd.s4A2−1duk u2ĥ1

3/2, in
agreement with the result obtained in Ref. 17. Ifuk u=kopt,
then ĥ3s3koptd=ĥ1

3kopt
2 f33sAd. The function f33 is plotted in

Fig. 4sad. More generally, the expression ofĥ3s3kd / sĥ1
3uk u2d

is a function ofA and uk u /kopt. If A.1, then the expression
of ĥ3s3kd can be simplified into

ĥ3s3kd =
1

2
ĥ1

3uk u2S1 − 2
uk u
kopt

DS3 − 2
uk u
kopt

D s15d

for uk u,kc.2kopt.

D. Self-consistent analysis

The SBM model is the simplest model for the ablation
front. It remains to specify the self-consistent density jump

FIG. 2. SHG efficiencyĥ2s2kd divided by ĥ1
2uk u as a function ofA sad and

uk u /kopt sbd.
FIG. 3. Nonlinear correctionĥ3skd divided byĥ1

3uk u2 as a function ofA sad
and uk u /kopt sbd.

062707-4 J. Garnier and L. Masse Phys. Plasmas 12, 062707 ~2005!

Downloaded 26 Jun 2005 to 134.157.51.244. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



across the frontsor equivalently the Atwood numberd. This
follows from the choice of a corona model for the unper-
turbed flow and a characteristic length associated with the
instability process. The density of the dense region is easy to
estimate as the maximum density of the corona. The density
of the blowoff plasma can be calculated by a measure of the
density at a distancex* from the front. The expression for the
density profile can be obtained from a simple corona model
rsxd=rLsnx/dLd1/n, x.0, wheren is the Spitzer exponent of
the thermal conductivityl=kTn.4,8 Since we are dealing with
surface modes that decay as exps−uk uxd, the characteristic
length used to calculate the density must be of the order of
uk u−1. According to the results of Refs. 3, 19, and 20, excel-
lent agreement with numerical simulations by Kull21 in the
linear regime is obtained by takingx* =1/s2uk ud which gives
the jump densityrR=rLs2uk udL /nd1/n. Note that uk udL has
been assumed to be small in the SBM analysis which implies
that rR!rL. All the previous quantities are functions of the
Atwood numberA and the wave numberk, it remains to
substitute the self-consistentAskd to get the desired results.
Let us first address the linear regime and derive the expres-
sion of the growth rate which reads

gskd = ÎgkoptÎ uk u
kopt

−
n

2n − 1
S uk u

kopt
D2−s1/nd

, s16d

wherekopt corresponds to the most instable wave number

kopt =
g

uL
2Fr

−1/sn−1dS n

2n − 1
Dn/sn−1dS2

n
D1/sn−1d

s17d

andFr =uL
2 / sgdLd is the Froude number. Note that the cutoff

wave number iskc=kopts2−1/ndn/sn−1d. The SHG efficiency
for a single-mode perturbation with wave numberk is

ĥ2s2kd = ĥ1
2uk uf1 − cnskdg, cnskd =

2n

2n − 1
S uk u

kopt
D1−s1/nd

Note thatĥ2s2kd.0 for uk u!kopt, while ĥ2s2koptd,0. This
shows the inversion of the bubble-spike asymmetry that has
already been obtained in Ref. 6. Similarly the THG effi-
ciency is

ĥ3s3kd = 1
2ĥ1

3uk u2f1 − 2cnskdgf3 − 2cnskdg.

Finally the nonlinear correction to the fundamental
modulation is

ĥ3skd = − ĥ1
3uk u2

f4 − cnskdgf1 − cnskdg
4 − 2cnskd

.

Note thatĥ3skd / ĥ1
3,0 for uk u!kopt which shows that modu-

lations with long wavelengths are stabilized by WNL cou-
pling. Howeverĥ3skoptd / ĥ1

3.0 which means that the third-
order nonlinear correction enhances the instability of the
fundamental modulation. This observation can also be found
in Ref. 6. However we shall get a very different result in the
multimode case.

IV. MULTIMODE PERTURBATION

A. Linear regime

Let us consider an initial multimode disturbance with
Gaussian statistics. In the linear regime, the Fourier modes
ĥ1 grow independently from each other. If]tĥst=0,kd=0,
then ĥ1st ,kd=ĥ0skdcoshfgskdtg. After a short transition pe-
riod we have

ĥ1st,kd = 1
2ĥ0skdexpfgskdtg s18d

so that the PSD is

Glinst,kd = 1
4G0skdexpf2gskdtg. s19d

The gain curve has a maximum atkopt. If the initial modula-
tion is broadbandG0skd.G0, and if gskoptdt.1, then the
PSD is a Gaussian curve centered atkopt,

Glinst,kd .
1

4
G0 expf2gskoptdtgexpS−

suk u − koptd2

kt
2 D .

Note that the widthkt=kopt/Îgskoptdt decays as time in-
creases, which is a manifestation of the spectral gain narrow-
ing effect.

FIG. 4. THG efficiencyĥ3s3kd divided byĥ1
3uk u2 as a function ofA sad and

uk u /kopt sbd.

FIG. 5. Growth rategskd divided byg0=Îgkopt sad, SHG efficiencyĥ2s2kd
divided byĥ1

2uk u sbd, THG efficiencyĥ3s3kd divided byĥ1
3uk u2 scd, nonlinear

correction ĥ3skd divided by ĥ1
3uk u2 sdd as a function ofuk u /kopt. n is the

Spitzer exponent.
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B. Statistical analysis of the nonlinear regime

By computing the third-order correction we get that the
Fourier modes of the interface can be expanded as

ĥst,kd = dĥ1st,kd + d2ĥ2st,kd + d3ĥ3st,kd + Osd4d,

where ĥ1st ,kd is the linear mode given by Eq.s18d and
ĥ jst ,kd , j =2, 3, results from all possible combinations ofj
linear modes,

ĥ2st,kd =E G2sk1,k − k1dĥ1sk1dĥ1sk − k1dd2k1, s20d

ĥ3st,kd =E G3sk1,k2,k − k1 − k2dĥ1sk1dĥ1sk2d

3ĥ1sk − k1 − k2dd2k1d
2k2, s21d

with G2 and G3 being symmetric in their arguments.

G2sk1,k2d is the sum-frequency generationsSFGd efficiency
for the two-mode conversionk1+k2, andG3sk1,k2,k3d is the
SFG efficiency for the three-mode conversionk1+k2+k3.
Explicit formulas are given in Sec. IV C. The second mo-
ment can be expanded as

kĥst,kdĥst,k8d*l = d2kĥ1skdĥ1sk8d*l + d4kĥ2skdĥ2sk8d*l

+ d4kĥ3skdĥ1sk8d*l

+ d4kĥ1skdĥ3sk8d*l.

Terms of the typed3kĥ2ĥ1l are vanishing because they
only contain odd-order moments ofĥ0 which is a zero-mean
Gaussian process.13 This equation shows that the lowest-
order WNL correction for the PSD depends on the second-
and third-order terms of the WNL expansion. That is why it
is necessary to develop a third-order WNL analysis to cap-
ture the WNL regime in the multimode case. The frequency
autocorrelation function then reads

kĥst,kdĥst,k8d*l = d2kĥ1skdĥ1sk8d*l

+ d4E E G2sk1,k − k1dG2sk2,k − k2dkĥ1sk1dĥ1sk − k1dĥ1sk2d*ĥ1sk8 − k2d*ld2k1d
2k2

+ d4E E G3sk1,k2,k − k1 − k2dkĥ1sk1dĥ1sk2dĥ1sk − k1 − k2dĥ1sk8d*ld2k1d
2k2

+ d4E E G3sk1,k2,k8 − k1 − k2dkĥ1sk1dĥ1sk2dĥ1sk8 − k1 − k2dĥ1skd*ld2k1d
2k2.

The fluctuations of the interface elevation are initially Gauss-
ian distributed, so that we can express the fourth-order mo-
ments as sums of products of second-order moments,13

kĥ0sk1dĥ0sk2dĥ0sk3dĥ0sk4dl

= kĥ0sk1dĥ0sk2dlkĥ0sk3dĥ0sk4dl

+ kĥ0sk1dĥ0sk3dlkĥ0sk2dĥ0sk4dl

+ kĥ0sk1dĥ0sk4dlkĥ0sk2dĥ0sk3dl

so that

kĥ0sk1dĥ0sk2dĥ0sk − k1 − k2dĥ0sk8d*l

= d0sk1 + k2dd0sk − k8dG0sk1dG0skd

+ d0sk − k2dd0sk − k8dG0sk1dG0skd

+ d0sk − k1dd0sk − k8dG0sk2dG0skd.

Using Eq. s18d and substituting into the expression of
kĥst ,kdĥst ,k8dl yields kĥst ,kdĥst ,k8d*l=Gst ,kdd0sk −k8d
where the PSDGst ,kd is given by

Gst,kd =
1

4
G0skde2gskdt +

1

32
E Ḡ2sk1,k − k1d2G0sk1d

3G0sk − k1de2gsk1dt+2gsk−k1dtd2k1

+
1

16
E Ḡ3sk1,kdG0skdG0sk1de2gsk1dt+2gskdtd2k1,

s22d

with

Ḡ2sk1,k2d = 2G2sk1,k2d, Ḡ3sk1,k2d = 6G3sk1,− k1,k2d.

s23d

The statistical analysis shows that we need only to compute
the third-order SFG efficiency for configurationsk1−k1+k2,
and not for all combinations of three modesk1+k2+k3. Fur-
thermore, we can distinguish two different types of initial
configurations. If the initial spectrum is narrow and contains
only short wave numbersuk u!kopt, then we should focus our

attention to the computations ofḠ2sk1,k2d and Ḡ3sk1,k2d
for uk ju!kopt. If the initial spectrum is broad and contains
modes with wave numbersuk u,kopt, then the spectral gain
enhances these modes during the linear regime, so that they
prevail at the early steps of the WNL regime. In such a
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configuration, the important quantities to compute are

Ḡ2sk1,k2d andḠ3sk1,k2d for uk1u.uk2u.kopt.

C. Sum-frequency generation

The SFG efficiencyḠ2sk1,k2d for the conversionk1

+k2 can be computed by using the same strategy as the one
applied for the calculation of the SHG efficiency in the
single-mode case, but by considering a bimode initial distur-
bance,

h0syd = dfh0,1cossk1 ·yd + h0,2cossk2 ·ydg. s24d

The second-order WNL corrections then contain a mode with
wave numberk12=k1+k2 and amplituded2ĥ2sk12d that can
be computed by the same way we have computedd2ĥ2s2kd
in the single-mode case. By Eqs.s20d ands23d the efficiency

Ḡ2sk1,k2d is obtained from the identity

ĥ2sk12d = Ḡ2sk1,k2dĥ1sk1dĥ1sk2d,

where ĥ1sk jd=h0j expfgsk jdtg /2. The expression ofḠ2 al-
lows a precise description of mode coupling in the multi-
mode spectrum.

If uk1u , uk2u!kopt, then we get the same formula as in
Ref. 17, which means that ablation plays no role. If we focus
our attention to the conversion configurations with wave
numbersuk1u anduk2u close tokopt, then the SFG efficiency is

of the form Ḡ2sk1,k2d= uk12uF12sA, uk12u /koptd. For A.1,Ḡ2

becomes simple:

Ḡ2sk1,k2d = uk12u
suk12u/koptd2 − 4

suk12u/koptd2 − 2uk12u/kopt + 4
. s25d

Previous papers have developed mode-coupling formu-
las based on classical RT systems with surface tension,
which is a system much simpler than the ablative RT system.
In a second step, these formulas are applied to ablative RT by
substitution of the ablative linear growth rate, for instance,
the Takabe formula.15 This approach is interesting in that it
gives a first simple estimate of the mode-coupling effects in
ablative RT systems. It has been widely applied,22 especially
for the design of ICF targets. Haan has proposed in Ref. 15 a
mode-coupling formula that can be applied with an arbitrary
dispersion relationgskd. Applying this formula with Eq.s10d
for A=1 we get

ḠHsk1,k2d =
uk12u

2

suk12u/koptd2 + 4uk12u/kopt − 8

suk12u/koptd2 − 2uk12u/kopt + 4
. s26d

Comparing with the exact WNL expressions25d, we can see
that Haan’s formula gives a right estimate for the low-
frequency modulations, but overestimates high-frequency
conversionfFig. 6sbdg.

Let us now computeḠ3sk1,k2d. For this, we consider the
bimode initial disturbances24d and we look for the expres-
sion of the Fourier modeĥst ,k2d taking into account all the
third-order WNL corrections. We get

ĥst,k2d = dĥ1sk2d + d3ĥ3,1sk2d + d3ĥ3,2sk1,k2d, s27d

whereĥ3,1sk2d is the feedback of modek2 on itself. It results
from the interactionk2−k2+k2 and it is the term computed
for the single-mode perturbation. The WNL termĥ3,2sk1,k2d
results from the interactionk2+k1−k1. By Eqs.s21d ands23d
the SFG efficiencyḠ3 is obtained from the identity

ĥ3,2sk1,k2d = Ḡ3sk1,k2dĥ1sk2dĥ1sk1dĥ1s− k1d.

If uk1u,uk2u!kopt, then

Ḡ3sk1,k2d = uk2u2F3sA,ud. s28d

HereF3 is a function that depends only on the Atwood num-
ber A and the angleu between the wave vectorsk1 andk2:

F3sA,ud = A2fF3,1scud + F3,1ssudg + fF3,2scud + F3,2ssudg,

s29d

where cu= ucossu /2du ,su= usinsu /2du ,F3,1scd=cs2−2c+3cds2
−2c−c2d, and F3,2scd= 1

4s−3+8c2−4c3d. If uk1u,uk2u,kopt,

thenḠ3 is still given by Eq.s28d, whereF3 is a complicated
function that depends only onA and u. In particular, if A
.1, then

F3sA,ud . − sinsud2
Î2 − 1
Î1 − A

, s30d

which is negative valued for anyu. This shows that the WNL
term ĥ3,2sk1,k2d in Eq. s27d helps reducing the exponential
growth of the modek2. In the case of a bimode initial dis-
turbance with wave numbers close tokopt, the total third-
order WNL term is the sum of the feedback termĥ3,1sk2d
that can be destabilizingssee Sec. III Cd and of the stabiliz-

FIG. 6. SFG efficiencyḠ2sk1,k2d for two wave vectorsk1,k2 with wave
numbers close tokopt. The dotted line insbd is based on Haan’s mode-
coupling formula.

FIG. 7. FunctionF3 describing the nonlinear feedback of modesk1 and −k1

on modek, in the caseuk u,uk1u!kopt sad and in the caseuk u,uk1u,kopt sbd.
u is the angle betweenk andk1.
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ing term ĥ3,2sk1,k2d. The total WNL effect can thus be sta-
bilizing or destabilizing depending on the initial values of
h0,1 andh0,2, the wave numbers and the Atwood number. In
the following we consider a continuous spectrum. In this
case the WNL termĥ3,1sk2d which results from the interac-
tion k2+k2−k2 is negliglible compared to the sum of the
numerous contributionsĥ3,2sk1,k2d which result from the
interactionsk2+k1−k1 with all the linear modesk1. Conse-
quently the total third-order WNL term in the multimode
case is always stabilizing. The following section is devoted
to a quantitative analysis of the WNL stabilization.

D. Saturation amplitude

Let us assume that the initial spectrum is narrow band
with a typical wave numberk0!kopt. Integrating Eq.s22d
yields that the nonlinear feedback to the fundamental modu-
lations reduces the exponential growth

Gst,kd = Glinst,kdf1 + uk u2f3sAdrmslin
2 stdg, s31d

where rmslin is the interface elevation rms computed in the
linear regime frmslin

2 std=eGlinst ,kdd2kg and f3sAd.−0.17
−0.58A2. If the initial spectrum is broadband, then the pre-
vailing modes in the early steps of the WNL regime are the
ones aroundkopt by spectral gain narrowing. Ifuk u,kopt, then
the PSD reads as Eq.s31d with f3sAd.−sÎ2−1d / s2Î1−Ad if
A.1. The sign off3sAd,0 shows that the nonlinear correc-
tion slows down the exponential growth of the fundamental
modulations. The saturation occurs when the growth of one
of the modes is stopped. At this time rmslin

,l / s2pÎ2uf3sAdud, or in terms of the local rms

rmslocstd =E
0.75k0øuk uø1.25k0

Gst,kdd2k

the saturation amplitude is rmsloc,l0/ s4pÎuf3sAdud. For
long wavelengths andA.1 the saturation amplitude is
rmsloc,0.09l0. A similar formula has been proposed by
Haan.18 He was the first one to suggest that neighboring
modes with similar wavelengths add up to create an effective
local amplitude, and that nonlinear saturation should occur
when this collective amplitude reaches some valuecsatl.
Haan has fixed the constantcsatby comparisons with numeri-
cal simulations. The literature contains a lot of references for
the value ofcsat for an Atwood numberA=1,22–25 which are
in the range 0.06–0.1. The statistical WNL analysis allows us
to recover analytically the form of the equation that charac-
terizes nonlinear saturation, as well as the value of the con-
stantcsat.0.09 forA=1.

E. Self-consistent analysis

The self-consistent analysis in the multimode case is not
as simple as in the single-mode case. The principle is still to
specify a self-consistent value for the density of the blowoff
plasma. This value is taken from the corona model at some
distance from the front corresponding to the spatial extent of
the surface modes. The choice of this distance is the key
issue. Consider, for instance, the sum-frequency generation
k1+k2°k12. The computation of the self-consistent value of

the SFG efficiencyḠ2sk1,k2d cannot be reduced to the sub-
stitution of a unique effective value of the Atwood number

into the previously determinedḠ2. Indeed, some of the
modes with the wave vectork12 decay as expf−suk1u
+ uk2udxg, and some other decay as exps−uk12uxd, and thus they
do not probe the blowoff plasma at the same depth. For each
generated mode the value of the density should be taken as
rR=rLs2kdL /nd1/n with the suitable value fork sthat is, k
= uk1u+ uk12u for the first type of modes, anduk12u for the sec-
ond typed. This method should be used as well to choose for
each generated mode the correct value of the thermal diffu-
sion lengthdR,rR

−n. Applying this method we get the SFG
efficiency. If both uk1u and uk2u are smaller thankopt, then
ablation plays no role and the standard formula17 can be
applied. The interesting case corresponds to two wave num-
bers uk ju,kopt. Figure 8 shows that the SFG efficiency is
largersin absolute valued than the efficiency predicted by Eq.
s26d. In particular, the generation of long-wavelength modu-
lationsuk12u!kopt is strongly enhanced as pointed out in Ref.
6.

The computation of the feedbacks to the fundamental
modulations can be computed as well. Ifuk u,uk1u!kopt, then

Ḡ3 is still given by Eqs.s28d and s29d, and if uk u,uk1u
,kopt, then

Ḡ3sk,k1d . −
uk u3/2

ÎdLFr

csndsin2sud,

where csnd depends only onn ssee Fig. 9d. In particular,
cs5/2d.0.3.

In the case of an initially narrow-band disturbance with
typical long-wavelength l0, the saturation amplitude

FIG. 8. Self-consistent SFG efficiency in the caseuk1u,uk2u,kopt compared
with Haan’s formulas26d.

FIG. 9. Parametercsnd as a function of the Spitzer exponent.
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rmslocstd,0.09l0. In case of a broadband disturbance the
spectral gain enhances modes aroundkopt and the saturation
is effective when

rmslocstd ,
Î4 koptdLFr

2pÎ2csnd
lopt. s32d

In the case of a broadband pulse, we need to specify the
parameters of the unperturbed flow. We apply our results in a
typical ICF configuration6 dL=0.04mm,n=2.1,uL

=3.3 mm/ns,g=60 mm/ns2. We haveFr =4.5,lopt=10 mm,
and the saturation amplitude is rmslocstd.0.11lopt. If we
consider a different configuration with a shorter optimal
wavelength, such asdL=0.2 mm, thenFr =1,lopt=2.4 mm,
and rmslocstd.0.17lopt.

V. NUMERICAL SIMULATIONS

In this section we compare the model predictions with
the results of simulations performed with the two-
dimensionals2Dd Lagrangian code FCI2.26 We consider a
planar 80mm thick CHOBr foil irradiated by a constant and
uniform x-ray flux of 331013 W/cm2. After a transient pe-
riod of 2.3 ns during which the ablation front oscillatesssee
Fig. 11d, the rarefraction wave breaks out at the ablation
front and the foil starts to accelerate with the average accel-
erationg.45 mm/ns2 and the average ablation velocityuL

.3.1 mm/ns. The ablation front is numerically determined
as the location of the density maximum. It could be defined
as well as the location of the maximum of the density gradi-
ent length scale without significant modification of the nu-
merical results. The density jumps is assessed from the ratio
of the density at the ablation front to the density calculated at
a distance of 1/s2kd from this ablation front frL /rR

=sn/rkdLd1/ng. We obtain, respectively, for 60 and
30 mm,rL /rR.17.5 andrL /rR.14.6 leading toA.0.9.

First of all, results from the model and from the simula-
tions are compared in the linear regime. To ensure that the
simulations remain in the linear regime, the product of the
wave number with the initial front-surface amplitudekh0 is
taken as low as 10−3. In Fig. 10, a good agreement is shown
between the variations of the linear growth rates as a func-

tion of the wavelength, obtained on the one hand from the
numerical simulationssdotsd and on the other hand from Eq.
s10d ssolid lined.

As illustrated, we managed to perform one simulation
with a wave numbersl=6 mmd greater than the cuttoff wave
number predicted by the linear theorysl* .22 mmd. In this
case the ablation front amplitude does not grow but it oscil-
lates even after the break out of the rarefraction wave. In the
limit of a wavelength larger than the foil thickness the linear
theory does not apply. Indeed in this case the boundary ef-
fects affect the exponential growth of the linear regime.27

Accordingly, simulations have been performed only for
wavelengths smaller than 80mm.

The initial front-surface amplitudeh0 was varied in or-
der to probe different growth regimes. The nonlinear regime
can be observed withkh0=6310−2 in Fig. 11 where the time
variation of the product of the wave number with the spike
amplitudessquared, the bubble amplitudestriangled, and the
peak-to-valley half amplitude of the ablation frontssolid
lined are plotted forsad 60 mm and sbd 30 mm. During the
transient periods0, t,2.3 nsd the ablation front appears to
oscillate. In the 30mm case the period is approximatively
half the 60mm case in agreement with Ref. 28. The value of
this period s,2.3 nsd is in agreement with the theoretical
predictionT30mm=2p /v30mm=2pskuL

ÎrL /rRd−1.2.5 ns. As
predicted by the theory discussed in this paper and as previ-
ously noticed by Sanzet al.,6 the inversion of the bubble-
spike asymmetry in the early stage of growths2.3, t
,3.5 nsd is exhibited in Fig. 11. Indeed in this stage the
bubble amplitude is greater than the spike one. We can also
observe that this inversion is more apparent for 30mmsk
.koptd than for 60mmsk.koptd in agreement with the theory
that predicts that the SHG efficiency is proportional toskopt

−kd for A.1 fsee Eq.s13dg.
Figure 12 shows the enhancement of the ablation front

instability by the third-order nonlinear correction in the
WNL regime with respect to the linear regime. The linear
results which are plotted correspond to the numerical fits
saegt+be−gtd starting at 2.3 ns and multiplied by the ratio of
the initial amplitudes, where the growth rateg is obtained
from the numerical results reported in Fig. 10. The theory
predicts that the WNL correction to the fundamental mode is
proportional tosk−koptd for A.1 fsee Eq.s14dg. This predic-
tion is confirmed by the simulations which show that the

FIG. 10. Linear growth rate spectrumsgrowth rate vs wavelengthd from the
results of the 2D FCI2 simulationssdotsd, and from the linear theory Eq.
s10d ssolid lined.

FIG. 11. Time variation of the product of the wave number with the spike
amplitudessquared, the bubble amplitudestriangled, and the peak-to-valley
half amplitude of the ablation frontssolid lined with kh0=6310−2 for sad
60 mm andsbd 30 mm up to the WNL regime.
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WNL feedback enhances the instability with respect to the
linear regime for 30mm and produces no effect for 60mm.

VI. CONCLUSION

To conclude, the analytical formulas that we have de-
rived show the influence of ablation on RT instability in the
linear and WNL regimes. The statistical analysis of the mul-
timode case has allowed us to derive simple expression for
the saturation amplitude giving the threshold value for the
local rms which corresponds to the WNL stabilization of the
exponential growth of the modulations. The limit of large
wavelength rmsloc,0.1l is in agreement with previously
known results derived by Haan. The case of short wave-
lengths in the ablative regime is more interesting, in that we
have shown that the saturation amplitude is above Haan’s
prediction. This shows that ablation reduces the linear
growth rate, but it also increases the duration of the linear
phase.
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APPENDIX: EXPANSIONS OF SOLUTIONS
OF NONLINEAR HYPERBOLIC SYSTEMS

In this appendix we report and extend the results pre-
sented in Ref. 29. We consider a system of conservation
laws,

]tfhsUdg + ]xffsUdg + o
j=1

d

]yj
fgjsUdg = ssUd, sA1d

where x fresp. y=syjd j=1,…,dg stands for the longitudinal
sresp. transversed spatial variables. We first consider a one-
dimensional solution

]tfhsU0dg + ]xffsU0dg = ssU0d, U0st = 0,xd = U0,0sxd,

which possesses a discontinuity on the plane surfaceS0=hx
=0j. We next consider a small perturbationUd of the solution
U0,

Udst = 0,x,yd = U0,0sxd + dU1,0sx,yd.

Ud satisfies Eq.sA1d and we assume thatUd possesses a
discontinuity along the interfaceSd,

Sd = hst,x,yd,x = hdst,yd,t ù 0,y P Rdj

with hdst=0,yd=dh1,0syd. We consider the frame moving
with the interface

x̃ = x − hdst,yd,

Ũdst,x̃,yd = Udft,x̃ + hdst,yd,yg.

In this frameŨd is discontinuous along the constant interface

x̃=0 so we can expandŨd andhd as

Ũdst,x̃,yd = Ũ0st,x̃d + dŨ1st,x̃,yd + d2Ũ2st,x̃,yd + Osd3d,

hdst,yd = dh1st,yd + d2h2st,yd + Osd3d.

Obviously we haveŨ0st , x̃d=U0st , x̃d andŨ j , j =0, 1, 2, is the
sum of a smooth function and a distribution whose support is
the surfacex̃=0. Let us introduce a notation. Given a func-
tion x̃° f̃sx̃d which is smooth except at the pointx̃=0 where
it presents a jump discontinuity, we defineh]x̃f̃j by ]x̃f̃

=h]x̃f̃j+ff̃0gd0, whereff̃0g=f̃s0+d−f̃s0−d. In other words,
h]x̃f̃j is the “function part” of the distribution derivative]x̃f̃

of f̃. It appears that it is convenient to work with the vari-

ablesŪ j defined by

Ū1st,x̃,yd = Ũ1st,x̃,yd − h1h]x̃Ũ0jst,x̃d,

Ū2st,x̃,yd = Ũ2st,x̃,yd − h2h]x̃Ũ0jst,x̃d − h1h]x̃Ũ1jst,x̃,yd

+ 1
2h1

2h]x̃
2Ũ0jst,x̃d.

Linear perturbation.sŪ1,h1d satisfies the linear system
stù0,yPRd, x̃Þ0d

]tfDhsU0dŪ1g + ]x̃fDfsU0dŪ1g + o
j=1

d

]yj
fDgjsU0dŪ1g

− DssU0dŪ1 = 0, sA2d

with the nonzero initial conditionsŪ1st=0,x̃,yd=U1,0sx̃,yd
and the Rankine Hugoniot jump conditions atx̃=0,

fDfsU0dŪ1 + h1ssU0dg0 = F]tfh1hsU0dg

+ o
j=1

d

]yj
fh1gjsU0dgG

0

. sA3d

Second-order weakly nonlinear perturbation.sŪ2,h2d
satisfies the linear systemstù0,yPRd, x̃Þ0d

FIG. 12. Time variation of the product of the wave number with the peak-
to-valley half amplitude of the ablation front withkh0=10−2 for sad 60 mm
and sbd 30 mm from the 2D FCI2 simulationsssolid linesd, up to the WNL
regime, and the linear resultssdashed linesd. Oscillations superimposed on
the curves are numerical artefacts.
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]tfDhsU0dŪ2g + ]x̃fDfsU0dŪ2g

+ o
j=1

d

]yj
fDgjsU0dŪ2g − DssU0dŪ2

= −
1

2
]tfD2hsU0dsŪ1,Ū1dg −

1

2
]x̃fD2fsU0dsŪ1,Ū1dg

−
1

2o
j=1

d

]yj
fD2gjsU0dsŪ1,Ū1dg +

1

2
D2ssU0dsŪ1,Ū1d, sA4d

with zero-initial conditionsŪ2st=0,x̃,yd=0, source terms quadratic inŪ1, and the jump conditions atx̃=0:

fDfsU0dŪ2 + 1
2D2fsU0dsŪ1,Ū1dh2ssU0d + h1DssU0dŪ1 + 1

2h1
2DssU0d]x̃U0g0

= F]tsh2hsU0d + h1DhsU0dŪ1 + 1
2h1

2DhsU0d]x̃U0d

+ o
j=1

d

]yj
sh2gjsU0d + h1DgjsU0dŪ1 + 1

2h1
2DgjsU0d]x̃U0dG

0

. sA5d

The systems1d–s3d can be cast into the formsA1d by
taking d=2,U=sr ,u,v1,v2,pd,

hsUd =1
r

u

v1

v2

2, fsUd =1
ru

ru2 + p

ruv1

ruv2

2, ssUd =1
0

rg

0

0
2 ,

g1sUd =1
rv1

ruv1

rv1
2 + p

rv1v2

2, g2sUd =1
rv2

ruv2

rv1v2

rv2
2 + p

2 .

In the SBM model the density is uniform in each domain
r0sx.0d=rR,r0sx,0d=rL, and the density perturbations
are neglectedr̄1= r̄2=0. Finally the system is complemented
with the energy conservation relations4d. This equation is
treated separately because the SBM approximation is applied
only to the hydrodynamic variables and not to the tempera-
ture. As a result, the temperature and the heat flow are con-
tinuous.
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