Spectral broadening and nonlinear limitation in the amplification of partially coherent pulses in high power amplifiers

L. Videau, J. Garnier, C. Feral, C. Gouedard, C. Saujery, A. Migus, Commissariat à l'énergie atomique, Centre d'Études de Limeil-Valenton, 94195 Villejuif Cédex, France; E-mail: videau@limeil.cea.fr

The development of the coming generation of Megajoule-class laser requires optical smoothing to obtain a focal spot with good uniformity. Optical smoothing techniques were proposed few years ago, such as smoothing by
CThJ6 Fig. 1 Experimental energy output as a function of mid-chain energy input, in the case of a monochromatic pulse (cross), a broadband pulse of bandwidth (FWHM) 1.2 nm (triangle), and a smoothed pulse (square).

CThJ6 Fig. 2 Experimental spectral broadening (square) and calculated β integral (circle) as a function of energy output with a broadband pulse of bandwidth (FWHM) 1.2 nm. The curves are a $\sqrt{1 + \beta^2}$ and linear law best fits.

In this paper we present recent results obtained on the backlighter beamline of the Pheneus facility, which delivers up to 1.5 MJ at 1053 nm on a 19-cm diameter beam in a 1.3-ns square pulse. Figure 1 shows the output energy as a function of input energy for different configurations. The upper curve corresponds to a monochromatic pulse, the intermediate one to a spatially coherent broadband pulse ($\Delta\lambda = 1.2$ nm), and the lower one to the incoherent pulse ($\Delta\lambda = 0.6$ nm) obtained by the SOF technique. It shows a loss of 40% for the performance in the latter case.

We first analyze the amplification of spatially coherent monochromatic pulses versus broadband noisy pulse. Figure 2 shows the observed output amplified spectra versus input energy. The main observation is that gain broadening takes over the expected gain narrowing effect. To explain these data, we have developed a statistical model of incoherent field amplification in presence of Kerr nonlinearity. We shall discuss the implication of this model and in particular the importance of controlling the intensity contrast of the beam in the amplifier. Recent data with broader bandwidth (8 nm) will also be presented.

3. LFE Review 36.

optical fiber (SOF),\(^1\) smoothing by spectral dispersion (SSD),\(^2\) and smoothing by transverse spectral dispersion (STSD).\(^3\) SOF seems to be an efficient method concerning the limit contrast, shape, and control of the focal spot, and the smoothing of low spatial frequencies. But first experiences with SOF technique have shown a limitation in term of the amplification performance.\(^4\)

"Centre de Mathematiques Appliquees, CNRS URA 756, Ecole Polytechnique, 91128 Palaiseau Cedex, France
**Also with Laboratoire pour l'Utilisation des Lasers Intenses, CNRS UMR 100, Ecole Polytechnique, 91128 Palaiseau Cedex, France
3. LFE Review 36.