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Abstract. In this paper we analyze a wave-based imaging modality called

ghost imaging that can produce an image of an object illuminated by a par-

tially coherent source. The image of the object is obtained by correlating the
intensities measured by two detectors, one that does not view the object and

another one that does view the object. More exactly, a high-resolution detector

measures the intensity of a wave field emitted by a partially coherent source
which has not interacted with the object to be imaged. A bucket (or single-

pixel) detector collects the total (spatially-integrated) intensity of the wave
field emitted by the same source that has interacted with the object. The

correlation of the intensity measured at the high-resolution detector with the

intensity measured by the bucket detector gives an image of the object. In this
paper we analyze this imaging modality when the medium through which the

waves propagate is random. We discuss the relation with time reversal focusing

and with correlation-based imaging using ambient noise sources. We clarify the
role of the partial coherence of the source and we study how scattering affects

the resolution properties of the ghost imaging function in the paraxial regime:

the image resolution is all the better as the source is less coherent, and all the
worse as the medium is more scattering.

1. Introduction. In this paper we study an imaging modality called ghost imag-
ing introduced recently in the literature. The experimental set-up proposed in
[25, 5, 18, 21] is plotted in Figure 1. The waves are emitted by a partially coherent
source. A beam splitter is used to generate two wave beams from this source:
- the “reference beam”, labeled À, propagates through a homogeneous or scatter-
ing medium up to a high-resolution detector that measures the spatially resolved
transmitted intensity.
- the “signal beam”, labeled Á, propagates through a homogeneous or scattering
medium and interacts with an object to be imaged. The total (spatially-integrated)
transmitted intensity is measured by a bucket detector.

This method is called ghost imaging because the high-resolution detector does
not see the object to be imaged, and nevertheless a high-resolution image of the
object is obtained by cross-correlating the two measured intensity signals.

In this paper we analyze the transmission problem, in which the object is a mask
modeled by a transmission function. The space coordinates are denoted by ~x =
(x, z) ∈ R2×R. The source is located in the plane z = 0. The propagation distance
from the source to the high-resolution detector in the reference path (labeled À in
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Figure 1. The ghost imaging setup. A partially coherent source
is split into two beams by a beam splitter. The reference beam
(labeled À) does not interact with the object and its intensity is
measured by a high-resolution detector. The signal beam (labeled
Á) interacts with the object to be imaged and its total (spatially-
integrated) intensity is measured by a bucket (single-pixel) detec-
tor.

Figure 1) is L. The propagation distance from the source to the object in the signal
path (labeled Á in Figure 1) is L as well, and the propagation distance from the
object to the bucket detector is L0. In each path the scalar wave (t, ~x) 7→ uj(t, ~x),
j = 1, 2, satisfies the scalar wave equation:

(1)
1

cj(~x)2
∂2uj
∂t2

−∆~xuj = n(t,x)δ(z),

where cj(~x) is the speed of propagation in the medium corresponding to the jth
path and the forcing term (t,x) 7→ n(t,x) models the source (identical for the two
waves).

In the ghost experiment the source is typically a laser beam passed through a
rotating glass diffuser [25, 17, 26, 21]. We model it as

(2) n(t,x) = f(t,x)e−iω0t + c.c.,

where c.c. stands for complex conjugate, ω0 is the carrier frequency, and f(t,x)
is the complex-valued, random, slowly varying envelope. It is assumed to be a
complex-valued, zero-mean stationary (in time) Gaussian process with the relation
and covariance functions:

〈f(t,x)f(t′,x′)〉 = 0,(3)

〈f(t,x)f(t′,x′)〉 = F (t− t′)Γ(x,x′),(4)

with F (0) = 1 and with real-valued functions F and Γ. The bandwidth (i.e., the
width of the Fourier transform of F ) is assumed to be much smaller than ω0. Note
that the modeling is similar to the one used for correlation-based imaging using
ambient noise sources [9, 10]. We will also see in this paper that ghost imaging can
be interpreted in terms of time-reversal experiments [3, 6].

In this framework the scalar wave fields uj , j = 1, 2, can be written in the form

uj(t, ~x) = vj(t, ~x)e−iω0t + c.c.,

Inverse Problems and Imaging Volume 10, No. 2 (2016), 409–432



Ghost Imaging in the Random Paraxial Regime 411

where vj satisfies

1

cj(~x)2
∂2

∂t2
(
vje
−iω0t

)
−∆~x

(
vje
−iω0t

)
= f(t,x)e−iω0tδ(z),

and its Fourier transform v̂j

v̂j(ω, ~x) =

∫ ∞
−∞

vj(t, ~x) exp(iωt)dt

is the solution to the Helmholtz equation:

(5)
(ω0 + ω)2

cj(~x)2
v̂j(ω, ~x) + ∆~xv̂j(ω, ~x) = −f̂(ω,x)δ(z).

The detectors measure the intensities, which means that the detectors record the
square moduli of vj , j = 1, 2. The goal is to image the object located along the
signal path in the plane z = L and that we model as a transmission function. In
the experiments, the object is a mask, typically a double slit [17, 26, 21].

In Section 2, we express the correlation function of the intensities recorded by
the high-resolution detector and by the bucket detector in terms of the Green’s
functions in the two paths, the source covariance function, and the transmission
function (Proposition 1). In Section 3 we describe the statistical properties of the
Green’s functions in the random paraxial regime. In Section 4 we show that the
correlation function takes the form (34) (Proposition 5) in the random paraxial
regime (which is the regime corresponding to the experimental configurations when
the medium is frozen in time). We give a heuristic interpretation of ghost imaging
based on some analogy with time-reversal experiments in Section 5. In Section 6, by
considering that the random medium, such as the turbulent atmosphere, is slowly
and ergodically varying in time, we come to the conclusion that the correlation
function is self-averaging with respect to the distribution of the random medium,
and the mean correlation is our definition of the imaging function. The analysis
of the imaging function carried out in Sections 7-8 shows that it is a smoothed
version of the square transmission function, with a kernel that can be analyzed
quantitatively. This analysis clarifies the role of the coherence of the source and
the one of the scattering properties of the medium. It gives resolution formulas in
terms of the propagation distance, the central wavelength and the correlation radius
of the source, the correlation radius of the medium and the scattering mean free
path, which are defined in terms of the two-point statistics of the random medium.
The overall result is that the image resolution is all the better as the source is less
coherent, and all the worse as the medium is more scatttering.

Remark 1. Ghost imaging is related to holography in that both techniques use the
interaction of a signal beam that interacts with the object to be imaged and of a
reference beam that does not. The goal of holography is to record and to display an
image of an object, say a mask. There are two steps in holography: the recording
step and the displaying step [15].

• In the recording step, a time-harmonic plane wave (or more generally a co-
herent light beam) is splitted into two beams by a beam splitter. One of the
beams (the signal beam) interacts with the object, the other one (the refer-
ence beam) does not. The two beams interfer in a plane where a medium (a
film very similar to photographic film) records the intensity of the interference
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pattern. This pattern is the hologram that can be used to display an image
of the object.

• In the displaying step, a beam identical to the reference beam used to record
the hologram illuminates the recording medium. The recorded hologram then
diffracts the beam and generates an image of the original object.

One can see that there are two main differences compared to ghost imaging:

• First, the recording medium records the intensity of the interference pattern,
and the component of interest is the cross correlation of the fields correspond-
ing to the reference beam and the signal beam. The main point of this paper
is to show that it is possible to use intensity correlations instead of field cor-
relations to do imaging.

• Second, holography requires the use of coherent light, while ghost imaging
requires the use of incoherent light. This is related to the use of intensity
correlations as explained in this paper.

2. The empirical and statistical correlations. The quantity that is measured
by the high-resolution detector is the spatially-resolved intensity in the plane z = L
of the reference path À:

(6) I1(t,x1) =
∣∣v1(t, (x1, L)

)∣∣2.
The quantity that is measured by the bucket detector is the spatially-integrated
intensity in the plane z = L+ L0 of the signal path Á:

(7) I2(t) =

∫
R2

∣∣v2(t, (x2, L+ L0)
)∣∣2dx2.

These two quantities are correlated and this gives the empirical intensity correlation
function:

CT (x1) =
1

T

∫ T

0

I1(t,x1)I2(t)dt

−
[ 1

T

∫ T

0

I1(t,x1)dt
][ 1

T

∫ T

0

I2(t)dt
]
.(8)

From (5) we can express the reference field v̂1 at point ~x1 = (x1, L) in the plane
z = L of the high-resolution detector as

v̂1(ω, ~x1) =

∫
R2

Ĝ1
(
ω0 + ω, ~x1, (xs, 0)

)
f̂(ω,xs)dxs,

in terms of the full Green’s function Ĝ1 in the reference path and the Fourier

transform f̂ of the source. Similarly we express the signal field v̂2 at point ~x2 =
(x2, L+ L0) in the plane z = L+ L0 of the bucket detector as

v̂2(ω, ~x2) =

∫
R2

Ĝ2
(
ω0 + ω, ~x2, (xs, 0)

)
f̂(ω,xs)dxs,

in terms of the full Green’s function Ĝ2 in the signal path. In this section we
assume that the media in the reference and signal paths are frozen (i.e. they are
time-independent).

Proposition 1. We have convergence in probability of the empirical correlation to
the statistical correlation:

CT (x1)
T→∞−→ C(x1),
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with the statistical correlation given by

C(x1) =
1

4π2

∫ ∞
−∞

dω

∫ ∞
−∞

dω′
∫
R2

dy1

∫
R2

dy′1

∫
R2

dy2

∫
R2

dy′2

∫
R2

dx2

×Ĝ1
(
ω0 + ω, (x1, L), (y1, 0)

)
Ĝ1
(
ω0 + ω′, (x1, L), (y′1, 0)

)
×Ĝ2

(
ω0 + ω, (x2, L+ L0), (y2, 0)

)
Ĝ2
(
ω0 + ω′, (x2, L+ L0), (y′2, 0)

)
×Γ(y1,y2)Γ(y′1,y

′
2)F̂ (ω)F̂ (ω′).(9)

Proof. The convergence in probability can be proved in the same way as in [9, 11]
by showing that the variance of CT is proportional to 1/T and using Chebyshef’s
inequality. The statistical cross correlation is given by

C(x1) =

∫
R2

〈
∣∣v1(0, (x1, L)

)∣∣2∣∣v2(0, (x2, L+ L0)
)∣∣2〉dx2

−〈
∣∣v1(0, (x1, L)

)∣∣2〉∫
R2

〈
∣∣v2(0, (x2, L+ L0)

)∣∣2〉dx2.

In the Fourier domain, the source term is a complex-valued Gaussian process with
the relation and covariance functions

〈f̂(ω,x)f̂(ω′,x′)〉 = 0,(10)

〈f̂(ω,x)f̂(ω′,x′)〉 = 2πδ(ω − ω′)F̂ (ω)Γ(x,x′).(11)

By using the Fourier form, we get:

C(x1) =
1

(2π)4

∫
R2

dy1

∫
R2

dy′1

∫
R2

dy2

∫
R2

dy′2

∫
R2

dx2

×
∫ ∞
−∞

dω1

∫ ∞
−∞

dω′1

∫ ∞
−∞

dω2

∫ ∞
−∞

dω′2

×Ĝ1
(
ω0 + ω1, (x1, L), (y1, 0)

)
Ĝ1
(
ω0 + ω′1, (x1, L), (y′1, 0)

)
×Ĝ2

(
ω0 + ω2, (x2, L+ L0), (y2, 0)

)
Ĝ2
(
ω0 + ω′2, (x2, L+ L0), (y′2, 0)

)
×
[
〈f̂(ω1,y1)f̂(ω′1,y

′
1)f̂(ω2,y2)f̂(ω′2,y

′
2)〉

−〈f̂(ω1,y1)f̂(ω′1,y
′
1)〉〈f̂(ω2,y2)f̂(ω′2,y

′
2)〉
]
.

By the Gaussian property of the noise source, we have

〈f̂(ω1,y1)f̂(ω′1,y
′
1)f̂(ω2,y2)f̂(ω′2,y

′
2)〉

−〈f̂(ω1,y1)f̂(ω′1,y
′
1)〉〈f̂(ω2,y2)f̂(ω′2,y

′
2)〉

= 〈f̂(ω1,y1)f̂(ω2,y2)〉〈f̂(ω′1,y
′
1)f̂(ω′2,y

′
2)〉

+〈f̂(ω1,y1)f̂(ω′2,y
′
2)〉〈f̂(ω′1,y

′
1)f̂(ω2,y2)〉

= (2π)2Γ(y1,y2)Γ(y′1,y
′
2)F̂ (ω1)F̂ (ω′1)δ(ω1 − ω2)δ(ω′1 − ω′2),

which gives the desired result.
As shown by the expression (9) in Proposition 1, the products of two Green’s

functions (one of them being complex conjugated) play a central role in the under-
standing of ghost imaging and we will describe their statistical properties in the
random paraxial regime in the next section.
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3. Overview of the random paraxial model.

3.1. The random paraxial regime. In this section we introduce and analyze a
scaling regime in which scattering is isotropic and weak, which allows us to use the
random paraxial wave model to describe the wave propagation in the scattering
region. In this regime, backscattering is negligible but there is significant lateral
scattering as the wave advances over long propagation distances. Even though they
are weak, these effects accumulate and can be a limiting factor in imaging and
communications if not mitigated in some way. Wave propagation in random media
in the paraxial regime has been used extensively in underwater sound propagation
as well as in the microwave and optical contexts in the atmosphere [24, 22]. We
formulate the regime of paraxial wave propagation in random media with a scaling
of parameters that allows detailed and effective mathematical analysis [12]. It is
described as follows.

1) We assume that the correlation length lc of the medium is much smaller
than the typical propagation distance L. We denote by ε2 the ratio between the
correlation length and the typical propagation distance:

lc
L
∼ ε2.

2) We assume that the transverse width of the source R0 and the correlation
length of the medium lc are of the same order. This means that the ratio R0/L is
of order ε2. This scaling is motivated by the fact that, in this regime, there is a
non-trivial interaction between the fluctuations of the medium and the wave.

3) We assume that the typical wavelength λ is much smaller than the propagation
distance L, more precisely, we assume that the ratio λ/L is of order ε4. This high-
frequency scaling is motivated by the following considerations. The Rayleigh length
for a beam with initial width R0 and central wavelength λ is of the order of R2

0/λ
when there is no random fluctuation. The Rayleigh length is the distance from
beam waist where the beam area is doubled by diffraction [4]. In order to get a
Rayleigh length of the order of the propagation distance L, the ratio λ/L must be
of order ε4 since R0/L ∼ ε2:

λ

L
∼ ε4.

4) We assume that the typical amplitude of the random fluctuations of the
medium is small. More precisely, we assume that the relative amplitude of the
fluctuations is of order ε3. This scaling has been chosen so as to obtain an effec-
tive regime of order one when ε goes to zero. That is, if the magnitude of the
fluctuations is smaller than ε3, then the wave would propagate as if the medium
was homogeneous, while if the order of magnitude is larger, then the wave would
not be able to penetrate the random medium. The scaling that we consider here
corresponds to the physically most interesting situation where random effects play
a role.

3.2. The random paraxial wave equation. We consider the time-harmonic
form of the scalar wave equation:

∆~xû+
ω2

c2(~x)
û = 0,
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with the speed of propagation in the medium of the form

(12)
1

c2(~x)
=

1

c20

(
1 + µ(x, z)

)
,

where µ is a zero-mean, stationary, three-dimensional random process with mixing
properties in the z-direction. Therefore the time-harmonic wave field is solution to
the random Helmholtz equation:

(13) (∂2z + ∆x)û+
ω2

c20

(
1 + µ(x, z)

)
û = 0,

where ∆x is the transverse Laplacian (i.e. the Laplacian with respect to x). In the
high-frequency regime described in the previous subsection,

(14) ω → ω

ε4
, µ(x, z)→ ε3µ

( x
ε2
,
z

ε2
)
,

the rescaled function φ̂ε defined by

(15) ûε(ω,x, z) = exp
(
i
ω

ε4
z

c0

)
φ̂ε
(
ω,
x

ε2
, z
)

satisfies

(16) ε4∂2z φ̂
ε +

(
2i
ω

c0
∂zφ̂

ε + ∆xφ̂
ε +

ω2

εc20
µ
(
x,

z

ε2
)
φ̂ε
)

= 0.

The ansatz (15) corresponds to a plane wave propagating along the z-axis with a
slowly varying transverse envelope. In the regime ε � 1, it has been shown in
[12] that the forward-scattering approximation in the negative z-direction and the
white-noise approximation are valid, which means that the second-order derivative
in z in (16) can be neglected and the random potential 1

εµ
(
x, zε2

)
can be replaced by

a white noise. The mathematical statement is that the function φ̂ε(ω,x, z) weakly

converges to the solution φ̂(ω,x, z) of the Itô-Schrödinger equation

(17) 2i
ω

c0
dzφ̂(ω,x, z) + ∆xφ̂(ω,x, z)dz +

ω2

c20
φ̂(ω,x, z) ◦ dB(x, z) = 0,

where B(x, z) is a Brownian field, that is a Gaussian process with mean zero and
covariance function

(18) E
[
B(x, z)B(x′, z′)

]
= γ0(x− x′)

(
z ∧ z′

)
,

with

(19) γ0(x) =

∫ ∞
−∞

E[µ(0, 0)µ(x, z)]dz.

Here the ◦ stands for the Stratonovich stochastic integral [12]. In Itô’s form this
equation reads as:

dzφ̂(ω,x, z) =
ic0
2ω

∆xφ̂(ω,x, z)dz +
iω

2c0
φ̂(ω,x, z)dB(x, z)

−ω
2γ0(0)

8c20
φ̂(ω,x, z)dz.(20)
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3.3. The moments of the fundamental solution. We introduce the fundamen-
tal solution ĝ

(
ω, (x, z), (x0, z0)

)
, which is defined as the solution of the equation in

(x, z) (for z > z0):

(21) 2i
ω

c0
dz ĝ + ∆xĝdz +

ω2

c20
ĝ ◦ dB(x, z) = 0,

starting from ĝ
(
ω, (x, z = z0), (x0, z0)

)
= δ(x − x0). In a homogeneous medium

(B ≡ 0) the fundamental solution is (for z > z0)

(22) ĝ0
(
ω, (x, z), (x0, z0)

)
=

ω

2iπc0(z − z0)
exp

(
i
ω|x− x0|2

2c0(z − z0)

)
.

In a random medium, the first two moments of the random fundamental solution
have the following expressions.

Proposition 2. The first order-moment of the random fundamental solution ex-
hibits frequency-dependent damping (for z > z0):

(23) E
[
ĝ
(
ω, (x, z), (x0, z0)

)]
= ĝ0

(
ω, (x, z), (x0, z0)

)
exp

(
− γ0(0)ω2(z − z0)

8c20

)
,

where γ0 is given by (19).
The second order-moment of the random fundamental solution exhibits spatial

decorrelation:

E
[
ĝ
(
ω, (x, z), (x0, z0)

)
ĝ
(
ω, (x′, z), (x0, z0)

)]
= ĝ0

(
ω, (x, z), (x0, z0)

)
ĝ0
(
ω, (x′, z), (x0, z0)

)
exp

(
− γ2(x− x′)ω2(z − z0)

4c20

)
,(24)

where

(25) γ2(x) =

∫ 1

0

γ0(0)− γ0(xs)ds.

These are classical results [16, Chapter 20] once the the random paraxial equation
has been proved to be correct, as is the case here. For consistency we give the proof
in Appendix B. The result (23) on the first-order moment shows that any coherent
wave imaging method cannot give good images if the propagation distance is larger
than the scattering mean free path:

(26) lsca =
8c20

γ0(0)ω2
,

because the coherent wave components will then be exponentially damped. This is
the situation we have in mind, and this is the situation in which correlation-based
imaging turns out to be efficient.

In the next proposition we address the strongly scattering regime, that is, the
regime when the propagation distance is larger than the scattering mean free path.

Proposition 3. Let us assume that the covariance function γ0 can be expanded as

(27) γ0(x) = γ0(0)
[
1− |x|

2

l2cor
+ o
( |x|2
l2cor

)]
,

|x|
lcor
� 1,
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where lcor is the correlation radius of the medium. In the strongly scattering regime
|z − z0| � lsca, the first order-moment of the random fundamental solution is van-
ishing and the second order-moment is given by:

E
[
ĝ
(
ω, (x, z), (x0, z0)

)
ĝ
(
ω, (x′, z), (x0, z0)

)]
= ĝ0

(
ω, (x, z), (x0, z0)

)
ĝ0
(
ω, (x′, z), (x0, z0)

)
exp

(
− |x− x

′|2

2X2
c

)
,(28)

where

(29) Xc =

√
3

2

lcor
√
lsca√

z − z0
.

If, for instance, the covariance function of the medium fluctuations has the form

E
[
µ(~x)µ(~x′)

]
= σ2 exp

(
− π|~x− ~x′|2

l2cor

)
,

then the scattering mean free path and the decoherence length for the Green’s
function are

lsca =
8c20

σ2lcorω2
, Xc =

√
6c0
√
lcor

σ
√
πω
√
z − z0

.

The following proposition describes the spreading of a Gaussian beam and it is
proved in Appendix C.

Proposition 4. Let us consider an initial condition in the plane z = 0 in the form
of a Gaussian beam with initial radius ric:

(30) φ̂(ω,x, z = 0) = exp
(
− |x|

2

2r2ic

)
.

In the strongly scattering regime z � lsca, the mean intensity profile is a Gaussian
beam with radius R(ω, z):

E[|φ̂(ω,x, z)|2] =
r2ic

R2(ω, z)
exp

(
− |x|2

R2(ω, z)

)
,

with

(31) R2(ω, z) = r2ic +
c20z

2

ω2r2ic
+

8c20z
3

3ω2l2corlsca
.

Note that r2ic +
c20z

2

r2icω
2 is the formula for the square radius of a Gaussian beam that

undergoes classical diffraction in a homogeneous medium with speed of propagation

c0. The last term
8c20z

3

3ω2l2corlsca
is induced by scattering in the random medium and it

shows that beam spreading is enhanced by scattering.

4. Ghost imaging in the paraxial regime. In this paper we study ghost imag-
ing in the paraxial regime, that is the regime in which the propagation distance is
much larger than the correlation length of the medium, which is itself much larger
than the typical wavelength, as in the previous section. Accordingly, we introduce
a dimensionless parameter ε that quantifies these scaling ratios and assume that
the typical wavelength is of order ε4, the correlation length of the medium and the
radius of the beam is of order ε2, and the object itself has a size of order ε2 compa-
rable to the size of the propagating beam. Moreover, in the optical ghost imaging
experiments, the partially coherent wave is generated by passing a monochromatic
laser beam through a rotating diffuser [17]. The induced time fluctuations have
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a decoherence time much longer than the oscillation frequency of the monochro-
matic laser beam, so we shall assume that the decoherence time is of order εp, with
p ∈ (0, 4).

To summarize, we consider that the carrier frequency is ω0/ε
4, the source term

is of the form

(32) fε(t,x) = f
( t
εp
,
x

ε2

)
,

and the (real-valued) transmission function that models the object is

(33) T ε(y) = T
( y
ε2

)
.

As shown in Appendix A, the slowly varying envelope of the reference field in
the plane of the high-resolution detector z = L at the point ~xε1 = (ε2x1, L) is

v̂ε1

( ω
εp
, ~xε1

)
ε→0−→ ic0ε

4+p

2ω0
exp

(
i
(ω0

ε4
+
ω

εp
) L
c0

)
×
∫
R2

ĝ1
(
ω0, (x1, L), (y1, 0)

)
f̂(ω,y1)dy1,

where ĝ1 is the fundamental solution of the Itô-Schrödinger equation (21) in the
reference path. This expression means that the wave propagates from the source
plane z = 0 to the high-resolution detector plane z = L in the white-noise paraxial
regime.

As shown in Appendix A, the slowly varying envelope of the signal field in the
plane of the bucket detector z = L+ L0 at the point ~xε2 = (ε2x2, L+ L0) is

v̂ε2

( ω
εp
, ~xε2

)
ε→0−→ ic0ε

4+p

2ω0
exp

(
i
(ω0

ε4
+
ω

εp
)L+ L0

c0

)
×
∫
R2

∫
R2

ĝ2
(
ω0, (x2, L+ L0), (y, L)

)
×T (y)ĝ2

(
ω0, (y, L), (y2, 0)

)
f̂(ω,y2)dy2dy,

where ĝ2 is the fundamental solution of the Itô-Schrödinger equation in the signal
path. This expression means that the wave propagates from the source plane z = 0
to the object plane z = L in the white-noise paraxial regime, it goes through a mask
as described by the transmission function T , and it propagates from the object plane
z = L to the bucket detector plane z = L+ L0 in the white-noise paraxial regime.

Based on these expressions, and using Proposition 1 and the fact that
∫
F̂ (ω)dω =

2πF (0) = 2π, we get the following result.

Proposition 5. In the white-noise paraxial regime ε→ 0, the statistical correlation
is given by

ε−20Cε(ε2x1)
ε→0−→ Cp(x1),
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with

Cp(x1) =
c40

16ω4
0

∫
R2

dy1

∫
R2

dy′1

∫
R2

dy2

∫
R2

dy′2

∫
R2

dy3

∫
R2

dy′3

×
∫
R2

dx2ĝ1
(
ω0, (x1, L), (y1, 0)

)
ĝ1
(
ω0, (x1, L), (y′1, 0)

)
×ĝ2

(
ω0, (x2, L+ L0), (y′3, L)

)
T (y′3)ĝ2

(
ω0, (y′3, L), (y2, 0)

)
×ĝ2

(
ω0, (x2, L+ L0), (y3, L)

)
T (y3)ĝ2

(
ω0, (y3, L), (y′2, 0)

)
×Γ(y1,y2)Γ(y′1,y

′
2),(34)

where ĝ1, resp. ĝ2, is the fundamental solution of the Itô-Schrödinger equation (21)
in the reference path, resp. the signal path.

5. Time-reversal heuristic interpretation. We can now explain heuristically
why we can expect the statistical correlation to give a good image of the transmission
function T . This explanation is based on a time-reversal interpretation of the
statistical correlation. Let us remind the reader about time reversal for waves. A
time-reversal experiment is based on the use of a special device called time-reversal
mirror, which is a collection of transducers that can be used as sources and receivers.
In the first step of a time-reversal experiment, the time-reversal mirror is used as
an array of receivers that record the signal emitted by a source. In the second step,
the time-reversal mirror is used as an array of sources that reemit the time-reversed
recorded signals (or equivalently the complex conjugates of the Fourier transforms).
The main effect is the refocusing of the time-reversed waves on the original source
location [6].

Let us consider the statistical correlation (34) when the source is spatially inco-
herent so that Γ(x,x′) = K(x)δ(x− x′). Then

Cp(x1) =
c40

16ω4
0

∫
R2

dy3

∫
R2

dy′3T (y3)T (y′3)

×
∫
R2

dy1ĝ1
(
ω0, (x1, L), (y1, 0)

)
ĝ2
(
ω0, (y′3, L), (y1, 0)

)
K(y1)

×
∫
R2

dy′1ĝ1
(
ω0, (x1, L), (y′1, 0)

)
ĝ2
(
ω0, (y3, L), (y′1, 0)

)
K(y′1)

×
∫
R2

dx2ĝ2
(
ω0, (x2, L+ L0), (y′3, L)

)
ĝ2
(
ω0, (x2, L+ L0), (y3, L)

)
.

The integral in dy1 gives the result of a time-reversal experiment using a point
source at (y′3, L), a time-reversal mirror in the plane z = 0 with the transverse
support described by the function K, and an observation point at (x1, L). We can
anticipate from the refocusing properties of time reversal that it is concentrated
at x1 = y′3. Similarly, we can anticipate that the integral in dy′1 is concentrated
at x1 = y3 and the last integral in dx2 is concentrated at y′3 = y3. As a result,
when one integrates against the function T (y3)T (y′3) in y′3 and y3, then one can
anticipate that the result should be proportional to T (x1)2, which means that the
statistical correlation should be an image of the square transmission function T .

This heuristic explanation is in fact very close to reality when the medium is
homogeneous, because then ĝ1 = ĝ2 = ĝ0, where ĝ0 is the homogeneous fundamental
solution (22). However, when the medium is random, the reference and signal waves
travel through two different realizations of the random medium, so that ĝ1 and
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ĝ2 may have the same statistics but they are independent. In the time-reversal
interpretation, this means that the wave backpropagates in a different realization
of the random medium. We know that time-reversal refocusing is sensitive to any
change in the medium [1, 2], so we can anticipate that random scattering is not
good for ghost imaging.

The next sections will confirm and quantify these heuristic explanations.

6. Averaging with respect to the random medium. We consider the ghost
imaging function defined as the mean correlation

(35) Igi(x1) = E[Cp(x1)],

where the expectation is taken with respect to the random media in the reference
path (labeled À) and signal path (labeled Á). It is indeed justified to take such an
expectation in the experimental conditions considered in ghost imaging, in which
the random medium is the turbulent atmosphere. The turbulent atmosphere is
slowly and ergodically varying in time (with a coherence time of the order of a few
milliseconds, as described in [16, Vol. 2], [21], or [23]). If the integration time T
is longer than this coherence time, then the empirical correlation is self-averaging
with respect to the distribution of the random medium.

Proposition 6. The ghost imaging function is related to the square transmission
function through the relation

(36) Igi(x1) =

∫
R2

dy3H(x1,y3)T (y3)2,

with the kernel

H(x1,y3) =
c40

16ω4
0

∫
R2

dy1

∫
R2

dy′1

∫
R2

dy2

∫
R2

dy′2Γ(y1,y2)Γ(y′1,y
′
2)

×E
[
ĝ1
(
ω0, (x1, L), (y1, 0)

)
ĝ1
(
ω0, (x1, L), (y′1, 0)

)]
×E
[
ĝ2
(
ω0, (y3, L), (y2, 0)

)
ĝ2
(
ω0, (y3, L), (y′2, 0)

)]
.(37)

Proof. Since the random media in the reference path and signal path are indepen-
dent, the two functions ĝ1 and ĝ2 are independent, so we get from (34):

Igi(x1) =
c40

16ω4
0

∫
R2

dy1

∫
R2

dy′1

∫
R2

dy2

∫
R2

dy′2

∫
R2

dy3

∫
R2

dy′3

×
∫
R2

dx2E
[
ĝ1
(
ω0, (x1, L), (y1, 0)

)
ĝ1
(
ω0, (x1, L), (y′1, 0)

)]
×E
[
ĝ2
(
ω0, (x2, L+ L0), (y′3, L)

)
ĝ2
(
ω0, (x2, L+ L0), (y3, L)

)
×ĝ2

(
ω0, (y′3, L), (y2, 0)

)
ĝ2
(
ω0, (y3, L), (y′2, 0)

)]
×T (y3)T (y′3)Γ(y1,y2)Γ(y′1,y

′
2).

We can also use the fact that ĝ2
(
ω0, (·, L), (·, 0)

)
and ĝ2

(
ω0, (·, L+L0), (·, L)

)
are

independent because they depend on (B(·, z))z∈[0,L] and (B(·, z)−B(·, L))z∈[L,L+L0],
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respectively in Eq. (21). Therefore the ghost imaging function can be expressed as:

Igi(x1) =
c40

16ω4
0

∫
R2

dy1

∫
R2

dy′1

∫
R2

dy2

∫
R2

dy′2

∫
R2

dy3

∫
R2

dy′3

×
∫
R2

dx2E
[
ĝ1
(
ω0, (x1, L), (y1, 0)

)
ĝ1
(
ω0, (x1, L), (y′1, 0)

)]
×E
[
ĝ2
(
ω0, (x2, L+ L0), (y′3, L)

)
ĝ2
(
ω0, (x2, L+ L0), (y3, L)

)]
×E
[
ĝ2
(
ω0, (y′3, L), (y2, 0)

)
ĝ2
(
ω0, (y3, L), (y′2, 0)

)]
×T (y3)T (y′3)Γ(y1,y2)Γ(y′1,y

′
2).(38)

We denote by γ
(2)
2 the quantity defined by (25) and associated with the medium

along the signal path (labeled Á). Using (24) and (22), we find that∫
R2

dx2E
[
ĝ2
(
ω0, (x2, L+ L0), (y′3, L)

)
ĝ2
(
ω0, (x2, L+ L0), (y3, L)

)]
=

∫
R2

dx2ĝ0
(
ω0, (x2, L+ L0), (y′3, L)

)
ĝ0
(
ω0, (x2, L+ L0), (y3, L)

)
× exp

(
− γ

(2)
2 (y′3 − y3)ω2

0L0

4c20

)
=

ω2
0

4π2c20L
2
0

∫
R2

dx2 exp
(
i
ω0x2 · (y3 − y′3)

c0L0

)
× exp

(
i
ω0(|y′3|2 − |y3|2)

2c0L0
− γ

(2)
2 (y′3 − y3)ω2

0L0

4c20

)
= δ(y3 − y′3).

Substituting into (38) gives the desired result.

We will study the kernel H in the next two sections to analyze the resolution
properties of ghost imaging depending on the coherence properties of the source
and on the scattering properties of the random media.

7. Resolution analysis for a fully incoherent source. In this section we con-
sider the fully incoherent case:

(39) Γ(x,x′) = I0 exp
(
− |x|

2

r20

)
δ(x− x′),

in which the covariance function of the noise source is assumed to be delta-correlated
and with a spatial support in the form of a Gaussian with radius r0. The Gaussian
form is useful to get explicit expressions.

Proposition 7. In the fully incoherent case (39) the ghost imaging function is the
convolution of the square transmission function with the convolution kernel H:

(40) Igi(x1) =

∫
R2

H(x1 − y3)T (y3)2dy3,

where

(41) H(x) =
I20r

4
0

29π3L4

∫
R2

dβ exp
(
− |β|

2

2
− γ2(r0β)ω2

0L

2c20
+ i

ω0r0x · β
c0L

)
,

and γ2(x) = (γ
(1)
2 (x)+γ

(2)
2 (x))/2, with γ

(1)
2 and γ

(2)
2 defined as (25) and associated

with the reference path (labeled À) and signal path (labeled Á), respectively.
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Proof. Using (24) we get from (37)

H(x1,y3) =
I20c

4
0

16ω4
0

∫
R2

dy1

∫
R2

dy2 exp
(
− |y1|

2 + |y2|2

r20

)
×ĝ0

(
ω0, (x1, L), (y1, 0)

)
ĝ0
(
ω0, (x1, L), (y2, 0)

)
× exp

(
− γ

(1)
2 (y1 − y2)ω2

0L

4c20

)
×ĝ0

(
ω0, (y3, L), (y1, 0)

)
ĝ0
(
ω0, (y3, L), (y2, 0)

)
× exp

(
− γ

(2)
2 (y1 − y2)ω2

0L

4c20

)
.

Using the explicit form (22) of ĝ0:

H(x1,y3) =
I20

16(2π)4L4

∫
R2

dy1

∫
R2

dy2 exp
(
− |y1|

2 + |y2|2

r20

)
× exp

(
i
ω0(y1 − y2) · (y3 − x1)

c0L

)
exp

(
− γ2(y1 − y2)ω2

0L

2c20

)
.

By the change of variables y1 = x+ y/2, y2 = x− y/2, and by integrating in x:

H(x1,y3) =
I20

16(2π)4L4

∫
R2

dy

∫
R2

dx exp
(
− 2|x|2

r20
− |y|

2

2r20

)

× exp
(
i
ω0y · (y3 − x1)

c0L
− γ2(y)ω2

0L

2c20

)
=

I20r
2
0

29π3L4

∫
R2

dy exp
(
− |y|

2

2r20

)
× exp

(
i
ω0y · (y3 − x1)

c0L
− γ2(y)ω2

0L

2c20

)
.

It is therefore a function of x1 − y3 only:

H(x1,y3) = H(x1 − y3),

with H(x) defined by (41).
If the medium is homogeneous, γ2 ≡ 0, then the convolution kernel is Gaussian:

(42) H(x) =
I20r

4
0

28π2L4
exp

(
− |x|

2

4ρ2gi0

)
,

with the radius

(43) ρ2gi0 =
c20L

2

2ω2
0r

2
0

.

This is essentially the classical Rayleigh resolution formula [4, Section 8.5]: ρgi0 is
proportional to λ0L/r0, with λ0 = 2πc0/ω0 the central wavelength.

If the medium is strongly scattering, in the sense that the propagation distance
is larger than the scattering mean free path L/lsca � 1, with

(44) lsca =
8c20

γ0(0)ω2
0

,
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γ0(x) = (γ
(1)
0 (x) + γ

(2)
0 (x))/2, γ

(1)
0 and γ

(2)
0 defined as (19) and associated with the

reference path (labeled À) and signal path (labeled Á), then

(45) H(x) =
I20r

4
0ρ

2
gi0

28π2L4ρ2gi1
exp

(
− |x|

2

4ρ2gi1

)
,

with

(46) ρ2gi1 =
c20L

2

2ω2
0r

2
0

+
4c20L

3

3ω2
0lscal

2
cor

,

and the correlation radius of the medium lcor is defined as in Proposition 3: γ0(x) =
γ0(0)[1−|x|2/l2cor +o(|x|2/l2cor)]. This result shows that the ghost imaging function
still gives an image of the mask when the propagation distance is larger than the
scattering mean free path, but random scattering slightly reduces its resolution.
The observation that random scattering does not help comes from the fact that
the two waves propagate through two independent media in the two paths. If the
realizations of the random medium were identical in the two paths (which is not
realistic), then random scattering would enhance the resolution, as we explain in
Appendix D and as we observed in time-reversal experiments [3, 7, 8].

8. Resolution analysis for a partially coherent source. In this section we
consider the partially coherent case:

(47) Γ(x,x′) = I0 exp
(
− |x+ x′|2

4r20
− |x− x

′|2

4ρ20

)
,

in which the source is assumed to have a spatial support in the form of a Gaussian
with radius r0 and a local Gaussian correlation function with radius ρ0. This model
is called Gaussian-Schell in the physical literature [19]. Note that we always have
r0 ≥ ρ0 (to ensure that Γ is a positive kernel). The limit case ρ0 → 0 corresponds
to the fully incoherent situation addressed in the previous section. The limit case
ρ0 = r0 in which

Γ(x,x′) = I0 exp
(
− |x|

2

2r20
− |x

′|2

2r20

)
corresponds to the fully coherent situation: the spatial profile of the field is deter-
ministic and has a Gaussian form with radius r0. The following proposition gives
the expression of the ghost imaging kernel.

Proposition 8. In the partially coherent case (47) the ghost imaging function has
the form (36) with the imaging kernel given by

H(x1,y3) =
I20ρ

4
0r

4
0

64π2L4

∫
R2

dα

∫
R2

dβ exp
(
− |α|

2 + |β|2

2

(
1 +

ω2
0r

2
0ρ

2
0

c20L
2

))
× exp

(
− i ω0

c0L

(
ρ0(x1 + y3) ·α+ r0(x1 − y3) · β

))
× exp

(
− ω2

0L

4c20

(
γ
(1)
2 (ρ0α+ r0β) + γ

(2)
2 (ρ0α− r0β)

)
.(48)
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Proof. We have from (37) and the form (47) of the covariance function Γ:

H(x1,y3) =
I20

28π4L4

∫
R2

dy1

∫
R2

dy′1

∫
R2

dy2

∫
R2

dy′2

× exp
(
− |y1 + y2|2

4r20
− |y1 − y2|

2

4ρ20
− |y

′
1 + y′2|2

4r20
− |y

′
1 − y′2|2

4ρ20

)
× exp

(
i
ω0

c0L

(
x1 · (y′1 − y1) + y3 · (y2 − y′2)

))
× exp

(
i
ω0

2c0L

(
|y1|2 − |y′1|2 + |y′2|2 − |y2|2

))
× exp

(
− ω2

0L

4c20

(
γ
(2)
2 (y2 − y′2) + γ

(1)
2 (y′1 − y1)

))
.

After the change of variables

xa =
y1 + y′1

2
, ya = y1 − y′1, xb =

y2 + y′2
2

, yb = y′2 − y2,

H can be written as

H(x1,y3) =
I20

28π4L4

∫
R2

dxa

∫
R2

dxb

∫
R2

dya

∫
R2

dyb

× exp
(
− |xa + xb|2

2r20
− |xa − xb|

2

2ρ20
− |ya − yb|

2

8r20
− |ya + yb|2

8ρ20

)
× exp

(
i
ω0

c0L

(
(xa − x1) · ya + (xb − y3) · yb

))
× exp

(
− ω2

0L

4c20

(
γ
(2)
2 (yb) + γ

(1)
2 (ya)

))
.

After integration in xa and xb, we get

H(x1,y3) =
I20r

2
0ρ

2
0

28π2L4

∫
R2

dya

∫
R2

dyb

× exp
(
− |ya − yb|

2

8r20
− |ya + yb|2

8ρ20
− i ω0

c0L

(
ya · x1 + yb · y3

))
× exp

(
− ω2

0

8c20L
2

(
r20|ya + yb|2 + ρ20|ya − yb|2

))
× exp

(
− ω2

0L

4c20

(
γ
(2)
2 (yb) + γ

(1)
2 (ya)

))
.

We get the expression (48) after the new change of variables ya = ρ0α + r0β and
yb = ρ0α− r0β.

If the medium is homogeneous along the two paths γ
(1)
0 = γ

(2)
0 = 0, then the

imaging kernel is

(49) H(x1,y3) =
I20ρ

2
0r

2
0c

4
0

64ω4
0ρ

2
giR

2
gi

exp
(
− |x1 − y3|2

4ρ2gi2
− |x1 + y3|2

4R2
gi2

)
,
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with

ρ2gi2 =
c20L

2

2ω2
0r

2
0

+
ρ20
2
,(50)

R2
gi2 =

c20L
2

2ω2
0ρ

2
0

+
r20
2
.(51)

By comparing with (43), Eq. (50) shows that the partial coherence of the source
reduces the resolution of the ghost imaging function, while Eq. (51) shows that it
also reduces the diameter of the region that can be imaged.

If the medium is random along the two paths and the statistics of the random
media along the reference and signal paths are identical (they are two independent

realizations of the same process), then γ
(2)
0 = γ

(1)
0 = γ0. When scattering is strong,

in the sense that the propagation distance is larger than the scattering mean free
path L/lsca � 1, with lsca given by (44), then

(52) H(x1,y3) =
I20ρ

2
0r

2
0c

4
0

64ω4
0ρ

2
giR

2
gi

exp
(
− |x1 − y3|2

4ρ2gi
− |x1 + y3|2

4R2
gi

)
,

with

ρ2gi =
c20L

2

2ω2
0r

2
0

+
ρ20
2

+
4c20L

3

3ω2
0lscal

2
cor

,(53)

R2
gi =

c20L
2

2ω2
0ρ

2
0

+
r20
2

+
4c20L

3

3ω2
0lscal

2
cor

,(54)

and the correlation radius of the medium lcor is defined as in Proposition 3: γ0(x) =
γ0(0)[1 − |x|2/l2cor + o(|x|2/l2cor)]. These formulas also give the expression (49) of
the imaging kernel when the medium is homogeneous: it suffices to take lsca →∞.

In the partially coherent case ρ0 ≤ r0, formula (53) shows that the resolution is
reduced by the spatial coherence of the source. Formula (54) also shows that imaging
is possible provided the object to be imaged (i.e. the support of the transmission
function) is within the disk with radius Rgi. This radius is all the larger as the source
is less coherent, but it increases when scattering becomes stronger. In other words,
scattering reduces the resolution of the ghost imaging function, but it increases the
diameter of the region that can be imaged.

In the limit case of a fully incoherent source ρ0 → 0, we recover the result of the
previous section. More exactly we have

1

4πρ20
Γ(x,x′)

ρ0→0−→ I0 exp
(
− |x|

2

r20

)
δ(x− x′)

and

1

(4πρ20)2
H(x1,y3)

ρ0→0−→
I20r

4
0ρ

2
gi0

28π2L4ρ2gi1
exp

(
− |x1 − y3|2

4ρ2gi1

)
,

as in (45). The formulas (53) and (54) give the conditions under which the fully
incoherent approximation is valid: it is possible to approximate the partially coher-
ent case (47) by the fully incoherent case (39) when ρ0 is small enough so that ρ0 is
much smaller than ρgi0 and the support of the transmission function is within the

disk with radius ρgi0r0/ρ0 (or more exactly
√
ρ2gi0r

2
0/ρ

2
0 + 4c20L

3/(3ω2
0lscal

2
cor)).
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In the limit case of a fully coherent source ρ0 = r0, then ρ2gi = R2
gi and

H(x1,y3) =
I20r

4
0c

4
0

64ω4
0R

4
gi

exp
(
− |x1|2

2R2
gi

− |y3|
2

2R2
gi

)
,

which has a separable form. In this case we do not get any image of the transmission
function and the imaging function has a Gaussian form with width Rgi whatever the
form of the transmission function. This confirms that the incoherence (or partial
coherence) of the source is the key ingredient for ghost imaging.

To summarize: the ghost imaging function can exploit the partial coherence
of the source because the same source illuminates both paths. It cannot exploit
the incoherence induced by scattering because the two paths are occupied by two
different realizations of the random medium.

9. Concluding remarks. In this paper we have addressed transmission-based
ghost imaging. It is also possible to address reflective ghost imaging, in order
to image rough-surfaced targets in reflection [14, 21]. Moreover, refined versions of
ghost imaging can be found in the literature. A first proposition is that it is not
required to measure the complete transmitted intensity of the reference field and
that the number of measurements required for image recovery can be reduced if
an advanced reconstruction algorithm based on compressive sensing is used [17]. A
second proposition is that there is no need for the high-resolution detector at all if
the partially coherent source can be perfectly controlled. For instance, if the source
is generated by a spatial light modulator, then the reference field can be computed
(assuming a homogeneous medium) instead of being measured, and then the ghost
imaging function is the correlation of the measured spatially-integrated intensity of
the signal field at the bucket detector with the computed intensity of the reference
field [20]. It is remarkable that in this configuration, a high-resolution image of the
object can be obtained with only one bucket (single-pixel) detector.

Appendix A. The signal and reference fields in the white-noise paraxial
regime. In this appendix we describe the signal wave vε2 in the plane of the bucket
detector and the reference wave vε1 in the plane of the high-resolution detector in
the paraxial regime. They are expressed in terms of the fundamental functions ĝ1
and ĝ2 of the random medium along the reference path (labeled À) and the signal
path (labeled Á) defined in (21).

The slowly varying envelope of the reference wave in the plane of the high-
resolution detector z = L at a point ~xε1 = (ε2x1, L) is

v̂ε1(ω, ~xε1) =

∫
R2

Ĝε1
(ω0

ε4
+ ω, ~xε1, (xs, 0)

)
f̂ε(ω,xs)dxs,

where Ĝε1 = Ĝε1 is the Green’s function of the random medium in the reference path
and the source term in the paraxial regime is

f̂ε(ω,xs) = εpf̂
(
εpω,

xs
ε2

)
.
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In terms of the paraxial fundamental solution this reads

v̂ε1

( ω
εp
, ~xε1

)
= ε4+p

∫
R2

Ĝε1

(ω0

ε4
+
ω

εp
, (ε2x1, L), (ε2xs, 0)

)
f̂(ω,xs)dxs

ε→0−→ ic0ε
4+p

2ω0
exp

(
i
(ω0

ε4
+
ω

εp
) L
c0

)
×
∫
R2

ĝ1
(
ω0, (x1, L), (xs, 0)

)
f̂(ω,xs)dxs.

Here we have used the fact that, when p < 4, the paraxial fundamental solution
ĝ1
(
ω0 + ε4−pω, (x1, L), (xs, 0)

)
does not depend on ω and it is equal to its value at

the central frequency ω0, as shown in [12, Section 4.1].
The slowly varying envelope of the signal wave in the plane of the bucket detector

z = L+ L0 at a point ~xε2 = (ε2x2, L+ L0) is

v̂ε2(ω, ~xε2) =

∫
R2

Ĝε2
(ω0

ε4
+ ω, ~xε2, (xs, 0)

)
f̂ε(ω,xs)dxs.

Here

Ĝε2
(
ω, ~xε2, (xs, 0)

)
= −2iω

c0

∫
R2

Ĝε2
(
ω, ~xε2, (y, L)

)
T ε(y)Ĝε2

(
ω, (y, L), (xs, 0)

)
dy,

where Ĝε2 is the Green’s function of the random medium in the signal path and
T ε(y) = T (y/ε2) is the transmission function that models the object to be imaged.
Therefore we can also write

v̂ε2

( ω
εp
, ~xε2

)
= ε4+p

∫
R2

Ĝε2
(ω0

ε4
+
ω

εp
, ~xε2, (ε

2xs, 0)
)
f̂(ω,xs)dxs,

with

Ĝε2
(ω0

ε4
+
ω

εp
, ~xε2, (ε

2xs, 0)
)

= −2i(ω0 + ε4−pω)

c0

∫
R2

Ĝε2
(ω0

ε4
+
ω

εp
, ~xε2, (ε

2y, L)
)

×T (y)Ĝε2
(ω0

ε4
+
ω

εp
, (ε2y, L), (ε2xs, 0)

)
dy.

In terms of the paraxial fundamental solutions this reads

v̂ε2

( ω
εp
, ~xε2

)
ε→0−→ ic0ε

4+p

2ω0
exp

(
i
(ω0

ε4
+
ω

εp
)L+ L0

c0

)
×
∫
R2

∫
R2

ĝ2
(
ω0, (x2, L+ L0), (y, L)

)
×T (y)ĝ2

(
ω0, (y, L), (xs, 0)

)
f̂(ω,xs)dxsdy.

Appendix B. Proof of Proposition 2. Let us fix ω and skip it in the notations.

Let us consider the solution to (20) with an arbitrary initial condition φ̂(x, z = 0) =

φ̂ic(x). The first-order moment

(55) M1(x, z) = E
[
φ̂(x, z)

]
satisfies the Schrödinger equation with homogeneous damping:

∂M1

∂z
=
ic0
2ω

∆xM1 −
ω2γ0(0)

8c20
M1,(56)

M1(x, z = 0) = φ̂ic(x).(57)
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The solution can be obtained by taking a Fourier transform in x, solving the equa-
tion for the Fourier transform, and taking an inverse Fourier transform:

(58) M1(x, z) =
1

4π2

∫
R2

dκφ̌ic(κ) exp
(
iκ · x− ic0|κ|2

2ω
z − ω2γ0(0)

8c20
z
)
,

with

φ̌ic(κ) =

∫
R2

φ̂ic(x) exp
(
− iκ · x

)
dx.

In particular, if the input spatial profile is Gaussian with radius ric and unit L1-
norm:

(59) φ̂ic(x) =
1

2πr2ic
exp

(
− |x|

2

2r2ic

)
,

then

(60) M1(x, z) =
1

2π(r2ic + ic0z
ω )

exp
(
− |x|2

2(r2ic + ic0z
ω )

)
exp

(
− ω2γ0(0)

8c20
z
)
.

If the initial condition is a point-like source with unit amplitude (which can be
viewed as a limit of the Gaussian initial condition (59) in which ric → 0), then

(61) M1(x, z) =
ω

2iπc0z
exp

(
i
ω|x|2

2c0z

)
exp

(
− ω2γ0(0)

8c20
z
)
,

as stated in the proposition in (23).
By applying Itô’s formula to (20) the second-order moments

(62) M2(x,x′, z) = E
[
φ̂(x, z)φ̂(x′, z)

]
satisfy the system:

∂M2

∂z
=
ic0
2ω

(
∆x −∆x′

)
M2 +

ω2
0

4c20

(
γ0(x− x′)− γ0(0)

)
M2,(63)

M2(x,x′, z = 0) = φ̂ic(x)φ̂ic(x′).(64)

A convenient approach for solving the second-order moment equation is via the
Wigner transform. The Wigner transform of the field is defined by

(65) W (x, q, z) =

∫
R2

exp
(
− iq · y

)
E
[
φ̂
(
x+

y

2
, z
)
φ̂
(
x− y

2
, z
)]

dy.

Using (63) and defining

γ̌0(κ) =

∫
R2

γ0(x) exp(−iκ · x)dx,

we find that it satisfies the closed system

(66)
∂W

∂z
+
c0
ω
q · ∇xW =

ω2

16π2c20

∫
R2

γ̌0(κ)
[
W (q − κ)−W (q)

]
dκ,

starting from W (x, q, z = 0) = Wic(x, q), which is the Wigner transform of the

initial field φ̂ic:

Wic(x, q) =

∫
R2

exp
(
− iq · y

)
φ̂ic
(
x+

y

2

)
φ̂ic
(
x− y

2

)
dy.
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Eq. (66) has the form of a radiative transport equation for the angularly-resolved
wave energy density W . In this context ω2γ0(0)/(4c20) is the total scattering cross-
section and ω2γ̂0(·)/(16π2c20) is the differential scattering cross-section that gives
the mode conversion rate.

By taking a Fourier transform in q and x of Eq. (66), we obtain a transport
equation that can be integrated and we find the following integral representation
for W :

W (x, q, z) =
1

4π2

∫∫
R2×R2

exp
(
iξ ·

(
x− q c0z

ω

)
− iy · q

)
Ŵic

(
ξ,y

)
× exp

( ω2

4c20

∫ z

0

γ0
(
y + ξ

c0z
′

ω

)
− γ0(0)dz′

)
dξdy,(67)

where Ŵic is associated to the initial field φ̂ic:

Ŵic(ξ,y) =

∫
R2

exp
(
− iξ · x

)
φ̂ic
(
x+

y

2

)
φ̂ic
(
x− y

2

)
dx.

By taking an inverse Fourier transform the expression (67) can indeed be used
to compute and discuss the mutual coherence function:

Γ(2)(x,y, z) = M2

(
x+

y

2
,x− y

2
, z
)

= E
[
φ̂
(
x+

y

2
, z
)
φ̂
(
x− y

2
, z
)]

(68)

is given by

Γ(2)(x,y, z) =
1

4π2

∫
R2

exp
(
iξ · x

)
Ŵic

(
ξ,y − ξ c0z

ω

)
× exp

( ω2

4c20

∫ z

0

γ0
(
y − ξ c0z

′

ω

)
− γ0(0)dz′

)
dξ,(69)

where x is the mid-point and y is the offset. Let us examine two particular initial
conditions, which corresponds to a Gaussian-beam wave and to a point-like source,
respectively.

If the input spatial profile is Gaussian with radius ric and unit norm as in (59),
then we have

(70) Ŵic(ξ,y) =
1

4πr2ic
exp

(
− r2ic|ξ|2

4
− |y|

2

4r2ic

)
,

and we find from (69) that the second-order moment of the field has the form

Γ(2)(x,y, z) =
1

16π3r2ic

∫
R2

exp
(
− 1

4r2ic

∣∣y − ξ c0z
ω

∣∣2 − r2ic|ξ|2

4
+ iξ · x

)
× exp

( ω2

4c20

∫ z

0

γ0
(
y − ξ c0z

′

ω

)
− γ0(0)dz′

)
dξ.(71)

If the initial condition is a point-like source with unit amplitude (which can
be viewed as a limit of the Gaussian initial condition in which ric → 0), then

Ŵic(ξ,y) = δ(y) and

Γ(2)(x,y, z) =
ω2

4π2c20z
2

exp
( iω
c0z
y · x

)
× exp

( ω2

4c20

∫ z

0

(
γ0(y

z′

z
)− γ0(0)

)
dz′
)
,(72)
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which gives the desired result (24).

Appendix C. Proof of Proposition 4. We consider that the initial condition is
(30) and we use the same notations as in the previous appendix. We have

Ŵic(ξ,y) = πr2ic exp
(
− r2ic|ξ|2

4
− |y|

2

4r2ic

)
,

and we find from (69) that the second-order moment of the field has the form

Γ(2)(x,y, z) =
r2ic
4π

∫
R2

exp
(
− 1

4r2ic

∣∣y − ξ c0z
ω

∣∣2 − r2ic|ξ|2

4
+ iξ · x

)
× exp

( ω2

4c20

∫ z

0

γ0
(
y − ξ c0z

′

ω

)
− γ0(0)dz′

)
dξ.(73)

In the strongly scattering regime z � lsca we can use the expansion γ0(x) =
γ0(0)[1− |x|2/l2cor + o(|x|2/l2cor)] in the exponent term

exp
( ω2

4c20

∫ z

0

γ0(X(z′))− γ0(0)dz′
)
' exp

(
− γ0(0)ω2

4c20l
2
cor

∫ z

0

|X(z′)|2dz′
)
,

for X(z′) = y−ξ c0z
′

ω . This is true when |X(z′)| is small, and this is also true when
it is not small in the sense that both members are of the order of exp(−αz/lsca) for
some constant α and therefore they are both close to zero. As a result we find

Γ(2)(x,y, z) =
r2ic
4π

∫
R2

exp
(
iξ · x−

(r2ic
4

+
c20z

2

4r2icω
2

+
γ0(0)z3

12l2cor

)
|ξ|2

+
( c0z

2ωr2ic
+
ωγ0(0)z2

4c0l2cor

)
y · ξ −

( 1

4r2ic
+
γ0(0)ω2z

4c20l
2
cor

)
|y|2

)
dξ.

By taking y = 0, we finally obtain

E[|φ̂(x, z)|2] = Γ(2)(x,0, z)

=
r2ic
4π

∫
R2

exp
(
iξ · x−

(r2ic
4

+
c20z

2

4r2icω
2

+
γ0(0)z3

12l2cor

)
|ξ|2
)

dξ

=
r2ic

R2(ω, z)
exp

(
− |x|2

R2(ω, z)

)
,(74)

which is the desired result.

Appendix D. The case of identical media along the reference and signal
paths. We briefly revisit the results of Section 7 to examine what would happen if
the random media along the reference and signal paths were identical. In that case,
the ghost imaging function would have the form (36) but the imaging kernel would
be instead of (37):

H(x1,y3) =
c40

8ω4
0

∫
R2

dy1

∫
R2

dy′1

∫
R2

dy2

∫
R2

dy′2Γ(y1,y
′
2)Γ(y′1,y2)

×E
[
ĝ
(
ω0, (x1, L), (y1, 0)

)
ĝ
(
ω0, (x1, L), (y′1, 0)

)
×ĝ
(
ω0, (y3, L), (y′2, 0)

)
ĝ
(
ω0, (y3, L), (y2, 0)

)]
,(75)
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since now ĝ1 = ĝ2 = ĝ where ĝ is the solution of the Itô-Schrödinger equation (21).
If Γ is given by (39) this can be simplified as

H(x1,y3) =
c40

16ω4
0

E
[∣∣∣ ∫

R2

exp
(
− |y|

2

r20

)
ĝ
(
ω0, (x1, L), (y, 0)

)
×ĝ
(
ω0, (y3, L), (y, 0)

)
dy
∣∣∣2].(76)

The integral in y is the result of a time-reversal experiment using a point source at
(y3, L), a time-reversal mirror in the plane z = 0 with radius r0, whose transverse
spatial support is described by the function exp(−|y|2/r20), and an observation point
at (x1, L). This time-reversal experiment is performed in a random medium and the
waves travel through the same realization of the random medium during the forward
propagation and during the backward propagation. We know that scattering is good
in such a time-reversal configuration and that resolution can be enhanced compared
to the homogeneous case [3, 7, 8]. In fact, using recent results on the fourth-order
moments of the solution of the Itô-Schrödinger equation [13, Section 8, Proposition
1], we find here that, when L� lsca and lcor � r0,

(77) H(x1,y3) = H(x1 − y3), H(x) =
I20r

4
0

28π2L4
exp

(
− |x|

2

4ρ2gi3

)
,

with the radius

(78)
1

ρ2gi3
=

1

ρ2gi0
+

16L

lscal2cor
,

which shows that the radius of the convolution kernel is reduced by scattering and
can even be smaller than the Rayleigh resolution formula.
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