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Waves propagating through heterogeneous media experience scattering that can convert
a coherent pulse into small incoherent fluctuations. This may appear as attenuation

for the transmitted front pulse. The classic O’Doherty-Anstey theory describes such a

transformation for scalar waves in finely layered media. Recent observations for seismic
waves in the earth suggest that this theory can explain a significant component of seismic

attenuation. An important question to answer is then how the O’Doherty-Anstey theory
generalizes to seismic waves when several wave modes, possibly with the same velocity,

interact. An important aspect of the O’Doherty-Anstey theory is the statistical stability

property, which means that the transmitted front pulse is actually deterministic and
depends only on the statistics of the medium but not on the particular medium realization

when the medium is modeled as a random process. It is shown in this paper that this

property generalizes in the case of elastic waves in a nontrivial way: the energy of the
transmitted front pulse, but not the pulse shape itself, is statistically stable. This result

is based on a separation of scales technique and a diffusion-approximation theorem that

characterize the transmitted front pulse as the solution of a stochastic partial differential
equation driven by two Brownian motions.

Keywords: Waves in random media; diffusion-approximation; seismic attenuation;

anisotropy.
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1. Introduction

In this paper we analyze the propagation of shear waves in a randomly stratified

transverse anisotropic elastic medium. Our motivation is twofold:

- it has been known for a long time in the geophysical literature that the laminated

structure of the earth can explain apparent attenuation of seismic waves due to

multiple scattering [13, 16]. More recently it was suggested that, even in a medium
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where the density and velocities are constant, anisotropic heterogeneities could in-

duce elastic attenuation, and therefore it could be responsible for a significant part

of the observed attenuation of seismic waves [15].

- it is explained in the mathematical literature that a pulse traveling through a

randomly laminated medium undergoes two transformations: a random time shift

and a deterministic deformation.

The result that the transmitted pulse shape is deterministic (up to a random time

shift) is called pulse stabilization in the literature. It was predicted in geophysics

by O’Doherty and Anstey [13]. It was proved for the scalar wave equation using

a time-domain integral equation approach in [2, 3] and using a frequency-domain

approach in [1, 5, 6]. The martingale representation established in [7] allowed to re-

visit and clarify the pulse stabilization in the frequency-domain approach. Finally

the frequency-domain approach was used again in [11] to extend the result to a

general hyperbolic system. However, an hypothesis is required in the case of the

general hyperbolic system, namely that the wave mode velocities are distinct [11].

This hypothesis is not fulfilled in the situation with anisotropic heterogeneities and

elastic waves addressed in this paper.

We therefore ask the question to what extent the O’Doherty-Anstey theory

generalizes when we consider anisotropic elastic waves corresponding to a situation

with wave velocities that coincide. It turns out that such wave scattering gives rise to

more complex effects: there is no pulse stabilization and the transmitted front pulse

exhibits a random deformation and not a deterministic one. Only a careful stochastic

and multiscale analysis reveal this behavior. The random shape of the transmitted

front pulse can be analyzed by diffusion-approximation theorems and its statistical

distribution can be characterized in terms of a stochastic partial differential equation

driven by two Brownian motions (Proposition 6.1 and Corollary 6.1). However the

pulse stabilization generalizes in the sense that the energy of the deformed front

pulse is deterministic and exhibits a deterministic apparent attenuation that is

related to the anisotropy level and to the correlation length of the fluctuations of

the symmetry axis (Proposition 7.1). Thus, there is coherent energy stabilization,

but not pulse stabilization. This corroborates the physical conjecture that scattering

may partly explain observed seismic attenuation.

The paper is organized as follows: In Section 2 we introduce the anisotropic

elastic wave equation. In Section 3 we introduce the mode decomposition for the

wave field. We describe the scaling regime addressed in this paper in Section 4.

We apply a diffusion-approximation theorem in Section 5 in order to describe the

asymptotic statistical distribution of the transmitted front pulse in Section 6. We

characterize the stability of the energy of the transmitted front pulse in Section 7.

2. Formulation

We consider linear elastic waves propagating in a three-dimensional anisotropic

medium. The spatial coordinates are denoted by x = (xi)
3
i=1. The medium can
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be characterized by its density ρ and its elastic tensor c. They are x-dependent

quantities when the medium is heterogeneous. The elastic tensor c = (cijkl)
3
i,j,k,l=1

in a transverse anisotropic medium has five independent components A,N, F,C, L

and it can be written in the form [4, 18]

cijkl = (A− 2N)δijδkl +N
(
δikδjl + δilδjk

)
+(F −A+ 2N)

(
δijsksl + δklsisj

)
+(L−N)

(
δiksjsl + δilsjsk + δjksisl + δjlsisk

)
+(A+ C − 2F − 4L)sisjsksl, (2.1)

where s = (si)
3
i=1 is the unit vector representing the orientation of the symmetry

axis and δij is the Kronecker delta (δij = 1 if i = j and 0 otherwise). Furthermore,

the five parameters can be expressed as A = C11, C = C33, L = C44, N = C66,

and F = C13, in Voigt’s abbreviated notation, when the symmetry axis is parallel

to the x1-axis [4, 18].

In this paper we assume that the anisotropy is heterogeneous, and that the

symmetry axis vector s is in the plane (x1x2) with an angle ψ(x3) with the x1-axis:

s1 = cosψ(x3), s2 = sinψ(x3), s3 = 0. (2.2)

All other parameters (A,N, F,C, L) are assumed to be constant (i.e. x-

independent). This is a classical model in the geophysics literature [15, 16].

By Hook’s law the elastic tensor c(x) relates the symmetric stress tensor σ(t,x),

σ = (σij)
3
i,j=1, to the symmetric strain tensor ε(t,x), ε = (εij)

3
i,j=1:

σij =

3∑
k,l=1

cijklεkl, (2.3)

where the strain tensor is defined by

εkl =
1

2

(∂uk
∂xl

+
∂ul
∂xk

)
(2.4)

in terms of the displacement vector u(t,x), u = (ui)
3
i=1. The conservation of the

linear momentum reads [9]

ρ
∂2ui
∂t2

=

3∑
k=1

∂σki
∂xk

, i = 1, . . . , 3, (2.5)

where ρ is the density of the medium (assumed to be constant). We will consider a

shear plane wave propagating along the x3-direction, perpendicular to the laminated

structure. The wave equation for this shear wave is then:

ρ
∂2

∂t2

(
u1
u2

)
=

∂

∂x3

(
σ13
σ23

)
, (2.6)
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with

σ13 =
[
N + (L−N) cos2 ψ(x3)

]∂u1
∂x3

+
[
(L−N) sinψ(x3) cosψ(x3)

]∂u2
∂x3

, (2.7)

σ23 =
[
N + (L−N) sin2 ψ(x3)

]∂u2
∂x3

+
[
(L−N) sinψ(x3) cosψ(x3)

]∂u1
∂x3

. (2.8)

In absence of anisotropy L = N = K (where K is the constant bulk modulus of the

medium), we get two independent scalar wave equations:

ρ
∂2ui
∂t2

−K∂2ui
∂x23

= 0, i = 1, 2, (2.9)

which correspond to two shear waves propagating with the velocity c =
√
K/ρ.

In this paper we address the anisotropic case L 6= N and assume that the angle

ψ(x3) is randomly varying and can be modeled by a stationary and ergodic process

whose stationary distribution is uniform over [0, 2π]. Precise assumptions to ensure

that we can apply diffusion-approximation theorems are that ψ(x3) is a Markov

process on the torus with generator satisfying the Fredholm alternative [6] or that

ψ(x3) is a φ-mixing process with φ ∈ L1/2 [10] .

3. Mode Decomposition

From now on the longitudinal spatial variable x3 is denoted by z. We define the

Fourier transform of a function f(t) by:

f̂(ω) =

∫
f(t)eiωtdt, f(t) =

1

2π

∫
f̂(ω)e−iωtdω.

We introduce the two-dimensional vectors û and v̂:

û(z, ω) =

(
û1
û2

)
,

v̂(z, ω) =
1

2iω

[
(N + L)

(
1 0

0 1

)
+ (L−N)

(
cos 2ψ sin 2ψ

sin 2ψ cos 2ψ

)] ∂
∂z

(
û1
û2

)
.

The four-dimensional vector (û1, û2, v̂1, v̂2)t satisfies the linear system

∂

∂z

(
û

v̂

)
= iω

(
0 1

K I + κ
KJ(z)

ρI 0

)(
û

v̂

)
, (3.1)

where the superscript t stands for transpose, 0, I, and J(z) are the 2× 2 matrices

0 =

(
0 0

0 0

)
, I =

(
1 0

0 1

)
, J(z) =

(
cos 2ψ(z) sin 2ψ(z)

sin 2ψ(z) − cos 2ψ(z)

)
, (3.2)
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and

1

K
=
N + L

2LN
, κ =

N − L
N + L

. (3.3)

K is the bulk modulus and κ is the anisotropy coefficient of the medium. Note that

the orthogonal operator J(z) can be interpreted as the composition of a reflection

operator and a rotation operator.

Let us introduce the impedance and velocity parameters

ζ =
√
Kρ, c =

ζ

ρ
=

√
K

ρ
, (3.4)

and the mode decomposition

â(z, ω) = e−i
ω
c z
(
ζ1/2û(z, ω) + ζ−1/2v̂(z, ω)

)
, (3.5)

b̂(z, ω) = ei
ω
c z
(
− ζ1/2û(z, ω) + ζ−1/2v̂(z, ω)

)
, (3.6)

so that

û(z, ω) =
1

2
ζ−1/2

(
â(z, ω)ei

ω
c z − b̂(z, ω)e−i

ω
c z
)
, (3.7)

v̂(z, ω) =
1

2
ζ1/2

(
â(z, ω)ei

ω
c z + b̂(z, ω)e−i

ω
c z
)
. (3.8)

In absence of anisotropy κ = 0 the complex mode amplitudes â and b̂ are constant

in z. Here â, resp. b̂, are the amplitudes of the wave modes that propagate towards

increasing, resp. decreasing, z.

In the presence of anisotropy κ 6= 0 the complex mode amplitudes satisfy the linear

system:

∂

∂z

(
â

b̂

)
= i

ωκ

2c

(
J(z) J(z)e−i

2ω
c z

−J(z)ei
2ω
c z −J(z)

)(
â

b̂

)
. (3.9)

The complex mode amplitudes also satisfy the following boundary conditions:

â(z = 0, ω) = f̂(ω) =

(
f̂1(ω)

f̂2(ω)

)
, b̂(z = L, ω) =

(
0

0

)
, (3.10)

which correspond to a shear wave incoming at z = 0 and radiation condition at

z = L.

4. The Weakly Anisotropic Regime

We assume from now on that anisotropy is weak and that the correlation length of

the fluctuations of the symmetry axis and the typical wavelength of the incoming

wave are much smaller than the propagation distance L. We introduce the small

dimensionless parameter ε to characterize this scaling regime:

κ = εκ̃, ψ(z) = ψ̃
( z
ε2

)
, f(t) = f̃

( t
ε2

)
,
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and we drop the tilde in the following. We introduce the scaled Fourier transform

for a function f(t):

f̂ε(ω) =
1

ε2

∫
f(t)ei

ω
ε2
tdt, f(t) =

1

2π

∫
f̂ε(ω)e−i

ω
ε2
tdω.

The transmitted wave at z = L observed around the expected arrival time L/c

is

uεtr(τ) = u
(
z = L, t =

L

c
+ ε2τ

)
=

1

2π

∫
ûε(z = L, ω)e−i

ωL
ε2c e−iωτdω

=
1

4πζ1/2

∫
âε(z = L, ω)e−iωτdω, (4.1)

where the complex mode amplitudes âε and b̂ε satisfy

∂

∂z

(
âε

b̂ε

)
= i

ωκ

2εc

(
J( zε2 ) J( zε2 )e−i

2ω
ε2c

z

−J( zε2 )ei
2ω
ε2c

z −J( zε2 )

)(
âε

b̂ε

)
, (4.2)

with the boundary conditions

âε(z = 0, ω) = f̂(ω), b̂ε(z = L, ω) =

(
0

0

)
. (4.3)

Using (4.2) we find that the complex mode amplitudes âε and b̂ε satisfy

∂

∂z

(
‖âε(z, ω)‖2 − ‖b̂ε(z, ω)‖2

)
= 0, (4.4)

where ‖â‖ =
√
|â1|2 + |â2|2 is the Euclidean norm, which shows, using also the

boundary conditions (4.3), that

‖âε(L, ω)‖2 + ‖b̂ε(0, ω)‖2 = ‖f̂(ω)‖2. (4.5)

This can be be interpreted as a conservation of energy relation: the sum of the

square moduli of the transmitted (âε(L, ω)) and reflected (b̂ε(0, ω)) wave mode

amplitudes is equal to the sum of the square moduli of the incident (f̂(ω)) wave

mode amplitudes.

We introduce the 4× 4 propagator matrix Pε(z, ω) that satisfies

∂

∂z
Pε = i

ωκ

2εc

(
J( zε2 ) J( zε2 )e−i

2ω
ε2c

z

−J( zε2 )ei
2ω
ε2c

z −J( zε2 )

)
Pε, (4.6)

with the initial condition:

Pε(z = 0, ω) =

(
I 0

0 I

)
. (4.7)
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Note that det Pε(z, ω) = 1 for any z as the trace of the matrix in the right-hand side

of (4.6) is zero. Moreover, from the symmetry properties of the evolution equation

(4.6) it is easy to check that the propagator matrix has the form

Pε(z, ω) =

(
Aε(z, ω) Bε(z, ω)

Bε(z, ω) Aε(z, ω)

)
, (4.8)

where the 2× 2 matrices Aε(z, ω) and Bε(z, ω) satisfy:

∂

∂z
Aε = i

ωκ

2εc
J(

z

ε2
)Aε(z, ω) + i

ωκ

2εc
e−i

2ω
ε2c

zJ(
z

ε2
)Bε(z, ω), (4.9)

∂

∂z
Bε = −i ωκ

2εc
J(

z

ε2
)Bε(z, ω)− i ωκ

2εc
ei

2ω
ε2c

zJ(
z

ε2
)Aε(z, ω), (4.10)

starting from Aε(z = 0, ω) = I and Bε(z = 0, ω) = 0. Note that, for any z

the matrix Aε(z, ω) is invertible. Indeed, if there exist L and f̂0(ω) such that

Aε(L, ω)f̂0(ω) = (0, 0)t, then we have

Pε(L, ω)

(
f̂0(ω)

(0, 0)t

)
=

(
(0, 0)t

Bε(L, ω)f̂0(ω)

)
.

However (4.4) implies ‖f̂0(ω)‖2−0 = 0−‖Bε(L, ω)f̂0(ω)‖2, which imposes f̂0(ω) =

(0, 0)t.

By linearity of the evolution equation (4.2) the complex mode amplitudes satisfy(
âε(L, ω)

b̂ε(L, ω)

)
=

(
Aε(L, ω) Bε(L, ω)

Bε(L, ω) Aε(L, ω)

)(
âε(0, ω)

b̂ε(0, ω)

)
.

From the boundary conditions (4.3) we get the expressions of the transmitted com-

plex mode amplitudes

âε(z = L, ω) = Ťε(L, ω)f̂(ω), (4.11)

where the transmission matrix Ťε is defined by

Ťε(z, ω) = Aε(z, ω)−Bε(z, ω) (Aε)−1(z, ω)Bε(z, ω), (4.12)

for general z and corresponds to the transmission operator over the slab segment

(0, z) for a wave incoming from the left (see Figure 1):(
Ťε(z, ω)

0

)
=

(
Aε(z, ω) Bε(z, ω)

Bε(z, ω) Aε(z, ω)

)(
I

Řε(z, ω)

)
. (4.13)

By (4.9-4.10) this matrix satisfies

∂Ťε

∂z
= i

ωκ

2εc
J(

z

ε2
)Ťε + i

ωκ

2εc
ei

2ω
ε2c

zBε(Aε)−1J(
z

ε2
)Ťε, (4.14)

starting from Ťε(z = 0, ω) = I. Note that, by (4.5), the elements of Ťε(z, ω) are

uniformly bounded by one.
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-0 z
�Řε(z, ω)f̂(ω)

-f̂(ω)

-Ťε(z, ω)f̂(ω)

Homogeneous
medium

Random
medium

Homogeneous
medium

Fig. 1. Reflection and transmission matrices of a slab segment (0, z), corresponding to a wave

incoming from the left half-space.

-0 z
-Rε(z, ω)f̂(ω)

� f̂(ω)

�Tε(z, ω)f̂(ω)

Homogeneous
medium

Random
medium

Homogeneous
medium

Fig. 2. Auxiliary reflection and transmission matrices of the slab segment (0, z), corresponding to

a wave incoming from the right half-space.

We can also introduce an auxiliary pair of 2 × 2 reflection and transmission

matrices for the slab segment (0, z) and a wave incoming from the right half-space

(see Figure 2):

Rε(z, ω) = Bε(z, ω) (Aε)−1(z, ω), Tε(z, ω) = (Aε)−1(z, ω). (4.15)

They are such that(
Rε(z, ω)

I

)
=

(
Aε(z, ω) Bε(z, ω)

Bε(z, ω) Aε(z, ω)

)(
0

Tε(z, ω)

)
. (4.16)

By (4.9-4.10) these matrices satisfy the Riccati equations

∂Rε

∂z
= i

ωκ

2εc

(
RεJ(

z

ε2
) + J(

z

ε2
)Rε

)
+ i

ωκ

2εc
ei

2ω
ε2c

zRεJ(
z

ε2
)Rε

+i
ωκ

2εc
e−i

2ω
ε2c

zJ(
z

ε2
), (4.17)

∂Tε

∂z
= i

ωκ

2εc
TεJ(

z

ε2
) + i

ωκ

2εc
ei

2ω
ε2c

zTεJ(
z

ε2
)Rε, (4.18)

starting from the initial conditions

Rε(z = 0, ω) = 0, Tε(z = 0, ω) = I.

Note that, by the analogue of (4.5), the elements of Rε(z, ω) and Tε(z, ω) are

uniformly bounded by one.

The transpose matrix (Rε)t(z, ω) satisfies the same equation (4.17) as Rε(z, ω)

because J is symmetric. By uniqueness of the solution, we have (Rε)t(z, ω) =
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Rε(z, ω). Moreover, the transpose matrix (Tε)t(z, ω) satisfies:

∂(Tε)t

∂z
= i

ωκ

2εc
J(

z

ε2
)(Tε)t + i

ωκ

2εc
ei

2ω
ε2c

zRεJ(
z

ε2
)(Tε)t,

starting from (Tε)t(z = 0, ω) = I, and by uniqueness (compare with (4.14)) we

have

Ťε(z, ω) = (Tε)t(z, ω). (4.19)

5. The Diffusion Approximation Theorem

Let us fix the frequency ω. Applying the diffusion-approximation result of [6] (which

is a refined form of [14] ) to the random equations (4.17-4.18) we obtain that

(Rε(z, ω),Tε(z, ω)) converge in distribution to (R(z),T(z)) as ε → 0 that is solu-

tion to the matrix-valued stochastic differential equation

dR = i
ωκ

2c

√
2γc(0)

[
(σ3R + Rσ3) ◦ dW 1

z + (σ1R + Rσ1) ◦ dW 2
z

]
+
ωκ

2c

√
γc(2ω)

[
(σ3 −Rσ3R) ◦ dW 3

z + (σ1 −Rσ1R) ◦ dW 4
z

]
+i
ωκ

2c

√
γc(2ω)

[
(σ3 + Rσ3R) ◦ dW 5

z + (σ1 + Rσ1R) ◦ dW 6
z

]
−iω

2κ2

c2
γs(2ω)Rdz, (5.1)

dT = i
ωκ

2c

√
2γc(0)

[
Tσ3 ◦ dW 1

z + Tσ1 ◦ dW 2
z

]
−ωκ

2c

√
γc(2ω)

[
Tσ3R ◦ dW 3

z + Tσ1R ◦ dW 4
z

]
+i
ωκ

2c

√
γc(2ω)

[
Tσ3R ◦ dW 5

z + Tσ1R ◦ dW 6
z

]
−iω

2κ2

2c2
γs(2ω)Tdz, (5.2)

starting from R(z = 0) = 0, T(z = 0) = I, where σj , j = 1, 2, 3, are the Pauli

matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (5.3)

the W j
z , j = 1, . . . , 6, are independent Brownian motions, and

γc(2ω) =

∫ ∞
0

E
[

cos 2ψ(0) cos 2ψ(z)
]

cos
(
2
ωz

c

)
dz, (5.4)

γs(2ω) =

∫ ∞
0

E
[

cos 2ψ(0) cos 2ψ(z)
]

sin
(
2
ωz

c

)
dz. (5.5)

Note that γc(2ω) is non-negative valued as it is equal to half the power spectral

density of the stationary random process cos 2ψ(z). In Appendix A we show that the

limit processes R and T can also be characterized as the reflexion and transmission

operators of the limit propagator matrix P = limε→0 Pε.
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This diffusion-approximation result is the basis of the forthcoming analysis. It

holds for any fixed frequency ω, however, below we will need to characterize the ω-

dependence of the Brownian motions as the correlations between the transmission

matrices at different frequencies play a fundamental role.

6. The Convergence of the Front Pulse

The following proposition shows that there is no pulse stabilization but the trans-

mitted front pulse converges in distribution to a random shape that can be identified

as the solution of a stochastic partial differential equation driven by two Brownian

motions.

Proposition 6.1. If f̂ ∈ L1, then the transmitted wave (uεtr(τ))τ∈R converges in

distribution as ε → 0 in the space of continuous functions C(R,R2) to (utr(τ))τ∈R
given by

utr(τ) =
1

4πζ1/2

∫
Ť(L, ω)f̂(ω)e−iωτdω, (6.1)

where Ť(z, ω) is the solution of

dŤ(z, ω) = i
ωκ

2c

√
2γc(0)

[
σ3Ť(z, ω) ◦ dW 1

z + σ1Ť(z, ω) ◦ dW 2
z

]
−ω

2κ2

2c2
[
γc(2ω) + iγs(2ω)

]
Ť(z, ω)dz, (6.2)

starting from Ť(z = 0, ω) = I.

Here W 1 and W 2 are two independent Brownian motions and the spectral pa-

rameters γc and γs are defined by (5.4-5.5). The space C(R,R2) is equipped with

the topology of the supremum norm over the compact subsets.

Proof. We have by (4.1), (4.11), and (4.19):

uεtr(τ) =
1

4πζ1/2

∫
(Tε)t(L, ω)f̂(ω)e−iωτdω. (6.3)

We first establish the tightness of the process (uεtr(τ))τ∈R in the space of continuous

functions. It is bounded by

sup
τ∈R
‖uεtr(τ)‖ ≤ 1

πζ1/2

∫
‖f̂(ω)‖dω,

because |T εi,j(L, ω)| ≤ 1. Here and below the norm ‖ ·‖ is again the Euclidean norm.

Furthermore the modulus of continuity

Mε(δ) = sup
|τ1−τ2|≤δ

‖uεtr(τ1)− uεtr(τ2)‖

can be bounded uniformly in ε by the deterministic quantity

Mε(δ) ≤ 1

πζ1/2

∫
sup

|τ1−τ2|≤δ

∣∣1− eiω(τ2−τ1)∣∣‖f̂(ω)‖dω.
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This quantity goes to zero as δ → 0 by dominated convergence theorem, which

proves the tightness (in the space of the continuous functions).

It remains then to show that the finite-dimensional distributions of (uεtr(τ))τ∈R
converge to those of (utr(τ))τ∈R defined by (6.1). Since uεtr(τ) is bounded, it is

sufficient to show that, for any n, (jl)
n
l=1 ∈ {1, 2}n, (τl)

n
l=1 ∈ Rn, we have

E
[ n∏
l=1

uεtr,jl(τl)
]
ε→0−→ E

[ n∏
l=1

utr,jl(τl)
]
.

By (6.3) we have

E
[ n∏
l=1

uεtr,jl(τl)
]

=
1

(4π)nζn/2

2∑
i1,...,in=1

∫
· · ·
∫

E
[ n∏
l=1

T εil,jl(L, ωl)
]

×
n∏
l=1

f̂il(ωl)e
−iωlτldω1 · · · dωn, (6.4)

and this shows that we need to study the convergence of the moments of products

of transmission coefficients at distinct frequencies.

The diffusion-approximation result stated in the previous section can be ex-

tended to the multi-frequency case. Let (ωk)nk=1 be n distinct frequencies. Applying

the diffusion-approximation result of [6] to the random equations (4.17-4.18) we

obtain that

(Rε(z, ω1), . . . ,Rε(z, ωn),Tε(z, ω1), . . . ,Tε(z, ωn))

converge in distribution to

(R(1)(z), . . . ,R(n)(z),T(1)(z), . . . ,T(n)(z))
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as ε→ 0 that is solution to the matrix-valued stochastic differential equation

dR(k) = i
ωkκ

2c

√
2γc(0)

[
(σ3R

(k) + R(k)σ3) ◦ dW 1
z

+(σ1R
(k) + R(k)σ1) ◦ dW 2

z

]
+
ωkκ

2c

√
γc(2ωk)

[
(σ3 −R(k)σ3R

(k)) ◦ dW 3(k)
z

+(σ1 −R(k)σ1R
(k)) ◦ dW 4(k)

z

]
+i
ωkκ

2c

√
γc(2ωk)

[
(σ3 + R(k)σ3R

(k)) ◦ dW 5(k)
z

+(σ1 + R(k)σ1R
(k)) ◦ dW 6(k)

z

]
−iω

2
kκ

2

c2
γs(2ωk)R(k)dz, (6.5)

dT(k) = i
ωkκ

2c

√
2γc(0)

[
T(k)σ3 ◦ dW 1

z + T(k)σ1 ◦ dW 2
z

]
−ωkκ

2c

√
γc(2ωk)

[
T(k)σ3R

(k) ◦ dW 3(k)
z + T(k)σ1R

(k) ◦ dW 4(k)
z

]
+i
ωkκ

2c

√
γc(2ωk)

[
T(k)σ3R

(k) ◦ dW 5(k)
z + T(k)σ1R

(k) ◦ dW 6(k)
z

]
−iω

2
kκ

2

2c2
γs(2ωk)T(k)dz, (6.6)

where W 1
z , W 2

z , W
j(k)
z , j = 3, . . . , 6, k = 1, . . . , n, are independent Brownian mo-

tions. Note that the evolution equations for the different frequency components

(R(k),T(k)) share the same Brownian motions W 1
z and W 2

z and have independent

Brownian motions W
j(k)
z , j = 3, . . . , 6. This comes from the fact that the terms in

the right-hand sides of (4.17-4.18) that have rapid phases become independent in

the limit ε→ 0, while the terms that do not have rapid phases stay correlated.

The equation (6.6) can be written in Itô’s form as

dT(k) = i
ωkκ

2c

√
2γc(0)

[
T(k)σ3dW

1
z + T(k)σ1dW

2
z

]
−ωkκ

2c

√
γc(2ωk)

[
T(k)σ3R

(k)dW 3(k)
z + T(k)σ1R

(k)dW 4(k)
z

]
+i
ωkκ

2c

√
γc(2ωk)

[
T(k)σ3R

(k)dW 5(k)
z + T(k)σ1R

(k)dW 6(k)
z

]
−ω

2
kκ

2

2c2
[
γc(0) + γc(2ωk) + iγs(2ωk)

]
T(k)dz.

Applying Itô’s formula, for any i1, . . . , in, j1, . . . , jn ∈ {1, 2}, we have

∂

∂z
E
[ n∏
l=1

T
(l)
il,jl

]
= −γc(0)κ2

4c2

n∑
k 6=k′=1

ωkωk′(−1)jk+jk′E
[ n∏
l=1

T
(l)
il,jl

]
−γc(0)κ2

4c2

n∑
k 6=k′=1

ωkωk′E
[ n∏
l 6=k,k′

T
(l)
il,jl

T
(k)
ik,3−jkT

(k′)
ik′ ,3−jk′

]
− κ2

2c2

n∑
k=1

ω2
k

[
γc(0) + γc(2ωk) + iγs(2ωk)

]
E
[ n∏
l=1

T
(l)
il,jl

]
, (6.7)
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starting from E
[∏n

l=1 T
(l)
il,jl

(z = 0)
]

=
∏n
l=1 1il(jl).

Then we observe that(
E
[ n∏
k=1

T̃ik,jk(z, ωk)
])

i1,...,in,j1,...,jn∈{1,2}

satisfies the same closed linear system (6.7) as(
E
[ n∏
k=1

T
(k)
ik,jk

(z)
])

i1,...,in,j1,...,jn∈{1,2}
,

where T̃(z, ω) is the solution of

dT̃(z, ω) = i
ωκ

2c

√
2γc(0)

[
T̃(z, ω)σ3dW

1
z + T̃(z, ω)σ1dW

2
z

]
−ω

2κ2

2c2
[
γc(0) + γc(2ω) + iγs(2ω)

]
T̃(z, ω)dz,

starting from T̃(z = 0, ω) = I, or in Stratonovich form:

dT̃(z, ω) = i
ωκ

2c

√
2γc(0)

[
T̃(z, ω)σ3 ◦ dW 1

z + T̃(z, ω)σ1 ◦ dW 2
z

]
−ω

2κ2

2c2
[
γc(2ω) + iγs(2ω)

]
T̃(z, ω)dz.

The system (6.7) has a unique solution. Therefore, for any distinct frequencies

(ωk)nk=1, we have

E
[ n∏
k=1

T εik,jk(z, ωk)
]
ε→0−→ E

[ n∏
k=1

T̃ik,jk(z, ωk)
]
.

Note that this property holds only for the product of transmission coefficients at

distinct frequencies, it does not hold for E[|T ε1,1(z, ω)|2] for instance.

The matrix Ť(z, ω) = (T̃)t(z, ω) is the solution of (6.2) and it satisfies for any

distinct frequencies (ωk)nk=1 and any set of indices i1, . . . , in, j1, . . . , jn ∈ {1, 2}:

E
[ n∏
k=1

T εik,jk(z, ωk)
]
ε→0−→ E

[ n∏
k=1

Ťjk,ik(z, ωk)
]
. (6.8)

Substituting (6.8) into the expression (6.4) of the moment gives the desired conver-

gence result.

We can now discuss the form of the transmitted front pulse. The limit transmis-

sion matrix Ť(L, ω) can be written in the form

Ť(L, ω) = Ǔ(L, ω) exp
(
− ω2κ2

2c2
[
γc(2ω) + iγs(2ω)

]
L
)
, (6.9)

where Ǔ(z, ω) is a unitary matrix

Ǔ(z, ω) =

(
α(z, ω) −β(z, ω)

β(z, ω) α(z, ω)

)
(6.10)
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with (α, β) the solution of

dα(z, ω) = i
ωκ

2c

√
2γc(0)

(
α(z, ω) ◦ dW 1

z + β(z, ω) ◦ dW 2
z

)
, (6.11)

dβ(z, ω) = i
ωκ

2c

√
2γc(0)

(
− β(z, ω) ◦ dW 1

z + α(z, ω) ◦ dW 2
z

)
, (6.12)

starting from α(z = 0, ω) = 1 and β(z = 0, ω) = 0.

The exponential term in (6.9) describes a deterministic deformation of the trans-

mitted pulse

utr(τ) =
1

4πζ1/2

∫
Ǔ(L, ω)f̂(ω) exp

(
− ω2κ2

2c2
[
γc(2ω) + iγs(2ω)

]
L
)
e−iωτdω,

that is due to the coupling between forward and backward wave modes. The unitary

matrix Ǔ(L, ω) in (6.9) describes a random deformation of the transmitted pulse

that is due to the coupling between forward wave modes. Contrarily to the usual

scalar case, this term cannot be reduced to a phase term of the form exp(iωTL),

that would give a random time shift TL but no deformation. Here the presence of

the unitary matrix deforms the pulse and can give the shapes shown in Figure 3.

However, since the matrix Ǔ(L, ω) is unitary, it does not modify the energy and

therefore the energy of the transmitted coherent wave is deterministic in the regime

ε→ 0 as explained in the next section.

Moreover, the unitary matrix Ǔ(L, ω) has a frequency coherence ωc that is

ωc =
c

κ
√
γc(0)L

, (6.13)

as explained in the following Lemma 6.1. As a result, if the bandwidth of the

incoming pulse is much smaller than ωc, then we have

utr(τ) =
Ǔ(L, ω0)

4πζ1/2

∫ ∞
0

f̂(ω) exp
(
− ω2κ2

2c2
[
γc(2ω) + iγs(2ω)

]
L
)
e−iωτdω + c.c.,

where ω0 is the carrier frequency of the incoming pulse, which shows that the trans-

mitted pulse shape experiences a deterministic deformation, but the transmitted

polarization state is random.

Lemma 6.1. For any ω, ω0, we have

E
[
‖Ǔ−1(L, ω0)Ǔ(L, ω)− I‖2

]
= 4
[
1− exp

(
− (ω − ω0)2

2ω2
c

)]
.

Here ‖ · ‖ stands for the Frobenius norm.

Note that

E
[
‖Ǔ(L, ω)− Ǔ(L, ω0)‖2

]
= E

[
‖Ǔ−1(L, ω0)Ǔ(L, ω)− I‖2

]
≤ 2

(ω − ω0)2

ω2
c

,

that is why we say that ωc is the frequency coherence of the matrix Ǔ(L, ω).
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Fig. 3. Incoming pulse shapes fj(t), j = 1, 2 (dotted lines) and transmitted pulse shapes utr,j(t),

j = 1 (solid lines) and j = 2 (dashed lines). Here f1(t) = exp(−t2/2) (left column, Gaussian pulse)
and f1(t) = (1 − t2) exp(−t2/2) (right column, Ricker pulse), f2(t) = 0, E[cos 2ψ(0) cos 2ψ(z)] =

exp(−|z|/lc), lc = 1, κ = 0.05, L = 50, c = 1. This covariance function corresponds for instance

to the case where ψ(z) is stepwise constant over intervals that are independent and identically
distributed according to an exponential distribution with mean lc, and the values taken by ψ(z)

over each interval are independent and identically distributed according to a uniform distribution

over [0, 2π]. The three rows correspond to three different realizations of the random medium.

Proof. We denote

Ṽ(z) = Ǔ(z, ω0)Ǔ−1(z, ω)− I.

It satisfies:

dṼ = i

√
2γc(0)κ

2c

[
(ω0 − ω)(σ3dW

1
z + σ1dW

2
z ) + (ω0σ3Ṽ − ωṼσ3) ◦ dW 1

z

+(ω0σ1Ṽ − ωṼσ1) ◦ dW 2
z

]
,
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starting from Ṽ(z = 0) = 0, or in Itô’s form:

dṼ = i

√
2γc(0)κ

2c

[
(ω0 − ω)(σ3dW

1
z + σ1dW

2
z ) + (ω0σ3Ṽ − ωṼσ3)dW 1

z

+(ω0σ1Ṽ − ωṼσ1)dW 2
z

]
−γc(0)κ2

2c2
[
(ω − ω0)2I + (ω2 + ω2

0)Ṽ − ωω0(σ3Ṽσ3 + σ1Ṽσ1

]
dz.

Using the fact that Tr(σjṼσj) = Tr(σ2
jṼ) = Tr(Ṽ) and Tr(I) = 2, we find that

E
[
Tr(Ṽ)

]
is the solution to the ordinary differential equation

d

dz
E
[
Tr(Ṽ)

]
= −γc(0)κ2(ω − ω0)2

2c2
(
2 + E

[
Tr(Ṽ)

])
,

which gives

E
[
Tr(Ṽ(z))

]
= 2 exp

(
− γc(0)κ2(ω − ω0)2z

2c2

)
− 2. (6.14)

Denoting by † the conjugate transpose, we also have

dṼṼ† = i

√
2γc(0)κ

2c

[
(ω0 − ω)

(
σ3Ṽ

† − Ṽσ3

)
◦ dW 1

z + (ω0 − ω)
(
σ1Ṽ

† − Ṽσ1

)
◦ dW 2

z

+ω0

(
σ3ṼṼ† − ṼṼ†σ3

)
◦ dW 1

z + ω0

(
σ1ṼṼ† − ṼṼ†σ1

)
◦ dW 2

z

]
,

or in Itô’s form:

dṼṼ† = i

√
2γc(0)κ

2c

[
(ω0 − ω)

(
σ3Ṽ

† − Ṽσ3

)
dW 1

z + (ω0 − ω)
(
σ1Ṽ

† − Ṽσ1

)
dW 2

z

+ω0

(
σ3ṼṼ† − ṼṼ†σ3

)
dW 1

z + ω0

(
σ1ṼṼ† − ṼṼ†σ1

)
dW 2

z

]
−γc(0)κ2

2c2
[
− 2(ω − ω0)2I + (ω2

0 − ω2)
(
Ṽ + Ṽ†

)
− ω0(ω0 − ω)σ3

(
Ṽ + Ṽ†

)
σ3

−ω0(ω0 − ω)σ1

(
Ṽ + Ṽ†

)
σ1 + 2ω2

0ṼṼ† − ω2
0σ1ṼṼ†σ1 − ω2

0σ3ṼṼ†σ3

]
dz.

We find that E
[
Tr(ṼṼ†)

]
is the solution to the ordinary differential equation

d

dz
E
[
Tr(ṼṼ†)

]
=
γc(0)κ2(ω − ω0)2

c2
(
2 + Re

{[
Tr(Ṽ)

]})
,

which gives (using (6.14)):

E
[
Tr(ṼṼ†(z))

]
= 4− 4 exp

(
− γc(0)κ2(ω − ω0)2z

2c2

)
. (6.15)

Since Tr(ṼṼ†(L)) = ‖Ṽ(L)‖2 and Ǔ(L, ω) and Ǔ(L, ω0) are unitary:

‖Ǔ−1(L, ω0)Ǔ(L, ω)− I‖2 = ‖Ǔ(L, ω0)Ǔ−1(L, ω)− I‖2 = ‖Ṽ(L)‖2,

we finally get the desired result.
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By taking an inverse Fourier transform, we find an alternative (and equivalent)

way to characterize the transmitted front pulse (6.1), as described in the following

corollary.

Corollary 6.1. The limit (6.1) of the transmitted front pulse is given by

utr(τ) = a(L, τ), (6.16)

where a is the two-dimensional vector field solution to the stochastic partial differ-

ential equation

da = −
√
γc(0)

2
κσ3

∂a

∂t
◦ dW 1

z −
√
γc(0)

2
κσ1

∂a

∂t
◦ dW 2

z , (6.17)

starting from

a(z = 0, τ) =
1

4πζ1/2

∫
f̂(ω) exp

(
− ω2κ2

2c2
[
γc(2ω) + iγs(2ω)

]
L
)
e−iωτdτ.

We finally mention that there is no other wave that is transmitted through the

random medium with an amplitude of order one. This result is similar to the one

of the standard scalar case [6] . In other words, if t0 6= 0, then

uεt0(τ) = u
(
z = L, t =

L

c
+ t0 + ε2τ

)
=

1

4πζ1/2

∫
(Tε)t(L, ω)f̂(ω)e−iωτ−iω

t0
ε2 dω

converges in distribution to zero as ε → 0. This can be shown by an analysis

similar to that for Proposition 6.1 which shows that the process (uεt0(τ))τ∈R (as a

continuous function in τ) vanishes as ε → 0 due to the fast phase exp(−iωt0/ε2)

in its integral representation. This implies that the incoherent waves that exit after

the front pulse (the so-called coda waves in the geophysics literature) have small

amplitude in the limit ε → 0 (but not vanishing energy, as shown in [6] in the

scalar case).

7. Stability of the Transmitted Coherent Energy

In this section we assume that f̂ ∈ L1 ∩ L2. We recall the definitions of energy

density and energy flux in Appendix B. The incoming energy flux is

Fεinc = −Kε2
2∑
k=1

∫
∂uεinc,k
∂t

∂uεinc,k
∂z

(0, t)dt, (7.1)

where

uεinc(z, t) =
1

4πζ1/2

∫
f̂(ω)ei

ω
c

z−ct

ε2 dω. (7.2)

Here we have multiplied the flux by ε2 so that it is independent of ε:

Fεinc = Finc =
1

8π

∫
ω2‖f̂(ω)‖2dω. (7.3)
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The total transmitted energy flux is

Fεtr = −Kε2
2∑
k=1

∫
∂uεk
∂t

∂uεk
∂z

(L, t)dt. (7.4)

But in fact we are only interested in the energy of the transmitted front pulse, not

in the energy of the coda or small wave fluctuations that arrive after. The coherent

transmitted energy flux can be defined by

Fεcoh = −Kε2
2∑
k=1

∫
ψ
( t− L

c

ε2

)∂uεk
∂t

∂uεk
∂z

(L, t)dt, (7.5)

where ψ is a smooth cut-off function, that is nonnegative, compactly supported,

and such that ψ(0) = 1. This means that we only collect the transmitted energy

around the expected arrival time L/c over a time window whose duration is of the

order of the initial pulse width.

Proposition 7.1. The coherent transmitted energy flux Fεcoh converges in distri-

bution as ε→ 0 to Fcoh given by

Fcoh =
1

16π2

∫∫
exp

(
− ω2

2κ
2

2c2
[
γc(2ω2) + iγs(2ω2)

]
L
)

× exp
(
− ω2

1κ
2

2c2
[
γc(2ω1)− iγs(2ω1)

]
L
)

×Ǔ(L, ω2)f̂(ω2) · Ǔ(L, ω1)f̂(ω1)ω1ω2ψ̂(ω1 − ω2)dω1dω2. (7.6)

Let us assume that the initial pulse f(t) has carrier frequency ω0 and bandwidth B.

If the width Tψ of the cut-off function ψ satisfies TψB � 1 and Tψωc � 1, where

ωc is the coherence frequency defined by (6.13), then

Fcoh =
1

8π

∫
D(L, ω)ω2‖f̂(ω)‖2dω (7.7)

is deterministic, with the damping coefficient

D(L, ω) =
1

2π

∫
exp

(
− (ω − h/2)2κ2

2c2
[
γc(2ω − h) + iγs(2ω − h)

]
L
)

× exp
(
− (ω + h/2)2κ2

2c2
[
γc(2ω + h)− iγs(2ω + h)

]
L
)
ψ̂(h)dh. (7.8)

If, additionally, the scaled spectral coefficients γc and γs in (7.8) are almost

constant over frequency bands with width 1/Tψ, then

D(L, ω) = exp
(
− ω2κ2

c2
γc(2ω)L

)
. (7.9)

If, additionally, B � ω0 and the spectral coefficients are almost constant over the

frequency band [ω0 −B,ω0 +B], then

Fcoh = Finc exp
(
− ω2

0κ
2

c2
γc(2ω0)L

)
, (7.10)
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and this exhibits a deterministic apparent attenuation of the transmitted coherent

wave, whose decay rate

ω2
0κ

2

c2
γc(2ω0) (7.11)

depends on the anisotropy κ and on the power spectral density γc of the fluctuations

of the anisotropy axis.

Proof. We have

Fεcoh =
1

16π2

2∑
k=1

∫∫
âεk(L, ω2)âεk(L, ω1)ω1ω2ψ̂(ω1 − ω2)dω1dω2

=
1

16π2

2∑
i,j,k=1

∫∫
T εi,k(L, ω2)T εj,k(L, ω1)

×f̂i(ω2)f̂j(ω1)ω1ω2ψ̂(ω1 − ω2)dω1dω2.

This quantity is bounded uniformly by Finc and its moments converge to those of

(7.6), which gives the first item of the proposition.

The second item can be obtained as follows. If Tψωc � 1, then (7.6) can be

simplified into

Fcoh =
1

16π2

∫∫
exp

(
− ω2

2κ
2

2c2
[
γc(2ω2) + iγs(2ω2)

]
L
)

× exp
(
− ω2

1κ
2

2c2
[
γc(2ω1)− iγs(2ω1)

]
L
)

×f̂(ω2) · f̂(ω1)ω1ω2ψ̂(ω1 − ω2)dω1dω2,

because Ǔ is unitary. If TψB � 1, then this becomes (7.8).

Remark. In the geophysics literature the so-called Q-factor (or anelastic atten-

uation factor, or seismic quality factor) quantifies the attenuation of elastic waves

[17]. It measures the relative energy loss per oscillation cycle, so that the energy

then decays as exp(−(ω0/c)(z/Q)) as a function of the propagation distance z. In

our context, we find that the Q factor due to wave scattering by the anisotropy axis

fluctuations is

1

Q
=
ω0

c
κ2γc(2ω0), (7.12)

where γc is defined by (5.4).

8. Conclusion

When a shear wave propagates through a finely layered weakly anisotropic medium,

the transmitted wave consists of a coherent front pulse followed by small incoherent

waves. The coherent front pulse arrives first in a time window around the expected
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arrival time (computed with the homogeneous background velocity) and its duration

is of the order of the initial pulse width. The shape of the coherent front pulse is

randomly perturbed by scattering, but its energy is deterministic and exhibits an

exponential decay with the propagation distance. The decay rate depends on the

power spectral density of the fluctuations of the anisotropy axis. Following the

coherent front pulse, incoherent wave components may also carry energy, but they

have small amplitude and arrive over a long time interval after the arrival of the

coherent front pulse.

These results show that pulse stabilization is not a universal behavior. The

transmitted pulse shape can be random contrarily to the prediction of the classical

O’Dohertey-Anstey theory. This happens when (at least) two transmitted wave

modes have equal (or very close) velocities. This result has been shown in this

paper in the context of shear wave propagation through a laminated anisotropic

medium. It could be extended to more general hyperbolic systems, for instance

electromagnetic waves [8].

This paper also confirms that diffusion-approximation theorems applied to the

wave equation in the frequency domain are a powerful tool to analyze wave propa-

gation in random media. The key issue, as revealed in this paper, is the correlation

properties of the propagator (or transmission operator) as a function of the fre-

quency.
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Appendix A. The Diffusion Approximation Theorem for the

Propagator Matrix

The evolution equation for the propagator matrix can be expanded as

∂

∂z
Pε = i

ωκ

2εc
cos 2ψ

( z
ε2
)(σ3 0

0 −σ3

)
Pε

+i
ωκ

2εc
sin 2ψ

( z
ε2
)(σ1 0

0 −σ1

)
Pε

+
ωκ

2εc
cos 2ψ

( z
ε2
)

sin
(
2
ωz

ε2c

)( 0 σ3

σ3 0

)
Pε

+
ωκ

2εc
sin 2ψ

( z
ε2
)

sin
(
2
ωz

ε2c

)( 0 σ1

σ1 0

)
Pε

+i
ωκ

2εc
cos 2ψ

( z
ε2
)

cos
(
2
ωz

ε2c

)( 0 σ3

−σ3 0

)
Pε

+i
ωκ

2εc
sin 2ψ

( z
ε2
)

cos
(
2
ωz

ε2c

)( 0 σ1

−σ1 0

)
Pε. (A.1)

Applying the result of [6] about limits of random matrix equations we obtain

that Pε(z, ω) converge in distribution to P(z, ω) as ε → 0 that is solution to the

matrix-valued stochastic differential equation

dP = i
ωκ

2c

√
2γc(0)

(
σ3 0

0 −σ3

)
P ◦ dW 1

z + i
ωκ

2c

√
2γc(0)

(
σ1 0

0 −σ1

)
P ◦ dW 2

z

+
ωκ

2c

√
γc(2ω)

(
0 σ3

σ3 0

)
P ◦ dW 3

z +
ωκ

2c

√
γc(2ω)

(
0 σ1

σ1 0

)
P ◦ dW 4

z

+i
ωκ

2c

√
γc(2ω)

(
0 σ3

−σ3 0

)
P ◦ dW 5

z + i
ωκ

2c

√
γc(2ω)

(
0 σ1

−σ1 0

)
P ◦ dW 6

z

+i
ω2κ2

2c2
γs(2ω)

(
−I 0

0 I

)
Pdz, (A.2)

where the W j
z , j = 1, . . . , 6, are independent standard Brownian motions. The

propagator matrix is of the form

P(z, ω) =

(
A(z, ω) B(z, ω)

B(z, ω) A(z, ω)

)
, (A.3)
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where the matrices A(z, ω) and B(z, ω) are the limits in distribution of Aε(z, ω)

and Bε(z, ω) in (4.8) and they satisfy

dA = i
ωκ

2c

√
2γc(0)σ3A ◦ dW 1

z + i
ωκ

2c

√
2γc(0)σ1A ◦ dW 2

z

+
ωκ

2c

√
γc(2ω)σ3B ◦ dW 3

z +
ωκ

2c

√
γc(2ω)σ1B ◦ dW 4

z

+i
ωκ

2c

√
γc(2ω)σ3B ◦ dW 5

z + i
ωκ

2c

√
γc(2ω)σ1B ◦ dW 6

z

−iω
2κ2

2c2
γs(2ω)Adz, (A.4)

dB = −iωκ
2c

√
2γc(0)σ3B ◦ dW 1

z − i
ωκ

2c

√
2γc(0)σ1B ◦ dW 2

z

+
ωκ

2c

√
γc(2ω)σ3A ◦ dW 3

z +
ωκ

2c

√
γc(2ω)σ1A ◦ dW 4

z

−iωκ
2c

√
γc(2ω)σ3A ◦ dW 5

z − i
ωκ

2c

√
γc(2ω)σ1A ◦ dW 6

z

+i
ω2κ2

2c2
γs(2ω)Bdz, (A.5)

starting from A(z = 0, ω) = I and B(z = 0, ω) = 0. One can then check that

R(z, ω) = B(z, ω) A−1(z, ω), T(z, ω) = A−1(z, ω) (A.6)

satisfy (5.1-5.2) and are therefore the limits in distribution of the reflection and

transmission matrices in (4.15).

Appendix B. Energy Relations

The energy density of an elastic wave field u(t,x) in a isotropic medium is defined

by [9]

e =
1

2

3∑
k=1

ρ
(∂uk
∂t

)2
+

1

2

3∑
i,j=1

σijεij .

The energy flux F = (Fj)
3
j=1 such that

∂e

∂t
+∇ · F = 0

is

Fj = −
3∑
i=1

σji
∂ui
∂t

.

For a shear wave propagating along the z-axis, these equations read:

e =
ρ

2

2∑
k=1

(∂uk
∂t

)2
+
K

2

2∑
k=1

(∂uk
∂z

)2
,

and the associated flux F (in the z-direction) such that

∂e

∂t
+
∂F

∂z
= 0
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is

F = −K
2∑
k=1

∂uk
∂t

∂uk
∂z

.
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