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Abstract. The detection, localization, and characterization of a collection of

targets embedded in a medium is an important problem in multistatic wave

imaging. The responses between each pair of source and receiver are collected
and assembled in the form of a response matrix, known as the multi-static

response matrix. When the data are corrupted by measurement or instrument
noise, the structure of the response matrix is studied by using random ma-

trix theory. It is shown how the targets can be efficiently detected, localized

and characterized. Both the case of a collection of point reflectors in which
the singular vectors have all the same form and the case of small-volume elec-

tromagnetic inclusions in which the singular vectors may have different forms

depending on their magnetic or dielectric type are addressed.

1. Introduction. The principle of imaging with waves is to use waves in order
to probe an unknown medium. These waves can be acoustic, elastic, optic, or
electromagnetic. They are emitted by a set of sources and they are recorded by
a set of sensors (transducers in acoustics, seismographs in geophysics, antennas
in electromagnetics, etc). Multistatic imaging usually has two steps. The first
step consists in collecting the waves generated by the sources and recorded by
the receivers. The data set consists of a matrix of recorded signals, known as the
multistatic response matrix, whose indices are the index of the source and the index
of the receiver. The second step consists in processing the recorded data in order
to estimate some relevant features of the medium (reflector locations,. . . ); see, for
instance, [36].
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The main applications that we have in mind are medical imaging (such as mi-
crowave and electrical impedance breast cancer detections), airport security screen-
ing, geophysical exploration, and non-destructive testing; see, for instance, [1, 24,
43]. For such applications, the general purpose of multistatic imaging is, from im-
perfect information (rough forward models, limited and noisy data), to estimate
parts of the unknown structure that is of interest.

In this paper we consider, in the presence of noise, the detection and localization
of point reflectors and small-volume inclusions embedded in a medium by probing
the medium with time-harmonic scalar waves emitted from and recorded on a sensor
array. The data are assumed to be corrupted by instrument noise. We are also
interested in characterizing the physical nature of the inclusions. We use random
matrix theory tools to study these problems in the presence of measurement noise.
The measurement noise can be modeled by an additive complex Gaussian matrix
with zero mean.

Our first goal in this work is to design an efficient procedure for detecting point
reflectors. For doing so, we relate the eigenvalues of the measured response matrix
to those of the response matrix in the absence of any noise and give their statistical
distributions (Theorem 2.1). For given false alarm rate, we provide an estimation
of the number of reflectors and propose an imaging functional to locate them. We
also estimate their physical parameters. Our second goal is to extend the obtained
results and proposed algorithms developed in the case of point reflectors to the case
of small-volume inclusions. In contrast to the case of point reflectors, the eigenvec-
tors associated with the response matrix do not have the same form. Exploiting this
observation, we show that the statistical distributions of the angles between the left
and the right singular vectors of the response matrix (Theorem 3.1) allow us not
only to detect a collection of small-volume inclusions but also to characterize their
nature. We also design two location estimators. The second one is a refinement
of the first. Numerical illustrations to highlight the potential of proposed detec-
tion, reconstruction, and characterization algorithms are presented. For the sake of
simplicity, we only consider the two-dimensional case. Similar results can be easily
derived in three dimensions.

Throughout this paper, we only consider the full-view case, where the sensor
arrays englobe the reflectors and the inclusions to be imaged. It turns out that the
generalization of the analytical formulas obtained in this paper to the limited-view
case is quite involved, see [8]. We refer the reader to [6, 9, 16] for related works on
multistatic imaging.

2. Detection of point reflectors.

2.1. Problem formulation. Let us consider the propagation of scalar waves in R2.
In the presence of r localized reflectors the speed of propagation can be modeled by

1

c2(x)
=

1

c20

(
1 +

r∑
j=1

Vj(x)
)
. (1)

Here
- the constant c0 is the known background speed,
- the local variation Vj(x) of the speed of propagation induced by the reflector at
xj is

Vj(x) = ηj1Ωj (x− xj), (2)



MULTISTATIC WAVE IMAGING 391

where Ωj is a compactly supported domain with volume l2j , 1Ωj is the characteristic
function of Ωj , and ηj is the dielectric contrast (or the strength of the point reflector
at xj).

Suppose that a time-harmonic point source acts at the point z with frequency
ω. The field in the presence of the reflectors is the solution û(·, z) to the following
transmission problem:

∆xû+
ω2

c2(x)
û = −δz(x), (3)

with the radiation condition imposed on û.
Suppose that we have a transmitter array of M sources located at {z1, . . . ,zM}

and a receiver array of N elements located at {y1, . . . ,yN}. The N ×M response
matrix A describes the transmit-receive process performed at these arrays. The
field received by the nth receiving element yn when the wave is emitted from zm
is û(yn, zm). If we remove the incident field then we obtain the (n,m)-th entry of
the response matrix:

Anm = û(yn, zm)− Ĝ(ω,yn, zm). (4)

The incident field is the homogeneous Green’s function Ĝ(ω,x,y) of the wave equa-
tion. It is given by

Ĝ(ω,x,y) =
i

4
H

(1)
0

( ω
c0
|y − x|

)
, (5)

in a two-dimensional medium. Here H
(1)
0 is the zeroth order Hankel function of the

first kind.
Finally, taking into account measurement noise, the measured response matrix

B is

B = A +
1√
M

W, (6)

where the matrix W represents the additive measurement noise, which is a random
matrix with independent and identically distributed complex entries with Gaussian
statistics, mean zero and variance σ2

noise. We assume here

Assumption 1. ηj l
3
j � 1√

M
σnoise.

Assumption 1 insures that indeed the instrument errors dominate the remainder
in the Born approximation.

Moreover, the particular scaling for the noise level is the right one to get non-
trivial asymptotic regimes in the limit M →∞. Furthermore, it is the regime that
emerges from the use of the Hadamard acquisition scheme for the response matrix.
Hadamard’s technique allows us to acquire simultaneously the elements of the MSR
matrix and to reduce the noise level. It uses the structure of Hadamard matrices.
Its feature is to divide the variance of the noise by the number of sources [4, 30].

The goal is to estimate the number of reflectors, their positions and their material
properties from the measured response matrix B.

2.2. Singular value decomposition of the response matrix. In the Born ap-
proximation, where the volume of Ωj , j = 1, . . . , r, goes to zero, the measured field
has approximately the form

û(yn, zm) = Ĝ(ω,yn, zm) +

r∑
j=1

ρjĜ(ω,yn,xj)Ĝ(ω,xj , zm), (7)
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for n = 1, . . . , N , m = 1, . . . ,M , where ρj is the coefficient of reflection defined by

ρj =
ω2

c20
ηj l

2
j (8)

(recall that ηj is the dielectric contrast and l2j is the physical volume of the j-th
reflector). We introduce the normalized vector of Green’s functions from the receiver
array to the point x:

u(x) :=
1(∑N

l=1 |Ĝ(ω,x,yl)|2
) 1

2

(
Ĝ(ω,x,yn)

)
n=1,...,N

, (9)

and the normalized vector of Green’s functions from the transmitter array to the
point x, known as the illumination vector, as follows:

v(x) :=
1(∑M

l=1 |Ĝ(ω,x, zl)|2
) 1

2

(
Ĝ(ω,x, zm)

)
m=1,...,M

. (10)

We can then write the response matrix in the form

A =

r∑
j=1

σju(xj)v(xj)
†, (11)

with

σj := ρj

( N∑
n=1

|Ĝ(ω,xj ,yn)|2
) 1

2
( M∑
m=1

|Ĝ(ω,xj , zm)|2
) 1

2

. (12)

Here † denotes the conjugate transpose.
Throughout this paper, we assume that the arrays of transmitters and receivers

are equi-distributed on a disk or a sphere englobing the point reflectors. Moreover,
the point reflectors are at a distance from the arrays of transmitter and receivers
much larger than the wavelength 2πc0/ω. Provided that the positions xj of the
reflectors are far from one another (i.e., farther than the wavelength 2πc0/ω), the
vectors u(xj), j = 1, . . . , r, are approximately orthogonal to one another, as well as
are the vectors v(xj), j = 1, . . . , r. In fact, from the Helmholtz-Kirchhoff theorem
(see, for instance, [2]), we have

1

N

N∑
n=1

Ĝ(ω,xj ,yn)Ĝ(ω,xi,yn) ' c0
ω
J0(

ω

c0
|xi − xj |) (13)

as N → +∞, where J0 is the Bessel function of the first kind and of order zero.
Moreover, J0( ωc0 |xi − xj |) ' 0 when |xj − xi| is much larger than the wavelength.
The matrix A then has rank r and its non-zero singular values are σj , j = 1, . . . , r,
with the associated left and right singular vectors u(xj) and v(xj).

The reconstruction algorithm that we introduce in the next section will make use
of the following result proved in Appendix A.

Theorem 2.1. Let A be an N×M deterministic matrix with rank r. Let us denote
σ1(A) ≥ · · · ≥ σr(A) > 0 its nonzero singular values. Let W be an N ×M random
matrix with independent and identically distributed complex entries with Gaussian
statistics, mean zero, and variance σ2

noise. We define

B = A +
1√
M

W.
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When γ = N/M and r are fixed and M →∞, for any j = 1, . . . , r, we have

σj(B)
M→∞−→

 σnoise

(σ2
j (A)

σ2
noise

+ 1 + γ + γ
σ2

noise

σ2
j (A)

) 1
2

if σj(A) > γ
1
4σnoise,

σnoise(1 + γ
1
2 ) if σj(A) ≤ γ 1

4σnoise

(14)

in probability.

Theorem 2.1 shows how the singular values of the perturbed response matrix B
are related to the singular values of the unperturbed response matrix A. We can see
that there is level repulsion for the singular values σj(A) that are larger than the

threshold value γ1/4σnoise, in the sense that σj(B) > σj(A). We can also observe

that the singular values σj(A) that are smaller than the threshold value γ1/4σnoise

are absorbed in the deformed quarter-circle distribution of the singular values of
the noise matrix W/

√
M .

2.3. Algorithm for detection, localization, and reconstruction. We denote
γ = N/M . In the first version of the algorithm we assume that the noise level σnoise

is known. The algorithm is then the following one.

1. Compute the singular values σj(B) of the measured response matrix.
2. Estimate the number of reflectors by

r̂ = max
{
j, σj(B) > σnoise

(
1 + γ

1
2 + rα

)}
,

where the threshold value

rα =
1

2M
2
3

(
1 + γ−

1
2

) 1
3 Φ−1

TW2(1− α), (15)

ensures that the false alarm rate (for the detection of a reflector) is α [7, 30].
Here ΦTW2 is the cumulative distribution function of the Tracy-Widom dis-
tribution of type 2 [10, 33]. Recall that the type-2 Tracy-Widom distribution
has the probability distribution function pTW2(x) such that∫ y

−∞
pTW2(x)dx = exp

(
−
∫ ∞
y

(x− y)ϕ2(x)dx
)
,

where ϕ is the solution of the Painlevé equation

ϕ′′(x) = xϕ(x) + 2ϕ(x)3, ϕ(x)
x→+∞
≈ Ai(x), (16)

with Ai being the Airy function. The expectation is
∫
xpTW2(x)dx ≈ −1.77

and the variance is approximately 0.81. We have, for instance, Φ−1
TW2(0.9) '

−0.60, Φ−1
TW2(0.95) ' −0.23, and Φ−1

TW2(0.99) ' 0.48.
3. For each j = 1, . . . , r̂, estimate the positions xj of the jth reflector by looking

after the position x̂j of the global maximum of the subspace imaging functional
Ij(x) defined by

Ij(x) =
∣∣u(x)†uj(B)

∣∣2. (17)

Here, uj(B) is the j-th left singular vector of the measured response matrix B
(i.e., the left singular vector associated to the j-th largest singular value) and
u(x) is defined by (9). We use here the left singular vectors rather than the
right ones because they correspond to the image (receiver) space and there
are usually more receivers than transmitters (N ≥M).
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4. For each j = 1, . . . , r̂, estimate the amplitudes ρj of the j-th reflector by

ρ̂j =
( N∑
n=1

|Ĝ(ω, x̂j ,yn)|2
)− 1

2
( M∑
m=1

|Ĝ(ω, x̂j , zm)|2
)− 1

2

σ̂j , (18)

with σ̂j being the estimator of σj(A) defined by

σ̂j =
σnoise√

2

[σ2
j (B)

σ2
noise

− 1− γ +
((σ2

j (B)

σ2
noise

− 1− γ
)2 − 4γ

) 1
2
] 1

2

. (19)

The form of the estimator σ̂j comes from the inversion of relation (14). If we were
using σj(B) as an estimator of σj(A), then we would over-estimate the coefficients
of reflection of the reflectors.

Note that we do not need to compute all the singular values of the measured
response matrix B, only the singular values larger than σnoise(1 + γ

1
2 ) need to be

computed.
If the noise level is not known, the first two steps of the algorithm must be

replaced by the following ones:

1. Set j = 1 and define B1 = B.
2. (a) Compute the largest singular value σ1(Bj) (i.e., the spectral norm of Bj)

and the associated singular vectors u1(Bj) and v1(Bj).
(b) Compute the Frobenius norm ‖Bj‖F and estimate the noise level by [7, 30]

σ̂n,j = γ−
1
2

[
‖Bj‖2F − σ2

1(Bj)

M − j(1 + γ−
1
2 )2

] 1
2

. (20)

(c) Compute the test

Tj =

{
1 if σ1(Bj) > (1 + γ

1
2 + rα)σ̂n,j ,

0 otherwise,
(21)

where the threshold value rα is given by (15).
(d) If Tj = 1 then define Bj+1 = Bj − σ1(Bj)u1(Bj)v1(Bj)

†, increase j by
one, and go to (a). If Tj = 0 then set r̂ = j− 1 and σ̂n = σ̂n,j−1 (if j = 1,

then σ̂n = σ̂n,0 = ‖B‖F /(γM)
1
2 ) and go to 3.

The sequence of singular values σ1(Bj), j = 1, . . . , r̂, is the list of the r̂ largest
singular values σj(B) of B. Similarly the sequence of left singular vectors u1(Bj),
j = 1, . . . , r̂ is the list of the left singular vectors uj(B) associated to the r̂ largest
singular values of B. In fact, it is not necessary to compute explicitly the Frobenius
norm of Bj at each step in 2(a). Indeed, we compute the Frobenius norm of B and
then use the relation

‖Bj‖2F = ‖B‖2F −
j−1∑
l=1

σ2
1(Bl),

or, equivalently, the recursive relation

‖B1‖2F = ‖B‖2F , ‖Bj+1‖2F = ‖Bj‖2F − σ2
1(Bj), j ≥ 1.

This algorithm provides an estimator σ̂n of the noise level σnoise and an estimator
r̂ of the number r of significant singular values, that is, the number of reflectors.
The steps 3 and 4 of the previous algorithm are then used for the localization and
characterization of the reflectors, using the estimator σ̂n for σnoise.

An alternative algorithm to estimate the noise level is based on the minimiza-
tion of the Kolmogorov-Smirnov distance between the empirical distribution of the
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(smallest) singular values of the perturbed matrix B and the theoretical deformed
quarter-circle law [30]. This algorithm reduces significantly the bias but it is more
computationally intensive. When M is very large, formula (20) is sufficient for the
noise level estimation. When M is not very large, the algorithm presented in [30]
should be used.

Instead of Ij(x) defined by (17), other subspace imaging functionals such as
MUSIC or Kirchhoff-type algorithms can be used; see [11, 12, 17, 22, 41]. The
decomposition of the time-reversal operator (DORT) can also be used [25, 26, 27,
29, 35] for detecting and characterizing the reflectors.

2.4. Numerical simulations. We consider the following numerical setup. The
wavelength is equal to two (i.e., ω = π, c0 = 1). There are r = 3 reflectors
with coefficients of reflection ρ1 = 2, ρ2 = 1.5, ρ3 = 1, located at x1 = (5, 0),
x2 = (−2.5, 4.33) and x3 = (−2.5,−4.33). We consider a circular array of M =
124 transducers located (approximately) at half-a-wavelength apart on the circle of
radius 20 centered at the origin. This array is used as a receiver and as a transmitter
array (therefore, N = M and γ = 1). The noise level varies from σnoise = 2

3σ3(' σ1

3 )
to σnoise = σ3(' σ1

2 ), where σj is the singular value associated to the j-th reflector
(given by (12)).

For each 20 levels of noise equi-distributed on the range of σnoise, we have carried
out a series of 103 Monte-Carlo (MC) simulations. It is worth emphasizing that the
data are generated by a direct code without using the Born approximation. The
results are the following ones:

• The first two reflectors are always detected. When the noise becomes too
important the third one may be missed. Figure 1 shows the probability of
detecting all three point reflectors as a function of the factor σ3/σnoise given
the false alarm rate α = 0.05.

We observe a sharp transition in the probability of detection of the third
reflector. At given level of noise, the probability of detection depends on
α. For example, when σnoise = 4

5σ1, we find that for α = 0.1, we have
P(r̂ = 3) = 0.85, for α = 0.05, we have P(r̂ = 3) = 0.78, and for α = 0.01, we
have P(r̂ = 3) = 0.63.

• The estimators x̂j of the reflectors have good properties. The subspace imag-
ing functional (17) gives excellent predictions as long as the first singular
values and vectors correspond to the reflectors (and not to the noise).

Figure 2 gives the mean and standard deviation for the estimation of the x
and y coordinates of the three reflectors as a function of noise (for the third
reflector, we use only the cases in which it has been detected). We can observe
that the resolution is below the wavelength. This does not contradict classical
diffraction limited results because we here use the a priori information that
the reflectors are point-like.

• The estimators ρ̂j of the reflectivities have small bias because they use the
inversion formula (19) which compensates for the level of repulsion. We plot
in Figure 3 the mean and standard deviation of the estimated reflectivities
for the three reflectors as a function of noise (for the third reflector, we use
only the cases in which it has been detected). We compare it to the empirical
estimators:

ρ̂ej =
( N∑
n=1

|Ĝ(ω, x̂j ,yn)|2
)− 1

2
( M∑
m=1

|Ĝ(ω, x̂j , zm)|2
)− 1

2

σj(B), (22)
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Figure 1. Probability of detecting all three point reflectors for
α = 0.05. Here σref = σ3(A).

which have obvious bias.

In the previous numerical simulations we have assumed that the noise level σnoise

was known. However in some practical applications the noise level has to be esti-
mated. We have described an iterative algorithm to estimate the noise level. It has
been implemented on the case of three point reflectors. Figure 4 gives the mean and
standard deviation of the estimated noise level σ̂noise as a function of σmin/σnoise.
As expected the estimator obtained with this algorithm has some bias. Nonetheless,
our algorithm of detection and reconstruction of point reflectors still performs quite
well with this noise estimation. If M were smaller then it would be necessary to
use the Kolmogorov-Smirnov algorithm to estimate the noise level [30].

3. Detection of small inclusions.

3.1. Asymptotic modelling of an inclusion. In this section we consider the
two-dimensional (electromagnetic) situation where an inclusion D with constant
parameters 0 < µ < +∞ and 0 < ε < +∞, (µ, ε) 6= (1, 1), is embedded into a
background medium with permeability and permittivity equal to 1. Note that this
situation is equivalent to an acoustic situation where an inclusion with anomalous
density and compressibility is embedded into a homogeneous background medium.
Suppose that D = D̃ + xinc, where D̃ is a small domain centered at 0, and xinc

indicates the location of D. The time-harmonic field û(x,y) observed at x when
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Figure 2. Mean and standard deviation for the estimation of the
coordinates of the three point reflectors as a function of noise.

there is a point source at z is the solution of
∇x ·

(
1 + (

1

µ
− 1)1D(x)

)
∇xû+

ω2

c20

(
1 + (ε− 1)1D(x)

)
û = −δz in R2,∣∣∣∣( ∂

∂|x|
− i ω

c0

)(
û(x)− Ĝ(ω,x, z)

)∣∣∣∣ = O(|x|−3/2),

(23)

where Ĝ is the time-harmonic Green’s function given by (5).
Suppose that we have a transmitter array of M sources located at {z1, . . . ,zM}

and a receiver array of N elements located at {y1, . . . ,yN}. The N ×M response
matrix A is defined as in (4). The following asymptotic expression of the response
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Figure 3. Mean and standard deviation of the estimated reflec-
tivities for the three point reflectors as a function of noise.

matrix entries is established uniformly with respect to ω such that ω|D̃|1/2 < 1

Anm = ∇xinc
Ĝ(ω,yn,xinc) ·M(µ, D̃)∇xinc

Ĝ(ω,xinc, zm)

+
ω2

c20
(ε− 1)|D̃|Ĝ(ω,yn,xinc)Ĝ(ω,xinc, zm) + o(ω2|D̃|), (24)

when the volume |D̃| of D̃ goes to zero. See [5, 14, 31, 40]. Here M(µ, D̃) is the
polarization tensor given by [14, 15]:

M(µ, D̃) := (
1

µ
− 1)

∫
D̃

∇(v̂(x̃) + x̃)dx̃,
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Figure 4. Mean and standard deviation of the estimated noise
level σ̂noise as a function of σmin/σnoise.

where v̂ is the solution to

∆v̂ = 0 in R2 \ D̃,
∆v̂ = 0 in D̃,

v̂|− − v̂|+ = 0 on ∂D̃,

1

µ

∂v̂

∂ν

∣∣∣∣
−
− ∂v̂

∂ν

∣∣∣∣
+

= (
1

µ
− 1)ν on ∂D̃,

v̂(x̃)→ 0 as |x̃| → +∞,

with ν the outward-pointing unit normal vector.
A simplification (that is not necessary in the forthcoming analysis) consists in

considering a high-frequency asymptotic expression for the Green’s function. Using
the asymptotic form of the Hankel function

H
(1)
0 (x) '

√
2/(π|x|) exp(ix− i sgn(x)π/4) for |x| � 1,

we find that for ω|x− y|/c0 � 1 the Green’s function takes the simple form:

Ĝ(ω,x,y) '
√
c0

2
√

2π

exp(i π/4)√
ω|y − x|

exp
(
i
ω

c0
|y − x|

)
, (25)

and

∇Ĝ(ω,x,y) '
√
c0

2
√

2π

(
iω(x− y)

c0|x− y|

)
exp(i π/4)√
ω|x− y|

exp
(
i
ω

c0
|x− y|

)
,

and hence the response matrix can be approximated by

Anm ' −iω
8πc0

√
|yn − xinc||zm − xinc|

exp
(
i
ω

c0
(|yn − xinc|+ |zm − xinc|)

)

×
[

(yn − xinc) ·M(µ, D̃)(zm − xinc)

|yn − xinc||zm − xinc|
− |D̃|(ε− 1)

]
. (26)
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3.2. The structure of the response matrix. From now on we consider that
there are R inclusions (Dj)j=1,...,R with parameters 0 < µj < +∞ and 0 < εj < +∞
located in a background medium with permeability and permittivity equal to 1.
Each inclusion is of the form Dj = D̃j +xj . Further, we assume that the inclusions
are small and far from each other (i.e., farther than the wavelength 2πc0/ω). Then
the response matrix can be approximately written in the form

Anm '
R∑
j=1

∇xĜ(ω,xj ,yn) ·M(µj , D̃j)∇xĜ(ω,xj , zm)

+

R∑
j=1

ω2

c20
(εj − 1)|D̃j |Ĝ(ω,xj ,yn)Ĝ(ω,xj , zm),

where we have used the reciprocity relation Ĝ(ω,x,y) = Ĝ(ω,y,x). The tensor

(2× 2 matrix) M(µj , D̃j) is diagonalizable:

M(µj , D̃j) = αja(θj)a(θj)
T + βja(θj + π/2)a(θj + π/2)T ,

where a(θ) = (cos θ, sin θ)T . We can then write the matrix A in the form:

A =

3R∑
j=1

σjujv
†
j , (27)

where

σ3(j−1)+1 = ρj

( N∑
n=1

|Ĝ(ω,xj ,yn)|2
) 1

2
( M∑
m=1

|Ĝ(ω,xj , zm)|2
) 1

2

,

σ3(j−1)+2 = αj

( N∑
n=1

|a(θj)
T∇Ĝ(ω,xj ,yn)|2

) 1
2
( M∑
m=1

|a(θj)
T∇Ĝ(ω,xj , zm)|2

) 1
2

,

σ3(j−1)+3 = βj

( N∑
n=1

|a(θj + π/2)T∇Ĝ(ω,xj ,yn)|2
) 1

2

×
( M∑
m=1

|a(θj + π/2)T∇Ĝ(ω,xj , zm)|2
) 1

2

,

ρj = ω2

c20
(εj − 1)|D̃j |, and

u3(j−1)+1 = u(xj), v3(j−1)+1 = v(xj),

u3(j−1)+2 = U(xj , θj), v3(j−1)+2 = V (xj , θj),

u3(j−1)+3 = U(xj , θj + π/2), v3(j−1)+3 = V (xj , θj + π/2),

with

U(x, θ) =
1(∑N

l=1 |a(θ)T∇Ĝ(ω,x,yl)|2
) 1

2

(
a(θ)T∇Ĝ(ω,x,yn)

)
n=1,...,N

, (28)

V (x, θ) =
1(∑M

l=1 |a(θ)T∇Ĝ(ω,x, zl)|2
) 1

2

(
a(θ)T∇Ĝ(ω,x, zm)

)
m=1,...,M

.(29)

Note that (27) is not a priori a singular value decomposition, since the vectors
uj (and vj) may not be orthogonal. However, as in the previous section, the
orthogonality condition is guaranteed provided that:
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- the positions xj of the inclusions are far from each other (i.e., much farther than
the wavelength),
- the sensors cover the surface of a disk or a sphere surrounding the search region.

The second condition ensures the orthogonality of the three vectors associated
to the same inclusion (using the Helmholtz-Kirchhoff identity). The first condition
ensures the orthogonality of the vectors associated to different inclusions. When
these two conditions are fulfilled, the vectors uj , j = 1, . . . , 3R, are approximately
orthogonal to each other, as well as the vectors vj , j = 1, . . . , 3R. The matrix A
has then rank 3R and its non-zero singular values are σj , j = 1, . . . , 3R, with the
associated left and right singular vectors uj and vj .

3.3. Singular vectors of the perturbed response matrix. Taking into account
measurement noise, the measured response matrix B is

B = A +
1√
M

W, (30)

where the matrix A is the unperturbed matrix (27) and the matrix W represents
the additive measurement noise, which is a random matrix with independent and
identically distributed complex entries with Gaussian statistics, mean zero and vari-
ance σ2

noise. The singular values of the perturbed matrix B and of the unperturbed
matrix A are related as described in Theorem 2.1. It is of interest to describe
the statistical distribution of the angles between the left and right singular vectors
uj(B) and vj(B) of the noisy matrix B with respect to the left and right singular
vectors uj(A) and vj(A) of the unperturbed matrix A. This plays a key role in
the algorithm that we discuss in Section 3.4.

Theorem 3.1. We assume the same conditions as in Theorem 2.1 and moreover
that the non-zero singular values σ2

j (A) are distinct. When γ = N/M and R are

fixed and M →∞, for any j = 1, . . . , 3R such that σj(A) > γ
1
4σnoise, we have

∣∣uj(A)†uj(B)
∣∣2 M→∞−→

1− γ σ
4
noise

σ4
j (A)

1 + γ
σ2
noise

σ2
j (A)

(31)

and ∣∣vj(A)†vj(B)
∣∣2 M→∞−→

1− γ σ
4
noise

σ4
j (A)

1 +
σ2
noise

σ2
j (A)

(32)

in probability.

Theorem 3.1 is proved in Appendix B. It shows that the cosines of the angles
between the singular vectors of the perturbed matrix B and the singular vectors of
the unperturbed matrix A are deterministic provided the corresponding perturbed
singular values emerge from the deformed quarter-circle distribution. Although we
will not give the proof of the following result (which we will not use in the sequel),

we also have, for any j = 1, . . . , 3R such that σj(A) ≤ γ 1
4σnoise,∣∣uj(A)†uj(B)

∣∣2 M→∞−→ 0 and
∣∣vj(A)†vj(B)

∣∣2 M→∞−→ 0 (33)

in probability.
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3.4. Algorithm for detection, localization, and reconstruction. We first
apply Steps 1 and 2 of the algorithm described in Section 2.3 to estimate the number
r̂ of significant singular values of the perturbed matrix B. We apply either the first
version, in the case in which the noise level is known, or the second one, in the case
in which it is unknown. We use in the following the same notation as in Section
2.3. The sequence of singular values σ1(Bj), j = 1, . . . , r̂ is the list of the r̂ largest
singular values σj(B) of B. Similarly the sequence of left singular vectors u1(Bj),
j = 1, . . . , r̂, is the list of the left singular vectors uj(B) associated to the r̂ largest
singular values of B.

The following steps are original compared to the previous algorithm. Indeed, in
Section 2.3, the singular vectors are all of the same form. Here the singular vectors
may have different forms depending on their nature (dielectric or magnetic).

3. For each j = 1, . . . , r̂, we consider the two functionals

Ij(x) = |u(x)†uj(B)|2, Jj(x, θ) = |U(x, θ)†uj(B)|2,

where U(x, θ) is given by (28). We find their maxima Ij,max and Jj,max (the
optimization with respect to θ for Jj(x, θ) can be carried out analytically).
We estimate the theoretical angle between the unperturbed and perturbed
vectors by

ĉj =
1− γ σ

4
noise

σ̂4
j

1 + γ
σ2
noise

σ̂2
j

,

with σ̂j the estimator of σj(A) given by (19). We decide of the type (d for
dielectric, m for magnetic) of the jth singular value as follows:

Tj =

{
d if |Ij,max − ĉj | ≤ |Jj,max − ĉj |,
m if |Ij,max − ĉj | > |Jj,max − ĉj |.

We also record the position x̂j of the maximum of the imaging functional

Ij(x) if Tj = d or the position and angle (x̂j , θ̂j) of the maximum of the
imaging functional Jj(x, θ) if Tj = m.

4. We now cluster the results: we consider the set of positions x̂j estimated in
Step 3. We group the indices {1, . . . , r̂} in subsets (Iq)q=1,...,R̂ of up to three
indices which contain the indices that correspond to positions close to each
other (within one wavelength):

Set I = {2, . . . , r̂}, j = 1, q = 1, and I1 = {1}.
While I 6= ∅, do
- consider Ĩ = {l ∈ I such that |x̂l − x̂j | < λ, Tl is compatible}.
- if Ĩ = ∅, then increase q by one, set j = min(I), Iq = {j}, and
remove j from I.
- if Ĩ 6= ∅, then add min(Ĩ) into Iq and remove it from I.

We say that the type Tl is not compatible if it is d in the case in which there is
already one index with type d in Iq, or if it is m in the case in which there are
already two indices with type m in Iq (note that this implies that Tl is never
compatible as soon as |Iq| = 3)

This procedure gives the decomposition:

{1, . . . , r̂} = ∪R̂q=1Iq, Iq = {j(q)
1 , . . . , j(q)

nq
},
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with 1 ≤ nq ≤ 3. The subset Iq contains nq indices that correspond to
positions close to each other and it does not contain two indices with type d

or three indices with type m.

The estimators of the relevant quantities are the following ones:
The number of inclusions is estimated by R̂.
The position of the q-th inclusion is estimated by the barycenter (Method 1):

X̂q =
1

nq

nq∑
l=1

x̂
j
(q)
l

An alternative estimator (Method 2) is obtained by an optimization method. It is
given by

X̂q = argmax
x

{ nq∑
l=1

σ
j
(q)
l

(B)2
[
1T

j
(q)
l

=d

∣∣u(x)†u
j
(q)
l

(B)
∣∣2

+1T
j
(q)
l

=m

∣∣U(x, θ̂
j
(q)
l

)†u
j
(q)
l

(B)
∣∣2]}.

The first estimator can be used as a first guess for Method 2. More exactly the
second estimator can be implemented in the form of an iterative algorithm (steepest
descent) starting from this first guess.

The dielectric coefficients ρq of the q-th inclusion cannot be estimated if there is
no index with type d in Iq, otherwise it can be estimated by

ρ̂q =
( N∑
n=1

|Ĝ(ω, X̂q,yn)|2
)− 1

2
( M∑
m=1

|Ĝ(ω, X̂q, zm)|2
)− 1

2

σ̂
j
(q)
l

, (34)

with σ̂j the estimator of σj(A) given by (19) and j
(q)
l is here the index with type d

in Iq.
The angle and the magnetic coefficient α and β of the q-th inclusion:

- cannot be estimated if there is no index with type m in Iq,
- can be estimated by

Θ̂q =θ̂
j
(q)
l

,

α̂q =
( N∑
n=1

|a(Θ̂q)
T∇Ĝ(ω, X̂q,yn)|2

)− 1
2
( M∑
m=1

|a(Θ̂q)
T∇Ĝ(ω, X̂q, zm)|2

)− 1
2

σ̂
j
(q)
l

,

if there is one index j
(q)
l with type m in Iq,

- can be estimated by

Θ̂q = argmax
θ

{
σ
j
(q)
l

(B)2|U(X̂q, θ)
†u

j
(q)
l

(B)|2

+σ
j
(q)

l′
(B)2|U(X̂q, π/2 + θ)†ujl′(q)(B)|2

}
,

α̂q =
( N∑
n=1

|a(Θ̂q)
T∇Ĝ(ω, X̂q,yn)|2

)− 1
2

×
( M∑
m=1

|a(Θ̂q)
T∇Ĝ(ω, X̂q, zm)|2

)− 1
2

σ̂
j
(q)
l

,
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β̂q =
( N∑
n=1

|a(Θ̂q + π/2)T∇Ĝ(ω, X̂q,yn)|2
)− 1

2

×
( M∑
m=1

|a(Θ̂q + π/2)T∇Ĝ(ω, X̂q, zm)|2
)− 1

2

σ̂
j
(q)

l′
,

if there are two indices j
(q)
l , j

(q)
l′ with type m in Iq.

3.5. Numerical simulations. We illustrate the algorithm proposed for small-
volume inclusions in the following numerical setting. The operating wavelength
is equal to 2 (ω = π, c0 = 1). As shown in Figure 5, there are 3 inclusions lo-
cated at x1 = (5, 0), x2 = (−2.5, 4.33) and x3 = (−2.5,−4.33), with parameters
(ε1, µ1) = (2, 2), (ε2, µ2) = (1, 3) and (ε3, µ3) = (3, 1). The inclusions are disks of
the same radius δ = 0.01.

We consider an array of N = M = 124 receivers-transmitters equi-distributed
along the circle centered at the origin and of radius 20. As said before, we have
to consider full aperture data otherwise the orthogonality between the vectors u
and U corresponding to a given inclusion is not guaranteed. Again, it is worth
emphasizing that the data is generated by a direct code without using the small-
volume approximation (24).

We consider 20 (known) noise levels ranging from 2/3 to 1 times the smallest
singular value σref = σ6(A). Each time, we carry out 103 MC simulations. We set
the false alarm rate α = 0.05.

3.5.1. Estimation of the number of singular values and classification of the singular
vectors. In Figure 6 an example of the discrepancy of the singular values is given
for one realization when σnoise = 0.95 σref . The theoretical response matrix A has
6 significant singular values. From largest to smallest, we have one for the dielectric
effect of the third inclusion (ε3 = 3), one for the dielectric effect of the first inclusion
(ε1 = 2), two for the magnetic effect of the second inclusion (µ2 = 3) and two for
the magnetic effect of the first inclusion (µ1 = 2). In this realization, the detection
of the sixth singular value has failed.

Figure 7 gives the estimated probability of detecting all the 6 singular values as
a function of the noise level. We also plot in Figure 8 the classification achieved
by the algorithm. The exact classification (detection of the 6 singular values and
correct attribution of their physical source= dark red) is achieved for the weakest
level of noise (right side of the graph). For stronger noise, the orange and blue
parts correspond to missing singular values but good classification of the detected
ones. On the contrary, the red and light blue parts correspond to misclassification of
singular values and may reveal more troublesome. For example when σref/σnoise '
1.35, the sixth singular value is detected most of the time but is misclassified more
than half the time. This results in the appearing of an artifact dielectric inclusion
at the same location as the true electromagnetic inclusion 1.

3.5.2. Estimation of the position and the parameters of the inclusions. Figures 9, 10,
and 11 give the mean and standard deviation of the positions and electromagnetic
parameters of the inclusions identified through the algorithm.

We observe that the estimation of the position of the inclusions is almost unaf-
fected by the noise level. This is because each inclusion has singular values well
above the noise level. Even if the magnetic part (singular values 5 and 6) of the in-
clusion 1 is missed or misinterpreted, its dielectric part is always identified (singular
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Figure 5. Configuration: three small-volume disk-shaped inclu-
sions with different electromagnetic parameters. The separation
distance between the inclusions is larger than the wavelength.

value 2). Estimation of the position (x3, y3) of the third inclusion (corresponding to
the largest singular values) has no variability and its bias is smaller than the pixel
size on the search domain.

Once again, the estimation of the parameters of the inclusions seems unaffected
on this range of noise. Since singular values 5 and 6 are not always detected, α1

cannot always be estimated. The mean and standard deviation are then estimated
only on the subset of realization where at least one of the corresponding singular
values is detected.

4. Conclusion. In this work, original algorithms for detecting, locating, and char-
acterizing point reflectors and small inclusions from noisy response matrices have
been introduced. Our algorithms are based on analytical formulas for the statistical
distributions of the eigenvalues (in the case of point reflectors) and the angles be-
tween the left and right singular vectors (in the case of small inclusions). We have
successfully tested the proposed algorithms and numerically shown their efficiency.
It would be very interesting to generalize the present approach to the limited-view
case. Since the orthogonality property satisfied by the normalized vectors of Green’s
function from the receiver or transmitter array to the center of the inclusions is no
more valid in the limited-view case, the analysis would be quite involved. We
will also make an attempt to extend the approach introduced in this paper to full
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Figure 6. Discrepancy of the singular values for one realization
with σnoise = 0.95 σref .

Maxwell’s equations and to linear elasticity, as well. Imaging electromagnetic and
elastic small inclusions from response matrices was originally developed in [13, 3].

Appendix A. Proof of Theorem 2.1. If X is an N ×M matrix, then we denote
by σj(X), j = 1, . . . , N ∧M , the singular values of X. If X is a diagonalizable
M ×M matrix, then we denote by λj(X), j = 1, . . . ,M , the eigenvalues of X.

Step 1. We briefly summarize some known results about the spiked population
model. The spiked population model is a random matrix model for N×M matrices
introduced in [33].

Let r be a positive integer. Let l1 ≥ · · · ≥ lr > 1 be positive real numbers. We
define the N × N population covariance matrix by Σ = diag(l1, . . . , lr, 1, . . . , 1).
We consider the random matrix X whose M columns are independent realizations
of complex Gaussian vectors with mean zero and covariance Σ. We introduce the
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Figure 7. Estimated probability of detecting all the 6 singular
values as a function of the noise level.

sample covariance matrix

SX =
1

M
XX†.

The statistical behavior of the eigenvalues λj(SX), j = 1, . . . , N has been obtained
in [21] when γ = N/M is fixed and N →∞:

Lemma A.1. When γ = N/M is fixed and M →∞ we have for j = 1, . . . , r:

λj(SX)
M→∞−→

 lj + γ
lj

lj − 1
if lj > 1 + γ

1
2 ,(

1 + γ
1
2

)2
if lj ≤ 1 + γ

1
2 ,

almost surely.

We write the random matrix X as

X = Y + Z,

where Y and Z are independent, the M columns of Y are independent realizations
of complex Gaussian vectors with mean zero and covariance Σ − I and the M
columns of Z are independent realizations of complex Gaussian vectors with mean
zero and covariance I. In other words Z have independent and identically complex
entries with mean zero and variance one. Note also that the entries Ynm of Y are
zero if n ≥ r + 1 (almost surely), since they are realizations of Gaussian random
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Figure 8. Classification of the inclusions as a function of the
noise level. Dark red corresponds to detection of the 6 singular
values and correct attribution of their physical source. Orange and
blue parts correspond to missing singular values but good classifi-
cation of the detected ones. Red and light blue parts correspond
to misclassification of singular values.

variables with mean zero and variance zero. Therefore:
- the matrix Y has the form

Y =

(
Ỹ
0

)
,

where Ỹ is a r×M random matrix whose M columns are independent realizations

of complex Gaussian vectors with mean 0 and r×r covariance matrix Σ̃ = diag(l1−
1, . . . , lr − 1).
- the sample covariance matrix SY = 1

MYY† has the form

SY =

(
S̃Ỹ 0
0 0

)
,

where S̃Ỹ = 1
M ỸỸ†. S̃Ỹ is a r×r matrix with entries (S̃Ỹ)qq′ = 1

M

∑M
m=1 ỸqmỸq′m.

By the law of large numbers we have

S̃Ỹ

M→∞−→ Σ̃,
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Figure 9. Mean and standard deviation of the positions of the inclusions.

almost surely. The almost sure convergence to zero of the Frobenius norm ‖S̃Ỹ −
Σ̃‖F also holds. Since we have for j = 1, . . . , r

σj
( 1√

M
Y
)2

= λj
( 1

M
YY†

)
= λj(SY) = λj(S̃Ỹ),

we find that

σj
( 1√

M
Y
) M→∞−→ λj(Σ̃)

1
2 =

√
lj − 1, (35)

almost surely. Note also that, for j ≥ r + 1 we have σj
(

1√
M

Y
)

= 0.

Step 2. Let A be an N ×M rank-r deterministic matrix whose nonzero singular
values are σ1(A) ≥ · · · ≥ σr(A) > 0. Let W be an N ×M random matrix with
independent and identically distributed complex entries with Gaussian statistics,
mean zero and variance one (i.e., the real and imaginary parts of the entries are
independent and obey real Gaussian distribution with mean zero and variance 1/2).
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Figure 10. Mean and standard deviation of the parameter ρ of
the inclusions.

We define

B = A +
1√
M

W. (36)

Lemma A.2. When γ = N/M is fixed and M →∞, for any j = 1, . . . , r,

σj(B)
M→∞−→


(
lj + γ

lj
lj − 1

) 1
2 if lj > 1 + γ

1
2 ,

1 + γ
1
2 if lj ≤ 1 + γ

1
2 ,

in probability, with lj = 1 + σj(A)2.

Proof. We first establish a relationship between the perturbed model (36) and a
spiked population model. The idea to use such a relationship was proposed recently
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Figure 11. Mean and standard deviation of the parameter α of
the inclusions.

by [38] in another context. We consider the spiked population model X with lj =
1 + σ2

j (A) and we introduce the decomposition X = Y + Z as in the previous step.

We denote by Y = UYDYV†Y the singular value decomposition of Y. We denote

by A = UADAV†A the singular value decomposition of A.
Let us define

B̃ = DA +
1√
M

U†YZVY.

We have

UAB̃V†A = A +
1√
M

UAU†YZVYV†A.
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Since UAU†YZVYV†A has the same statistical distribution as W (the distribution

of W is invariant with respect to multiplication by unitary matrices) and B̃ and

UAB̃V†A have the same singular values, it is sufficient to show the lemma for B̃
instead of B.

We have

M∧N∑
j=1

∣∣λj(SX

) 1
2 − σj(B̃)

∣∣2 =

M∧N∑
j=1

∣∣σj( 1√
M

X
)
− σj(B̃)

∣∣2
=

M∧N∑
j=1

∣∣σj( 1√
M

U†YXVY

)
− σj(B̃)

∣∣2.
Therefore,

M∧N∑
j=1

∣∣λj(SX

) 1
2 − σj(B̃)

∣∣2
≤
∥∥ 1√

M
U†YXVY − B̃

∥∥2

F
by Lemma C.1

=
∥∥ 1√

M
U†YYVY +

1√
M

U†YZVY −DA −
1√
M

U†YZVY

∥∥2

F

=
∥∥ 1√

M
DY −DA

∥∥2

F

=

M∧N∑
j=1

∣∣σj( 1√
M

DY

)
− σj(DA)

∣∣2
=

M∧N∑
j=1

∣∣σj( 1√
M

Y
)
− σj(A)

∣∣2
=

r∑
j=1

∣∣σj( 1√
M

Y
)
−
√
lj − 1

∣∣2
M→∞−→ 0 by (35).

Therefore, for all j = 1, . . . , r, we have
∣∣λj(SX

) 1
2 − σj(B̃)

∣∣2 → 0 as M → ∞.

Lemma A.1 gives the convergence of λj
(
SX

)
, which in turn ensures the convergence

of σj(B̃), which completes the proof of Lemma A.2. 2

Step 3. Let A be an N ×M rank-r deterministic matrix whose nonzero singular
values are σ1(A) ≥ · · · ≥ σr(A) > 0. Let W be an N ×M random matrix with
independent and identically distributed complex entries with Gaussian statistics,
mean zero and variance σ2

noise. We define

B = A +
1√
M

W.

We can now prove the statement of Theorem 2.1.

Proof. We introduce

B̃ =
1

σnoise
B, Ã =

1

σnoise
A, W̃ =

1

σnoise
W.
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We have

B̃ = Ã +
1√
M

W̃,

where Ã is an N ×M rank-r deterministic matrix whose nonzero singular values

are σj(Ã) = σj(A)/σnoise and W̃ is an N ×M random matrix with independent
and identically distributed complex entries with Gaussian statistics, mean zero and

variance one. Using Lemma A.2 gives the limits of the singular values of B̃, which

in turn yields the desired result since σj(B) = σnoiseσj(B̃). 2

Appendix B. Proof of Theorem 3.1. We use the same notation as in Appendix
A. We address only the case of the left singular vectors, since the result obtained
for them can be used to obtain the equivalent result for the right singular vectors
after transposition of the matrices.

Step 1. The statistical behavior of the eigenvectors uj(SX), j = 1, . . . , N has been
obtained in [23] when l1 > · · · > lr > 1, γ = N/M is fixed and M →∞:

Lemma B.1. When γ = N/M is fixed and M →∞ we have for j = 1, . . . , r:

∣∣uj(SX)†uj(Σ)
∣∣2 M→∞−→


1− γ

(lj−1)2

1 + γ
lj−1

if lj > 1 + γ
1
2 ,

0 if lj ≤ 1 + γ
1
2 ,

almost surely, and for j 6= k ∣∣uj(SX)†uk(Σ)
∣∣2 M→∞−→ 0,

in probability.

Here Σ is diagonal with distinct eigenvalues so that the jth singular vector uj(Σ)

is the vector e(N,j), that is, the N -dimensional vector whose entries are zero but

the j-th entry which is equal to one (e
(N,j)
k = 0 if k 6= j and e

(N,j)
j = 1). In fact,

this result is proved in [37] in the case of real-valued spiked covariance matrices and
it has been recently extended to the complex case in [23].

As shown in Appendix A, we have S̃Ỹ

M→∞−→ Σ̃ almost surely. Since the j-th

eigenvector of Σ̃ is the vector e(r,j), we have by Lemma C.2∣∣uj(S̃Ỹ)†e(r,j)
∣∣2 M→∞−→ 1,

for all j = 1, . . . , r almost surely. We have

uj(Y) = uj
( 1√

M
Y
)

= uj
( 1

M
YY†

)
= uj(SY)

and uj(SY)†e(N,j) = uj(S̃Ỹ)†e(r,j) for all j = 1, . . . , r. Therefore∣∣uj(Y)†e(N,j)
∣∣2 M→∞−→ 1, (37)

for all j = 1, . . . , r almost surely.

Step 2. Let A be an N ×M rank-r deterministic matrix whose nonzero singular
values are σ1(A) > · · · > σr(A) > 0. Let W be an N ×M random matrix with
independent and identically distributed complex entries with Gaussian statistics,
mean zero and variance one. We define as in Appendix A

B = A +
1√
M

W.



414 HABIB AMMARI, JOSSELIN GARNIER AND VINCENT JUGNON

Lemma B.2. When γ = N/M is fixed and M →∞, for any j = 1, . . . , r such that

lj > 1 + γ
1
2 and for any k = 1, . . . , r, we have

∣∣uj(B)†uk(A)
∣∣2 M→∞−→


1− γ

(lj−1)2

1 + γ
lj−1

if k = j,

0 otherwise ,

in probability, with lj = 1 + σj(A)2.

Proof. We use the same notation as in the proof of Lemma A.2. We use again the
relationship between randomly perturbed low-rank matrices and spiked population
models [38]. Let us fix an index j = 1, . . . , r such that lj > 1+γ

1
2 . For k = 1, . . . , r,

let us denote Lk =
(
lk + γlk

lk−1

) 1
2 if lk > 1 + γ

1
2 and Lk = 1 + γ

1
2 if lk ≤ 1 + γ

1
2 . We

can find δ > 0 such that Lj > 2δ and mink=1,...,r, k 6=j
∣∣Lk−Lj∣∣ > 2δ. We know from

Appendix A that (σk(B̃))k=1,...,r and (σk( 1√
M

U†YXVY))k=1,...,r both converge to

(Lk)k=1,...,r almost surely. Therefore, for M large enough, we have

min
k 6=j

∣∣σj(B̃)− σk(
1√
M

U†YXVY)
∣∣ ≥ δ and σj(B̃) ≥ δ,

and we can apply Lemma C.2 which gives, for M large enough∣∣uj(B̃)†uj(
1√
M

U†YXVY)
∣∣2 ≥ 1−

2‖ 1√
M

U†YXVY − B̃‖2F
δ2

.

Using Appendix A we find that the right-hand side converges almost surely to one,
and therefore, ∣∣uj(B̃)†uj(

1√
M

U†YXVY)
∣∣2 M→∞−→ 1, (38)

almost surely. The left singular vectors of 1√
M

U†YXVY are related to those of X

through

uj(
1√
M

U†YXVY) = U†Yuj(X),

and therefore (38) implies ∣∣uj(B̃)†U†Yuj(X)
∣∣2 M→∞−→ 1, (39)

almost surely.
By Lemma B.1 and the fact that uj(SX) = uj(

1
MXX†) = uj(X) we have∣∣uj(X)†e(N,k)

∣∣2 M→∞−→ ξjδjk, (40)

for all k = 1, . . . , r in probability, where ξj = (1− γ
(lj−1)2 )/(1 + γ

lj−1 ). The matrix

UY consists of the left singular vectors of Y and we have UYe
(N,k) = uk(Y). By

(37) (in Step 1) we find that∣∣e(N,k)†UYe
(N,k)

∣∣ =
∣∣uk(Y)†e(N,k)

∣∣ M→∞−→ 1, (41)

for all k = 1, . . . , r. Combining (40) and (41) we obtain∣∣[U†Yuj(X)]†e(N,k)
∣∣2 =

∣∣uj(X)†UYe
(N,k)

∣∣2 M→∞−→ δjkξj ,

for all k = 1, . . . , r in probability. Using (39) we obtain∣∣uj(B̃)†e(N,k)
∣∣2 M→∞−→ δjkξj ,
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for all k = 1, . . . , r in probability. The vector e(N,k) is the k-th left singular vector
of DA, so ∣∣uj(B̃)†uk(DA)

∣∣2 M→∞−→ δjkξj , (42)

for all k = 1, . . . , r in probability.

Remember that B̃ = DA + 1√
M

U†YZVY, so

UAB̃V†A = A +
1√
M

UAU†YZVYV†A,

and UAU†YZVYV†A has the same statistical distribution as W. As a result B and

UAB̃V†A have the same statistical distribution. As a consequence

uj(B)
in dist.

= uj(UAB̃V†A) = UAuj(B̃),

and ∣∣uj(B)†uk(A)
∣∣2 in dist.

=
∣∣uj(B̃)†U†Auk(A)

∣∣2 =
∣∣uj(B̃)†uk(U†AAVA)

∣∣2
=

∣∣uj(B̃)†uk(DA)
∣∣2,

which converges in probability to δjkξj as M →∞ by (42). 2

Step 3. This step is identical to the one of Appendix A.

Appendix C. Two useful lemmas. We first give a classical lemma that we use
in the proof of Theorem 2.1. It can be found for instance in [32, p. 448].

Lemma C.1. Let X and Y be two N ×M matrices. Then we have

M∧N∑
j=1

∣∣σj(X)− σj(Y)
∣∣2 ≤ ∥∥X−Y

∥∥2

F
,

where

‖X‖2F =

N∑
n=1

M∑
m=1

|Xmn|2 =

M∧N∑
j=1

σ2
j (X)

is the Frobenius norm.

We finally give the statement of a second lemma used in the proof of Theorem
3.1. It can be found for instance in [39, Theorem 4] and it comes from a more
general result due to Wedin [42].

Lemma C.2. Let X and Y be two N ×M matrices. Let j ≤ M ∧N . If δ > 0 is
such that

min
k 6=j

∣∣σj(Y)− σk(X)
∣∣ ≥ δ and σj(Y) ≥ δ,

then we have ∣∣uj(Y)†uj(X)
∣∣2 +

∣∣vj(Y)†vj(X)
∣∣2 ≥ 2− 2‖X−Y‖2F

δ2
.
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