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Abstract
A number of recent studies discuss the phenomenon of super resolution, that
is, the fact that a target can be localized with higher resolution than half a
wavelength as suggested by the classical diffraction limit. Here we discuss a
special type of super resolution corresponding to a high contrast in wave speed
at the location of respectively the point of observation and the one of the
target. We quantify the resolution achieved in this case and discuss image
stability. It turns out that the image is stable with respect to measurement noise
but very sensitive to medium uncertainty. The signal-to-noise ratio can in fact
be significantly enhanced by exploiting resonance frequencies and we discuss
this in detail, considering source as well as reflector broadband imaging.

Keywords: super-resolution, measurement noise, medium uncertainty

(Some figures may appear in colour only in the online journal)

1. Introduction

Time reversal of waves has been extensively studied in the last twenty years [6, 9–12]. A
time-reversal mirror consists in a set of transducers that can be used as receivers or as
transmitters. A classical time-reversal experiment consists of two steps. In the first step, a
source generates a wave that propagates through a medium and is recorded by the time-
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reversal mirror used as a set of receivers. In the second step, the time-reversal mirror is used
as an array of transmitters, it re-emits the time-reversed recorded signals. It turns out that the
wave focuses back at the initial source position, as if the wave were being played backwards.
The refocusing properties have been studied experimentally, numerically and theoretically.
They are characterized by diffraction-limited focal spots, that is to say, the size of the time-
reversed focal spot is half the source carrier wavelength when the original source is point-like
and the time-reversal mirror surrounds the region of interest.

Enhanced refocusing is a remarkable property observed in many time-reversal experi-
ments and it can follow from several mechanisms. First, the diffraction limit can be overcome
if the source is replaced by its time-reversed image during the second step of the time-reversal
experiment. This requires to use an active sink that absorbs the time-reversed wave precisely
at the original source location and at the exact refocusing time [7]. Second it is possible to
obtain subwavelength focusing when the initial source is in the near field of the time-reversal
mirror and the propagating medium is homogeneous and isotropic [8]. Third, focusing
beyond the diffraction limit with far-field time reversal is possible, provided the medium in
the near field of the original source has a high effective index and can radiate in the far field
spatial information of the near field of the source. For instance a random distribution of
scatterers or small resonators placed in the vicinity of the source can achieve this goal and
locally reduce the effective wavelength [1, 13, 16–18].

Here we would like to analyze this last mechanism in the context of imaging, that is, in
the context where the object (source or reflector) to be imaged is imbedded in a high-index
(low-velocity) region. In such a case, the physical size of the object is small compared to the
homogeneous wavelength of the wave used to probe the medium, but large (or at least not
negligible) compared to the local wavelength evaluated in the low-velocity region. However
the work on time reversal cited above does not apply directly to imaging. Indeed, imaging is
different from time reversal. Similarly to time reversal, imaging consists of two steps, data
acquisition and data processing. But contrarily to time reversal, the data processing is
numerical and is based on the resolution of the wave equation in a fictitious medium (given
a priori or estimated itself). The data processing may consist of the minimization of the misfit
between the measured data and synthetic data obtained with the numerical solver (least-
squares imaging), or it may consist of backpropagation, adjoint or matched field processing,
that can be seen as simplified versions of least-square imaging [2, 3, 6, 20]. Experimental
subwavelength imaging has been achieved using high-contrast materials or arrays of reso-
nators [4, 15, 19]. In this case, the robustness of the procedure with respect to measurement
noise and with respect to medium uncertainty is in fact the key issue.

In this paper we consider a simple one-dimensional framework. Our first objective is to
estimate the location of a source that is in a section of anomalous low velocity. The picture
that we want to analyze in some detail is that this allows us to estimate the location of the
source with high accuracy. When the wave exits a section of low velocity its spatial support
will be expanded, conversely if it enters the section of low velocity it will be compressed.
This is what gives an apparent super resolution phenomenon. If one considers two nearby
sources in a section of low velocity then at an observation point outside the section one would
observe two pulses of relatively long wavelength, moreover, one would be able to resolve the
locations of the sources with an accuracy greater than that corresponding to the wavelength at
the point of observation. We want to analyze this phenomenon in some detail and quantify the
resolution enhancement, moreover, examine its robustness with respect to measurement noise
and medium uncertainty. Via our rigorous analysis we find that exploiting resonance fre-
quencies is important in order to achieve enhancement of the signal-to-noise ratio.
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Our second objective is to identify a reflector or inclusion in the section of low velocity
with a source located outside of this section. We show that again the contrast in speed gives a
resolution enhancement. We also set forth a detailed stability analysis incorporating both
effects of medium uncertainty as well as measurement noise and again point to the importance
of resonance frequencies.

In the analysis we shall use a mathematical framework similar to the one developed in
[12]. However, here the focus is on a high contrast background medium rather than on highly
oscillatory medium fluctuations.

The outline of the paper is as follows. We describe the medium and the acoustic pro-
pagation model in section 2 which articulates how the source is imbedded in a section of low
velocity. Based on the recorded wave at a point outside the anomalous section we construct
the image of the source point in section 3 with a focus on a discussion of resolution. In
section 4 we show that the presence of measurement noise does not hamper resolution as long
as a resolvability condition is satisfied, but that the imaging functions are very sensitive to
medium uncertainty. In section 5 we generalize our discussion regarding source imaging to
the case with reflector imaging. Finally, in section 6 we forward some concluding remarks.

2. Superresolution source imaging via medium contrast

2.1. Scalar wave model

We consider acoustic waves with conservation of momentum and mass for velocity u x t( , )
and pressure p x t( , ):

u p t x y( ) ( ) , (1)t x0ρ δ δ ζ+ = −

c p u 0, (2)t x
2

0ρ+ =−

for ρ0 being the assumed constant density, c the local velocity, and c 0ζ ρ= the impedance.
Throughout the paper the subscripts stand for partial derivatives. An impulse source is
imposed at the spatial location y. We assume dimensionless coordinates and a constant
density so that we have

c p p t x y( ) ( ),tt xx
2 ζ δ δ− = − ′ −−

with c being piecewise constant:

c x
c n x L L

c
( )

if [ 2, 2]
otherwise

. (3)0

0
=

∈ −⎧⎨⎩
We assume that n 1> and standard radiation conditions. We assume that the source is located
in the section of low velocity: y L L( /2, /2)∈ − . We shall also assume that we measure the
wave at the location y L( /2, )o ∈ ∞ and based on the recorded wave we aim to estimate the
location of the source, that is y.

2.2. Wave decomposition

Below we follow the strategy developed in [12, chapter 3]. We expand first the wave field into
right propagating modes (A) and left propagating modes (B) by the decomposition
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A x t
B x t

x
x

x
x

p x t
u x t

( , )
( , )

1

( )
( )

1

( )
( )

( , )
( , )

, (4)
ζ

ζ

ζ
ζ

=
−

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
⎡
⎣⎢

⎤
⎦⎥

and thus

p x t
u x t

x x

x x

A x t
B x t

( , )
( , )

1

2

( ) ( )

1

( )

1

( )

( , )
( , )

. (5)
ζ ζ

ζ ζ
=

−⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
⎡
⎣⎢

⎤
⎦⎥

Let the Fourier transforms be defined by

A x A x t t B x B x t t( , ) ( , )e d , ( , ) ( , )e d ,i t i t∫ ∫ω ωˆ = ˆ =ω ω

then we have from (1), (2):

A
i

c x
A x y B

i

c x
B x y

( )
( ),

( )
( ), (6)x x

ω δ ω δˆ − ˆ = − ˆ + ˆ = − −

for x L /2≠ ± . We introduce the complex amplitudes a and b of the propagating waves

A x a x B x b x( , ) ( , )e , ( , ) ( , )e , (7)i x i x( ) ( )ω ω ω ωˆ = ˆ =ωτ ωτ−

with the travel time defined by

x
x

c x

nL

c

x L

c
x L

nx

c
L x L

nL

c

x L

c
L x

( )
d

( )

2

2
for 2

for 2 2.

2

2
for 2

x

0

0 0

0

0 0

∫τ = ′
′

=

− + + < −

− < <

+ − <

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

The travel time is defined with respect to the origin but any other point could have been used.
From (6) and (7) the amplitudes a b, are piecewise constant over the intervals where there is
no source and no jump in the medium parameter:

a x

a x L

a L x y

a y x L

a L x

( , )

( ) for 2
( ) for 2
( ) for 2
( ) for 2

,

0

1

2

3

ω

ω
ω
ω
ω

=

< −
− < <

< <
<

⎧
⎨
⎪⎪

⎩
⎪⎪

and similarly for b x( , )ω , see figure 1.

Figure 1. Wave amplitudes.
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Interface conditions. At the interface x L /2= , the local speed of sound c and the local
impedence ζ jump, so the continuity of p̂ and û:

( ) ( )p
u

L
p
u

L( 2) ( 2)
ˆ
ˆ

= ˆ
ˆ

+ −⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

gives jump conditions for the amplitudes of the left and right propagating modes in view of
(5):

( ) ( )A
B

L A
B

L1 1 ( 2) 1 1 ( 2) , (8)
ζ ζ

ζ ζ

ζ ζ

ζ ζ

−
ˆ
ˆ

=
−

ˆ
ˆ

+ −

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥

and similarly at the interface x L /2= − . If we introduce the interface coefficients r± and the
jump matrices J±:

r
n

n
r r
r r

J
1

2

1
, ,= ± = ±

±
± ±

+ −

− +

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

then (8) reads

( ) ( )A
B

L A
B

LJ( 2) ( 2) ,
ˆ
ˆ

=
ˆ
ˆ

+ − −
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

and similary

( ) ( )A
B

L A
B

LJ( 2) ( 2) .
ˆ
ˆ

− =
ˆ
ˆ

−+ + −
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Therefore

a

b

a

b

a

b

a

b

J

J

( )e

( )e

( )e

( )e
,

( )e

( )e

( )e

( )e
. (9)

i nL
c

i nL
c

i nL
c

i nL
c

i nL
c

i nL
c

i nL
c

i nL
c

3 2

3 2

2 2

2 2

1 2

1 2

0 2

0 2

0

0

0

0

0

0

0

0

ω

ω

ω

ω

ω

ω

ω

ω

=

=

ω

ω

ω

ω

ω

ω

ω

ω

−

−

−

−
+

−

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

Radiation conditions. The radiation condition gives that

b a( ) 0, ( ) 0, (10)3 0ω ω= =

that is, no energy is coming in from ±∞.
Source conditions. Integrating (6) accross the source location y we get the jump relations

A[ ] 1y
yˆ =−

+
and B[ ] 1y

yˆ = −−
+

, and therefore

a a( ) ( ) e , (11)i
ny

c2 1 0ω ω= +
ω−

b b( ) ( ) e . (12)i
ny

c2 1 0ω ω= −
ω

The relations (9), (10), (11), and (12) now give eight equations for the eight unknowns
a b,j j, j 0, , 3= … . We assume that we observe the transmitted wave at y L /2o > within the
frequency band of the measurement device, that is we measure a ( )ei y

3
( )oω ωτ for

[ /2, /2]c cω ω Ω ω Ω∈ − + , where ωc is the central (angular) frequency and Ω is the
bandwidth, with 2 cΩ ω< . We next identify the explicit expression for the observation.
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2.3. Wave recordings

We have available the frequency response:

{ }[ ]a ( ), 2, 2 ,c cmes ω ω ω Ω ω Ω∈ − +

where a ( )mes ω is the measured complex amplitude a ( )ei y
3

( )oω ωτ of the wave recorded at yo
from which a known phase is removed:

( )a a( ) ( )e e . (13)i y i c
nL i c y L

mes 3
( ) 2 2o o0 0ω ω= ωτ ω ω− − −

The phase y( )
c

nL

c o
L

2 20 0
+ −ω ω is known provided n is known and then it compensates exactly

for y( )oωτ .
We introduce the reflection and transmission coefficients associated with the interface at

L /2:

r

r

n

n r

n

n

1

1
,

1 2

1
. (14)= − = −

+
= =

+

−

+ + 
Note that 12 2+ =  and that the reflection coefficient is close to 1 when n 1≫ and it can
be expanded as n O n1 2/ (1/ )2= − + .

From (9), (10), (11), and (12), the observed amplitude can be expressed as:

a ( ) e
1 e

1 e
. (15)i

ny
c

i

i
mes

2

2 2

n y L
c

nL
c

0

( 2)
0

0

ω = −
−

ω−
ω

ω

+

 


It can be expanded as:

( ) ( )a ( ) e e e e ,i
ny

c

j

i nL
c

j
i

n y L
c

j

i nL
c

j

mes

0

2 2
( )

0

2 2
0 0 0 0∑ ∑ω = −

ω ω ω ω−

=

∞ +

=

∞

   

with the first term (j = 0) in the first sum corresponding to the contribution of the right-going
wave generated by the source in (11) that is directly transmitted through the interface. The
other terms in this sum correspond to the contributions of the wave components that have
been reflected back and forth in the section several times before being emitted out of the
section, thus associated with a phase delay corresponding to the travel time back and forth
through the section. The terms of the second sum correspond to the contributions of the left-
going wave emitted by the source in (12).

3. Imaging functions

3.1. Matched field processing

The adjoint imaging function (or coherent matched field imaging function, inspired by the
known properties of time reversal refocusing) is defined by [6, 20]:

( ) ( )y a a y
1

2
( ) , d c. c ., (16)a

2

2

mes
c

c∫Ω
ω ω ωˆ = ˆ ˆ +

ω Ω

ω Ω

−

+

where c.c. stands for ‘complex conjugate’ and the synthetic data a y( , )ωˆ ˆ is defined as (15) but
with the search point ŷ instead of y:

Inverse Problems 30 (2014) 085006 H Ammari et al

6



( )a y , e
1 e

1 e
. (17)

( )
i

ny
c

i

i

2

2 2

n y L
c

nL
c

0

2
0

0

ωˆ ˆ = −
−

ω− ˆ
ω

ω

ˆ +

 


Proposition 3.1. When
c

nL
0Ω ≫ π
, we have

( )
( ) ( )

( ) ( )

y
n y y

c

n y y

c

n y y L

c

n y y L

c

sinc
2

cos

2

1
sinc

2
cos , (18)

c

c

a
0 0

2
0 0

Ω ω

Ω ω

ˆ =
− ˆ − ˆ

−
+

+ ˆ + + ˆ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟






where sinc is the function s s ssinc( ) sin ( )/= .

If y y L L, ( /2, /2)ˆ ∈ − and are far away from L /2− (that is farther than l defined just
below in (19)), then the second term in (18) can be neglected. This shows that the imaging
function is a rapidly modulated function with a sinc envelope, and the width of the envelop
(i.e. the resolution) is

l
n

, (19)Bλ
=

where Bλ is the wavelength associated with the bandwidth

c2
. (20)B

0λ
π
Ω

=

We stress that Bλ is the wavelength associated to the bandwidth Ω at the observation point,
while l is the wavelength when evaluated at the location of the source, the slow medium
section.

Proof. Substituting (17) into (16) we find that a is the sum of four terms. They can be
addressed in the same way so we only compute the first of them:

( )
( )

y
1

cos

1 e
d .

n y y

c

i
1

2

2
2

2 2
2

c

c

nL
c

0

0

∫Ω
ωˆ =

−ω Ω

ω Ω
ω

−

+
ˆ −

ω

⎜ ⎟
⎛
⎝

⎞
⎠




When
c

nL
0Ω ≫ π
, the denominator in the integrand is a rapidly-varying periodic function in ω

that is bounded from below by the positive constant (1 )2 2−  . Therefore the periodic
averaging theorem [14, chapter 4] gives

( )
( )

y
n y y

c

1

1 2 cos ( )
cos d ,1

2

4 2 2

2

0c

c∫Ω
ω

ωˆ =
+ − ·

ˆ −
ω Ω

ω Ω

−

+ ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ 

 
where · stands for an averaging over the periodic component. Since the value of the
average is 1/(1 )4−  and 12 2= −  , we get

( )
( ) ( )

y
n y y

c

n y y

c

1

1
sinc

2
cos .

c
1 2

0 0

Ω ω
ˆ =

+
− ˆ − ˆ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ 

The calculations of the three other terms give the desired result. □
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A conventional incoherent matched field imaging function is [6, 20]

( ) ( )y a a y
1

( ) , d , (21)b
2

2

mes
2

c

c∫Ω
ω ω ωˆ = ˆ ˆ

ω Ω

ω Ω

−

+
where the synthetic data a y( , )ωˆ ˆ is defined by (17) (it is also known as incoherent broadband
Bartlett processor [5]).

Proposition 3.2. When
c

nL
0Ω ≫ π
, we have

( )
( )

( )
( )

( )
( ) ( )

( ) ( )

( ) ( )

y
n y y

c

n y y

c

n y y L

c

n y y L

c

n y L

c

n y L

c

n y L

c

n y L

c

1

1
1 2 sinc cos

2

2 sinc cos
2

2 1

1
sinc

(2 )
2

cos
(2 )

sinc
2

2
cos

2
. (22)

c

c

c

c

b

4

2 2 3
2 2 2

0 0

2

0 0

4

2 2 2
0 0

0 0

Ω ω

Ω ω

Ω ω

Ω ω

ˆ = +

+
+ +

− ˆ − ˆ

+
+ ˆ + + ˆ +

−
+

+

+ +

+
ˆ + ˆ +

⎪

⎪

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎫
⎬
⎭

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

 
 

 



 
 

Here the last three terms vanish if y and ŷ are far enough from L /2− or L /2 (that is farther
than l in (19)). This incoherent imaging function has approximately the same resolution
properties as the coherent imaging imaging function a , it has in fact better resolution by a
factor two. However it possesses a large background contrarily to a . This is quite problematic
in particular when there are several sources, as the overlap and interaction of the backgrounds
and peaks become complicated, while a presents the sum of the peaks by linearity of this
imaging function. This justifies the fact that we will focus our attention to a and its variants
in the following.

Proof. The calculations follow the same lines as in the proof of proposition 3.1. When
c

nL
0Ω ≫ π
, the periodic averaging theorem gives

( )
( )

( )

( ) ( )

( )

( )y

n y y

c

n y y L

c

n y L

c

n y L

c

1

1 2 cos ( )
1

2 cos
2

2 cos
2

2 1 cos
(2 )

cos
2

d ,

b

4

4 2 2 2

2
2 2

2

0

2

0

2

0 0

c

c∫Ω

ω ω

ω ω
ω

ˆ =
+ − ·

+

+
ˆ −

+
ˆ + +

− + + +
ˆ +

ω Ω

ω Ω

−

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟

 
 



 

 

where · stands for an averaging over the periodic component. Since the value of the
average is (1 )/(1 )4 4 3+ −  and 12 2= −  , we get the desired result. □
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3.2. Simplified adjoint imaging

In figure 2 we plot the modulation function

1

1 e i

2

2 2 nL
c0

−
− ω




for n = 5 and for n = 20 as function of the dimensionless frequency L c2 / 0ω . Note the singular
behavior in n. It means that, for large n, the adjoint imaging function only uses the
observations at the set of discrete frequencies where this factor is unity. This motivates the
introduction of a simplified version of the adjoint imaging function

( )( ) ( )y I a a y
2

( ) , , (23)(
m

m m mp 2, 2) mesc c∑Δω
Ω

ω ω ωˆ = ˆ ˆω Ω ω Ω
=−∞

∞

− +
where IB is the indicator function on B and

m
c

nL
,

2
, (24)m

L

0ω Δω Δω
π π

τ
= = =

with Lτ being the two-way travel time of the low-velocity section.

Proposition 3.3. When Ω Δω≫ and y is not within the distance l (defined by (19)) of the
boundaries L /2± , then we have

( )
( ) ( )

y
n y y

c

n y y

c

1
sinc

2
cos . (25)

c
p

2

2
0 0

Ω ω
ˆ = + − ˆ − ˆ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ 



The adjoint imaging function and simplified adjoint imaging function have the same
resolution, but the simplified version has an enhanced amplitude when n is large (since

n(1 )/ /22 2+ ≃  ). This comes from the fact that the simplified version focuses on the
important contributions of the measured data at the resonant frequencies.

Figure 2. The modulation function (1 )/(1 e )iun2 2| − − |  as function of dimensionless
frequency u for n 5, 20= .
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Proof. The expression of â becomes simpler when evaluated at the resonant frequencies:

( )a y ,
1

e 1 ( 1) e ,m
i

ny
c m i

ny
c2m m

0 0ωˆ ˆ = − −
ω ω

−
ˆ ˆ⎛

⎝⎜
⎞
⎠⎟ 

where we have used the fact that i nL cexp ( / ) ( 1)m
m

0ω = − . Since

( )a ( )
1

e 1 ( 1) e ,m
i

ny
c m i

ny
cmes

2m m

0 0ω = − −
ω ω

−
 

the imaging function has the form

( )( ) ( )y I a y a y
2

( , ) , ,(
m

m m mp 2, 2)c c∑Δω
Ω

ω ω ωˆ = ˆ ˆ ˆω Ω ω Ω
=−∞

∞

− +

and it has several contributions:

( )

( )

( )

( )

( )
( )

( )

( )

( )

( )

( )

y I
n y y

c

I
n y y

c

I
n y y

c

1

2
cos

cos

cos ,

m

m
m

m

m
m

m

m
m

p

2

2 2, 2
0

2 2, 2 2
2

0

2 2, 2 2 1
2 1

0

c c

c c

c c

∑

∑

∑

Δω

Ω
ω

ω

Δω
Ω

ω
ω

Δω
Ω

ω
ω

ˆ =
+ ˆ −

−
ˆ +

+
ˆ +

ω Ω ω Ω

ω Ω ω Ω

ω Ω ω Ω

=−∞

∞

− +

′=−∞

∞

− + ′
′

′=−∞

∞

− + ′+
′+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 







where the signs of the terms derive from the factors ( 1)m− . If Δω Ω≪ and y is not within
the distance l (defined by (19)) of the boundaries L /2± , then we can use the continuum
approximation for the sums, we find that the second and third sums cancel each other and that
the first sum can be replaced by the expression (25). □

In figure 3 the blue dashed line is the theoretical imaging function (25) normalized to one
plotted as function of relative offset y L y y L/ ( )/Δ = − ˆ for nL c/ 1000Ω = and / 10cω Ω = .

Figure 3. Theoretical imaging function p given by (25) and normalized to one (blue
dashed line) for nL c/ 1000Ω = and / 10cω Ω = as function of relative offset

y L y y L/ ( )/Δ = − ˆ . Imaging function defined by (23) and normalized to one (red solid
line) for n = 5 and y = 0.
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The red solid line is the exact imaging function (23) (also normalized to one) in the case with
n = 5 and y = 0 and is seen to almost coincide with the asymptotic form (25).

4. Stability and resolvability

We discuss in this section the robustness of the imaging function (23) with respect to additive
measurement noise and medium uncertainty.

4.1. Robusteness with respect to measurement noise

Assume that the measurements are corrupted by an additive noise so that we observe:

a ( ) noise3 ω +

Then we have the generalization of (15)

a W( ) e 1 e
1 e

( ),i
ny

c i
n y L

c
i

mes
2

( 2)

2 2 nL
c

0 0

0

ω ω= −
−

+
ω ω− +

ω

⎛
⎝⎜

⎞
⎠⎟ 


where W ( )ω models the measurement noise. The observations at the set of discrete
frequencies ωm are:

( )a w( )
1

e 1 ( 1) e ,m
i

ny
c m i

ny
c mmes

2m m

0 0ω σ= − − +
ω ω

−
 

where σ is the standard deviation of the measurement noise and wm is assumed to be an
independent and identically distributed sequence of zero mean and unit variance complex
circular random variables.

The expectation of the imaging function (23) is

( )( ) ( )y I a y a y
2

( , ) ,(
m

m m mp 2, 2)c c
 ∑Δω

Ω
ω ω ωˆ = ˆ ˆ ˆω Ω ω Ω

=−∞

∞

− +⎡⎣ ⎤⎦

and it is given by (25). The variance is given in the following proposition.

Proposition 4.1. If Δω Ω≪ , then

( )Var y
2

1
. (26)p

2 2

2

Δωσ
Ω

ˆ = +⎡⎣ ⎤⎦ 


Proof. The fluctuations of the imaging function have the form

( )

( ) ( ) ( )

( )

V y y y

I w
2

e 1 ( 1) e .
m

m m
i

ny
c m i

ny
c

p p

2, 2
2

c c

m m

0 0



∑Δωσ
Ω

ω

ˆ = ˆ − ˆ

= − −ω Ω ω Ω
ω ω

=−∞

∞

− +
ˆ

−
ˆ

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

 

 

Since the wmʼs are independent and identically distributed with mean zero and variance one,
we have

( )( )Var y I
( )

4
1 ( 1) e .(

m

m
m i

ny
cp

2 2

2 2 2, 2)
2

2

c c

m

0∑Δω σ
Ω

ωˆ = − −ω Ω ω Ω
ω

=−∞

∞

− +
ˆ⎡⎣ ⎤⎦  
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By expanding the square modulus we can split the variance into several contributions:

( )

( )

( )

( ) ( )

( )

( )

Var y I

I
ny

c

I
ny

c

( )

4

1

( )

2
cos

( )

2
cos .

m

m

m

m
m

m

m
m

p

2 2

2

2

2 2, 2

2 2

2 2 2, 2 2
2

0

2 2

2 2 2, 2 2 1
2 1

0

c c

c c

c c

∑

∑

∑

Δω σ
Ω

ω

Δω σ
Ω

ω
ω

Δω σ
Ω

ω
ω

ˆ = +

−
ˆ

+
ˆ

ω Ω ω Ω

ω Ω ω Ω

ω Ω ω Ω

=−∞

∞

− +

′=−∞

∞

− + ′
′

′=−∞

∞

− + ′+
′+

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 







In the case that Δω Ω≪ , the second and third sums cancel each other and we get the desired
result. □

As a result we find the signal-to-noise ratio (with 1≃ and n2/≃ ):

( )

y

Var y

n
SNR

( )
. (27)

p

p
1 2 2

 Ω
Δωσ

=
ˆ

≃
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦



Note that the SNR increases with the number of periods in the modulation function (see
figure 2) and also with n. This gives the following result.

Corollary 4.2. In order to have a signal-to-noise ratio larger than unity for the imaging
function p defined by (23), we need

n
. (28)σ Ω

Δω
<

4.2. Robusteness with respect to medium uncertainty

In order to form the imaging function (23) we assumed a perfect knowledge of the medium,
that is to say of the index of refraction n. In this subsection we assume that the underlying
medium parameter n1/ is estimated with an error δ: n n1/ (1 )/δˆ = + . Then, denoting by mω̂
the estimated resonant frequencies:

c

nL
m(1 ), (1 ),m m

0Δω
π

Δω δ ω Δω ω δ=
ˆ

= + ˆ = = + 

and by ̂ and ̂ the estimated reflection and transmission coefficients (with n̂ instead of n in
the formulas (14)), the imaging function (23) is defined by:

( )( ) ( )y I a
2

1
e 1 ( 1) e .(

m

m m
i

ny
c m i

ny
cp 2, 2) mes

2
c c

m m

0 0∑Δω
Ω

ω ωˆ = ˆ ˆ ˆ − − ˆω Ω ω Ω
ω ω

=−∞

∞

− +
ˆ

−
ˆ⎛

⎝⎜
⎞
⎠⎟  

Moreover, by (13), the phase removed in the measured amplitude a ( )ei y
3

( )oω ωτ is
y( )

c

nL

c o
L

2 20 0
+ −ω ωˆ :
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( )a a( ) ( )e e ,i y i c
nL i c y L

mes 3
( ) 2 2o o0 0ω ω= ωτ ω ω− ˆ − −

which does not compensate exactly for y( )oωτ , so that it remains a phase error
c

nL

(1 ) 20
δω

δ+
.

Proposition 4.3. The bias and blurring of the imaging function p defined by (23) are
negligible if and only if

n

1
. (29)

c L
δ

ω τ
<

The condition (29) corresponds to an error in the estimate of the travel time Lτ that is
smaller than n1/( )cω with cω being the carrier frequency of the source.

Proof. Recall that nL c2 /L 0τ = , and then the imaging function takes the form

( )( )( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

y I

y y y y

2

e

1 e

e ( 1) e e

( 1) e e e

.

m

m

i

i

i
n y y

c m i
n y y

c i

m i
n y y

c i
n y y

c i

p 2, 2
4

2

(1 ) (1 )

2

(1 ) (1 )

2

p,1 p,2 p,3 p,4

c c

m
L

m L

m m
m

L

m m
m

L

0 0

0 0

∑Δω
Ω

ωˆ = ˆ
ˆ −

× − −

− − ˆ + ˆ

= ˆ + ˆ + ˆ + ˆ

ω Ω ω Ω
ω δ

τ

ω δτ

ω δ ω δ
ω δ

τ

ω δ ω δ
ω δ

τ

=−∞

∞

− +

ˆ− + ˆ+ +

−
ˆ+ + + − ˆ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 
 



 
   



Figure 4. The imaging function Ip,1 as function of offset y y y (1 )Δ δ= ˆ − + for
10 5δ = − (top) and 10−2 (bottom) when L n c1, 20, 10, 100, 1c 0Ω ω= = = = = in

the non-dimensionalized coordinates. This gives n( ) 1.25 10c L
1 5ω τ = ×− − as a blurring

threshold for δ and an optimal resolution corresponding to l = 0.03. Note that the
blurring gives damping in imaging amplitude and lateral smearing.
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We then get in particular

( )( ) ( )

( )
y I

n

c
j

n

c
j

2
e e

sinc
2

( 1 4) cos ( 1 4) ,

m

m
i

j

j
i

n y y
c j

j

j y
L c

y
L

p,1 2, 2 4

0

2

(1 )

0

2

0 0

c c
m

L m L0∑ ∑

∑

Δω
Ω

ω

Ω Δ
δτ ω

Δ
δτ

ˆ = ˆ ˆ

= ˆ + + + +

ω Ω ω Ω
ω δ

τ ω
δ

δτ

=−∞

∞

− +
=

∞ ˆ− +
+

=

∞
ˆ ˆ⎛

⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ 

 


 



with y y (1 )yΔ δ= ˆ − +ˆ . Since n1 2/≃ − for large n, the support of the sum extends over
j of the order of n, and therefore there will be no blurring of the imaging function if and only
if the term jc Lω δτ does not blur the sum in j, that is to say, if (29) holds. Then the bias will
also be small in the sense that y

n4
Bδ| | < λ

π
. □

In figure 4 we show the imaging function for several values of the blurring parameter δ. If
n1/( )c Lδ ω τ> we indeed see that we get blurring in the form of smearing of the image and

amplitude damping.
In conclusion the sensitivity to medium uncertainty increases with n. The results of this

section show that the imaging function is stable with respect to measurement noise but
unstable with respect to medium uncertainty.

5. Imaging of reflector

In this section we aim to image a reflector located at y L L( /2, /2)∈ − and with a source at
y L( /2, )s ∈ ∞ . The medium is now modeled by

c x

c n x L y D

c x y D y

c n x y L

c

( )

if [ 2, )
if [ , ]
if ( , 2]
otherwise

. (30)

0

0

0

0

α
=

∈ − −
∈ −
∈

⎧
⎨
⎪⎪

⎩
⎪⎪

The data are collected at the observation point y y( , )o s∈ ∞ in the frequency band
[ /2, /2]c cω Ω ω Ω− + , with 2 cΩ ω< .

5.1. Wave decomposition

The wave amplitudes are defined by (7) with x c x x( ) 1/ ( )d
x

0
∫τ = ′ ′. The right propagating

mode amplitude is stepwise constant:

Figure 5. Wave amplitudes with a source at ys and a thin reflector at y D y[ , ]− .
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a x

a x L

a L x y D

a y D x y

a y x L

a L x y

a y x

( , )

( ) for 2
( ) for 2
( ) for
( ) for 2
( ) for 2

( ) for

,
b

s

b s

0

1

1

2

3

3

ω

ω
ω
ω
ω
ω
ω

=

< −
− < < −
− < <
< <

< <
<

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

and similarly for the left propagating mode amplitude b x( , )ω , see figure 5.
The coupling relations of the wave components at the boundary of the slow medium

section are again given by (9). The analogues of the relations (10), (11), and (12) are now: (i)
the radiation conditions

b a( ) 0, ( ) 0, (31)b3 0ω ω= =

that is, no energy is coming in from ±∞, (ii) the source conditions

a a b b( ) ( ) e , ( ) ( ) e . (32)b
i y

b
i y

3 3
( )

3 3
( )s sω ω ω ω= + = −ωτ ωτ−

In addition we now have the interface reflection relations at x y D= − and x = y:

a

b

a

b
J

( )e

( )e

( )e

( )e
, (33)b

i y D

b
i y D

i y D

i y D

1
( )

1
( )

1
( )

1
( )

ω
ω

ω
ω

=
ωτ

ωτ α

ωτ

ωτ

−

− −
−

−

− −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

a

b

a

b e
J

( )e

( )e

( )e

( )
, (34)

i y

i y

b
i y

b
i y

2
( )

2
( )

1
( )

1
( )

ω
ω

ω
ω
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ωτ

ωτ α
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−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

for

r r

r r
r

n
nJ ,

1

2

1
. (35)

α
α=

±
±

= ±α
α α

α α
α

±
+ −

− +
±

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

This gives a total of 12 equations for the 12 unknowns.
We introduce the notation

y D y D L n
L y D

c
( , ) ( ) ( 2)

2
, (36)1

0
τ τ τ= − − − = + −

y D y y D
D

c
( , ) ( ) ( ) , (37)2

0
τ τ τ

α
= − − =

y D L y n
L y

c
( , ) ( 2) ( )

2
, (38)3

0
τ τ τ= − = −

with the inclusion supported in y D y( , )− . Note first that the propagator matrix associated
with the inclusion can be expressed by

a

b

a

b

h y D h y D

h y D h y D

a

b

J J
( )e

( )e
e 0

0 e

( )e

( )e

( , , ) ( , , )
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1 2

2 1
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for

( ) ( )h y D r r( , , ) e e , (39)i y D i y D
1

2 ( , ) 2 ( , )2 2ω = −α
ωτ

α
ωτ+ − −

( )( )h y D r r( , , ) e e . (40)i y D i y D
2

( , ) ( , )2 2ω = −α α
ωτ ωτ+ − −

This gives the following expression for the amplitude of the reflection a ( )b3 ω at an
observation point y y( , )o s∈ ∞ :

( )
( )

( )a

c y D c y D c y D c y D

c y D c y D c y D c y D

( ) e e

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )
, (41)

b
i y i y L

3
( ) ( ) 2 ( 2)

2
2

2 1 1

1
2

1 2 2

s sω
ω ω ω ω

ω ω ω ω

= +

×
− − −

− − −

ωτ ω τ τ− −

 
 

for

( ) ( )c y D( , , ) e e e , (42)i y D i y D i y D y D
1

( , ) 2 ( , ) ( , ) ( , )2 2 1 3ω = −ωτ
α

ωτ ω τ τ− +

( ) ( )c y D( , , ) e e e , (43)i y D i y D i y D y D
2

( , ) ( , ) ( , ) ( , )2 2 1 3ω = −α
ωτ ωτ ω τ τ− − +

where we have defined the reflection coefficient

r

r
. (44)= −α

α

α

−

+

5.2. Wave recordings

The observable quantity of interest is the complex amplitude a ( )eb
i y

3
( )oω ωτ observed at

y y( , )o s∈ ∞ . We remove the original right-going wave and a known phase from this
observable quantity to get

( ) ( )a a( ) ( )e e e . (45)b
i y i c y y i c y y L

mes 3
( ) ( )o o s o s0 0ω ω= −ωτ ω ω− − + −

Note that we have
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y y
c

y y

y y L
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y y L
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1
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( ) ( ) 2 ( 2)
1

,

o s o s

o s o s

0

0

τ τ

τ τ τ

− = −

+ − = + −

so that a ( )mes ω is of the form
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a
c y D c y D c y D c y D

c y D c y D c y D c y D
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When the inclusion is small such that n D 1
c

c

0
≪ω

, we have

( )

a d
i D

c
d

i D

c
d e

( ) ( ) ( )

( ) e e e , (47)i c nL i c ny i c nL i c ny

mes 0
0

1

0
2

2 2 2
0 0 0 0

ω ω ω ω

ω ω

= +

+ +ω ω ω ω− − 
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2 2 2 2
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ω
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−
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α

α

ω
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up to terms of smaller order O n D( )
c

2 2c
2

0
2

ω
, as shown in the appendix. Note that

- the leading-order term d0 cancels at the set of discrete frequencies mmω Δω= ,
m 1, 2,= …, with Δω defined by (24),

- the third term (proportional to d2) in the expansion (47) contains the information about the
inclusion location y.

When D 0= we get

( )
a ( )

1 e

1 e
e , (50)

i nL

i nL
j

j i c nL j
mes

2

2 2
2

0

1 2 2 (1 )
c

c

0

0
0∑ω =

−

−
= − ω

=

∞
+ +

ω

ω


   

corresponding to the direct reflection from the interface of the section at L /2 and then
reflected signal components that have reverberated j times in the section L L( /2, /2)− . Note
that the reflected signal is zero if the frequency ω is resonant (i.e. if the frequency is equal to

mmω Δω= for some integer m). In this case the emitted wave probes in the most efficient
way the section in L L( /2, /2)− as it is reflected back and forth coherently between the two
interfaces and it does not come back to the right-half space x L /2> .

5.3. Imaging functions

Assume from now on that there is an inclusion. The adjoint imaging function is

( ) ( )y D a a y D c c,
1

4
( ) , , d . ., (51)ra

2

2

mes
c

c∫Ω
ω ω ωˆ ˆ = ˆ ˆ ˆ +

ω Ω

ω Ω

−

+

where a y D( , , )ωˆ ˆ ˆ is given by (46) with ŷ and D̂ in place of y and D. From the form (47) of
ames, we can see that the modulation functions d1 and d2 become highly concentrated at the
set of discrete frequencies ωm defined by (24) for large n. This means that, for large n, the
adjoint imaging function only uses the observations at the frequencies ωm. As in the case of
source imaging addressed in the previous section, this motivates the introduction of a
simplified version of the adjoint imaging function:

( ) ( )( )y D I a a y D,
4

( ) , , . (52)(
m

m m mras 2, 2) mesc c∑Δω
Ω

ω ω ωˆ ˆ = ˆ ˆ ˆω Ω ω Ω
=−∞

∞

− +

From the form (47) of ames, we can see that, if we are only interested in the localization
problem, then we should use
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( )( ) ( )y I i
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( 1)
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We analyze this imaging function in the following.

First imaging function. From the expression (50) in the absence of inclusion, it is
appropriate to observe the field at the resonant frequencies ωm so that the recorded reflected
wave associated to the inclusion is not buried in the reflected wave components asssociated to
the boundaries of the section. In the presence of a small reflector with n D 1

c
c

0
≪ω

we have

( ) ( ) ( )
( )( )

a
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c
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This is another (but analogous) motivation for the introduction of the imaging function (53).
When Ω is much larger than Δω, we can use the continuum approximation for the sums

in (53) and we find that, unless the inclusion is close to L /2− or L /2 within a distance of the
order of l, the imaging function is given by

( )( )
( )

( ) ( )

( ) ( )

y
D

c

n y y

c

n y y

c

n y y

c

n y y

c

2

1 1

1

2
sinc cos

2

sinc cos
2

, (54)
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⎦
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for ŷ far enough from L /2− or L /2 (ie farther than l).
This imaging function can localize the inclusion with the resolution l given by (19), but

there is a ghost image: there are two peaks at y yˆ = ± and it is not easy to decide which of
these two peaks corresponds to the position of the inclusion. Indeed the peak associated to the
inclusion has an amplitude that is larger than the ghost peak, by a factor (1 )/(2 )4 2+   , but
this factor is close to one when n 1≫ .

When n is large, the amplitude factor 2 /[ (1 )(1 )]2 2α − −α α   in (54) is about n /82 .
This enhancement factor of the order of n2 comes from the fact that the waves have been
reflected back and forth about n times within the section, and during each pass the interaction
with the inclusion generates small scattered waves that build up coherently to generate the
reflected signal. As a consequence this imaging function will be robust against measurement
noise but sensitive to medium uncertainty (knowledge of c n/0 ), as we will see in the next
section.

Second imaging function. Another imaging function can be formed by using only the
first arrivals of the recorded signals. Here we assume that y D 0− > , and that by a time
windowing technique, we record only the components of the observable quantity
a ( )eb

i y
3

( )oω ωτ that arrive before the time y y L nL c( )/o s 0+ − + at the observation point yo.
Note that the observable quantity a ( )eb

i y
3

( )oω ωτ is a sum of components of the form eiωτ in the
frequency domain (this can be seen by writing the denominator in (41) as a series expansion),
or equivalently a sum of Dirac distributions t( )δ τ− in the time domain. Therefore, the time
windowing selects the components whose phases are of the form eiωτ with
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y y L nL c( )/o s 0τ < + − + . After the time windowing we remove the original right-going
wave ei y y c( )/o s 0ω − and the known phase y y L c( )/o s 0ω + − as in (45), which gives the new data
set a ( )mes ω˜ . Compared to a ( )mes ω , the time windowing removes the components whose
phases are of the form eiωτ with nL c/ 0τ > . In particular, it removes the components of the
recorded signals that arrive after the first echo from the boundary at L /2− . Indeed these
components have phases of the form eiωτ with t nL n D c: 2( ( 1/ ) )/1 0τ α⩾ = − − , where t1 is
the time for a round trip from L /2 to L /2− , which is larger than nL c/ 0 provided D L /2< .

By writing the denominator of a ( )mes ω as a series expansion, we get an infinite sum with
terms of the form eiωτ , and by keeping only those terms with nL c/ 0τ ⩽ , we find

( )
( )

( )a
i

( ) 1
2 sin

e e
e ,

j

J j j j j j
c

D

i i
j

i c nj L y
mes

2

1

1

2

( 2 )

c
D

c
D

0

0 0

0∑ω˜ = − −
−

α
ω

α

α

ω

=

− −

−

−
ω

α
ω

α

 
 


where J is the integer such that L y J L L y J( 2 ) ( 2 )( 1)− < ⩽ − + . The term  is the direct
reflection from the interface at L /2. The first term j( 1)= of the sum is the wave that has been
reflected by the inclusion and directly transmitted to the region x L /2> . The jth term of the
sum is the wave that has been reflected by the inclusion and then reflected j 1− times
between the interface at L /2 and the inclusion before being transmitted to the region x L /2> .
When n D 1

c
c

0
≪ω

the new data can be expanded as

( )
( )

a
i D

c
O n

c
D( )

2 1

1
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Additionally, if n is large then the amplitude factor [ (1 )]/[ (1 )]2 2α− −α α   is
approximately one. This gives the motivation for the following imaging function:

( ) ( )y i
c

a
1

2
e ( )d c.c. (55)i c n L y

r2
2

2

0

2
mes

c

c

0∫Ω
ω ω ωˆ = − ˜ +

ω Ω

ω Ω ω

−

+
− − ˆ

⎛
⎝⎜

⎞
⎠⎟

In the presence of a small reflector with n D 1
c

c

0
≪ω

and with the inclusion farther than l from
the section boundaries it has the form

( )
( )

( )
( ) ( )

y
D

c

n y y

c

n y y

c

2 1

1
sinc cos

2
. (56)c c

r2
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2

2

0
2

0 0α
ω Ω ω

ˆ =
−

−

ˆ − ˆ −α

α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟  


The resolution of this imaging function is l given by (19) and there is no ghost in it

contrarily to the imaging function (53). Note, however, that the amplitude is n2 times smaller
than the one of the previous imaging function (53), since the amplitude factor
[2 (1 )]/[ (1 )]2 2α− −α α   is about 2 when n is large. This is because we only exploit the
first arrival in this imaging function, while the previous one exploited the full sequence of
reflected waves. As a consequence this imaging function will be less robust with respect to
measurement noise than the imaging function (53), but also less sensitive to medium
uncertainty.

Third imaging function. In the previous section we obtained an image without a ghost
as in the imaging function (53), however, at the expense of loosing a multiplicative factor of
n2 in the amplitude, which makes the imaging function sensitive to measurement noise.
Moreover, this imaging function requires a time-windowing of the measured data. It is
possible to get rid off the ghost in the imaging function (53) in a simpler way, at the expense
of losing a multiplicative factor of the order of n only. The idea is to add appropriate weights
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to the two terms in the imaging function (53) to cancel the ghost. Consider the imaging
function

( )
( )( ) ( )y I i

c

a

4
( 1)

e e ( ). (57)

m

m
m

m

i c ny i c ny
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Here, the sign of the factor involving 2 is chosen to cancel the ghost term. When Ω is much
larger than Δω, in the presence of a small reflector with n D 1

c
c

0
≪ω

and with the inclusion
farther than l from the section boundaries, the imaging function is given by

( )
( )
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( ) ( )

y
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c

n y y
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n y y

c
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1
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for ŷ far enough from L /2− or L /2.

This imaging function has the same resolution (19) as (53), it does not have any ghost
image, and it is better than the imaging function (55) because it uses all the reflected waves
and not only the first arrival. However, compared to (53), it has lost a multiplicative factor of
the order of n. Indeed, when n is large, the amplitude factor (1 ) /[ (1 )]2 2α+ −α α   is about
n. This shows that it has less robustness with respect to measurement noise than the imaging
function (53), as we will see in the next section.

Numerical illustrations. We illustrate the performance of the imaging functions y( )r1 ˆ ,
y( )r2 ˆ , and y( )r3 ˆ for some values of the parameters. We choose in a non-dimensionalized

setting: n L D c5; 32 ; /2; 10; 10 ; 1; 1c c
4

0ω π Ω ω α= = = = = = =− , moreover the
reflector is located at y 0.15= − . This gives a resolution of l = 0.025.

In figure 6 we show the imaging function y( )r1 ˆ defined by (53) with the red solid line
and its theoretical value (54) by the dashed blue line.

In figure 7 we show the imaging function y( )r2 ˆ defined by (55) with the red solid line
and its theoretical value (56) by the dashed blue line.

In figure 8 we show the imaging function y( )r3 ˆ defined by (57) with the red solid line
and its theoretical value (58) by the dashed blue line. Note that the ghost is now suppressed,

Figure 6. The imaging function y( )r1 ˆ defined by (53) as function of search point ŷ (red
solid line) and its theoretical value (54) (blue dashed line). The right picture is a zoom
of the left picture.
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albeit not completely removed. Indeed we have n D c/ 0.05c 0ω ≃ , which means that secondary
peak is not completely negligible. If we reduce the inclusion width further D 10 5= − , then
n D c/ 0.005c 0ω ≃ , and the ghost is not visible anymore (its relative amplitude compared to the
main peak has been reduced by a factor 10 compared to the case D 10 4= − ), as seen the right
picture in figure 8.

5.4. Robustness with respect to measurement noise

In the presence of additive noise the measured data have the form

( ) ( )a a w( ) ( )e e e , (59)m b m
i y i c y y i c y y L

mmes 3
( ) ( )m o

m
o s

m
o s0 0ω ω σ= − +ω τ

ω ω
− − + −

where wm is an independent and identically distributed sequence of zero mean and unit
variance complex circular random variables. The expected value of the imaging function

Figure 7. The imaging function y( )r2 ˆ defined by (55) as function of search point ŷ (red
solid line) and its theoretical value (56) (blue dashed line). The right picture is a zoom
of the left picture.

Figure 8. The imaging function y( )r3 ˆ defined by (57) as function of search point ŷ (red
solid line) and its theoretical value (58) (blue dashed line). In the left picture D 10 4= − .
In the right picture D 10 5= − .
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corresponds to the imaging function in the noise-free case. The variances are

( )( ) ( )Var y Var y
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1 .c
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2 2
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2
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Therefore the signal-to-noise ratios for the two imaging functions (53) and (57) are
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for large n, which confirms that the imaging function (53) is more robust than (57) with
respect to measurement noise.

If we assume that the integral in (55) is discretized over the grid ωm, then we find that

( )Var y
c2

.c
r2

2 2

0
2

ω Δωσ
Ω

ˆ =⎡⎣ ⎤⎦

Therefore the signal-to-noise ratio for the imaging function (55) is
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for large n, which confirms that the imaging function (55) is less robust than (53) and (57)
with respect to measurement noise.

5.5. Sensitivity with respect to medium uncertainty

As in the source case we assume uncertainty in the medium parameter and examine when this
uncertainty leads to a degradation in the image. If the medium parameter n is estimated with
an error δ: n n1/ (1 )/δˆ = + , then the criterium for the stability of the imaging function (55) is

1
. (60)

L
δ

Ωτ
<

From (55) it is seen that the medium uncertainty gives rise to a shift in the peak (by L /2δ )
which will be small compared to the image resolution under the above condition. For the
imaging functions (53) and (57) the medium uncertainty translates into a blurring of the peak.
Via an analysis as in the case with an internal source we find that this blurring will be
relatively small if

n

1
. (61)

c L
δ

ω τ
<

Thus, in conclusion the imaging functions r1 and r3 are robust with respect to measurement
noise, but sensitive with respect to medium uncertainty, while r2 is robust with respect to
medium uncertainty, but sensitive with respect to measurement noise.
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6. Conclusions

We have discussed a situation which we believe in a very simple context explains a phe-
nomenon of super resolution as observed in a number of recent studies, including experi-
mental observations [4]. Here the simple mechanism that generates the relatively high
resolution is the contrast in wave speed. High resolution or super resolution here refers to
resolution better than half the wavelength as recorded by the observer. The main point is
indeed that what determines the resolution is the wavelength at the domain of the source or
the scatterer to be imaged and not the wavelength as observed in the domain of the recorder.
Thus if these have a high contrast we will observe super resolution. Here, we have also
analyzed the sensitivity and robustness to measurement noise and medium uncertainty. We
find that by exploiting resonance frequencies we can significantly reduce the sensitivity to
measurement noise at the expense of relatively high sensitivity to medium uncertainty.

We remark that a similar phenomenon could be observed if the observation point was
located in a section of anomalous high velocity, the source could then be localized with far
greater accuracy than what is suggested by the wavelength at the point of observation. Indeed,
what is important is the velocity contrast in between the source or reflector domain and the
domain of observation.

The results presented in this paper have been obtained for the scalar wave equation with a
one-dimensional, piecewise constant medium, so as to obtain explicit results that clarify the
mechanisms responsible for super-resolution. It is possible to extend the results to continuous
media by using the method developed in [12, chapter 4], and to vector waves (such as elastic
waves), since the formalism in terms of right- and left-going wave modes is still available in
these cases. Generalizations to three-dimensional media by the same technique are not
straightforward but they would be possible in some special geometries such as nested radially
symmetric or nested hypercube domains.
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Appendix A. The complex amplitude of the recorded field

In the presence of a small inclusion such that

n
c

D 1,c

0

ω
≪

the expansion of a ( )mes ω is given by:
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ω
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