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Spectral incoherent solitons (SIS) refer to an incoherent solitonic structure that only can be identified in the
frequency domain and which is sustained by noninstantaneous Raman-like nonlinearities. We provide a general-
ized formulation of SIS by considering the generalized nonlinear Schrödinger equation. We show that nonlinear
dispersive effects (e.g., self-steepening) dramatically affect the structure of SIS, in particular by significantly
decelerating their spectral velocity in frequency space. The wave turbulence description of the problem reveals
an underlying self-organization process: the soliton trajectory in frequency space is selected in such a way that
it allows the system to self-organize into a stationary SIS state. © 2014 Optical Society of America
OCIS codes: (190.4370) Nonlinear optics, fibers; (190.5650) Raman effect; (030.1640) Coherence.
http://dx.doi.org/10.1364/OL.39.004192

The propagation of partially coherent nonlinear optical
waves is a topic of growing interest in different fields
of investigations, such as, e.g., wave propagation in
homogeneous [1–4] or periodic media [5], waveguides
[6], cavity systems [7–11], supercontinuum generation
(SC) [12–14], shock waves [15], or nonlinear interferom-
etry [16]. In analogy with kinetic gas theory, an incoher-
ent wave is expected to exhibit a nonequilibrium process
of thermalization toward thermodynamic equilibrium
[17]. Besides wave thermalization, a partially coherent
wave can self-organize into incoherent solitons (IS),
which thus constitute nonequilibrium stable states of
the random field. Originally observed in photorefractive
crystals [18], IS have become a blooming area of
research, e.g., through the study of incoherent modula-
tional instability [19,20] or the existence of IS with spatial
or temporal nonlocal nonlinearities [21–23].
An IS of a fundamentally different nature has been

identified by exploiting the noninstantaneous property
of the nonlinear Raman response in optical fibers
[24–26]. The incoherent wave associated to this soliton
exhibits fluctuations that are statistically stationary in
time, so that it does not exhibit a confinement in the tem-
poral domain but exclusively in the frequency domain;
thus the name “spectral incoherent soliton” (SIS). Some
experimental signatures of the generation of SIS have
been obtained through the study of SC generation in
photonic crystal fibers [26,27].
Our aim in this Letter is to report a nontrivial generali-

zation of SIS structures. We consider the 1D generalized
nonlinear Schrödinger equation (GNLSE), which ac-
counts, in particular, for the self-steepening (or shock)
term and a frequency dependence of the nonlinear Kerr
coefficient [28–30]. Nonlinear dispersive effects are
shown to dramatically affect the dynamics of the incoher-
ent wave. Starting from the GNLSE, we derive a gener-
alized kinetic equation (GKE), which does not admit
incoherent soliton solutions. When considered as an
initial condition, the standard SIS exhibits a significant
deceleration in frequency space as well as a significant
reduction of its power. However, the underlying soliton
structure is unveiled by a change of variables, which

reveals an unexpected process of self-organization.
The specific form of the soliton trajectory in frequency
space is selected in such a way that it allows the system
to self-organize into a stationary SIS state. In this way, the
spectral deceleration of SIS is obtained in analytical form
and in quantitative agreement with the simulations of
GNLSE, without adjustable parameters. Besides its fun-
damental interest, this generalized formulation of SIS
can shed new light on the spectral dynamics of SC
generation [26,27].

The starting point is the GNLSE, which is usually writ-
ten in the frequency domain [28,29]:

∂z ~ψω�z� � ik�ω� ~ψω − α ~ψω�z� � iΓ�ω�F fψR � jψ j2g; (1)

where F is the Fourier operator [ ~ψω�z� � Ffψ�z; t�g �R
ψ�z; t� exp�iωt�dt], while � denotes the temporal

convolution product between the intensity jψ j2�z; t�
and the response function, which includes the instanta-
neous (Kerr) contribution and the noninstantaneous
(Raman) contribution, R�t� � �1 − f R�δ�t� � f RhR�t�,
where hR�t� � H�t���1� η2�∕ητR� sin�ηt∕τR� exp�−t∕τR�,
H�t� being the Heaviside function [τR � 32 fs,
η � τR∕τ1, f R ≃ 0.18]. The Taylor expansion of the
dispersion relation reads k�ω� � P

j≥2βjω
j∕j!, with βj

being the j-th dispersion coefficient. The function
Γ�ω� � �1� pω�γ�ω0 � ω�, with p � 1∕ω0 (ω0 being the
carrier frequency), accounts for the self-steepening ef-
fect (first factor) as well as the frequency dependence
of the nonlinear coefficient that arises from the fre-
quency variation of the effective area and corresponding
effective index (second factor). Note that, even if more
sophisticated and accurate models have been developed
for strong frequency dependence of the effective area
[30], the phenomenon we are interested in is dominated
by the leading self-steepening term, so we keep using
the traditional and simplest form of GNLSE [Eq. (1)].
The parameter α accounts for the losses during propaga-
tion. If α � 0, Eq. (1) conserves the “number of photons,”
N � R j ~ψ�ω; z�j2∕Γ�ω�dω. Note that by setting Γ�ω� � γ0
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where γ0 � γ�ω0�, Eq. (1) recovers the conventional
nonlinear Schrödinger (NLS) equation.
It is important to recall that the typical spectral width

of SIS is of the same order as the Raman gain spectral
bandwidth (∼13 THz). To study SIS, we thus need to
avoid spectral broadening effects due to SC-like phenom-
ena. We will thus consider the spectral dynamics of
SIS far from a zero-dispersion frequency, i.e., linear
dispersion effects are dominated by β2. Note that, as re-
vealed by the theory [Eq. (2)], linear dispersive effects do
not play any role in the dynamics of SIS (see [31,25,26]).
This shows that, in spite of their apparent similarities, the
spectral deceleration of SIS discussed here is of a differ-
ent nature than that discussed in the framework of a
Raman-induced self-frequency shift of optical solitons
[27,29,32], which are inherently temporally localized
coherent entities.
We report in Fig. 1 (left column) the evolution of the

spectrum of the incoherent wave obtained by simulation
of the GNLSE [Eq. (1)]. The initial condition is a partially
coherent wave with a Gaussian spectrum and random
spectral phases, superimposed on a white noise spectral
background [31,26]. Neglecting nonlinear dispersive
effects, i.e., Γ�ω� � γ0, the initial incoherent wave
evolves into a conventional SIS, which propagates with
a constant spectral velocity V0, and thus virtually crosses
the zero-frequency component of the optical field,
i.e., ω � −ω0 [see Figs. 1(a)–1(d)]. Self-steepening and
nonlinear dispersion regularize this “unphysical” nega-
tive frequency propagation [33] through a significant
spectral deceleration of the SIS as well as a significant
reduction of its power N � R j ~ψωj2dω (Fig. 1). Note that

the frequency reached by the SIS ω ∼ −180τ−10 can corre-
spond to a physical wavelength λ ∼ 3 μm (for a source at
λ0 ∼ 1.06 μm), where GNLSE [Eq. (1)] still can be consid-
ered as an accurate model. Also note that propagation
losses have been neglected, so as to highlight the fact
that the decrease of power is solely due to nonlinear
dispersion effects. In this example, we considered a
linear frequency variation of γ versus ω, Γ�ω� �
�1� pω�γ0�1� qω�, with q � γ−10 ∂ωγ�ω�jω0

. This linear
approximation also is consistent with the fact that self-
steepening is assumed to dominate the frequency
dependence of the effective area in GNLSE [Eq. (1)].

To describe these novel properties of SIS, we resort to
a statistical description of the random wave based on the
wave turbulence theory [1,31]. Since we are looking for a
soliton behavior, we neglect losses, α � 0 in Eq. (1). In
the weakly nonlinear regime defined by Ld ≪ Lnl
(Ld ≃ t2c∕β2 being the dispersion length and tc the time
correlation), we obtain a closure of the hierarchy of
moments equations from Eq. (1), in which the averaged
spectrum of the wave h ~ψω�Ω∕2 ~ψ�

ω−Ω∕2i � nω�z�δ�Ω� is
governed by the following GKE:

∂znω � nω

π

Z
G�ω;ω0�nω0dω0; (2)

where G�ω;ω0� � Γ�ω�g�ω − ω0�, and g�ω� � I� ~R�ω�� is
the imaginary part of the Fourier transform of R�t�. Note
that GKE [Eq. (2)] accounts for nonlinear dispersion
effects but not for linear dispersion effects (although lin-
ear dispersion is known to be essential for the establish-
ment of a weakly nonlinear regime, which, in turn, leads
to closure of the moments hierarchy [1]). Simulations of
GKE [Eq. (2)] are in quantitative agreement with GNLSE
without adjustable parameters, as remarkably illustrated
in Fig. 1.

Because of nonlinear dispersive effects, Γ�ω� ≠ γ0,
the integral in Eq. (2) does not reduce to a convolution.
For this reason, the GKE no longer conserves the power
N � R

nωdω and thus does not admit soliton solutions
[34]. However, to unveil the underlying soliton dynamics,
let us consider the variable change ~nω�z� � nω�z�∕Γ�ω�,
so that GKE [Eq. (2)] can be recast into the symmetric
form:

∂z ~nω � 1
π

Z
~nωΓ�ω�g�ω − ω0�Γ�ω0� ~nω0dω0: (3)

This modified GKE (MGKE) conserves the power
~N � R

~nωdω and can thus exhibit soliton solutions. How-
ever, as revealed by the simulations in Fig. 1, such soliton
solutions are not conventional, in the sense that they do
not propagate with a constant velocity in frequency
space. We thus look for a stationary soliton solution in
a “noninertial” reference frame in frequency space,
i.e., a reference frame travelling with a nonstationary
(z–dependent) spectral velocity V�z� � ∂zΩs�z�: Ω �
ω − Ωs�z�. The analysis will reveal that the soliton trajec-
tory, Ωs�z�, is selected in such a way that it allows the
system to self-organize into a stationary SIS state. In
the noninertial reference frame, the MGKE [Eq. (3)]
reads:

Fig. 1. Numerical simulations of the GNLSE [Eq. (1)] [left col-
umn (a) to (c)] and GKE [Eq. (2)] [right column (b) to (d)], for
p � q � 0 (Γ�ω� � γ0) [1st row, (a) to (b)], and for p � ω−1

0 , q �
0.1ω−1

0 [2nd row, (c) to (d)]. (e) to (f) Corresponding spectral
profiles obtained by simulations of GNLSE [Eq. (1)] (gray line)
and GKE [Eq. (2)] (red line) at z � 200Lnl and z � 600Lnl.
The vertical dashed line denotes the physical zero frequency
component, i.e., ω � −ω0 [ω0∕�2π� � 282 THz (λ0 � 1.06 μm),
η � 2.6, τ0 �

�����������������
β2Lnl∕2

p
, Lnl � 1∕�γ0P�, where P is the average

intensity of the incoherent wave].
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∂z ~nΩ − ∂zΩs�z�∂Ω ~nΩ � ~nΩ

π

Z
g�Ω − Ω0� ~nΩ0

× Γ�Ω� Ωs�z��Γ�Ω0 � Ωs�z��dΩ0;

(4)

where Ω0 � ω0
− Ωs�z�. In general, one cannot decouple

Eq. (4) into two independent equations for ~nΩ�z�, and
for the soliton trajectory Ωs�z�. However, the SIS profile
and g�ω� vary on a frequency scale much smaller than
Γ�ω�. We thus introduce the multiscale expansion
~nΩ�z� � ε−1mΩ∕ε�z� and g�ω� � ε−1 ~g�ω∕ε� and look for
a solution of Eq. (4) in the form, mΩ̄�z� � ms

Ω̄�
εδmΩ̄�z�, where ms

Ω̄ is the stationary soliton profile in
the noninertial reference frame and δmΩ̄�z� is a residual
radiation �Ω̄ � Ω∕ε�. To the first order in ε, Eq. (4) then
decouples into two independent equations for the soliton
profile, ~ns

Ω � ε−1ms
Ω∕ε, and the soliton trajectory:

∂zΩs�z� � −V0Γ2�Ωs�z��∕γ20; (5)

V0∂Ω ~ns
Ω � γ20

π
~ns
Ω

Z
g�Ω − Ω0� ~ns

Ω0dΩ0: (6)

Here, by introducing V0�> 0�, we have recast Eq. (6) into
the usual stationary equation for a conventional SIS with
Γ�ω� � γ0, which propagates with the constant velocity
V0. This reveals a remarkable result: within the new var-
iable ~nω � nω∕Γ�ω�, the SIS spectral profile is almost
identical to the conventional SIS spectral profile for
Γ�ω� � γ0, while the corresponding soliton trajectory,
Ωs�z�, satisfies the differential in Eq. (5). Note that the
multiscale expansion also readily gives the power decay:

N�z� � ~NΓ�Ωs�z��; (7)

where ~N � R
~ns
ωdω is the conserved power of MGKE

[Eq. (3)] and Ωs�z� is obtained in explicit form in
Eq. (8). The power decay in Eq. (7) is found in quantita-
tive agreement with simulations, as illustrated in
Fig. 2(b).
The soliton trajectory can be obtained analytically

under the assumption of a linear frequency dependence,
γ�ω0 � ω� � γ0�1� qω�. In this case, Eq. (5) takes the
form

R
−Ωs

0 �1 − qu�−2�1 − pu�−2du � V0z, with p � 1∕ω0
and Ωs�z � 0� � 0. The solution z versus Ωs reads:

z�Ωs� � 1

V0�q − p�3
�
2pq log

�
1� qΩs

1� pΩs

�
− Qqp�Ωs�

�
; (8)

where Qqp�Ωs� � �q − p��qp�q � p�Ωs � q2 � p2�Ωs∕
��1 � qΩs��1 � pΩs��. Note that, by neglecting nonlinear
dispersive effects, i.e., Γ�ω� � γ0 (i.e., p � q � 0), Eq. (8)
reduces to the linear trajectory, Ωs�z� � −V0z, inherent
to conventional SIS [31,24,26]. Conversely, whenever
Γ�ω� ≠ γ0, Ωs�z� asymptotically reaches −ω0 for large
propagation lengths z (see Fig. 2), which regularizes
the unphysical negative frequency propagation predicted
by the linear trajectory, Ωs�z� � −V0z.

An analytical expression of SIS solution with velocity
V0 was obtained in [24] through a generalization of the
particular solution originally derived in [35] in the limit
n0∕nm ≪ 1, where nm and n0, respectively, denote the
soliton peak and the level of the background noise. Note
that so far this SIS solution has not been compared with
numerical simulations. The solution reads:

~ns
Ω � n0 exp

�
log

�
nm

n0

�
H�Ω�
giωi

�
; (9)

where gi � �j∂ωg�0�jH�0��1∕2 denotes the typical amount
of gain of g�ω�, ωi � �j∂ωg�0�jH�0��1∕2 its typical spectral
bandwidth, and H�Ω� � −

R∞
Ω g�ω�dω. The SIS propa-

gates with the constant velocity:

V0 �
γ20
π

R � ~ns
Ω − n0�dΩR

log� ~ns
Ω∕n0�dΩ

Z
H�Ω�dΩ: (10)

We have compared the expression of the soliton
trajectory in Eq. (8) as well as the corresponding SIS sol-
ution in Eqs. (9) and (10) with the results of the numerical
simulations of the MGKE [Eq. (3)] and NLS [Eq. (1)] in
the weakly nonlinear regime (Ld ≪ Lnl). A quantitative
agreement has been obtained without adjustable param-
eters, as remarkably illustrated in Fig. 2. In the limit
of a small SIS spectral shift, the trajectory recovers
the straight line, Ωs�z� � −V0z of conventional SIS,
where V0 is given by Eq. (10). In the limit q � 0
(Γ�ω� � 1� pω), the SIS trajectory takes the simple form
Ωs�z� � −V0z∕�1� V0z∕ω0� (red line in Fig. 2). A posi-
tive (negative) value of q then decelerates (accelerates)
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Fig. 2. Soliton trajectory Ωs versus z plotted from Eq. (8), in
which V0 is given by Eq. (10): q � p � 0, Ωs�z� � −V0z (green);
q � 0, p � ω−1

0 (red); q � 0.2p, p � ω−1
0 (black); q � −0.2p, p �

ω−1
0 (blue). The corresponding crosses on the curves refer to the

simulations of MGKE [Eq. (3)]; a quantitative agreement is ob-
tained without adjustable parameters. The inset (a) compares
the simulations of the MGKE [Eq. (3)] (green) and GNLSE
[Eq. (1)] (gray) with the analytical SIS solution in Eqs. (9)
and (10), in log10-scale. The superposition of five spectral pro-
files at z � 200, 400, 600, 800, 1000 (in units of Lnl) has been
plotted to stress the stationary character of the SIS solution ob-
tained by simulation of MGKE [Eq. (3)]. The inset (b) shows the
power decrease,N � R jψωj2dω versus z, in the GNLSE [Eq. (1)]
(red), and the theoretical prediction in Eq. (7) (blue dashes)
[ω0∕�2π� � 282 THz, η � 1].
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the spectral shift of the SIS (see black and blue lines in
Fig. 2). Finally, the plot of the analytical SIS solution in
Eqs. (9) and (10) has been found in quantitative agree-
ment with simulations of MGKE [Eq. (3)] and GNLSE
[Eq. (1)], as illustrated in Fig. 2(a).
We have provided a generalized wave turbulence for-

mulation of incoherent optical waves and SIS, accounting
for nonlinear dispersive effects. Note that, as the spectral
noise background decreases, the generalized SIS exhibits
a transition to a discrete behavior (see Fig. 3) in a way
similar to conventional SIS [25], a feature that will be the
subject of future investigations.
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