Backpropagation Imaging in Nonlinear Harmonic Holography in the Presence of Measurement and Medium Noises*

Habib Ammari†, Josselin Garnier‡, and Pierre Millien†

Abstract. In this paper, the detection of a small reflector in a randomly heterogeneous medium using second-harmonic generation is investigated. The medium is illuminated by a time-harmonic plane wave at frequency ω. It is assumed that the reflector has a nonzero second-order nonlinear susceptibility, and thus emits a wave at frequency 2ω in addition to the fundamental frequency linear scattering. It is shown how the fundamental frequency signal and the second-harmonic signal propagate in the medium. A statistical study of the images obtained by migrating the boundary data is performed. It is proved that the second-harmonic image is more stable with respect to medium noise than the one obtained with the fundamental signal. Moreover, the signal-to-noise ratio for the second-harmonic image does not depend either on the second-order susceptibility tensor or on the volume of the particle.

Key words. wave imaging, harmonic holography, second-harmonic generation, medium noise, resolution, stability

AMS subject classifications. 35R30, 35B30

1. Introduction. Second-harmonic microscopy is a promising imaging technique based on a phenomenon called second-harmonic generation (SHG) or frequency doubling. SHG requires an intense laser beam passing through a material with nonvanishing second-order susceptibility [19]. A second electromagnetic field is emitted at exactly twice the frequency of the incoming field. Roughly speaking,

$$E_{2\omega} \sim E_\omega \chi^{(2)} E_\omega,$$

where $\chi^{(2)}$ is the second-order susceptibility tensor. A condition for an object to have nonvanishing second-order susceptibility tensor is to have a noncentrosymmetric structure. Thus SHG occurs only in a few types of physical bodies: crystals [26], interfaces like cell membranes [15, 20, 27], nanoparticles [23, 33], and natural structures like collagen or neurons [14, 24]. This makes SHG a very good contrast mechanism for microscopy, and has been used in biomedical imaging. SHG signals have a very low intensity because the coefficients in $\chi^{(2)}$ have a typical size of picometer/V [16]. This is the reason why a high intensity laser beam is required in order to produce a second-harmonic field that is large enough to be detected by the microscope. Second-harmonic microscopy has several advantages. Among others, the fact that the

*Received by the editors June 27, 2013; accepted for publication (in revised form) November 4, 2013; published electronically January 28, 2014. This work was supported by the ERC Advanced Grant MULTIMOD–267184.

http://www.siam.org/journals/siims/7-1/92671.html

†Department of Mathematics and Applications, Ecole Normale Supérieure, 75005 Paris, France (habib.ammari@ens.fr, pierre.millien@ens.fr).

‡Laboratoire de Probabilités et Modèles Aléatoires and Laboratoire Jacques-Louis Lions, Université Paris VII, 75205 Paris Cedex 13, France (garnier@math.univ-paris-diderot.fr).
technique does not involve excitation of molecules means that it is not subject to phototoxicity effects or photobleaching. The excitation uses near infrared light, which has a very good penetration capacity, and a lot of natural structures (like collagen for instance) exhibit strong SHG properties, so there is no need for probes or dyes in certain cases. SHG images can be collected simultaneously with standard microscopy and two-photon-excitation-fluorescence microscopy for membrane imaging (see, for instance, [15]).

The coherent nature of the SHG signal allows us to use nonlinear holography for measuring the complex two-dimensional (amplitude and phase) SHG signal [22, 29]. The idea is quite similar to conventional linear holography [17, 30]. A frequency-doubling crystal is used to produce a coherent reference beam at the second-harmonic frequency, which allows us to measure the phase of the one emitted from the reflector [21].

On the other hand, since only the dye/membrane produces the second-harmonic signal, SHG microscopy allows a precise imaging of the dye/membrane, clear of any scattering from the surrounding medium, contrary to the fundamental frequency image, where the signal measured is produced by both the reflector and the medium. As will be shown in this paper, this is the main feature which makes second-harmonic imaging very efficient when it is not possible to obtain an image of the medium without a dye in order to filter the medium noise. In practical situations [21], it is not possible to get an image without the reflector. The main purpose of this work is to justify that the SHG acts in such situations as a powerful contrast imaging approach.

More precisely, we study the case of a nanoparticle with nonvanishing second-order susceptibility tensor \(\chi^{(2)} \) embedded in a randomly heterogeneous medium illuminated by an incoming electromagnetic field at a fixed frequency \(\omega \). We give asymptotic formulas for the electromagnetic field diffracted by the particle and the medium at the fundamental frequency and at the second-harmonic frequency. Then we use a backpropagation algorithm in order to recover the position of the particle from boundary measurements of the fields. We study the images obtained by backpropagation both in terms of resolution and stability. In particular, we elucidate that the second-harmonic field provides a more stable image than that from fundamental frequency imaging, with respect to medium noise, and that the signal-to-noise ratio for the second-harmonic image does not depend either on \(\chi^{(2)} \) or on the volume of the particle. The aforementioned are the main findings of this study.

The paper is organized as follows. In section 2 we formulate the problem of SHG. In section 3, asymptotic expansions in terms of the size of the small reflector (the nanoparticle) of the scattered field at the fundamental frequency and the second-harmonic generated field are derived. In section 4, we introduce backpropagation imaging functions for localizing the point reflector using the scattered field at the fundamental frequency as well as the second-harmonic field. In section 5, we perform a stability and resolution analysis of the backpropagation imaging functions. We show that the medium noise affects the stability and resolution of the imaging functions in different ways. We prove that using the second-harmonic field renders enhanced stability for the reconstructed image. Our main findings are delineated by a few numerical examples in section 6. The paper ends with a short discussion.

2. Problem formulation. In this paper we consider a small electric reflector \(\Omega_r \) with a nonvanishing second-order susceptibility tensor \(\chi \) embedded in a randomly heterogeneous
medium. The reflector is illuminated by a plane electromagnetic wave. We assume that the plane wave is polarized in the transverse magnetic direction and the second-harmonic field is in the transverse electric mode. The polarization of the second-harmonic field is given by symmetry properties of the second-order susceptibility tensor. This transverse magnetic–transverse electric polarization mode is known to be supported by a large class of optical nonlinear materials [31]. We choose this polarization mode so that the full Maxwell equations reduce to a Helmholtz equation in \(\mathbb{R}^2 \), and therefore a two-dimensional study of the SHG with scalar fields would be possible. The results would be pretty similar in a general three-dimensional case for the full Maxwell equations, but the computations would be more elusive.

In order to describe the mathematical model, we assume that the medium has random fluctuations described by a given random process \(\mu \) with Gaussian statistics and mean zero. Furthermore, we assume that \(\mu \) has a small amplitude and is compactly supported in \(\mathbb{R}^2 \) and let \(\Omega_\mu := \text{supp}(\mu) \). We refer to \(\mu \) as the medium noise. We also assume that the refractive index of the background homogeneous medium \(\mathbb{R}^2 \setminus \Omega_\mu \) is 1. The medium is illuminated by a plane wave at frequency \(\omega > 0 \), intensity \(U_I > 0 \), and direction \(\theta \in S^1 \):

\[
U_0(x) = U_I e^{i\omega \theta \cdot x},
\]

with \(S^1 \) being the unit circle.

The small-volume reflector \(\Omega_r \) is in \(\Omega_\mu \) and has a refractive index given by

\[
|\sigma_r - 1|1_{\Omega_r}(x),
\]

where \(\sigma_r \) is the refractive index contrast of the reflector, \(\Omega_r \) is compactly supported in \(\Omega_\mu \) with volume \(|\Omega_r| \), and \(1_{\Omega_r} \) is the characteristic function of \(\Omega_r \). The squared refractive index \(n(x) \) in the whole space then has the following form:

\[
\frac{1}{n(x)} = (1 + \mu(x) + |\sigma_r - 1|1_{\Omega_r}(x)).
\]

The scattered field \(u_s \) generated by the plane wave satisfies the Helmholtz equation

\[
\nabla \cdot ((|\sigma_r - 1|1_{\Omega_r} + \mu + 1)\nabla(u_s + U_0)) + \omega^2(u_s + U_0) = 0 \quad \text{in } \mathbb{R}^2,
\]

together with the Sommerfeld radiation condition

\[
\lim_{|x| \to \infty} \sqrt{|x|} \left(\frac{\partial u_s}{\partial |x|} - i\omega u_s \right) = 0.
\]

The point reflector also scatters a second field \(v \) at frequency \(2\omega \). Since

\[
n(x) = \frac{(2\omega)^2}{|\sigma_r - 1|1_{\Omega_r} + 1} \left(1 - \frac{\mu}{|\sigma_r - 1|1_{\Omega_r} + 1} \right) + O(||\mu||_{L^\infty(\Omega_\mu)})\),
\]

the field \(v \) satisfies, up to \(O(||\mu||_{L^\infty(\Omega_\mu)}) \), the following Helmholtz equation [13, 19, 32]:

\[
\left(\Delta + \frac{(2\omega)^2}{|\sigma_r - 1|1_{\Omega_r} + 1} \left(1 - \frac{\mu}{|\sigma_r - 1|1_{\Omega_r} + 1} \right) \right) v = \sum_{k,l=1,2} \chi_{kl} \partial_{x_k} U \partial_{x_l} U 1_{\Omega_r} \quad \text{in } \mathbb{R}^2,
\]
subject to the Sommerfeld radiation condition

\[
\lim_{|x| \to \infty} \sqrt{|x|} \left(\frac{\partial v}{\partial |x|} - 2i\omega v \right) = 0,
\]

where \(\chi \) is the electric polarization of the reflector and can be written as \(\chi(x) = (\chi_{ij})_{i,j=1,2} \mathbf{1}_r(x) \), and \(U = u_s + U_0 \) is the total field. The coupled problems (5)–(6) and (7)–(8) have been mathematically investigated in [9, 10, 11].

Let us consider \(\Omega \) to be a domain large enough so that \(\Omega_{\mu} = \text{supp}(\mu) \subset \Omega \) and measure the fields \(u_s \) and \(v \) on its boundary \(\partial \Omega \). The goal of the imaging problem is to locate the reflector from the far-field measurements of the scattered field \(u_s \) at the fundamental frequency and/or the second-harmonic generated field \(v \). It will be shown in this paper that, in the presence of medium noise, the use of the second-harmonic field yields better stability properties for imaging the small reflector \(\Omega_r \) than the use of the scattered field at the fundamental frequency.

3. Small-volume expansions. In this section, we establish small-volume expansions for the solutions of problems (5)–(6) and (7)–(8). We assume that the reflector is of the form \(\Omega_r = z_r + \delta B \), where its characteristic size \(\delta \) is small, \(z_r \) is its location, and \(B \) is a smooth domain such that \(B \subset B(0, 1) \), with \(B(0, 1) \) being the ball of radius 1 and center the origin 0. We derive asymptotic expansions of \(u_s \) and \(v \) as \(\delta \) goes to zero.

3.1. Fundamental frequency problem. Before deriving an asymptotic expansion of \(u_s \) as \(\delta \) goes to zero, we first approximate the background solution, i.e., the field that would be observed without the reflector in terms of the amplitude of the random process \(\mu \). We construct its first-order correction as a function of \(\mu \).

Let \(U^{(\mu)} = u_s^{(\mu)} + U_0 \) be the total field that would be observed in the absence of any reflector. The scattered field \(u_s^{(\mu)} \) satisfies

\[
\begin{cases}
\nabla \cdot \left((1 + \mu) \nabla (u_s^{(\mu)} + U_0) \right) + \omega^2 (u_s^{(\mu)} + U_0) = 0 \quad \text{in } \mathbb{R}^2, \\
\lim_{|x| \to \infty} \sqrt{|x|} \left(\frac{\partial u_s^{(\mu)}}{\partial |x|} - i\omega u_s^{(\mu)} \right) = 0.
\end{cases}
\]

Therefore,

\[
\nabla \cdot (1 + \mu) \nabla u_s^{(\mu)} + \omega^2 u_s^{(\mu)} = -\nabla \cdot \mu \nabla U_0 \quad \text{in } \mathbb{R}^2.
\]

Since \(\Omega_{\mu} \subset \Omega \), the estimate

\[
||u_s^{(\mu)}||_{H^1(\Omega)} \leq C ||\mu||_{L^\infty}
\]

holds for some positive constant \(C \) independent of \(\mu \). Here, \(H^1(\Omega) \) is the set of functions in \(L^2(\Omega) \), whose weak derivatives are in \(L^2(\Omega) \). We refer the reader to Appendix A for a proof of (10), which uses the same arguments as those in \([1, 2]\). Actually, one can prove that

\[
u_s^{(\mu)}(x) = -\int_{\Omega_{\mu}} \mu(y) \nabla U_0(y) \cdot \nabla G_\omega^{(0)}(x, y) dy + O(||\mu||_{L^\infty}^2), \quad x \in \Omega.
\]
Moreover, writing
\[\nabla \cdot \left((1 + \mu) \nabla (u_\alpha^{(\mu)} + U_0) \right) = -\omega^2 (u_\alpha^{(\mu)} + U_0), \]
it follows by using Meyers’s theorem \[25\] (see also \[12, pp. 35–45\]) that there exists \(\eta > 0 \) such that for all \(0 \leq \eta' \leq \eta, \)
\[
||\nabla u_\alpha^{(\mu)}||_{L^{2+\eta'}(\Omega)} \leq ||\nabla (u_\alpha^{(\mu)} + U_0)||_{L^{2+\eta'}(\Omega)} + ||\nabla U_0||_{L^{2+\eta'}(\Omega)}
\leq C||u_\alpha^{(\mu)} + U_0||_{L^{2+\eta'}(\Omega)} + ||\nabla U_0||_{L^{2+\eta'}(\Omega)}
\leq C||u_\alpha^{(\mu)}||_{L^{2+\eta'}(\Omega)} + C'
\]
for some positive constants \(C \) and \(C' \), where \(\Omega' \Subset \Omega \). From the continuous embedding of \(H^1(\Omega) \) into \(L^{2+\eta'}(\Omega) \) and (10) we obtain
\[
||u_\alpha^{(\mu)}||_{L^{2+\eta'}(\Omega)} \leq C''
\]
for some constant \(C'' \) independent of \(\mu \). Therefore,
\[
||\nabla u_\alpha^{(\mu)}||_{L^{2+\eta'}(\Omega)} \leq C
\]
for some constant \(C \) independent of \(\mu \).

Now, we turn to the derivation of an asymptotic expansion of \(u_\alpha \) as \(\delta \) goes to zero. On one hand, by subtracting (5) from (9), we get
\[
(12) \quad \nabla \cdot \left(\left([\sigma_r - 1] \mathbf{1}_\Omega, \mu + 1 \right) \nabla (u_\alpha - u_\alpha^{(\mu)}) \right) + \omega^2 (u_\alpha - u_\alpha^{(\mu)}) = -\nabla \cdot [\sigma_r - 1] \mathbf{1}_\Omega, \nabla U_0
\quad - \nabla \cdot [\sigma_r - 1] \mathbf{1}_\Omega, \nabla u_\alpha^{(\mu)} \quad \text{in } \mathbb{R}^2.
\]
On the other hand, we have
\[
||[\sigma_r - 1] \mathbf{1}_\Omega, \nabla u_\alpha^{(\mu)}||_{L^2(\Omega)} \leq C|\Omega_r|^{\frac{\eta}{2+\eta'}} ||\nabla u_\alpha^{(\mu)}||_{L^{2+\eta'}(\Omega)}
\leq C|\Omega_r|^{\frac{\eta}{2+\eta'}} ||\nabla u_\alpha^{(\mu)}||_{L^2(\Omega)}^{\frac{1}{2+\eta'}} ||\nabla u_\alpha^{(\mu)}||_{L^{2+\eta'}(\Omega)}^{\frac{1}{2+\eta'}},
\]
and hence, by (10) and (11), we arrive at
\[
||[\sigma_r - 1] \mathbf{1}_\Omega, \nabla u_\alpha^{(\mu)}||_{L^2(\Omega)} \leq C|\Omega_r|^{\frac{\eta}{2+2\eta'}} ||\mu||_{L^\infty}^{\frac{2}{2+\eta'}}.
\]
Therefore, we can neglect in (12) the term \(\nabla \cdot [\sigma_r - 1] \mathbf{1}_\Omega, \nabla u_\alpha^{(\mu)} \) as \(||\mu||_{L^\infty} \to 0 \).

Let \(w^{(\mu)} \) be defined by
\[
(13) \quad \nabla \cdot (1 + \mu + [\sigma_r - 1] \mathbf{1}_\Omega, \nabla w^{(\mu)}) + \omega^2 w^{(\mu)} = \nabla \cdot [\sigma_r - 1] \mathbf{1}_\Omega, \nabla (x - z_r) \quad \text{in } \mathbb{R}^2,
\]
subject to the Sommerfeld radiation condition
\[
\lim_{|x| \to \infty} \sqrt{|x|} \left(\frac{\partial w^{(\mu)}}{\partial |x|} - i\omega w^{(\mu)} \right) = 0.
\]
Using the Taylor expansion
\[U_0(x) = U_0(z_r) + (x - z_r) \cdot \nabla U_0(z_r) + O(|x - z_r|^2), \]
one can derive the inner expansion
\[(u_x - u((\mu)_x))(x) = w((\mu))(x) \cdot \nabla U_0(z_r) + O(\delta^2) \]
for \(x \) near \(z_r \). The following estimate holds. We refer the reader to Appendix B for its proof.

Proposition 3.1. There exists a positive constant \(C \) independent of \(\delta \) such that
\[||u_x - u((\mu)_x) - w((\mu))(x) \cdot \nabla U_0(z_r)||_{H^1(\Omega)} \leq C\delta^2. \]

Let \(G^{(\mu)}_{\omega} \) be the outgoing Green function in the random medium, that is, the solution to
\[(\nabla \cdot (1 + \mu)\nabla + \omega^2)G^{(\mu)}_{\omega}(., z) = -\delta_z \quad \text{in } \mathbb{R}^2, \]
subject to the Sommerfeld radiation condition
\[\lim_{|x| \to \infty} \sqrt{|x|} \left(\frac{\partial G^{(\mu)}_{\omega}}{\partial |x|} - i\omega G^{(\mu)}_{\omega} \right) = 0. \]
Here, \(\delta_z \) is the Dirac mass at \(z \). An important property satisfied by \(G^{(\mu)}_{\omega} \) is the reciprocity property [6]:
\[G^{(\mu)}_{\omega}(x, z) = G^{(\mu)}_{\omega}(z, x), \quad x \neq z. \]

Let us denote by \(G^{(0)}_{\omega} \) the outgoing background Green function, that is, the solution to
\[(\Delta + \omega^2)G^{(0)}_{\omega}(., z) = -\delta_z \quad \text{in } \mathbb{R}^2, \]
subject to the Sommerfeld radiation condition.

The Lippmann–Schwinger representation formula
\[(G^{(\mu)}_{\omega} - G^{(0)}_{\omega})(x, z_r) = \int_{\Omega_{\mu}} \mu(y) \nabla G^{(\mu)}_{\omega}(y, z_r) \cdot \nabla G^{(0)}_{\omega}(x, y) dy \]
\[= \int_{\Omega_{\mu}} \mu(y) \nabla G^{(0)}_{\omega}(y, z_r) \cdot \nabla G^{(0)}_{\omega}(x, y) dy \]
\[+ \int_{\Omega_{\mu}} \mu(y) \nabla (G^{(\mu)}_{\omega} - G^{(0)}_{\omega})(y, z_r) \cdot \nabla G^{(0)}_{\omega}(x, y) dy \]
holds for \(x \in \partial \Omega \). Since \(\Omega_{\mu} \subseteq \Omega \), we have
\[\left| (G^{(\mu)}_{\omega} - G^{(0)}_{\omega})(x, z_r) - \int_{\Omega_{\mu}} \mu(y) \nabla G^{(0)}_{\omega}(y, z_r) \cdot \nabla G^{(0)}_{\omega}(x, y) dy \right| \]
\[\leq ||\mu||_{L^\infty(\Omega)} ||\nabla G^{(0)}_{\omega}(x, .)||_{L^\infty(\Omega_{\mu})} ||\nabla (G^{(\mu)}_{\omega} - G^{(0)}_{\omega})(., z_r)||_{L^2(\Omega_{\mu})}. \]
Similarly to (10), one can prove that

\[
\|\nabla(G^{(\mu)}_{\omega} - G^{(0)}_{\omega})(\cdot, z_r)\|_{L^2(\Omega_\mu)} \leq C\|\mu\|_{L^\infty},
\]

and hence there exists a positive constant C independent of μ such that

\[
\left| (G^{(\mu)}_{\omega} - G^{(0)}_{\omega})(x, z_r) - \int_{\Omega_\mu} \mu(y) \nabla G^{(0)}_{\omega}(y, z_r) \cdot \nabla G^{(0)}_{\omega}(x, y) dy \right| \leq C\|\mu\|_{L^\infty}^2
\]

uniformly in $x \in \partial\Omega$.

Since

\[
\|\nabla G^{(0)}_{\omega}(x, \cdot)\|_{L^\infty(\Omega_\mu)} \leq C
\]

uniformly in $x \in \partial\Omega$, the estimate

\[
\left| \nabla(G^{(\mu)}_{\omega} - G^{(0)}_{\omega})(x, z_r) - \nabla \int_{\Omega_\mu} \mu(y) \nabla G^{(0)}_{\omega}(y, z_r) \cdot \nabla G^{(0)}_{\omega}(x, y) dy \right| \leq C\|\mu\|_{L^\infty}^2
\]

holds in exactly the same way as in (19). Therefore, the following Born approximation holds.

Proposition 3.2. We have

\[
G^{(\mu)}_{\omega}(x, z_r) = G^{(0)}_{\omega}(x, z_r) - \int_{\Omega_\mu} \mu(y) \nabla G^{(0)}_{\omega}(y, z_r) \cdot \nabla G^{(0)}_{\omega}(x, y) dy + O(\|\mu\|_{L^\infty}^2),
\]

\[
\nabla G^{(\mu)}_{\omega}(x, z_r) = \nabla G^{(0)}_{\omega}(x, z_r) - \nabla \int_{\Omega_\mu} \mu(y) \nabla G^{(0)}_{\omega}(y, z_r) \cdot \nabla G^{(0)}_{\omega}(x, y) dy + O(\|\mu\|_{L^\infty}^2)
\]

uniformly in $x \in \partial\Omega$.

We now turn to an approximation formula for $w^{(\mu)}$ as $\|\mu\|_{L^\infty} \to 0$. By integrating by parts we get

\[
w^{(\mu)}(x) = (1 - \sigma_r) \int_{\Omega_r} \nabla (w^{(\mu)}(y) - (y - z_r)) \cdot \nabla G^{(\mu)}_{\omega}(x, y) dy, \quad x \in \mathbb{R}^2.
\]

Using (20) we have, for x away from Ω_r,

\[
w^{(\mu)}(x) = (1 - \sigma_r) \left[\int_{\Omega_r} \nabla (w^{(\mu)}(y) - (y - z_r)) dy \right] \cdot [\nabla G^{(\mu)}_{\omega}(x, z_r) + O(\delta)].
\]

Now let 1_B denote the characteristic function of B. Let \tilde{w} be the solution to

\[
\begin{cases}
\nabla \cdot (1 + |\sigma_r - 1|1_B) \nabla \tilde{w} = 0 & \text{in } \mathbb{R}^2,
\end{cases}
\]

\[
\tilde{w}(\tilde{x}) \to 0 \quad \text{as } |\xi| \to +\infty.
\]

The following result holds. We refer the reader to Appendix C for its proof.

Proposition 3.3. We have

\[
\nabla \left(w^{(\mu)}(y) - (y - z_r) \right) = \delta \nabla \tilde{w}(\tilde{y}) + O(\delta(\|\mu\|_{L^\infty} + (\delta \omega)^2)),
\]
where the scaled variable

\[
\tilde{y} = \frac{y - z_r}{\delta}.
\]

From (24), it follows that

\[
\int_{\Omega_r} \nabla (w^{(\mu)}(y) - y) \, dy = \delta^2 \int_B \nabla \tilde{w}(\tilde{x}) \, d\tilde{x} + O(\delta^3 ||\mu||_{L^\infty} + (\delta \omega)^2)).
\]

Define the polarization tensor associated to \(\sigma_r\) and \(B\) by (see [8])

\[
M(\sigma_r, B) := (\sigma_r - 1) \int_B \nabla \tilde{w}(\tilde{x}) \, d\tilde{x},
\]

where \(\tilde{w}\) is the solution to (23). The matrix \(M(\sigma_r, B)\) is symmetric definite (positive if \(\sigma_r > 1\) and negative if \(\sigma_r < 1\)). Moreover, if \(B\) is a disk, then \(M(\sigma_r, B)\) takes the form [8]

\[
M(\sigma_r, B) = \frac{2(\sigma_r - 1)}{\sigma_r + 1} |B| I_2,
\]

where \(I_2\) is the identity matrix.

To obtain an asymptotic expansion of \(u_s(x) - u_s^{(\mu)}(x)\) in terms of the characteristic size \(\delta\) of the scatterer, we take the far-field expansion of (14). Plugging formula (25) into (22), we obtain the following small-volume asymptotic expansion.

Proposition 3.4. We have

\[
u_s(x) = u_s^{(\mu)}(x) - \delta^2 M(\sigma_r, B) \nabla U_0(z_r) \cdot \nabla G^{(\mu)}_\omega(x, z_r) + O(\delta^3 [1 + ||\mu||_{L^\infty} + (\delta \omega)^2]),
\]

uniformly in \(x \in \partial \Omega\).

Finally, using (21) we arrive at the following result.

Theorem 3.1. We have as \(\delta\) goes to zero

\[
(u_s - u_s^{(\mu)})(x) = -\delta^2 M(\sigma_r, B) \nabla U_0(z_r) \cdot \left[\nabla G^{(0)}_\omega(x, z_r) + \nabla \int_{\Omega_r} \mu(y) \nabla G^{(0)}_\omega(y, z_r) \cdot \nabla G^{(0)}_\omega(x, y) \, dy \right]
+ O(\delta^3 [1 + ||\mu||_{L^\infty} + (\delta \omega)^2] + \delta^2 ||\mu||_{L^\infty}^2),
\]

uniformly in \(x \in \partial \Omega\).

Theorem 3.1 shows that the asymptotic expansion (27) is uniform with respect to \(\omega\) and \(\mu\), provided that \(\omega \leq C/\delta\) and \(||\mu||_{L^\infty} \leq C' \sqrt{\delta}\) for two positive constants \(C\) and \(C'\).

3.2. Second-harmonic problem.

We apply similar arguments to derive a small-volume expansion for the second-harmonic field \(v\) at frequency \(2\omega\). Here the derivation is simpler than before. It is based on Born approximations with respect to both the size of the reflector and the amplitude of the medium noise. It is worth emphasizing that the asymptotic expansion with respect to the size of the reflector does not involve the notion of a polarization tensor.

Introduce \(G^{(\sigma_r, \mu)}_{2\omega}(\cdot, z)\) as the outgoing solution of

\[
(\Delta + \frac{(2\omega)^2}{\sigma_r - 1} 1_{\text{fl}^+} + 1 - \frac{\mu}{\sigma_r - 1} 1_{\text{fl}^+}) G^{(\sigma_r, \mu)}_{2\omega}(\cdot, z) = -\delta z \quad \text{in} \ \mathbb{R}^2.
\]
Let \(G_{2\omega}^{(0)} \) be the solution to (17) subject to the Sommerfeld radiation condition with \(\omega \) replaced by \(2\omega \).

Similarly to (27), an asymptotic expansion for \(G_{2\omega}^{(\sigma, \mu)} \) in terms of \(\delta \) can be derived. We have

\[
(G_{2\omega}^{(\sigma, \mu)} - G_{2\omega}^{(0)})(x, z) = O(\delta^2)
\]

for \(x \neq z \) and \(x, z \) away from \(z_r \). Here \(G_{2\omega}^{(\mu)} \) is the solution to (15) with \(\omega \) replaced by \(2\omega \).

Moreover, the Born approximation yields

\[
(G_{2\omega}^{(\sigma, \mu)} - G_{2\omega}^{(0)})(x, z) = -(2\omega)^2 \int_{\Omega} \mu(y) G_{2\omega}^{(0)}(y, z) G_{2\omega}^{(0)}(x, y) dy + O(\delta^2 + ||\mu||_{L^\infty})
\]

for \(x \neq z \) and \(x, z \) away from \(z_r \). From the integral representation formula

\[
v(x) = - \int_{\Omega} \sum_{k,l} \chi_{kl} \partial_{x_k} U(y) \partial_{x_l} U(y) G_{2\omega}^{(\sigma, \mu)}(x, y) dy,
\]

it follows that

\[
v(x) = -\delta^2 |B| \left(\sum_{k,l} \chi_{kl} \partial_{x_k} U(z_r) \partial_{x_l} U(z_r) \right) G_{2\omega}^{(\sigma, \mu)}(x, z_r) + O(\delta^3),
\]

where \(|B|\) denotes the volume of \(B \), and hence, keeping only the terms of first order in \(\mu \) and of second order in \(\delta \),

\[
v(x) = -\delta^2 |B| \left(\sum_{k,l} \chi_{kl} \partial_{x_k} U(z_r) \partial_{x_l} U(z_r) \right) G_{2\omega}^{(0)}(x, z_r) - 4(2\omega)^2 \int_{\Omega} \mu(y) G_{2\omega}^{(0)}(x, y) G_{2\omega}^{(0)}(y, z_r) dy + O(||\mu||_{L^\infty}^2) \]

+ \(O(\delta^3) \).

We denote by \((S)^\theta\) the source term (the source term strongly depends on the angle \(\theta \) of the incoming plane wave)

\[
(S)^\theta = \left(\sum_{k,l} \chi_{kl} \partial_{x_k} U(z_r) \partial_{x_l} U(z_r) \right).
\]

Now, since

\[
U(x) = U_I e^{i\omega_0 x} + \int_{\Omega} \mu(y) \nabla G_{2\omega}^{(0)}(x, y) \cdot \nabla U_0(y) dy + O(||\mu||_{L^\infty}^2 + \delta),
\]

which follows by using the Born approximation and the inner expansion (14), we can give an expression for the partial derivatives of \(U \). We have

\[
\partial_{x_k} U(x) = i\omega \theta_k U_I e^{i\omega_0 x} - i\omega \theta_k \cdot \left(\int_{\Omega} \nabla (\mu(y) e^{i\omega_0 y}) \partial_{x_k} G_{2\omega}^{(0)}(x, y) dy + O(||\mu||_{L^\infty}^2 + \delta) \right).
\]
We can rewrite the source term as

\[(33) \quad \left(\sum_{k,l} \chi_{k,l} \partial_{x_k} U(z_r) \partial_{x_l} U(z_r) \right) = -\omega^2 U^2 \sum_{k,l} \chi_{k,l} \left[\theta_k \theta_l e^{i\omega t \cdot z_r} \right. \]

\[- \theta_k \theta_l \int_\Omega \nabla (\mu(y) e^{i\omega t \cdot y}) \partial_{x_k} G^0(0)(z_r, y) dy \left. \right] - \theta_k \theta_l \int_\Omega \nabla (\mu(y) e^{i\omega t \cdot y}) \partial_{x_l} G^0(0)(z_r, y) dy \right]

\[+ \theta_k \theta_l \int_\Omega \nabla (\mu(y) e^{i\omega t \cdot y}) \partial_{x_k} G^0(0)(z_r, y) dy \left] + O(|||\mu|||_{L^\infty}^2 + \delta). \]

Assume that \(\mu \in C^{0,\alpha} \) for \(0 < \alpha < 1/2 \). From

\[(34) \quad \int_\Omega \nabla (\mu(y) e^{i\omega t \cdot y}) \partial_{x_k} G^0(0)(z_r, y) dy = \int_\Omega \nabla (\mu(y) e^{i\omega t \cdot y} - \mu(z_r) e^{i\omega t \cdot z_r}) \partial_{x_k} G^0(0)(z_r, y) dy \]

one can show that, for \(0 < \alpha' \leq \alpha \), we have [18]

\[\left| \theta_k \theta_l \int_\Omega \nabla (\mu(y) e^{i\omega t \cdot y}) \partial_{x_k} G^0(0)(z_r, y) dy \right| \leq C |||\mu|||_{C^{0,\alpha'}}^2, \]

where \(C \) is a positive constant independent of \(\mu \).

So, if we split \((S)^{\theta}\) into a deterministic part and a random part,

\[(S)^{\theta} = (S)^{\theta}_{det} + (S)^{\theta}_{rand} + O(|||\mu|||_{C^{0,\alpha}}^2 + \delta),\]

we get

\[(35) \quad (S)^{\theta}_{det} = -\omega^2 U^2 e^{i2\omega t \cdot z_r} \sum_{k,l} \chi_{k,l} \theta_k \theta_l \]

and

\[(36) \quad (S)^{\theta}_{rand} = \omega^2 \sum_{k,l} \chi_{k,l} \left[\theta_k \theta_l \int_\Omega \nabla (\mu(y) e^{i\omega t \cdot y}) \partial_{x_k} G^0(0)(z_r, y) dy \right. \]

\[\left. + \theta_k \theta_l \int_\Omega \nabla (\mu(y) e^{i\omega t \cdot y}) \partial_{x_k} G^0(0)(z_r, y) dy \right]. \]

Finally, we obtain the following result.

Theorem 3.2. Assume that \(\mu \in C^{0,\alpha} \) for \(0 < \alpha < 1/2 \). Let \(0 < \alpha' \leq \alpha \). The following asymptotic expansion holds for \(v \) as \(\delta \) goes to zero:

\[(37) \quad v(x) = -\delta^2 |B| \left((S)^{\theta}_{det} \left[G^0(0)(x, z_r) \right] - 4\omega^2 \int_\Omega \mu(y) G^0(0)(x, y) G^0(0)(y, z_r) dy \right) + (S)^{\theta}_{rand} G^0(0)(x, z_r) \]

\[+ O(\delta^3 + \delta^2 |||\mu|||_{C^{0,\alpha'}}^2), \]

uniformly in \(x \in \partial \Omega \).
4. Imaging functional. In this section, two imaging functionals are presented for locating small reflectors. For the sake of simplicity, we assume that B and Ω are disks centered at 0 with radius 1 and R, respectively.

4.1. The fundamental frequency case. We assume that we are in possession of the following data: $\{u_s(x), x \in \partial \Omega\}$. We introduce the reverse-time imaging functional

$$I(z^S) = \int_{\partial \Omega \times S^1} \frac{1}{i\omega} e^{-i\omega \theta \cdot z^S} \theta^\top \nabla G_{\omega}^{(0)}(x, z^S) u_s(x) d\sigma(x) d\sigma(\theta),$$

where \top denotes the transpose. Introduce the matrix

$$R_\omega(z_1, z_2) = \int_{\partial \Omega} \nabla G_{\omega}^{(0)}(x, z_1) \nabla G_{\omega}^{(0)}(x, z_2)^\top d\sigma(x), \quad z_1, z_2 \in \Omega' \in \Omega.$$

Using (27), we have the following expansion for $I(z^S), z^S \in \Omega'$:

$$I(z^S) = \int_{\partial \Omega \times S^1} \frac{1}{i\omega} e^{-i\omega \theta \cdot z^S} \theta^\top \nabla G_{\omega}^{(0)}(x, z^S) u_s(\mu)(x) d\sigma(x) d\sigma(\theta)$$

$$- \frac{2\pi \delta^2(\sigma_r - 1)}{\sigma_r + 1} U_I \int_{S^1} e^{-i\omega \theta \cdot (z^S - z_r)} \theta^\top \left[R_\omega(z^S, z_r) \right]$$

$$+ \int_{\partial \Omega} \nabla G_{\omega}^{(0)}(x, z^S) \left(\nabla \int_{\Omega_\mu} \mu(y) \nabla G_{\omega}^{(0)}(y, z_r) \cdot \nabla G_{\omega}^{(0)}(x, y) dy \right)^\top d\sigma(x) \theta d\sigma(\theta)$$

$$+ O(\delta^3 + \delta^2 ||\mu||^2_{L^\infty}).$$

Note that

$$\int_{\partial \Omega} \nabla G_{\omega}^{(0)}(x, z^S) \left(\nabla \int_{\Omega_\mu} \mu(y) \nabla G_{\omega}^{(0)}(y, z_r) \cdot \nabla G_{\omega}^{(0)}(x, y) dy \right)^\top d\sigma(x)$$

$$= \int_{\Omega_\mu} \mu(y) \int_{\partial \Omega} \nabla G_{\omega}^{(0)}(x, z^S) \left(\nabla \nabla G_{\omega}^{(0)}(x, y) \nabla G_{\omega}^{(0)}(y, z_r) \right)^\top d\sigma(x) dy.$$

Remark 4.1. Here, the fact that not only do we backpropagate the boundary data, but we also average it over all the possible illumination angles in S^1, has two motivations. As will be shown later in section 5, the first reason is to increase the resolution and make the peak at the reflector’s location isotropic. If we do not sum over equidistributed illumination angles over the sphere, we get more of an “8-shaped” spot, as shown in Figure 7. The second reason is that an average over multiple measurements increases the stability of the imaging functional with respect to measurement noise.

Remark 4.2. If we could take an image of the medium in the absence of a reflector before taking the real image, we would be in possession of the boundary data $\{u_s - u_s^{(\mu)}, x \in \partial \Omega\}$, and thus we would be able to detect the reflector in a very noisy background. But in some practical situations [21], it is not possible to get an image without the reflector. As will be shown in section 5, SHG can be seen as a powerful contrast imaging approach [21]. In fact, we will prove that the second-harmonic image is much more stable with respect to the medium noise and to the volume of the particle than the fundamental frequency image.
4.2. Second-harmonic backpropagation. If we write a similar imaging functional for the second-harmonic field \(v \), assuming that we are in possession of the boundary data \(\{ v(x), \ x \in \partial \Omega \} \), we get

\[
\forall z^S \in \Omega, \ J_\theta(z^S) = \int_{\partial \Omega \times \mathbb{R}^1} v(x)G^{(0)}_{2\omega}(x, z^S)e^{-2i\omega^\theta \cdot z^S}d\sigma(x)d\sigma(\theta).
\]

As before, using (37) we can expand \(J \) in terms of \(\delta \) and \(\mu \). Considering first-order terms in \(\delta \) and \(\mu \) we get

\[
J(z^S) = -\pi \delta^2 \int_{\partial \Omega} e^{-2i\omega^\theta \cdot z^S} \left[(S)_{\text{det}}^\theta \left(\int_{\partial \Omega} G^{(0)}_{2\omega}(x, z^S)G^{(0)}_{2\omega}(x, z_r)d\sigma(x) \right) \right.
- 4\omega^2 \int_{\partial \Omega} G^{(0)}_{2\omega}(x, z^S) \left(\int_{\partial \Omega} \mu(y)G^{(0)}_{2\omega}(y, x)G^{(0)}_{2\omega}(y, z_r)dyd\sigma(x) \right)
\left. + (S)_{\text{rand}}^\theta \int_{\partial \Omega} G^{(0)}_{2\omega}(x, z^S)G^{(0)}_{2\omega}(x, z_r)d\sigma(x) \right] d\sigma(\theta) + O(\delta^3 + \delta^2||\mu||_{C^0,\mu}^2),
\]

where \(0 < \alpha' \leq \alpha \). Now, if we define \(Q_{2\omega} \) as

\[
Q_{2\omega}(x, z) = \int_{\partial \Omega} G^{(0)}_{2\omega}(y, x)G^{(0)}_{2\omega}(y, z)dy,
\]

we have

\[
J(z^S) = -\pi \delta^2 \int_{\partial \Omega} e^{-2i\omega^\theta \cdot z^S} \left[(S)_{\text{det}}^\theta \left(Q_{2\omega}(z_r, z^S) \right) \right. - 4\omega^2 \int_{\partial \Omega} \mu(y)G^{(0)}_{2\omega}(y, z_r)Q_{2\omega}(y, z^S)dy
\left. + (S)_{\text{rand}}^\theta Q_{2\omega}(z_r, z^S) \right] d\sigma(\theta) + O(\delta^3 + \delta^2||\mu||_{C^0,\mu}^2).
\]

5. Statistical analysis. In this section, we perform a resolution and stability analysis of both functionals. Since the image we get is a superposition of a deterministic image and of a random field created by the medium noise, we can compute the expectation and the covariance functions of those fields in order to estimate the signal-to-noise ratio. For the reader’s convenience we give our main results in the following proposition.

Proposition 5.1. Let \(l_\mu \) and \(\sigma_\mu \) be, respectively, the correlation length and the standard deviation of the process \(\mu \). Assume that \(l_\mu \) is smaller than the wavelength \(2\pi/\omega \). Let \((SNR)_I\) and \((SNR)_J\) be defined by

\[
(SNR)_I = \frac{\mathbb{E}[I(z_r)]}{(\text{Var}[I(z_r)])^{\frac{1}{2}}}
\]

and

\[
(SNR)_J = \frac{\mathbb{E}[J(z_r)]}{(\text{Var}[J(z_r)])^{\frac{1}{2}}}.
\]
We have

\[
(SNR)_I \approx \frac{\sqrt{2\pi^3/2} \omega \delta^2 U_I}{\sigma \mu l_{\mu} \sqrt{\omega \text{diam} \Omega_{\mu}}} \frac{|\sigma_r - 1|}{\sigma_r + 1}
\]

and

\[
(SNR)_J \geq \frac{l_{\mu} \left(\int_{\mathbb{S}^1} \left(\sum_{k,l} \chi_{k,l} \omega_{k,l} \theta_k \theta_l \right) d\theta \right)}{\sqrt{C \sigma \min(\omega^{-\alpha}, 1) \max_{k,l} |\chi_{k,l}| \sqrt{(\text{diam} \Omega_{\mu})^{3+2\alpha} + 1}}.
\]

Here, \text{diam} denotes the diameter, and \alpha is the upper bound for Hölder regularity of the random process \mu (see section 5.1).

5.1. Assumptions on the random process \mu. Let \(z(x), x \in \mathbb{R}^2 \), be a stationary random process with Gaussian statistics, zero mean, and a covariance function given by \(R(|x - y|) \) satisfying \(R(0) = \sigma_\mu^2 \), \(|R(0) - R(s)| \leq \sigma_\mu^2 \frac{2^{\alpha}}{l_{\mu}^{\alpha}} \) with \(R \) decreasing. Then \(z \) is a \(C^{0,\alpha'} \) process for any \(\alpha' < \alpha \) (see [3, Theorem 8.3.2]). Let \(F \) be a smooth odd-bounded function, with derivative bounded by one. For example, \(F = \arctan \) is a suitable choice. Take

\[
\mu(x) = F[z(x)].
\]

Then \(\mu \) is a bounded \(C^{0,\alpha'} \) stationary process with zero mean. We want to compute the expectation of its norm. Introduce

\[
p(h) = \max_{\|x - y\| \leq \sqrt{2h}} \mathbb{E}|z(x) - z(y)|.
\]

One can also write \(p(u) = \sqrt{2} \sqrt{R(0) - R(\sqrt{2}u)} \). According to [3], for all \(h, t \in \Omega_{\mu} \), almost surely

\[
|z(t + h) - z(t)| \leq 16 \sqrt{2} \log(B) \frac{1}{p(h)} \left(\frac{|h|}{l_{\mu}} \right) + 32 \sqrt{2} \int_0^{\frac{|h|}{l_{\mu}}} (\log u)^{1/2} dp(u),
\]

where \(B \) is a positive random variable with \(\mathbb{E}[B^n] \leq (4\sqrt{2})^n \) (see [3, formula (3.3.23)]). We have that

\[
p(|h|) \leq \sqrt{2} \frac{1 + \alpha}{\sigma_\mu \frac{|h|^\alpha}{l_{\mu}^\alpha}}
\]

By integration by parts we find that

\[
\int_0^{\frac{|h|}{l_{\mu}}} (\log u)^{1/2} dp(u) = \left(\int_0^{\frac{|h|}{l_{\mu}}} \frac{1}{p(u)} \right) \frac{|h|}{l_{\mu}} + \frac{1}{2} \int_0^{\frac{|h|}{l_{\mu}}} (-\log u)^{-1/2} u^{-1} p(u) du.
\]

For any \(\varepsilon > 0 \), since \(s^\varepsilon \sqrt{-\log s} \leq \frac{1}{\sqrt{\varepsilon}} e^{1/2} \) on \([0,1]\), we have, as \(|h| \) goes to zero, that

\[
\left(\int_0^{\frac{|h|}{l_{\mu}}} \frac{1}{p(u)} \right) \frac{|h|}{l_{\mu}} \leq \frac{\sqrt{2} e \sigma_\mu \frac{|h|^{\alpha - \varepsilon}}{l_{\mu}^\alpha}}{\sqrt{\varepsilon}}.
\]
Similarly, when $|h| < \frac{1}{2\pi}$, for every $0 < u < |h|,$

$$(\log u)^{-1/2} s^{-1} p(u) \leq \sqrt{2} \left| \frac{h}{l_\mu} \right|^{\frac{\alpha}{2} - 1} \frac{\sigma_\mu}{l_\mu}.$$
So we get, when $|h|$ goes to zero, for every $\varepsilon > 0$

\begin{equation}
(54) \quad \int_0^{\frac{|h|}{l_\mu}} (\log u)^{1/2} dp(u) \leq \frac{e^{\frac{1}{2}} \sqrt{2} \left| \frac{h}{l_\mu} \right|^{\frac{\alpha}{2} - \varepsilon}}{\sqrt{\varepsilon}} \left(\frac{1}{\sqrt{\alpha - \alpha'}} + \frac{1}{2} h^{\alpha - \alpha'} \right).
\end{equation}

Therefore, when $|h|$ goes to zero, we have for any $\varepsilon > 0$

\begin{equation}
(55) \quad |z(t + h) - z(t)| \leq 32 \sqrt{2}^3 \log(B)^{1/2} \left| \frac{h}{l_\mu} \right|^{\alpha - \varepsilon} \left(\frac{1}{\sqrt{\alpha - \alpha'}} + \frac{1}{2} h^{\alpha - \alpha'} \right).
\end{equation}

Since $F' \leq 1$, composing by F yields, for any $x, y \in \mathbb{R}^2$,

\begin{equation}
(56) \quad |\mu(x) - \mu(y)| \leq |z(x) - z(y)|.
\end{equation}

We get the following estimate on $\|\mu\|_{C_0,\alpha'}$, for any $\alpha' \in [0, \alpha]$, almost surely:

\begin{equation}
(57) \quad \sup_{x, y \in \Omega_\mu \atop |x - y| \leq h} \frac{|\mu(x) - \mu(y)|}{|x - y|^{\alpha'}} \leq 32 \sqrt{2}^3 \log(B)^{1/2} \left| \frac{h}{l_\mu} \right|^{\alpha - \alpha'} + 64 e^{\frac{1}{2}} \sqrt{2} \sigma_\mu \left(\frac{1}{\sqrt{\alpha' - \alpha}} + \frac{1}{2} h^{\alpha - \alpha'} \right),
\end{equation}

\begin{equation}
(58) \quad \|\mu\|_{C_0,\alpha'} \leq 64 \sqrt{2} \left[\log(B)^{1/2} + 1 \right] \frac{\sigma_\mu}{\sqrt{\alpha - \alpha'}} \left| \frac{h}{l_\mu} \right|^{\alpha - \alpha'},
\end{equation}

which gives, since $\mathbb{E} \log B \leq \mathbb{E}[B] - 1 \leq 4 \sqrt{2} - 1$,

\begin{equation}
(59) \quad \mathbb{E}[\|\mu\|_{C_0,\alpha'}^2] \leq 64^2 2^{4 + \alpha} \frac{e^{\frac{1}{2}} \sigma_\mu^2}{\alpha - \alpha'} \left| \frac{h}{l_\mu} \right|^{2 \alpha - 2 \alpha'},
\end{equation}

5.2. Standard backpropagation.

5.2.1. Expectation. We use (40) and the fact that $\mathbb{E}(\mu)(x) = 0$, for all $x \in \Omega$, to find that

\begin{equation}
(60) \quad \mathbb{E}[I(z^S)] = -2\pi \delta^2 \frac{\sigma_r - 1}{\sigma_r + 1} U_I \int_{S^3} e^{-i\omega \theta(z^S - z_r)} \theta^\top R_\omega(z^S, z_r) \theta d\theta.
\end{equation}

We now use the Helmholtz–Kirchhoff theorem. Since (see [6])

\begin{equation}
(61) \quad \lim_{R \to \infty} \int_{|z| = R} \nabla G^{(0)}_{\omega}(x, y) \nabla G^{(0)}_{\omega}(z, y)^\top dy = \frac{1}{\omega} \nabla_z \nabla_x \text{Im} \left[G^{(0)}_{\omega}(x, z) \right]
\end{equation}
and
\[(62) \quad \text{Im} \left[G_{\omega}^{(0)}(x, z) \right] = \frac{1}{4} J_0(\omega|x - z|), \]

we can compute an approximation of \(R_{\omega} \):
\[(63) \quad \frac{1}{\omega} \nabla_z \nabla_x \text{Im} \left[G_{\omega}^{(0)}(x, z) \right] = \frac{1}{4}\left[i \omega J_0(\omega|x - z|) \left(\frac{(x - z)(x - z)^\top}{|x - z|} \right) + J_1(\omega|x - z|)^2 I_2 \right], \]

where \(I_2 \) is the 2 \times 2 identity matrix. We can see that \(R_{\omega} \) decreases as \(|z_r - z^S|^{-\frac{3}{2}}\). The imaging functional has a peak at location \(z^S = z_r \). Evaluating \(R_{\omega} \) at \(z^S = z_r \) we get
\[(64) \quad R_{\omega}(z_r, z_r) = \frac{\omega}{8} J_2. \]

So we get the expectation of \(I \) at point \(z_r \):
\[(65) \quad \mathbb{E}[I(z_r)] \approx -\frac{\pi^2(\sigma_r - 1)}{2(\sigma_r + 1)} \omega \delta^2 U_1. \]

5.2.2. Covariance. Let
\[(66) \quad \text{Cov} \left(I(z^S), I(z^{S'}) \right) = \mathbb{E} \left[(I(z^S) - \mathbb{E}[I(z^S)]) (I(z^{S'}) - \mathbb{E}[I(z^{S'})]) \right]. \]

Define
\[(67) \quad \tilde{R}_\omega(z^S, z_r, y) = \int_{\partial \Omega} \nabla G_{\omega}^{(0)}(x, z^S) (\nabla \nabla G_{\omega}^{(0)}(x, y) \nabla G_{\omega}^{(0)}(y, z_r)) \top \ d\sigma(x). \]

Using (40) and (65), we get
\[(68) \quad I(z^S) - \mathbb{E}[I(z^S)] = \int_{\partial \Omega \times S^1} \frac{1}{i \omega} e^{-i\omega \theta} z^S \theta \top \nabla G_{\omega}^{(0)}(x, z^S) \top u_s(\mu)(x) d\sigma(x) \theta dy \]
\[- 2\pi \delta^2 \frac{\sigma_r - 1}{\sigma_r + 1} U_1 \int_{\partial \Omega \times S^1} e^{-i\omega \theta} (z^S - z_r) \left(\int_{\partial \Omega} \mu(y) \theta \top \tilde{R}_\omega(z^S, z_r, y) dy \right) d\theta. \]

The computations are a bit tedious. For brevity, we write the quantity above as
\[(69) \quad I(z^S) - \mathbb{E}[I(z^S)] = A_I(z^S) + B_I(z^S), \]

with
\[(70) \quad A_I(z^S) = \int_{\partial \Omega \times S^1} \frac{1}{i \omega} e^{-i\omega \theta} z^S \theta \top \nabla G_{\omega}^{(0)}(x, z^S) u_s(\mu)(x) d\sigma(x) \theta dy \]
and
\[(71) \quad B_I(z^S) = -2\pi \delta^2 \frac{\sigma_r - 1}{\sigma_r + 1} U_1 \int_{S^1} e^{-i\omega \theta} (z^S - z_r) \left(\int_{\partial \Omega} \mu(y) \theta \top \tilde{R}_\omega(z^S, z_r, y) dy \right) d\theta. \]

We now compute each term of the product in (66) separately.
\textbf{Main speckle term.} We need to estimate the typical size of A_I. From (10), keeping only terms of first order in μ yields
\begin{equation}
A_I(z^S) = -\int_{\partial^*} \frac{1}{i\omega} e^{-i\omega \theta} z^S \theta^T \nabla G^{(0)}(x, z^S) \int_{\Omega} \mu(y) \nabla G^{(0)}(x, y) \cdot \nabla U_0(y) dy dx d\theta + O(||\mu||^2),
\end{equation}
so we have
\begin{equation}
A_I(z^S) = -U_I \int_{\Omega} e^{-i\omega \theta} (z^S-y) \mu(y) \theta^T R_\omega(z^S, y) d\theta dy,
\end{equation}
and hence
\begin{equation}
A_I(z^S) A_I(z^{S'}) = U_I^2 \int_{\partial^*} e^{-i\omega \theta} (z^S-z^S') \left[\int_{\Omega} e^{i\omega \theta} (y-y') \mu(y) \mu(y') \theta^T R_\omega(z^S, y) R_\omega(z^{S'}, y') d\theta dy dy' \right] d\theta.
\end{equation}
We assume that the medium noise is localized and stationary on its support Ω_μ. We also assume that the correlation length l_μ is smaller than the wavelength. We denote by σ_μ the standard deviation of the process μ. We can then write
\begin{equation}
E \left[A_I(z^S) A_I(z^{S'}) \right] = U_I^2 \sigma_\mu^2 \mu_0^2 \int_{\partial^*} e^{-i\omega \theta} (z^S-z^S') \int_{\Omega_\mu} \theta^T R_\omega(z^S, y) R_\omega(z^{S'}, y) d\theta dy.
\end{equation}
We introduce
\begin{equation}
P_\omega(z^S, y, z^{S'}) := \int_{\partial^*} e^{i\omega \theta} (z^S-z^S') \theta^T R_\omega(z^S, y) R_\omega(z^{S'}, y) d\theta,
\end{equation}
where R_ω is defined by (39). Therefore, we have
\begin{equation}
E \left[A_I(z^S) A_I(z^{S'}) \right] = U_I^2 \sigma_\mu^2 \mu_0^2 \int_{\Omega_\mu} P_\omega(z^S, y, z^{S'}) dy.
\end{equation}
Hence, A_I is a complex field with Gaussian statistics of mean zero and covariance given by (77). It is a speckle field and is not localized.

We compute its typical size at point $z^S = z^{S'} = z_r$ in order to get signal-to-noise estimates. Using (63), we get that for $|x-z| \gg 1$,
\begin{equation}
\lim_{R \to \infty} \int_{|x|=R} \nabla G^{(0)}(x, y) \nabla G^{(0)}(z, y)^T dy = \frac{\omega}{4} J_0(\omega |x-z|) \left(\frac{(x-z)(x-z)^T}{|x-z|} \right).
\end{equation}
Since we have, for $|x-z| \gg 1$,
\begin{equation}
J_0(\omega |x-z|) \sim \frac{\sqrt{2} \cos(\omega |x-z| - \frac{\pi}{4})}{\sqrt{\pi \omega |x-z|}},
\end{equation}
we obtain that
\[R_\omega(x, z) \approx \frac{\sqrt{\omega \cos(\omega |x-z| - \pi/4)}}{2\sqrt{2\pi}} |x-z|^{-1/2} \left(\frac{(x-z)(x-z)^T}{|x-z|} \right) \text{ for } |x-z| \gg 1. \]

Now we can write
\[\text{If we compute the term} \]
\[\mathbb{E} \left[A_I(z_r)\overline{A_I(z_r)} \right] \approx U_f^2 \sigma_\mu^2 I_I \int_{\Omega_\mu} \left(\frac{\sqrt{\omega}}{2\sqrt{2\pi}} \right)^2 \frac{1}{2} |y-z_r|^{-1} \int_{S^1} \theta^T \left(\frac{(y-z_r)(y-z_r)^T}{|y-z_r|} \right) \theta d\theta dy. \]

If we compute the term
\[\int_{S^1} \theta^T \left(\frac{(y-z_r)(y-z_r)^T}{|y-z_r|} \right) \theta d\theta = \int_0^{2\pi} \left[\left(\frac{(y-z_r)}{|y-z_r|} \right)^2 \cos^2 \theta + \left(\frac{(y-z_r)}{|y-z_r|} \right)^2 \sin^2 \theta \right] d\theta, \]
then, after linearization and integration, we get
\[\int_{S^1} \theta^T \left(\frac{(y-z_r)(y-z_r)^T}{|y-z_r|} \right) \theta d\theta = \pi. \]
So we have
\[\mathbb{E} \left[A_I(z_r)\overline{A_I(z_r)} \right] \approx \pi U_f^2 \sigma_\mu^2 I_I \int_{\Omega_\mu} \left(\frac{\sqrt{\omega}}{4\sqrt{\pi}} \right)^2 |y-z_r|^{-1} dy, \]
and therefore
\[\mathbb{E} \left[A_I(z_r)\overline{A_I(z_r)} \right] \approx \frac{\omega}{8} U_f^2 \sigma_\mu^2 I_I \text{diam } \Omega_\mu. \]

Secondary speckle term. We have
\[B_I(z^S)\overline{B_I(z^S')} = \left(2\pi \delta^2 \frac{\sigma_r - 1}{\sigma_r + 1} U_I \right)^2 \int_{S^1} e^{-i\omega \theta \cdot (z^S - z^S')} \left[\int_{\Omega} \mu(y)\mu(y') \theta^T \tilde{R}_\omega(z^S, z_r, y)\overline{\tilde{R}_\omega(z^S', z_r, y')} \theta dy dy' \right] d\theta. \]

So we get the expectation
\[\mathbb{E} \left[B_I(z^S)\overline{B_I(z^S')} \right] = \left(2\pi \delta^2 \frac{\sigma_r - 1}{\sigma_r + 1} U_I \right)^2 \sigma_\mu^2 I_I \int_{S^1} e^{-i\omega \theta \cdot (z^S - z^S')} \theta^T \left[\int_{\Omega} \tilde{R}_\omega(z^S, z_r, y) \overline{\tilde{R}_\omega(z^S', z_r, y)} dy \right] \theta d\theta. \]

This term also creates a speckle field on the image. As before, we compute the typical size of this term at point \(z_r \). We first get an estimate on \(\tilde{R}_\omega \):
\[\left| \tilde{R}_\omega(z^S, z_r, y) \right| \leq \left| \partial_y G_\omega^{(0)}(y, z_r) \right| \sum_{k=1,2} \int_{\partial \Omega} \partial_y G_\omega^{(0)}(x, z^S) \partial_y \partial_y G_\omega^{(0)}(x, y) d\sigma(x). \]
We recall the Helmholtz–Kirchhoff theorem
\begin{equation}
\int_{\partial \Omega} G_\omega^{(0)}(x, y) G_\omega^{(0)}(x, z) d\sigma(x) \sim \frac{1}{4\omega} J_0(\omega|y - z|) \quad \text{as } R \to \infty,
\end{equation}
from which
\begin{equation}
\int_{\partial \Omega} \partial_i G_\omega^{(0)}(x, z^S) \partial_j \partial_k G_\omega^{(0)}(x, y) d\sigma(x) = \frac{1}{4\omega} (\partial_i \partial_j \partial_k f)(z^S - y),
\end{equation}
where \(f \) is defined by \(f(x) = J_0(\omega|x|) \). We have
\begin{equation}
\partial_i \partial_j \partial_k f(x) = \omega \left(\frac{3(a_{i,j,k}(x) - b_{i,j,k}(x))}{|x|^2} [J_0'(\omega|x|) - \omega|x|J_0''(\omega|x|)] + a_{i,j,k}(x)\omega^2 J_0^{(3)}(\omega|x|) \right),
\end{equation}
where \(a_{i,j,k} \) and \(b_{i,j,k} \) are rational fractions in the coefficients of \(x \) bounded by 1. Now, recall the power series of \(J_0 \):
\begin{equation}
J_0(z) = \sum_k (-1)^k \left(\frac{1}{k!} \right)^2 \left(\frac{z^2}{4} \right)^k.
\end{equation}
We can write
\begin{equation}
J_0'(\omega|x|) - \omega|x|J_0''(\omega|x|) = -\frac{\omega^3}{4} |x|^3 + o(|x|^3).
\end{equation}
Hence, since \(J_0^{(3)}(x) \sim \frac{3}{4} x \) when \(x \to 0 \), we can prove the following estimate for \(x \) around 0:
\begin{equation}
\frac{1}{4\omega} (\partial_i \partial_j \partial_k f)(x) \sim \frac{3b_{i,j,k}(x)}{16} \omega^3 |x|.
\end{equation}
In order to get the decay of \(\tilde{R}_\omega \) for large arguments we use the following formulas: \(J_0' = -J_1 \), \(J_0'' = \frac{1}{x} J_1 - J_0 \), and \(J_0^{(3)} = J_1 - \frac{1}{x^2} J_1 + \frac{1}{x} J_0 \). We get
\begin{equation}
\frac{1}{4\omega} |\partial_i \partial_j \partial_k f(x)| \leq \omega^2 (\omega|x|)^{-1/2} \quad \text{as } x \to \infty.
\end{equation}
We also have the following estimate:
\begin{equation}
|\nabla G_\omega^{(0)}(y, z_r)| \leq \left(\frac{2}{\pi} \right)^{1/2} \max \left(\frac{1}{|y - z_r|}, \frac{\omega}{\sqrt{\omega}|y - z_r|} \right).
\end{equation}
We can now write the estimate on \(\tilde{R}_{\omega i, j} \):
\begin{equation}
|\tilde{R}_\omega(z^S, z_r, y)_{i, j}| \leq \omega^2 \left(\frac{2}{\pi} \right)^{1/2} \min \left(\omega|y - z_r|, \frac{1}{\sqrt{\omega}|y - z^S|} \right) \max \left(\frac{1}{\omega|y - z_r|}, \frac{1}{\sqrt{\omega}|y - z_r|} \right).
\end{equation}
We can now go back to estimating the term B_I. We split the domain of integration $\Omega_\mu = B(z_r, \omega^{-1}) \cup \Omega_\mu \setminus B(z_r, \omega^{-1})$ to get

$$\left| \mathbb{E}\left[B_I(z_r)B_I(z_r) \right] \right| \leq \left(\frac{2\pi \delta^2 \sigma_r - 1}{\sigma_r + 1} U_I \right)^2 \sigma_\mu^2 l_\mu^2 \pi \int_{\Omega_\mu \setminus B(z_r, \omega^{-1})} \frac{1}{|y - z_r|^2} dy + \int_{B(z_r, \omega^{-1})} \omega^2 dy.$$

Hence,

$$\left| \mathbb{E}\left[B_I(z_r)B_I(z_r) \right] \right| \leq 8 \left(\frac{2\pi \delta^2 \sigma_r - 1}{\sigma_r + 1} U_I \right)^2 \omega^4 \sigma_\mu^2 l_\mu^2 \log(\omega \text{diam } \Omega_\mu).$$

Double products. The double products $A_I B_I$ and $B_I A_I$ have a typical amplitude that is the geometric mean of the typical amplitudes of A_I and B_I. So they are always smaller than one of the main terms $|A_I|^2$ or $|B_I|^2$.

5.2.3. Signal-to-noise ratio estimates.

We can now give an estimate of the signal-to-noise ratio $(SNR)_I$ defined by (45). Using (65), (84), and (98) we get

$$\langle SNR \rangle_I \approx \frac{\pi^2 (\sigma_r - 1)}{2(\sigma_r + 1)} \omega^2 U_I \sigma_\mu l_\mu \left(\frac{\pi}{8} \text{diam } \Omega_\mu + 8 \left(\frac{2\pi \delta^2 \sigma_r - 1}{\sigma_r + 1} U_I \right)^2 \omega^4 \log(\omega \text{diam } \Omega_\mu) \right)^{1/2}. $$

Since $\delta \ll \frac{2\pi}{\omega}$ we have that $\delta \omega \ll 1$, so we can estimate $(SNR)_I$ as follows:

$$\langle SNR \rangle_I \approx \frac{\sqrt{2\pi} \omega^{3/2} \sigma_r - 1}{\sigma_r + 1} \omega^2 U_I \sigma_\mu l_\mu \sqrt{\text{diam } \Omega_\mu}. $$

The perturbation in the image I comes from different phenomena. The first and most important one is the fact that we image not only the field scattered by the reflector, but also the field scattered by the medium's random inhomogeneities. This is why the signal-to-noise ratio depends on the volume and the contrast of the particle we are trying to locate. It has to stand out from the background. The other terms in the estimate (99) of $(SNR)_I$ are due to the phase perturbation of the field scattered by the particle when it reaches the boundary of Ω, which can be seen as a travel time fluctuation of the scattered wave by the reflector. Both terms are much smaller than the first one. $(SNR)_I$ depends on the ratio ω/l_μ. If the medium noise has a shorter correlation length, then the perturbation induced in the phase of the fields will more likely self-average.

5.3. Second-harmonic backpropagation.

5.3.1. Expectation.

We have

$$\mathbb{E}[J(z^S)] = -\pi \delta^2 \int_{S^1} e^{-2i\omega\theta \cdot z^S} \left[(S)_{det}^0 \int_{\partial \Omega} G_{2\omega}^{(0)}(x, z^S) G_{2\omega}^{(0)}(x, z_r) dx \right. $$

$$+ \mathbb{E}[(S)_{rand}^0] \int_{\partial \Omega} G_{2\omega}^{(0)}(x, z^S) G_{2\omega}^{(0)}(x, z_r) dx \right] d\theta.$$
Since $E[(S)_{\text{rand}}] = 0$ we obtain by using (35) that

$$E[J(z^S)] = \pi \delta^2 \omega^2 U_1^2 \int_{S^1} \left(\sum_{k,l} \chi_{k,l} \theta_k \theta_l \right) e^{2i\omega \theta \cdot (z_r - z^S)} d\theta \int_{\partial \Omega} G^{(0)}_{2\omega}(x, z^S) G^{(0)}_{2\omega}(x, z_r) dx.$$ \hfill (102)

If we define $\tilde{Q}_{2\omega}$ as

$$\tilde{Q}_{2\omega}(x, y) = \int_{S^1} \left(\sum_{k,l} \chi_{k,l} \theta_k \theta_l \right) e^{2i\omega \theta \cdot (x - y)} d\theta,$$

then it follows that

$$E[J(z^S)] = \delta^2 \omega^2 U_1^2 \tilde{Q}_{2\omega}(z_r, z^S) Q_{2\omega}(z_r, z^S),$$ \hfill (104)

where $Q_{2\omega}$ is given by (43). To get the typical size of this term we first use the Helmholtz–Kirchhoff theorem [6]:

$$Q_{2\omega}(z_r, z^S) \sim \frac{1}{2\omega} \text{Im} \left(G^{(0)}_{2\omega}(z_r, z^S) \right).$$ \hfill (105)

Therefore, we obtain that

$$E[J(z_r)] = \frac{\pi}{8} \delta^2 \omega U_1^2 \int_{S^1} \left(\sum_{k,l} \chi_{k,l} \theta_k \theta_l \right) d\theta.$$ \hfill (106)

5.3.2. Covariance.

We have

$$J(z^S) - E[J](z^S) = \pi \delta^2 \int_{S^1} e^{-2i\omega \theta \cdot z^S} \left[(S)_{\text{det}}^\theta e^{4\omega^2} \int_{\Omega} G^{(0)}_{2\omega}(s, z_r) \mu(s) Q_{2\omega}(s, z^S) ds \right. \left. - (S)_{\text{rand}}^\theta Q_{2\omega}(z_r, z^S) \right] d\theta.$$ \hfill (107)

Denote

$$A_J(z^S) = 4\pi \delta^2 \omega^2 \int_{S^1} e^{-2i\omega \theta \cdot z^S} (S)_{\text{det}}^\theta \int_{\Omega} G^{(0)}_{2\omega}(s, z_r) \mu(s) Q_{2\omega}(s, z^S) ds d\theta$$ \hfill (108)

and

$$B_J(z^S) = \pi \delta^2 \int_{S^1} e^{-2i\omega \theta \cdot z^S} (S)_{\text{rand}}^\theta Q_{2\omega}(z_r, z^S) d\theta.$$ \hfill (109)

Then we can write the covariance function

$$\text{Cov} \left(J(z^S), J(z^{S'}) \right) = E \left[(J(z^S) - E[J](z^S)) (J(z^{S'}) - E[J](z^{S'})) \right]$$ \hfill (110)

in the form

$$\text{Cov} \left(J(z^S), J(z^{S'}) \right) = E \left[A(z^S)A(z^{S'}) + B(z^S)B(z^{S'}) + A_J(z^S)B_J(z^{S'}) + A_J(z^{S'})B_J(z^{S}) \right].$$ \hfill (111)

We will now compute the first two terms separately and then deal with the double products.
The speckle term $A_j \overline{A_j}$. From

\[
A_j(z^S)\overline{A_j(z^S)} = 16\pi^2 \delta^4 \omega^4 \int_{S^1} e^{-2i\omega \theta \cdot (z^S - z^{S'})} |(S^\theta)|^2
\int_{\Omega \times \Omega} G^{(0)}_{2\omega}(s, z_r) \overline{G^{(0)}_{2\omega}(s', z_r)} \mu(s) \overline{\mu(s')} Q_{2\omega}(s, z^S) Q_{2\omega}(s', z^{S'}) ds ds' d\theta,
\]

it follows by using (35) that

\[
A_j(z^S)\overline{A_j(z^S)} = 16\pi^2 \delta^4 \omega^8 \int_{S^1} e^{-2i\omega \theta \cdot (z^S - z^{S'})} \left| \sum_{k,l} \chi_{k,l} \theta_k \theta_l \right|^2 d\theta
\int_{\Omega \times \Omega} G^{(0)}_{2\omega}(s, z_r) \overline{G^{(0)}_{2\omega}(s', z_r)} \mu(s) \overline{\mu(s')} Q_{2\omega}(s, z^S) Q_{2\omega}(s', z^{S'}) ds ds'.
\]

If we write $C_\mu(s, s') = \mathbb{E}[\mu(s) \mu(s')]$, then we find that

\[
E[A_j(z^S)\overline{A_j(z^S)}] = 16\pi^2 \delta^4 \omega^8 U_1^4 \int_{S^1} e^{-2i\omega \theta \cdot (z^S - z^{S'})} \left| \sum_{k,l} \chi_{k,l} \theta_k \theta_l \right|^2 d\theta
\int_{\Omega \mu} |G^{(0)}_{2\omega}(s, z_r)|^2 Q_{2\omega}(s, z^S) Q_{2\omega}(s', z^{S'}) ds.
\]

As previously, we assume that the medium noise is localized and stationary on its support (which is Ω_μ). We denote by σ_μ the standard deviation of the process μ and by l_μ its correlation length. We can then write

\[
E[A_j(z^S)\overline{A_j(z^S)}] = 16\pi^2 \delta^4 \omega^8 U_1^4 \sigma_\mu^2 l_\mu^2 \int_{S^1} e^{-2i\omega \theta \cdot (z^S - z^{S'})} \left| \sum_{k,l} \chi_{k,l} \theta_k \theta_l \right|^2 d\theta
\int_{\Omega_\mu} |G^{(0)}_{2\omega}(s, z_r)|^2 Q_{2\omega}(s, z^S) Q_{2\omega}(s', z^{S'}) ds.
\]

The term $E[A_j(z^S)\overline{A_j(z^S)}]$ shows the generation of a nonlocalized speckle image, creating random secondary peaks. We will later estimate the size of those peaks in order to find the signal-to-noise ratio. We compute the typical size of this term. We get, using (105),

\[
E[A_j(z^S)\overline{A_j(z^S)}] \approx 4\pi^2 U_1^4 \delta^4 \omega^6 \sigma_\mu^2 l_\mu^2
\int_{S^1} \left| \sum_{k,l} \chi_{k,l} \theta_k \theta_l \right|^2 d\theta \int_{\Omega_\mu} |G^{(0)}_{2\omega}(s, z_r)|^2 \text{Im} G^{(0)}_{2\omega}(s, z^S) \text{Im} G^{(0)}_{2\omega}(s, z^{S'}) ds.
\]

Then we use the facts that

\[
|G^{(0)}_{2\omega}(x, y)| \approx \frac{1}{4\sqrt{\pi 2\omega}} |x - y|^{-1/2}
\]
and
\[
\text{Im } G_{2\omega}^{(0)}(x, y) = \frac{1}{4} J_0(2\omega|x - y|) \approx \frac{\cos (2\omega|x - y| - \pi/4)}{4\sqrt{\pi\omega}} |x - y|^{-1/2}
\]
if \(|x - y| \gg 1 \). Then, as previously, we write \(\Omega_\mu = \Omega_\mu \setminus B(z_\tau, \omega^{-1}) \cup B(z_\tau, \omega^{-1}) \). Using (116), we arrive at

\[
\mathbb{E}[A J(z_\tau) A J(z_\tau)] \approx \frac{4\pi^2 U_1^4 \delta^4 \omega^4 \sigma_\mu^2 \mu^2}{\Omega_\mu} \int_{S^1} \left| \sum_{k,l} \chi_{k,l} \theta_k \theta_l \right|^2 d\theta
\]

\[
\left(\frac{1}{512 \pi^2 \omega^2} \int_{\Omega_\mu \setminus B(z_\tau, \omega^{-1})} \frac{\cos^2 (2\omega |s - z_\tau| - \pi/4)}{|s - z_\tau|^2} ds + \frac{1}{16} \int_{B(z_\tau, \omega^{-1})} |G_{2\omega}^{(0)}(s, z_\tau)|^2 J_0(2\omega |s - z_\tau|)^2 ds \right),
\]

which yields

\[
\mathbb{E}[A J(z_\tau) A J(z_\tau)] \approx \frac{\pi}{128} U_1^4 \delta^4 \omega^4 \sigma_\mu^2 \mu^2 \log(\omega) \text{ diam } \Omega_\mu \int_{S^1} \left| \sum_{k,l} \chi_{k,l} \theta_k \theta_l \right|^2 d\theta.
\]

The localized term \(B_j \mathcal{B}_j \). We have

\[
B_j(z^S) B_j(z^{S'}) = \pi^2 \delta^4 Q_{2\omega}(z_\tau, z^S) Q_{2\omega}(z_\tau, z^{S'}) \int_{S^1} e^{-2i\omega \theta (z^S - z^{S'})} |(S)^\theta_{\text{rand}}|^2 d\theta.
\]

Using (36) and (34), we have that \((S)^\theta_{\text{rand}} \) can be rewritten as

\[
(S)^\theta_{\text{rand}} = -\omega^2 U_1^2 \int_{\Omega} \left(\mu(y) e^{i\omega \theta y} - \mu(z_\tau) e^{i\omega \theta z_\tau} \right)
\]

\[
\left[\sum_{k,l} \chi_{k,l} \left(\theta_k \theta_l \cdot \nabla \partial_{z_1} G_\omega^{(0)}(z_\tau, y) + \theta_k \theta_l \cdot \nabla \partial_{z_1} G_\omega^{(0)}(z_\tau, y) \right) \right] dy.
\]

We need to get an estimate on \(S^\theta_{\text{rand}} \)’s variance. As in section 2 we have the following estimate for any \(0 < \alpha' < 1/2 \):

\[
\frac{1}{4} |y - z_\tau|^{\alpha'} |\partial_{y_1} H_0^{(1)}(\omega |y - z_\tau|)| \leq \frac{1}{2} \min \left(1, \sqrt{\frac{2}{\pi}} |y - z_\tau|^{\alpha' - 1/2} \right) \max \left(1, |y - z_\tau|^{\alpha' - 2} \right).
\]

We get, for any \(\alpha' < \min(\alpha, \frac{1}{2}) \),

\[
|z^\theta_{\text{rand}}| \leq \omega^2 U_1^2 ||\mu||_{C^{0, \alpha'}} \max_{k,l} |\chi_{k,l}| \omega^2 \left[\frac{8 \sqrt{2\pi}}{3/2 + \alpha'} (\text{diam } \Omega_\mu)^{3/2 + \alpha'} + \frac{\pi}{\alpha'} \right]
\]

and

\[
\mathbb{E}[B_j(z^S) B_j(z^{S'})] \leq \frac{128 \pi^3}{(3/2 + \alpha')^2} \omega^{4 - 2\alpha'} U_1^4 \max_{k,l} |\chi_{k,l}|^2 \mathbb{E}[||\mu||_{C^{0, \alpha'}}^2] \left[\frac{8 \sqrt{2\pi}}{3/2 + \alpha'} (\text{diam } \Omega_\mu)^{3/2 + \alpha'} + \frac{1}{\alpha'} \right] Q_{2\omega}(z_\tau, z^S) Q_{2\omega}(z_\tau, z^{S'}).\]
Note that $Q_{2\omega}(z_r, z^S)$, defined in (43), behaves like $\frac{1}{2\omega} J_0(2\omega|z_r - z^S|)$, which decreases like $|z_r - z^S|^{-1/2}$ as $|z_r - z^S|$ becomes large. The term B_J is localized around z_r. It may shift, lower, or blur the main peak but it will not contribute to the speckle field on the image. We still need to estimate its typical size at point z_r in order to get the signal-to-noise ratio at point z_r. Using (105) and (59), we get

$$E[B_J(z_r)B_J(z_r)] \leq \frac{2^{17+\alpha} \pi^3}{(3/2 + \alpha')^2} \frac{e}{\alpha - \alpha'} \omega^{2-2\alpha'} \delta^4 U_1^4 \max_{k,l} |\chi_{k,l}|^2 \left[(\omega \text{diam } \Omega_{\mu})^{3+2\alpha'} + \frac{1}{\alpha'} \right] \frac{\sigma^2}{\mu^2}.$$

We can write $(\omega \text{diam } \Omega_{\mu})^{3+2\alpha'} \leq (\omega \text{diam } \Omega_{\mu})^{3+2\alpha} + 1$ and take $\alpha' = \frac{\alpha'}{2}$. Let $C = \frac{2^{18+1/2} \pi^3}{(3/2)^2}$. We get that

$$E[B_J(z_r)B_J(z_r)] \leq C \omega^2 \min\left(\omega^{-2\alpha}, 1\right) \delta^4 U_1^4 \max_{k,l} |\chi_{k,l}|^2 \frac{\sigma^2}{\mu^2} \left[(\omega \text{diam } \Omega_{\mu})^{3+2\alpha} + 1 \right].$$

Remark 5.1. We note that even though the term B_J is localized, meaning it would not create too much of a speckle far away from the reflector, it is still the dominant term of the speckle field around the reflector’s location.

The double products A_JB_J and A_JB_J. This third term has the size of the geometric mean of the first two terms A_J and B_J. So we only need to concentrate on the first two terms. Also this term is still localized because of $Q(z_r, z^S)$, which decreases as $|z_r - z^S|^{-1/2}$.

5.3.3. Signal-to-noise ratio

As before, we define the signal-to-noise ratio $(SNR)_J$ by (46). Using (106), (118), and (125),

$$\frac{E[J(z_r)]}{\text{Var}(J(z_r))^2} \geq \frac{l^a_{\mu} \left(\int_{\mathbb{S}^1} \left(\sum_{k,l} \chi_{k,l} \theta_k \theta_l \right) d\theta \right)}{\sqrt{C} \sigma_{\mu} \min(\omega^{-\alpha}, 1) \max_{k,l} |\chi_{k,l}| \sqrt{\omega \text{diam } \Omega_{\mu}}^{3+2\alpha} + 1}.$$

The difference here with the standard backpropagation is that the (SNR) does not depend on either the dielectric contrast of the particle, the nonlinear susceptibility, or even the particle’s volume. All the background noise created by the propagation of the illuminating wave in the medium is filtered because the small inhomogeneities only scatter waves at frequency ω. The nanoparticle is the only source at frequency 2ω so it does not need to stand out from the background. The perturbations seen on the image J are due to travel time fluctuations of the wave scattered by the nanoparticle (for the speckle field) and to the perturbations of the source field at the localization of the reflector (for the localized perturbation). The second-harmonic image is more resolved than the fundamental frequency image.

5.4. Stability with respect to measurement noise

We now compute the signal-to-noise ratio in the presence of measurement noise without any medium noise $(\mu = 0)$. The signals u_s and v are corrupted by an additive noise $\nu(x)$ on $\partial \Omega$. In real situations it is of course impossible to achieve measurements for an infinity of plane wave illuminations. So in this part we assume that the functional J is calculated as an average over n different illuminations, uniformly distributed in \mathbb{S}^1. We consider, for each $j \in [0, n]$, an independent and identically distributed random process $\nu^{(j)}(x)$, $x \in \partial \Omega$, representing the measurement noise. We use the
model of [7]: if we assume that the surface of Ω is covered with sensors half a wavelength apart and that the additive noise has variance σ and is independent from one sensor to another, we can model the additive noise process by a Gaussian white noise with covariance function:

$$
E(\nu(x)\nu(x')) = \sigma^2 \delta(x - x'),
$$

where $\sigma = \sigma^2 \frac{\lambda}{2}$.

5.4.1. Standard backpropagation. We write, for each $j \in [0, n]$, $u_s^{(j)}$ as

$$u_s^{(j)}(x) = -2\pi \delta^2 \frac{\sigma_r - 1}{\sigma_r + 1} U_j e^{i\omega \theta^{(j)}(z_r,z_s) \cdot e^{i\omega \theta^{(j)}(z_r,z_s)}(\theta^{(j)})^\top \nabla G_{\omega}^{(0)}(x,z;S) R_{\omega}^{(0)}(x,z;S) \theta^{(j)}},$$

where $\nu^{(j)}$ is the measurement noise associated with the jth illumination. We can write I as

$$I(z^S) = \frac{1}{n} \sum_{j=1}^{n} \int_{\partial \Omega} \frac{1}{\omega} e^{-i\omega \theta^{(j)}(z_r,z_s) \cdot e^{i\omega \theta^{(j)}(z_r,z_s)}(\theta^{(j)})^\top \nabla G_{\omega}^{(0)}(x,z;S) u_s(x)dx}.$$

Further,

$$I(z^S) = -2\pi \delta^2 \frac{\sigma_r - 1}{\sigma_r + 1} U_j \frac{1}{n} \sum_{j=1}^{n} e^{i\omega \theta^{(j)}(z_r,z_s) \cdot e^{i\omega \theta^{(j)}(z_r,z_s)}(\theta^{(j)})^\top \nabla G_{\omega}^{(0)}(x,z;S) R_{\omega}^{(0)}(x,z;S) \theta^{(j)}}$$

$$+ \frac{1}{n} \sum_{j=1}^{n} \int_{\partial \Omega} \frac{1}{\omega} e^{-i\omega \theta^{(j)}(z_r,z_s) \cdot e^{i\omega \theta^{(j)}(z_r,z_s)}(\theta^{(j)})^\top \nabla G_{\omega}^{(0)}(x,z;S) u_s^{(j)}(x)dx}.$$

We get that

$$E[I(z^S)] = -2\pi \delta^2 \frac{\sigma_r - 1}{\sigma_r + 1} U_j \frac{1}{n} \sum_{j=1}^{n} e^{i\omega \theta^{(j)}(z_r,z_s) \cdot e^{i\omega \theta^{(j)}(z_r,z_s)}(\theta^{(j)})^\top \nabla G_{\omega}^{(0)}(x,z;S) R_{\omega}^{(0)}(x,z;S) \theta^{(j)}},$$

so that, using (63) and (62),

$$E[I(z_r)] \sim -\frac{\pi(\sigma_r - 1)}{4(\sigma_r + 1)} \omega^2 U_1.$$

We compute the covariance

$$\text{Cov}(I(z^S), I(z'^S)) = E \left[\frac{1}{n^2} \left(\sum_{j=1}^{n} \frac{1}{\omega} e^{-i\omega \theta^{(j)}(z_r,z_s) \cdot e^{i\omega \theta^{(j)}(z_r,z_s)}(\theta^{(j)})^\top \nabla G_{\omega}^{(0)}(x,z;S) dx} \right) \right]$$

$$\left(\sum_{l=1}^{n} \frac{1}{\omega} e^{-i\omega \theta^{(l)}(z_r,z_s') \cdot e^{i\omega \theta^{(l)}(z_r,z_s')}(\theta^{(l)})^\top \nabla G_{\omega}^{(0)}(x',z'^S) dx' \right)$$

and obtain that

$$\text{Cov}(I(z^S), I(z'^S)) = \sigma^2 \frac{\lambda}{2 \omega^2 n^2} \sum_{j=1}^{n} e^{-i\omega \theta^{(j)}(z_r,z_s) \cdot e^{i\omega \theta^{(j)}(z_r,z_s)}(\theta^{(j)})^\top R_{\omega}^{(0)}(z^S,r,z'^S) \theta^{(j)}},$$

$$\text{Cov}(I(z^S), I(z'^S)) = \sigma^2 \frac{\lambda}{2 \omega^2 n^2} \sum_{j=1}^{n} e^{-i\omega \theta^{(j)}(z_r,z_s') \cdot e^{i\omega \theta^{(j)}(z_r,z_s')}(\theta^{(j)})^\top R_{\omega}^{(0)}(z'^S,r,z') \theta^{(j)}},$$

$$\text{Cov}(I(z^S), I(z'^S)) = \sigma^2 \frac{\lambda}{2 \omega^2 n^2} \sum_{j=1}^{n} e^{-i\omega \theta^{(j)}(z_r,z_s) \cdot e^{i\omega \theta^{(j)}(z_r,z_s)}(\theta^{(j)})^\top R_{\omega}^{(0)}(z^S,r,z) \theta^{(j)}}. $$
The signal-to-noise ratio is given by
\[(SNR)_I = \frac{\mathbb{E}[I(z_r)]}{\text{Var}(I(z_r))^{1/2}}.\]

If we compute
\[
\text{Var}(I(z_r)) \sim \sigma^2 \frac{\pi}{8\omega^2 n},
\]
then \((SNR)_I\) can be expressed as
\[(136) \quad (SNR)_I = \sqrt{\frac{\pi n \delta^2 \omega^2}{\sigma^2 + 1}} U_I.
\]

The backpropagation functional is very stable with respect to measurement noise. Of course, the number of measurements increases the stability because the measurement noise is averaged out. We will see in the following that the second-harmonic imaging is also pretty stable with respect to measurement noise.

5.4.2. Second-harmonic backpropagation. We write, for each \(j \in [0, n]\), \(v_j\) as
\[(137) \quad v^{(j)}(x) = -\delta^2 (2\omega)^2 \left(\sum_{k,l} \chi_{k,l} \partial_{x_k} U^{(j)}(z_r) \partial_{x_l} U^{(j)}(z_r) \right) G_{2\omega}^{(0)}(x, z_r) + \nu^{(j)}(x),
\]
where \(\nu_j\) is the measurement noise at the \(j\)th measurement. Without any medium noise the source term \((S)\) can be written as
\[(138) \quad (S)_{\theta}^{(j)} = \sum_{k,l} \chi_{k,l} \partial_{x_k} U^{(j)}(z_r) \partial_{x_l} U^{(j)}(z_r) = -\omega^2 \mathcal{E}^{2} e^{2i\omega \theta^{(j)} \cdot z_r} \sum_{k,l} \chi_{k,l} \theta_{k}^{(j)} \theta_{l}^{(j)}.
\]
So we can write \(J\) as
\[(139) \quad J(z^S) = \frac{1}{n} \sum_{j=1}^{n} \int_{\partial \Omega} v^{(j)}(x) G_{2\omega}^{(0)}(x, z^S) e^{-2i\omega \theta^{(j)} \cdot z^S} dx,
\]
or equivalently
\[(140) \quad J(z^S) = -\delta^2 (2\omega)^2 \frac{1}{n} \sum_{j=1}^{n} (S)_{\theta}^{(j)} \int_{\partial \Omega} G_{2\omega}^{(0)}(x, z_r) G_{2\omega}^{(0)}(x, z^S) e^{-2i\omega \theta^{(j)} \cdot z^S} dx
\]
\[+ \frac{1}{n} \sum_{j=1}^{n} \int_{\partial \Omega} \nu^{(j)}(x) G_{2\omega}^{(0)}(x, z^S) e^{-2i\omega \theta^{(j)} \cdot z^S} dx.
\]
We get that
\[(141) \quad \mathbb{E}[J(z^S)] = -\delta^2 (2\omega)^2 \frac{1}{n} \sum_{j=1}^{n} (S)_{\theta}^{(j)} e^{-2i\omega \theta^{(j)} \cdot z^S} Q_{2\omega}(z_r, z^S),
\]
so that, using (105),

\[
\mathbb{E}[J(z_r)] \sim \delta^2 U_I^2 \omega^3 \sum_{k,l,j} \chi_{k,l} \theta_{k}^{(j)} \theta_{l}^{(j)}.
\]

We can compute the covariance

\[
\text{Cov}(J(z^S), J(z^{S'})) = \mathbb{E} \left[\frac{1}{n^2} \left(\sum_{j=1}^{n} e^{-2i\omega \theta^{(j)} \cdot z^S} \int_{\partial \Omega} \nu^{(j)}(x) \overline{G^{(0)}_{2\omega}}(x, z^S) dx \right) \right]
\]

which yields

\[
\text{Cov}(J(z^S), J(z^{S'})) = \sigma^2 \frac{\lambda^2 \omega^3}{Q^2} \sqrt{\frac{\pi}{2n}}.
\]

Now we have

\[
\text{Var}(J(z_r))^{1/2} \sim \frac{\sigma}{2\omega} \sqrt{\frac{\pi}{2n}}.
\]

The signal-to-noise ratio,

\[
(SNR)_J = \frac{\mathbb{E}[J(z_r)]}{\text{Var}(J(z_r))^{1/2}},
\]

is given by

\[
(SNR)_J = \frac{2\delta^2 \omega^2 U_I \left(\sum_{j=1}^{n} \sum_{k,l} \chi_{k,l} \theta_{k}^{(j)} \theta_{l}^{(j)} \right)}{\pi \sigma \sqrt{n}}.
\]

Even though it appears that the \((SNR)\) is proportional to \(\frac{1}{\sqrt{n}}\), the term \(\sum_{j=1}^{n} \theta_{k}^{(j)} \theta_{l}^{(j)}\) is actually much bigger. In fact, if we pick \(\theta^{(j)} = \frac{2j\pi}{n}\), we get that

\[
\sum_{k,l} \chi_{k,l} \sum_{j=1}^{n} \theta_{k}^{(j)} \theta_{l}^{(j)} = \sum_{j=1}^{n} \left(\chi_{1,1} \cos^2 \frac{2j\pi}{n} + \chi_{2,2} \sin^2 \frac{2j\pi}{n} + 2\chi_{1,2} \sin \frac{2j\pi}{n} \cos \frac{2j\pi}{n} \right),
\]

and hence

\[
\sum_{k,l} \chi_{k,l} \sum_{j=1}^{n} \theta_{k}^{(j)} \theta_{l}^{(j)} \sim \frac{n}{2} \max[\chi_{1,1}, \chi_{2,2}].
\]

Therefore, we can conclude that

\[
(SNR)_J = \frac{\delta^2 \omega^2 U_I \sqrt{n} \max[\chi_{1,1}, \chi_{2,2}]}{\pi \sigma \nu}.
\]

The signal-to-noise ratio is very similar to the one seen in the classic backpropagation case. So the sensitivity with respect to relative measurement noise should be similar. It is noteworthy that in reality, due to very small size of the SHG signal (\(\chi\) has a typical size of \(10^{-12} \text{ m/V}\)), the measurement noise levels will be higher for the second-harmonic signal.

6.1. The direct problem. We consider the medium to be the square $[-1, 1]^2$. The medium has an average propagation speed of 1, with random fluctuations with Gaussian statistics (see Figure 1). To simulate μ we use the algorithm described in [7] which generates random Gaussian fields with Gaussian covariance function and takes a standard deviation equal to 0.02 and a correlation length equal to 0.25. We consider a small reflector in the medium $\Omega_r = z_r + \delta B(0, 1)$ with $z_r = (-0.2, 0.5)$ and $\delta = 0.004/\pi$, represented in Figure 2. The contrast of the reflector is $\sigma_r = 2$. We fix the frequency to be $\omega = 8$. We get the boundary data u_s when the medium is illuminated by the plane wave $U_I(x) = e^{i\omega\theta \cdot x}$ (see Figure 3). The fields in the absence and in the presence of the reflector are shown in Figures 4 and 5, respectively. The correlation length of the medium noise was picked so that it has a size similar to the wavelength of the illuminating plane wave. We get the boundary data by using an integral representation for the field u_s, θ. We also compute the boundary data for the second-harmonic field v (see Figure 6). We compute the imaging functionals I and J, respectively, defined in (38) and (41), averaged over two different lightning settings (see Figures 7 and 8, for instance).

![Medium without the reflector](image1.png)

Figure 1. Medium without the reflector (permittivity variations zoomed out).

![Medium with the reflector](image2.png)

Figure 2. Medium with the reflector.

6.2. The imaging functionals and the effects of the number of plane wave illuminations. We compute the imaging functionals I and J, respectively, defined in (38) and (41), averaged over four different illuminations settings. We fix the noise level ($\sigma_\mu = 0.02$), the volume of the particle ($v_r = 10^{-2}$), and the contrast $\sigma_r = 2$. In Figures 7 and 8 the image is obtained after backpropagating the boundary data from one illumination ($\theta = 0$). On the following graphs, we average over several illumination angles:

- 4 uniformly distributed angles for Figures 9 and 10;
- 8 uniformly distributed angles for Figures 11 and 12;
- 32 uniformly distributed angles for Figures 13 and 14.

As predicted, the shape of the spot on the fundamental frequency imaging is very dependent on the illumination angles, whereas with second-harmonic imaging we get an acceptable image with only one illumination. In applications, averaging over different illuminations is useful...
Figure 3. Incoming field U_1.

Figure 4. Background field in the absence of a reflector $u_s^{(m)}$.

Figure 5. Total scattered field u_s.

Figure 6. Second-harmonic field v.

Figure 7. I with 1 illumination.

Figure 8. J with 1 illumination.
Figure 9. I with 4 illuminations.

Figure 10. J with 4 illuminations.

Figure 11. I with 8 illuminations.

Figure 12. J with 8 illuminations.

Figure 13. I with 32 illuminations.

Figure 14. J with 32 illuminations.
because it increases the stability with respect to measurement noise. It is noteworthy that, as expected, the resolution of the second-harmonic image is twice as high as the regular imaging one.

6.3. Statistical analysis.

6.3.1. Stability with respect to medium noise. Here we show numerically that the second-harmonic imaging is more stable with respect to medium noise. In Figure 15, we plot the standard deviation of the error $|z_{est} - z_{r}|$, where z_{est} is the estimated location of the reflector. For each level of medium noise we compute the error over 120 realizations of the medium, using the same parameters as above. The functional imaging J is clearly more robust than earlier.

6.3.2. Effect of the volume of the particle. We show numerically that the quality of the second-harmonic image does not depend on the volume of the particle. We fix the medium noise level ($\sigma_{\mu} = 0.02$) and plot the standard deviation of the error with respect to the volume of the particle (Figure 16). We can see that if the particle is too small, the fundamental backpropagation algorithm cannot differentiate the reflector from the medium and the main peak gets buried in the speckle field. The volume of the particle does not have much influence on the second-harmonic image quality.
Figure 16. Standard deviation of the localization error with respect to the reflector’s volume (log scale) for standard backpropagation (dashed line) and second-harmonic image (solid line).

6.3.3. Stability with respect to measurement noise. We compute the imaging functionals with a set of data obtained without any medium noise and perturbed with a Gaussian white noise for each of 8 different illuminations. For each noise level, we average the results over 100 images. Figure 17 shows that both functionals have similar behaviors.

As mentioned before, in applications, the weakness of the SHG signal will induce a much higher relative measurement noise than in the fundamental data. Since the model we use for measurement noise has a zero expectation, averaging measurements over different illuminations can improve the stability significantly, as shown in Figure 18, where the images have been obtained with 16 illuminations instead of 8.

7. Concluding remarks. We have studied how second-harmonic imaging can be used to locate a small reflector in a noisy medium, gave asymptotic formulas for the second-harmonic field, and investigated statistically the behavior of the classic and second-harmonic backpropagation functionals. We have proved that the backpropagation algorithm is more stable with respect to medium noise. Our results can also be extended to the case of multiple scatterers as long as they are well separated.

Appendix A. Proof of (10). Let R be large enough so that $\Omega_R \subseteq B_R$, where B_R is the ball of radius R and center 0. Let $S_R = \partial B_R$ be the sphere of radius R, and introduce the
Dirichlet-to-Neumann operator \mathcal{T} on S_R:

\begin{equation}
\mathcal{T} : H^{1/2}(S_R) \rightarrow H^{-1/2}(S_R) \\
u \mapsto \mathcal{T}[u].
\end{equation}

According to [28], \mathcal{T} is continuous and satisfies

\begin{equation}
-\text{Re} \langle \mathcal{T}[u], u \rangle \geq \frac{1}{2R} \|u\|_{L^2(S_R)}^2 \quad \forall u \in H^{1/2}(S_R)
\end{equation}

and

\begin{equation}
\text{Im} \langle \mathcal{T}[u], u \rangle > 0 \quad \text{if } u \neq 0.
\end{equation}

Here, \langle , \rangle denotes the duality pair between $H^{1/2}(S_R)$ and $H^{-1/2}(S_R)$. Now introduce the continuous bilinear form a,

\begin{equation}
H^1(B_R) \times H^1(B_R) \rightarrow \mathbb{C} \\
(u, v) \mapsto a(u, v) = \int_{B_R} (1 + \mu) \nabla u \cdot \nabla v - \omega^2 \int_{B_R} u \overline{v} - \langle \mathcal{T}[u], v \rangle,
\end{equation}

\textbf{Figure 17.} Standard deviation of the localization error with respect to measurement noise level for standard backpropagation (dashed line) and second-harmonic image (solid line).
as well as the continuous bilinear form \(b \),

\[
H^1(B_R) \rightarrow \mathbb{C} \\
v \mapsto b(v) = \int_{B_R} \mu \nabla U_0 \cdot \nabla v.
\]

Problem (5)–(6) has the following variational formulation: Find \(u \in H^1(B_R) \) such that

\[
a(u, v) = b(v) \quad \forall v \in H^1(B_R).
\]

With (152) one can show that

\[
\text{Re } a(u, u) \geq C_1 \| \nabla u \|_{L^2(B_R)}^2 - C_2 \| u \|_{L^2(B_R)}^2,
\]

so that \(a \) is weakly coercive with respect to the pair \((H^1(B_R), L^2(B_R)) \). Since the embedding of \(H^1(B_R) \) into \(L^2(B_R) \) is compact, we can apply Fredholm’s alternative to problem (156). Hence, we deduce existence of a solution from uniqueness of a solution, which easily follows by using identity (153).
Now we want to prove that if u is the solution of (156), then
\[
\|u\|_{H^1(B_R)} \leq \|\mu\|_{\infty}.
\]
We proceed by contradiction. Assume that for all $n \in \mathbb{N}$, there exists $\mu_n \in L^{\infty}(B_R)$ compactly supported and $u_n \in H^1(B_R)$ solution of (156) such that
\[
\|u_n\|_{H^1(B_R)} \geq nC\|\mu_n\|_{\infty}.
\]
Consider the sequence
\[
v_n = \frac{u_n}{\|u_n\|_{H^1(B_R)}}.
\]
$(v_n)_{n \in \mathbb{N}}$ is bounded in $H^1(B_R)$ so there exists a subsequence still denoted by v_n and $v^* \in H^1(B_R)$ such that $v_n \rightharpoonup v^*$ in $H^1(B_R)$ and $v_n \rightarrow v^*$ in $L^2(B_R)$. Now since u_n is a solution of (156), we have
\[
\int_{B_R} (1 + \mu_n)\nabla v_n \cdot \nabla v_n - \omega^2 \int_{B_R} v_n v_n - \langle T v_n, v_n \rangle = \int_{B_R} \mu_n \nabla U_0 \cdot \nabla v_n.
\]
Using (159) we obtain that
\[
\int_{B_R} (1 + \mu_n)|\nabla v_n|^2 - \omega^2 \int_{B_R} |v_n|^2 - \langle T v_n, v_n \rangle \rightarrow 0 \quad (n \rightarrow \infty).
\]
Since $\int_{B_R} \mu_n|\nabla v_n|^2 \rightarrow 0$, we get that $\tilde{a}(v_n, v_n) \rightarrow 0$, where
\[
\tilde{a}(u, v) = \int_{B_R} \nabla u \cdot \nabla v - \omega^2 \int_{B_R} u v - \langle T u, v \rangle.
\]
We want to prove that v_n converges strongly in $H^1(B_R)$ to v^* and that $v^* = 0$. This will contradict the fact that for all n, $\|v_n\|_{H^1(B_R)} = 1$.

Now we decompose $\tilde{a} = \tilde{a}_c + \tilde{a}_w$ into a coercive part,
\[
\tilde{a}_c(u, v) = \int_{B_R} \nabla u \cdot \nabla v - \langle T u, v \rangle,
\]
and a weakly continuous part,
\[
\tilde{a}_w(u, v) = -\omega^2 \int_{B_R} u v.
\]
So $\tilde{a}(v_n - v^*, v_n - v^*) = \tilde{a}_c(v_n - v^*, v_n - v^*) + \tilde{a}_w(v_n - v^*, v_n - v^*)$. We write $\tilde{a}_c(v_n - v^*, v_n - v^*) = \tilde{a}_c(v_n - v^*) - \tilde{a}_c(v_n - v^*, v_n - v^*)$. Now, since $v_n \rightarrow v$ in $H^1(B_R)$ and \tilde{a}_c is strongly continuous on $H^1(B_R)^2$ we have that $\tilde{a}_c(v_n - v^*, v^*) \rightarrow 0$, and $\tilde{a}_c(v_n - v^*, v_n) = \tilde{a}_c(v_n, v_n) - \tilde{a}_c(v^*, v_n) \rightarrow -\tilde{a}_c(v^*, v^*)$, which is
\[
\tilde{a}_c(v_n - v^*, v_n - v^*) \rightarrow -\tilde{a}_c(v^*, v^*).
\]
The coercivity of $\tilde{\alpha}_c$ gives
\begin{equation}
\tilde{\alpha}_c(v^*, v^*) = 0.
\end{equation}
By a computation similar to the one just above, we also find that
\begin{equation}
\tilde{a}(v_n - v^*, v_n - v^*) \rightarrow -\tilde{a}(v^*, v^*).
\end{equation}
Since $\tilde{a}_w(v_n - v^*, v_n - v^*) \rightarrow 0$, we get that
\begin{equation}
\tilde{a}(v^*, v^*) = 0.
\end{equation}
So $v^* = 0$ and, since \tilde{a} satisfies (157), we get that $\|\nabla v_n\|^2_{L^2(B_R)} \rightarrow 0$ as $n \rightarrow \infty$. We have
\begin{equation}
v_n \rightarrow v = 0 \text{ in } H^1(B_R).
\end{equation}

Appendix B. Proof of Proposition 3.1. Denote $V = u_s - w^{(\mu)} - \omega U_0(z_r)$. V is a solution on \mathbb{R}^2 of
\begin{equation}
\nabla \cdot (1 + \mu + [\sigma_r - 1]1_{\Omega_r})\nabla V + \omega^2 V = -\nabla \cdot [\sigma_r - 1]1_{\Omega_r}\nabla [U_0 - \nabla (x - z_r) \cdot \nabla U_0(z_r)],
\end{equation}
subject to the Sommerfeld radiation condition. Now, define V_0 as the solution on \mathbb{R}^2 of
\begin{equation}
\nabla \cdot (1 + \mu + [\sigma_r - 1]1_{\Omega_r})\nabla V_0 = -\nabla \cdot [\sigma_r - 1]1_{\Omega_r}\nabla [U_0 - \nabla (x - z_r) \cdot \nabla U_0(z_r)],
\end{equation}
with the condition $V_0(x) \rightarrow 0$ ($x \rightarrow \infty$).

From [5, Lemma A.1], there exist three positive constants C, \tilde{C}, and κ independent of μ and δ such that
\begin{equation}
\|\nabla V_0\|^2_{L^2(B_R)} \leq C\delta\|\nabla [U_0 - \nabla (x - z_r) \cdot \nabla U_0(z_r)]\|_{L^\infty(\Omega_r)}
\end{equation}
and
\begin{equation}
\|V_0\|^2_{L^2(B_R)} \leq \tilde{C}\delta^{1+\kappa}\|\nabla [U_0 - \nabla (x - z_r) \cdot \nabla U_0(z_r)]\|_{L^\infty(\Omega_r)}.
\end{equation}
If we write $W = V - V_0$, we have that W solves
\begin{equation}
\nabla \cdot (1 + \mu + [\sigma_r - 1]1_{\Omega_r})\nabla W + \omega^2 W = -\omega^2 V_0,
\end{equation}
with the boundary condition $\frac{\partial W}{\partial r} - \mathcal{T}_\omega(W) = \mathcal{T}_\omega(V) - \mathcal{T}_0(V_0)$ on ∂B_R, where \mathcal{T}_ω is the Dirichlet-to-Neumann map on S_R defined in (151) associated with the frequency ω. The condition can be rewritten as $\frac{\partial W}{\partial r} - \mathcal{T}_\omega(W) = \mathcal{T}_\omega - \mathcal{T}_0(V_0)$. So, based on the well-posedness of (175), there exists a constant C' independent of μ and δ such that
\begin{equation}
\|W\|^2_{H^1(B_R)} \leq C' \left(\|V_0\|^2_{L^2(B_R)} + \|\mathcal{T}_\omega - \mathcal{T}_0(V_0)\|_{L^2(\partial B_R)}\right).
\end{equation}
Now, we can write that, for some constant still denoted C independent of μ and δ,
\begin{equation}
\|V\|^2_{H^1(B_R)} \leq C \left(\|V_0\|^2_{H^1(B_R)} + \|V_0\|^2_{L^2(\partial B_R)}\right).
\end{equation}
Since $\delta < 1$, using (173) and (174) we get
\begin{equation}
||V||_{H^1(B_R)} \leq C\delta^2.
\end{equation}

Appendix C. Proof of Proposition 3.3. Denote ϕ: $y \rightarrow \tilde{y} = \phi(y) = \frac{y-z_r}{\delta}$. If we define
$\tilde{w}^{(\mu)}(\tilde{y}) = \frac{1}{\delta}w^{(\mu)}(\phi^{-1}(\tilde{y}))$ for all $\tilde{y} \in B(0,1)$, we want to prove the following:
\begin{equation}
||\tilde{w}^{(\mu)}(\tilde{y}) - \tilde{y} - \tilde{w}(y)||_{H^1(B(0,1))} \leq C \left(||\mu||_{\infty} + \delta\omega^2\right).
\end{equation}
Now, using Meyers’s theorem [25], we get the following estimate:
\begin{equation}
\nabla \cdot ((\sigma - 1)\vec{1}_B + \tilde{\mu}) \nabla \tilde{w}^{(\mu)} + \omega^2 \delta \tilde{w}^{(\mu)} = \nabla \cdot ((\sigma - 1)\vec{1}_B \nabla \tilde{y}),
\end{equation}
where $\tilde{\mu} = \mu \circ \phi^{-1}$, equipped with the Sommerfeld radiation condition. Using (23) we get that
\begin{equation}
\nabla \cdot ((\sigma - 1)\vec{1}_B + \tilde{\mu}) \nabla \tilde{w}^{(\mu)} = -\nabla \cdot \left(\tilde{\mu} \nabla \tilde{w}^{(\mu)}\right) - \omega^2 \delta \tilde{w}^{(\mu)}.
\end{equation}
Now, using Meyers’s theorem [25], we get the following estimate:
\begin{equation}
\left\|\nabla \left(\tilde{w}^{(\mu)}(\tilde{y}) - \tilde{y} - \tilde{w}(y)\right)\right\|_{L^2(B)} \leq C \left(||\tilde{\mu} \nabla \tilde{w}^{(\mu)}||_{L^2(B)} + \omega^2 ||\tilde{w}^{(\mu)}||_{L^2(B)}\right).
\end{equation}
We need to estimate $||\tilde{w}^{(\mu)}||_{H^1(B(0,1))}$. Introduce $\tilde{w}^{(\mu)}_0$ as the solution of
\begin{equation}
\nabla \cdot ((\sigma - 1)\vec{1}_B + \tilde{\mu}) \nabla \tilde{w}^{(\mu)}_0 = \nabla \cdot ((\sigma - 1)\vec{1}_B \nabla \tilde{y}),
\end{equation}
with the condition $\tilde{w}^{(\mu)}_0(\tilde{y}) \rightarrow 0$ as $\tilde{y} \rightarrow \infty$. Meyers’s theorem gives
\begin{equation}
||\tilde{w}^{(\mu)}_0||_{H^1(B(0,1))} \leq C(||\sigma - 1||\nabla \tilde{y})_{L^2(B(0,1))}.
\end{equation}
We can see that $\tilde{w}^{(\mu)} - \tilde{w}^{(\mu)}_0$ is a solution of
\begin{equation}
\nabla \cdot ((\sigma - 1)\vec{1}_B + \tilde{\mu}) \nabla \left(\tilde{w}^{(\mu)} - \tilde{w}^{(\mu)}_0\right) + \omega^2 \delta \left(\tilde{w}^{(\mu)} - \tilde{w}^{(\mu)}_0\right) = -\omega^2 \delta \tilde{w}^{(\mu)}_0.
\end{equation}
We get that
\begin{equation}
||\tilde{w}^{(\mu)} - \tilde{w}^{(\mu)}_0||_{H^1(B(0,1))} \leq C \omega^2 \delta ||\tilde{w}^{(\mu)}_0||_{L^2(B(0,1))}.
\end{equation}
So, using (184) we get
\begin{equation}
||\tilde{w}^{(\mu)}||_{H^1(B(0,1))} \leq C \left(1 + \omega^2 \delta\right).
\end{equation}
Since $||\tilde{\mu} \nabla \tilde{w}^{(\mu)}||_{L^2(B(0,1))} \leq ||\tilde{\mu}||_{L^\infty(B(0,1))} ||\tilde{w}^{(\mu)}||_{H^1(B(0,1))}$ and $||\tilde{\mu}||_{L^\infty(B(0,1))} \leq ||\mu||_{\infty}$, using (182) and (184) we get
\begin{equation}
\left\|\nabla \left(\tilde{w}^{(\mu)}(\tilde{y}) - \tilde{y} - \tilde{w}(y)\right)\right\|_{L^2(B(0,1))} \leq C \left(||\mu||_{\infty} + \delta\omega^2 \left(1 + ||\mu||_{\infty} + \delta\omega^2\right)\right),
\end{equation}
which is exactly, as $||\mu||_{\infty} \rightarrow 0$ and $\delta \rightarrow 0$, for $y \in \Omega_r$.
\begin{equation}
\nabla \left(w^{(\mu)}(y) - (y-z_r)\right) = \delta \nabla \tilde{w} \left(\frac{y-z_r}{\delta}\right) + O \left(||\mu||_{\infty} + (\delta\omega)^2\right).
\end{equation}
REFERENCES

