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We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) non-
linear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive
depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range in-
teraction in frequency space, which is in contrast with the expected spectral short-range interaction described by the
usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spec-
tral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation. © 2014
Optical Society of America
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The propagation of partially coherent nonlinear optical
waves is a subject of growing interest in different fields
of investigations, such as, e.g., wave propagation in
homogeneous [1–5] or periodic media [6], waveguides
[7], cavity systems [8–12], supercontinuum generation
[13–15], shock waves [16], or nonlinear interferometry
[17]. Besides the process of optical wave thermalization
[5,13,14,18], incoherent solitons (IS) are known to play a
natural important role in the understanding of random
nonlinear waves. Originally observed experimentally in
slowly responding photorefractive crystals [19], ISs have
become a bloomy area of research, e.g., the modulational
instability (MI) of incoherent waves [20,21], the existence
of ISs with spatial or temporal nonlocal nonlinearities
[22–25], or spectral incoherent solitons in optical fibers
[26,27]. A notable progress in the study of incoherent
optical waves has been also accomplished by exploiting
analogies with nonlinear plasma phenomena
[2,4,21,24,25,28].
In this Letter we revisit the problem of propagation of

temporally incoherent waves in a Kerr medium charac-
terized by a noninstantaneous response time. As a result
of the causality property inherent to the nonlinear re-
sponse function, R�t�, the spectral dynamics of an inco-
herent wave is usually described by the Raman-like
spectral gain curve, g�ω� � I� ~R�ω��, which is defined
as the imaginary part of the Fourier transform of R�t�.
The typical bandwidth of g�ω�, say Δωg ∼ 1∕τR, denotes
the characteristic interaction range in frequency space,
where τR denotes the response time of the nonlinearity.
We show here that the spectral dynamics of incoherent

waves is no longer captured by the spectral gain function
g�ω� when one considers a highly noninstantaneous
response of the nonlinearity. Indeed, a long-range inter-
action in the temporal domain, τR ≫ τ0, τ0 being the
characteristic (“healing”) time [4], should lead to a
short-range interaction in frequency space, Δωg∼
1∕τR ≪ 1∕τ0. Conversely, we show that a long-range
interaction in the time domain implies a long-range in-
teraction in the spectral domain, i.e., an interaction
whose spectral range is of order Δωint ∼ 1∕τ0 ≫ Δωg.

We illustrate this spectral long-range behavior by con-
sidering the interaction of two temporal ISs, whose exist-
ence is known to require a highly noninstantaneous
nonlinearity [25]. The analysis reveals that, despite its
phase-insensitive character [29,30], the interaction of ISs
can be either attractive or repulsive, depending on their
relative initial distance. Both phenomena of anomalous
interaction and spectral long-range behavior are de-
scribed in detail by a long-range Vlasov formulation [4],
which differs from the traditional Vlasov equations con-
sidered to study incoherent MI and ISs in plasmas [31],
hydrodynamics [32], and optics [2,27,28]. We envisage
the experimental observation of this spectral long-range
interaction of ISs owing to the recent progress made
on the fabrication of photonic crystal fibers filled
with liquids displaying highly noninstantaneous Kerr
responses [33].

We consider the standard nonlinear Schrödinger (NLS)
equation accounting for a noninstantaneous nonlinear
response function

i∂zψ � s∂ttψ � σψ

Z
R�t − t0�jψ j2�z; t0�dt0 � 0: (1)

For convenience, we normalized the equation with re-
spect to the “healing time” τ0 �

��������������������
jβj∕�jγjρ�

p
and the

length scale L0 � 1∕�jγjρ�, where ρ is the power, β the
dispersion coefficient [s � sign�β�], and γ the nonlinear
coefficient [σ � sign�γ�]. The time τ0 plays a key role:
it refers to the time scale for which linear and nonlinear
effects are of same order of magnitude, e.g., τ0 is the typ-
ical MI period in the limit of an instantaneous nonlinear-
ity [4]. The variables can be recovered in real units
through the transformations t → tτ0, z → zL0, ψ → ψ

���
ρ

p
and R�t� → τ0R�t�. Hence, N ∕T0 � T−1

0

R jψ j2dt � 1,
where T0 is the temporal numerical window. We use
the convention that t > 0 corresponds to the leading edge
of the pulse [R�t� � H�−t�R̄�−t�,H�t� being the Heaviside
function], so that the causal response will be on the trail-
ing edge of a pulse, i.e., R�t� � 0 for t > 0.
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We consider the IS regime discussed in [25], i.e., the
focusing regime with normal dispersion, s � −1, σ �
�1 (which is formally equivalent to the defocusing re-
gime with anomalous dispersion, s � �1, σ � −1). These
temporal ISs are of a fundamentally different nature than
usual spatial bright solitons, which require sσ � �1 (for
details, see [25]). We report in Figs. 1,2 the evolution of
two ISs that has been obtained by integrating numerically
the NLS Eq. (1). We considered in this example a long-
range Gaussian-like response, R̄�t� � t2 exp�−t2∕�2τ2R��∕
�τ3R

��������
π∕2

p
�, with τR � 200. Note that the Raman-like re-

sponse function will be discussed later. The simulations
reveal that the ISs exhibit an anomalous interaction,
which can be either attractive or repulsive depending
on their relative initial distance, as illustrated in Fig. 2.
Contrarily to spatial IS interactions [29,30], here, the IS
interaction is phase-insensitive. Note that this may be in-
terpreted in analogy with the phase-insensitive interac-
tion of ISs in instantaneous nonlocal media [22], since
a nonlocal instantaneous nonlinearity exhibits properties
analogous to the local noninstantaneous nonlinearity
considered here. The attractive IS interaction in Fig. 1
is characterized by a spiralling dynamics in the spectro-
gram, which eventually leads to a coalescence of the ISs
into a single soliton. Besides the constant acceleration of
ISs discussed in detail in [25], the spiralling behavior un-
veils the existence of a long-range interaction in both
the temporal and spectral domains. In dimensional units,
the spectral separation between the ISs is of order
Δωint ∼ 1∕τ0 ≫ Δωg ∼ 1∕τR: in the example of Fig. 1
Δωint∕Δωg ∼ τR∕τ0 � 200. This is in marked contrast with
usual coherent Raman soliton interactions, in which
Δωint is of the same order as Δωg (see e.g. [34,35]).
This anomalous IS interaction can be described by

the long-range Vlasov equation [4,25]. It governs the
evolution of the averaged spectrum of the wave,

nω�t; z� �
R
B�t; τ; z� exp�iωτ�dτ, where B�t; τ; z� �

hψ�t − τ∕2; z�ψ��t� τ∕2; z�i is the auto-correlation
function

∂znω�t; z� � 2ω∂tnω�t; z� − ∂tU�t; z�∂ωnω�t; z�; (2)

where N�t; z� � �2π�−1 R nω�t; z�dω is the averaged inten-
sity of the incoherent wave, and U�t; z� � R � N the self-
consistent potential, � denoting the temporal convolution
product (we remind that s � −1, σ � 1). Equation (2)
conserves N � R

N�t; z�dt. Contrary to the spatial case
[4], in the temporal domain the potential U�t; z� is con-
strained by the causality of R�t�, which breaks the Ham-
iltonian structure of the Vlasov Eq. (2). Then the total
momentum, P�z� � �2π�−1∬ ωnω�t; z�dtdω, is no longer
conserved and evolves according to ∂zP�z� �
−
R
U�t; z�∂tN�t; z�dt. The position of the wave-packet

in the time domain, T �z� � �2π�−1∬ tnω�t; z�dtdω, veri-
fies ∂zT �z� � −2P�z�. Hence, the spectral and temporal
positions of an IS are closely related: because of group-
velocity dispersion, the linear spectral red-shift of the IS,
P�z� � −N αz, entails a constant acceleration of the IS,
T �z� � T �0� � αN z2 (see Figs. 1,2).

The spectral long-range behavior of ISs can be inter-
preted through a qualitative analysis of the Vlasov equa-
tion. Let us denote by Δωint and Δt ∼ τR the typical
spectral and temporal widths of an incoherent wave-
packet, e.g., an IS. We consider a typical evolution in
which linear and nonlinear effects [i.e., second and third
terms in Eq. (2)] are of the same order of magnitude:
2ω∂tnω�t; z� ∼ ∂tU∂ωnω�t; z�, or Δω2

int ∼ U � R � N . To
qualitatively assess the potential U , it proves convenient
to rescale the functions by introducing the small param-
eter ε � 1∕τR ≪ 1, R�t� � εR0�εt�, and N�t; z� �
T0εN0�εt; εz�, where T0 scales as ∼1∕ε. One obtains
U�t; z� � T0εU0�T; Z�, with U0�T; Z� � R0 � N0, T � εt,
and Z � εz. Since

R
N0�T; Z�dT � 1 and

R
R0�T�dT �

1, the typical amplitudes and widths of R0�T� and
N0�T; Z� are now of order one, which thus readily gives
Δω2

int ∼ U0 ∼ 1. In dimensional units this result reads
Δωint ∼ 1∕τ0 ≫ 1∕τR, which gives Δωint∕Δωg ∼ τR∕τ0:

Fig. 1. Simulations of the NLS Eq. (1) (a) and Vlasov Eq. (2)
(b), showing the attractive interaction between two ISs, whose
initial distance is τd � τR. The ISs spiral around each other and
eventually fuse into a single IS. From left to right z � 0, 190,
300, 380; 450, 500, 550, 600; 790, 820, 850, 880; 2140, 2150,
2160, 2170 (T0 � 2048). A quantitative agreement is obtained
between NLS and Vlasov simulations, without adjustable
parameters. The inset shows the antisymmetric spectral defor-
mation, G�ω; z0� � ∂zS�ω� (reminiscent of a “gain spectrum”),
with a spectral long-range bandwidth Δωint ∼ 1 (z0 � 2170).

Fig. 2. Evolutions of the intensities N1;2�t; z� versus z showing
the attractive [1st row: τd � τR, (a) NLS, (b) Vlasov] and the
repulsive [2nd row: τd � 1.6τR, (c) NLS, (d) Vlasov] interaction
of a pair of ISs (T0 � 2048).
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the typical spectral width of an IS is τR∕τ0 larger than
the spectral width of the gain curve g�ω�. Note that
this reasoning does not involve the spectral gain
function g�ω�, so that the spectral long-range interaction
appears as a property inherent to the long-range Vlasov
formalism. This spectral long-range behavior (Δω ∼ 1)
is illustrated in the inset of Fig. 1(b) through the anti-
symmetric spectral deformation G�ω� � ∂zS�ω� �
−
R
∂tU∂ωnω�t�dt, where S�ω� � R

nω�t�dt is the wave
spectrum.
As discussed in [25], the spectral-shift of an IS, with

spectral velocity α, leads to a constant acceleration of
the IS. It thus proves convenient to study the interaction
of a pair of (sufficiently separated) ISs in their own
accelerating reference frame, ξ � z, τ � t − αz2, Ω �
ω� αz, in which the coupled Vlasov equations for
nj�Ω; τ; ξ��j � 1; 2� read

∂ξnj � 2Ω∂τnj − ∂τ ~U�τ; ξ�∂Ωnj: (3)

The ISs are coupled by the self-consistent potential,
which results from the noninertial nature of the reference
frame ~U�τ;ξ� � U1�τ; ξ��U2�τ;ξ�� ατ, where Uj�τ; ξ� �
R � Nj and Nj�τ; ξ� � �2π�−1 R nj�Ω; τ; ξ�dΩ. As discussed
in [25], the linear term in the potential, ατ, finds its origin
in the fictitious force due to the noninertial nature of the
reference frame.
In the following we study the interaction of two ISs

through the analysis of their spectral and temporal dy-
namics in the noninertial reference frame, i.e., Pj�ξ� �
�2π�−1∬Ωnj�Ω; τ; ξ�dτdΩ and T j�ξ� � �2π�−1∬ τnj

�Ω; τ; ξ�dτdΩ. Using Eq. (3), we obtain

1
2
∂2ξT j�ξ� � −∂ξPj�ξ� � Sj�ξ� � X j�ξ�; (4)

where Sj � −
R
∂τ ~Uj�τ; ξ�Nj�τ; ξ�dτ denotes the self-inter-

action of the j-th IS (ISj), while X j � −
R
∂τU3−j

�τ; ξ�Nj�τ; ξ�dτ describes the cross-interaction between
them, with ~Uj�τ; ξ� � Uj�τ; ξ� � ατ. We consider the in-
teraction of two ISs of the same power N 1 �
N 2 � N ∕2, the first one being located at τ � 0, the
second one at τ � −τd < 0 (see Figs. 2–4). We treat the
interaction among the ISs as a perturbation, so as to write
Nj�τ; ξ� � Ns

j �τ� � δNj�τ; ξ� with jδNjj�τ; ξ� ≪ Ns
j �τ�,

while Ns
j �τ� denotes the IS temporal profile, which is sta-

tionary (ξ-invariant) in its own accelerating reference
frame. We have Uj�τ; ξ� � Us

j �τ� � δUj�τ; ξ�, where
Us

j �τ� � R � Ns
j �τ� and δUj�τ; ξ� � R � δNj�τ; ξ�. In this

way, ~Us
j �τ� � Us

j �τ� � ατ denotes the self-consistent po-
tential of a single IS, whose spectral velocity is deter-
mined by the condition that ~Us

j �τ� has a minimum at
the IS position [25], i.e., α � −∂τUs

1jτ�0 � −∂τUs
2jτ�−τd .

At first-order, Eq. (4) then reads �1∕2�∂2ξT j�ξ� �
−∂ξPj�ξ� � −

R
∂τ ~U

s
j �τ�Ns

j �τ�dτ −
R
∂τUs

3−j�τ�Ns
j �τ�dτ. The

first term vanishes because a single IS does not exhibit
spectral shift in its own reference frame. Then we obtain

1
2
∂2ξT j�ξ� � −∂ξPj�ξ� � −

Z
∂τUs

3−j�τ�Ns
j �τ�dτ (5)

to leading order in the perturbation amplitude. As illus-
trated in Fig. 3, Eq. (5) explicitly reveals the nonmutual
character of IS interaction: IS1 affects the evolution
of IS2, while IS2 leaves unaffected the evolution of IS1.
Indeed, because of the causality condition, we have
�1∕2�∂2ξT 1 � −∂ξP1 � −

R
∂τUs

2�τ�Ns
1�τ�dτ ≃ 0, whereas

�1∕2�∂2ξT 2 � −∂ξP2 � −
R
∂τUs

1�τ�Ns
2�τ�dτ ≠ 0 whenever

τd is smaller than or of the same order as τR. The non-
mutual IS interaction is also apparent in the spectral
dynamics through nonconservation of the total momen-
tum, ∂ξP1 � ∂ξP2 ≠ 0. Expanding the potential as
∂τUs

1�τ�≃ ∂τUs
1jτ�−τd � �τ� τd�∂2τUs

1jτ�−τd , we get

1
2
∂2ξT 2�ξ� � −∂ξP2�ξ�≃ −

N
2
∂τUs

1jτ�−τd : (6)

This reveals the existence of a threshold distance (τth)
between the ISs defined by ∂τUs

1jτ�−τth � 0: for τd < τth
(τd > τth), we have ∂τUs

1jτ�−τd < 0 (∂τUs
1jτ�−τd > 0), so

that IS2 is attracted to (repulsed from) IS1, while this
latter remains unaffected by the presence of IS2 (see
Fig. 3). A good agreement has been obtained between
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Fig. 3. Gaussian intensity profiles Ns
j �τ� (black) and corre-

sponding potentials Us
2�τ� (dashed-green), Us

1�τ� (green) for
τd � τR (a) and τd � 1.6τR (b). The dashed blue lines corre-
spond to the IS solutions obtained from Vlasov simulations
[Eq. (2)]. The arrows indicate the “particle motions” of IS2 in
Us

1�τ�. [For visibility reasons, we plotted Ns
j �τ�∕2].

Fig. 4. (a) and (b) Evolutions of the temporal intensity profiles
Nj�t; z� versus z for two ISs initially separated by the threshold
distance, τd � τth, for the Gaussian-like response (τth ≃ 1.435τR,
first column) and Raman-like response (τth ≃ 0.831τR, second
column). (c) and (d) ISj profiles Ns

j �τ� and potentials Us
j �τ�,~Us�τ� (T0 � 4096, for visibility reasons we plotted Ns

j �τ�∕2).
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criterion (6) and the numerical simulations of the Vlasov
and NLS Eqs. (1,2), with both the Gaussian-like response
and the Raman-like response, R̄�t� � �1� η2∕ητR�
sin�ηt� exp�−t∕τR�.
The IS interaction for τd ≃ τth crucially depends on the

response function R̄�t� (see Fig. 4). For the Gaussian-like
response, IS2 exhibits a splitting in which nearly half of
power (N 2∕2) is attracted to IS1, the other is repulsed.
Conversely, for the Raman-like response, IS2 preserves
its soliton shape during the propagation, with a nearly
constant distance to IS1, as described by (6) [T 2�ξ� �
T 2�0� for τd � τth]. Note however that such different
behaviors cannot be captured by T 2�ξ�. The robust
self-trapping of IS2 is explained by the potential in
the accelerated reference frame, ~Us�τ� � Us

1�τ� �
Us

2�τ� � ατ: contrary to the Gaussian-like response, for
the Raman-like response IS2 gets trapped by its self-
induced potential during the propagation (Fig. 4d,
red line).
We have reported an anomalous attractive-repulsive

interaction of temporal ISs. The Vlasov formalism reveals
that these ISs are characterized by a spectral long-range
interaction, with a spectral range τR∕τ0 larger than the
expected Raman-like spectral gain bandwidth.

This work has been supported by the Labex ACTION
program (contract ANR-11-LABX-01-01). Gang Xu thanks
Jiaer Zhang and Massimiliano Guasoni for the support.

References

1. A. Piskarskas, V. Pyragaite, and A. Stabinis, Phys. Rev. A 82,
053817 (2010).

2. D. Dylov and J. Fleischer, in Localized States in Physics:
Solitons and Patterns, Part 1, (Springer, 2011), pp. 17–34.

3. A. Picozzi and M. Haelterman, Phys. Rev. Lett. 92, 103901
(2004).

4. J. Garnier, M. Lisak, and A. Picozzi, J. Opt. Soc. Am. B 29,
2229 (2012).

5. J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori,
Phys. Rep. 514, 121 (2012).

6. Y. Silberberg, Y. Lahini, Y. Bromberg, E. Small, and R.
Morandotti, Phys. Rev. Lett. 102, 233904 (2009).

7. P. Aschieri, J. Garnier, C. Michel, V. Doya, and A. Picozzi,
Phys. Rev. A 83, 033838 (2011).

8. C. Conti, M. Leonetti, A. Fratalocchi, L. Angelani, and G.
Ruocco, Phys. Rev. Lett. 101, 143901 (2008).

9. S. Babin, D. Churkin, A. Ismagulov, S. Kablukov, and E.
Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).

10. E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu,
S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S.
Turitsyn, Nat. Photonics 7, 783 (2013).

11. R. Weill, B. Fischer, and O. Gat, Phys. Rev. Lett. 104, 173901
(2010).

12. A. Schwache and F. Mitschke, Phys. Rev. E 55, 7720
(1997).

13. B. Barviau, B. Kibler, and A. Picozzi, Phys. Rev. A 79,
063840 (2009).

14. B. Barviau, J. Garnier, G. Xu, B. Kibler, G. Millot, and A.
Picozzi, Phys. Rev. A 87, 035803 (2013).

15. M. Erkintalo, M. Surakka, J. Turunen, A. T. Friberg, and G.
Genty, Opt. Lett. 37, 169 (2012).

16. J. Garnier, G. Xu, S. Trillo, and A. Picozzi, Phys. Rev. Lett.
111, 113902 (2013).

17. S. Derevyanko and E. Small, Phys. Rev. A 85, 053816
(2012).

18. P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, Phys.
Rev. Lett. 104, 054101 (2010).

19. M. Mitchell, Z. Chen, M. Shih, and M. Segev, Phys. Rev. Lett.
77, 490 (1996).

20. M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and
A. Vishwanath, Phys. Rev. Lett. 84, 467 (2000).

21. B. Kibler, C. Michel, J. Garnier, and A. Picozzi, Opt. Lett. 37,
2472 (2012).

22. C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat.
Photonics 2, 371 (2008).

23. W. Królikowski, O. Bang, and J. Wyller, Phys. Rev. E 70,
036617 (2004).

24. A. Picozzi and J. Garnier, Phys. Rev. Lett. 107, 233901
(2011).

25. C. Michel, B. Kibler, J. Garnier, and A. Picozzi, Phys. Rev. A
86, 041801(R) (2012).

26. A. Picozzi, S. Pitois, and G. Millot, Phys. Rev. Lett. 101,
093901 (2008).

27. J. Garnier and A. Picozzi, Phys. Rev. A 81, 033831 (2010).
28. B. Hall, M. Lisak, D. Anderson, R. Fedele, and V. E.

Semenov, Phys. Rev. E 65, 035602 (2002).
29. T.-S. Ku, M.-F. Shih, A. A. Sukhorukov, and Y. S. Kivshar,

Phys. Rev. Lett. 94, 063904 (2005).
30. D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. E.

Semenov, Opt. Commun. 281, 3919 (2008).
31. A. Hasegawa, Phys. Fluids 18, 77 (1975).
32. M. Onorato, A. Osborne, R. Fedele, and M. Serio, Phys. Rev.

E 67, 046305 (2003).
33. C. Conti, M. Schmidt, P. Russell, and F. Biancalana, Phys.

Rev. Lett. 105, 263902 (2010).
34. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, Opt.

Express 14, 9844 (2006).
35. A. Hause and F. Mitschke, Phys. Rev. A 80, 063824

(2009).

February 1, 2014 / Vol. 39, No. 3 / OPTICS LETTERS 593


