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We study the influence of a constant background noise on the dynamics of spectral incoherent solitons, which are
incoherent structures sustained by a noninstantaneous (Raman-like) nonlinearity. As the level of the noise back-
ground increases, the incoherent wave enters a novel nonlinear regime characterized by oscillatory dynamics of the
incoherent spectrum, which develop within a spectral cone during the propagation. In contrast to the conventional
Raman-like spectral red shift, such incoherent spectral dynamics can be characterized by a significant spectral blue
shift. On the basis of the kinetic wave theory, we derive explicit analytical expressions of these incoherent oscil-
latory spectral dynamics. © 2013 Optical Society of America
OCIS codes: (190.4370) Nonlinear optics, fibers; (190.5650) Raman effect; (030.1640) Coherence.
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The propagation of partially coherent nonlinear optical
waves is a subject of growing interest in different fields
of investigations, such as, e.g., wave propagation in
homogeneous [1–5] or periodic media [6], waveguides
[7], cavity systems [8–15], supercontinuum (SC) genera-
tion [16–18], or nonlinear interferometry [19,20]. When
the propagation of the incoherent optical wave is essen-
tially conservative (i.e., ruled by a Hamiltonian equation),
its long-term evolution should be characterized by a non-
equilibrium process of thermalization. In analogy with
the kinetics of a gas system, wave thermalization mani-
fests itself by means of an irreversible evolution of the
optical field toward the thermodynamic equilibrium state
(maximum of entropy) [21].
A fundamental problem is to understand the physical

processes that can inhibit this natural phenomenon of
optical wave thermalization. Different mechanisms have
been identified in recent years, e.g., the presence of a
highly nonlocal nonlinearity [22] or the existence of
additional invariants in the 1D nonlinear Schrödinger
equation (NLSE) [23–27]. In particular, the presence of
a noninstantaneous response of the nonlinear medium
breaks the conservative (Hamiltonian) nature of wave
propagation, which in turn prevents the irreversible proc-
ess of thermalization [21]. A typical example is provided
by the Raman effect in optical fibers. In this case the
incoherent wave has been shown to self-organize into
spectral incoherent solitons (SISs), i.e., incoherent soli-
tons that cannot be identified in the spatio-temporal
domain but solely in the spectral domain [28–31]. The
origin of SISs relies on the causality property inherent
to the delayed nonlinear response function: as a result of
the antisymmetric (Raman) gain spectrum, the low-
frequency components of SISs are amplified to the detri-
ment of their high-frequency components, thus leading
to a permanent spectral red shift of SISs [28–30].
Our aim in this Letter is to show that such dynamics of

incoherent waves change in a dramatic way in the pres-
ence of a constant spectral background noise. Instead
of the expected SIS-like behavior, we show that the

incoherent wave enters a novel regime: it is characterized
by oscillatory dynamics of the incoherent spectrum that
develop within a spectral cone during propagation. The
remarkable and unexpected result is that such spectral
dynamics exhibit a significant spectral blue shift, which
is in marked contrast with the usual Raman-like spectral
red shift. A wave turbulence approach of the problem
provides a detailed description of these incoherent
oscillatory dynamics: we obtain explicit analytical ex-
pressions for the spectral evolution of the incoherent
wave, which are in quantitative agreement with the sim-
ulations of the NLSE without adjustable parameters.

Besides its fundamental interest, this novel regime of
incoherent wave propagation can shed new light on the
spectral dynamics of incoherent waves superimposed on
an incoherent SC spectral background. More generally,
optical fibers and waveguides [32] turn out to be ideal
test beds for experimental verification of our predictions,
thanks to the easily tailorable Raman response function,
as well as other recently investigated mechanisms involv-
ing liquid cores or photoionizable noble gases and
surface plasmon polaritons [33–36].

We consider the standard NLSE accounting for a non-
instantaneous Kerr effect

i∂zA − β∂ttA� γA
Z

R�t − t0�jAj2�z; t0�dt0 � 0; (1)

where the response function R�t� is constrained by the
causality condition, R�t� � 0 for t < 0. γ is the nonlinear
Kerr coefficient, while β � �1∕2�∂2ωkjω0

refers to the
second-order dispersion coefficient [31]. The nonlinear
length is defined as Lnl � 1∕�γP�, where P is the average
power of the incoherent wave. The typical width of R�t�,
say τR, denotes the response time of the nonlinearity. As
previously discussed [21,37], the dynamics is ruled by the
comparison of τR with the “healing time,” τ0 �

������������
jβjLnl

p
,

which denotes the typical modulational instability period
in the limit of an instantaneous response τR → 0. In the
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following we consider the standard regime τR ∼ τ0, which
leads in particular to the generation of SISs.
We report in Fig. 1 the evolution of the spectrum of the

incoherent wave obtained by integrating numerically the
NLSE (1). We considered the Raman response function,
R�t� � H�t�

�
�1� α2�∕�ατR�

�
sin�αt∕τR� exp�−t∕τR�, with

τR � 32 fs and α � τR∕τ1 ≃ 2.6 (τ1 � 12.2 fs), and H�t�
denotes the Heaviside function [31]. The initial condition
is a partially coherent wave with a Gaussian spectrum
and random spectral phases, superimposed on a white
noise spectral background. The initial Gaussian spectral
width is of the same order as the spectral bandwidth of
the gain spectrum, which refers to the imaginary part of
the Fourier transform of the response function,
g�ω� � I� ~R�ω��. The amount of spectral noise back-
ground is simply defined from the ratio, say ρ, between
the background noise level and the amplitude of the
initial Gaussian spectrum. In the presence of a small-
amplitude background noise (ρ ≪ 1), the incoherent
wave rapidly evolves into an SIS, which is red shifted
with a constant velocity in frequency space [28–30].
However, as the noise background level increases and
becomes of the same order as the initial Gaussian hump
(i.e., ρ ≥ 1), the dynamics enters a novel regime: the in-
coherent spectrum exhibits oscillatory behavior, which
spreads during the propagation along a spectral cone
with both red and blue spectral shifts [see Fig. 1(c)].
In order to describe the properties of this regime, we

resort to a statistical description of the random field
based on the wave turbulence theory [38]. Assuming that
the weakly nonlinear random wave exhibits stationary
statistics, one obtains a natural closure of the hierarchy
of moments equations [21]: the averaged spectrum of the
wave, nω�z� �

R
B�z; τ� exp�−iωτ�dτ, where B�z; τ� �

hA�z; t − τ∕2�A��z; t� τ∕2�i is the correlation function,
evolves according to the kinetic equation (KE)

∂znω � γ

π
nω

Z �∞

−∞
g�ω − ω0�nω0dω0: (2)

This KE has been shown to provide a detailed determin-
istic description of the properties of SISs in different
physical conditions [28–30]. To study the new incoherent
oscillatory dynamics, we pose n�ω; z� � n0 � ~n�ω; z�,
where n0�≫ ~nω� denotes the background noise level
[ρ � n0∕ ~nω�0�z � 0�]. Keeping in mind that g�ω� is
odd, the KE (2) gets linearized ∂z ~nω �
�γ∕π�n0

R�∞
−∞ g�ω − ω0� ~nω0dω0. Its solution can be written

by defining ~B�t; z� � �1∕2π� R�∞
−∞ ~nω�z� exp�iωt�dω and

G�t� � �i∕2π� R�∞
−∞ g�ω� exp�iωt�dω, where the function

G�t� is real and odd. The general solution thus reads

~nω�z� �
Z �∞

−∞
~B0�t� exp�−2iγn0G�t�z − iωt�dt; (3)

where ~B0�t� � ~B�t; z � 0�. Assuming furthermore that
~B0�t� is even and real, and remarking that G�t� �
�1∕2��R�t� − R�−t��, the solution (3) takes the form

~nω�z� � 2
Z

∞

0

~B0�t� cos�γn0R�t�z� ωt�dt: (4)

Making use of the stationary phase method, one can de-
rive an explicit analytical solution for ~nω�z� in the limit
γn0zmaxt>0�jRj�t�� ≫ 1. It is important to underline that
the condition for the existence of the stationary critical
point determines the properties of the cone of incoherent
spectral oscillations [see Figs. 1(c) and 1(d)]. Indeed, a
stationary critical point of Eq. (4), say tj, is determined
by the solution of the equation φ0�tj� � 0, where φ�t� �
γn0R�t�z� ωt, i.e., γn0R0�tj� � −ω∕z, where R0�t� �
∂tR�t�, and φ0�t� � ∂tφ�t�. It turns out that tj � f �ω∕z� is
a function of ω∕z. This reveals that the evolution of
~nω�z� is essentially bounded on a spectral cone defined
by the frequency interval ω ∈ �ωmin;ωmax�:

ωmin � γn0zmin
t>0

�−R0�t��; (5)

ωmax � γn0zmax
t>0

�−R0�t��: (6)

According to the stationary phase method, the solution
~nω�z� is of order 1∕

���
z

p
in this interval.

We illustrate this behavior by considering different
concrete examples. We start with the purely exponential
response function, R�t� � H�t� exp�−t∕τR�∕τR, which is
known to model a noninstantaneous Kerr nonlinearity
[33] (also see metal-based surface plasmonic devices
[36]). As illustrated in Fig. 2(a), we have in this case
a single critical point, t1�ω∕z� � τR log�γn0z∕�ωτ2R��.
According to the stationary phase method, the solution
to Eq. (4) reads for ω ∈ �ωmin;ωmax�

~nω�z�≃
2

�����������
2πτR

p
~B0�t1�ω∕z�����

z
p ������������

jω∕zj
p cos�K�ω∕z�z� π∕4�; (7)

where

K�ω∕z� � τR�1� log�γn0z∕�ωτ2R���ω∕z: (8)

Fig. 1. Simulations of (a), (c) NLSE (1) and (b), (d) kinetic
equation (2) for the damped harmonic oscillator (Raman-like)
response. As the level of the background noise increases [(a),
(b) ρ � 0.1; (c), (d) ρ � 3], the incoherent wave exhibits a tran-
sition from the SIS regime (a), (b), to the new regime charac-
terized by oscillations that develop within a spectral cone (c),
(d) (τR � 2.5τ0).
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Quite remarkably, in this case the spectrum experiences
a pure spectral blue shift, since ωmin � 0 and ωmax �
γn0z∕τ2R [see Fig. 2(a)]. This unexpected prediction has
been confirmed by the numerical simulations of the
NLSE and KE, as remarkably illustrated in Fig. 3. Quan-
titative agreement has been obtained between the simu-
lations and the plot of the analytical solution [Eqs. (7)
and (8)], without adjustable parameters. We remark that
this spectral blue shift is of a fundamentally different
nature than those recently discussed in [34,35].
We now consider the example of the damped harmonic

oscillator response discussed above through Fig. 1. In
this case we have ωmin � −γn0z�1� α2�∕τ2R, and

ωmax � γn0z

τ2R
�1� α2� exp

�
−α−1

�
atan

�
2α

1 − α2

�
� σπ

��
;

(9)

where σ � 0 for α < 1 and σ � �1 for α > 1. Because of
the oscillatory nature of R�t�, several critical points
tj�ω∕z� contribute to the solution of Eq. (4), so that
the general solution reads

~nω�z�≃
Xm
j�1

2
������
2π

p
~B0�tj�ω∕z����������������������������������������

γjR00�tj�ω∕z��jn0z
p cos�Θj�ω; z��; (10)

where Θj�ω; z� � Kj�ω∕z�z� sjπ∕4, with sj �
sign�R00�tj�� and

Kj�ω∕z� � γn0R�tj�ω∕z�� � tj�ω∕z�ω∕z: (11)

We first comment on this general solution in the limit
α → 0 [see Fig. 2(b), green line]. In this case we have
for ω ∈ �ωmin; 0� a single contribution to the sum (10),
i.e., m � 1 and s1 � −1, where t1�ω∕z� < τR verifies
exp�−t1∕τR��1 − t1∕τR� � −τ2Rω∕�γn0z�. For ω ∈ �0;ωmax�
we have two contributions to the sum (10), with τR <
t1 < 2τR (s1 � −1) and t2 > 2τR (s2 � �1).

As the parameter α increases, one obtains many con-
tributions to the sum (10), as schematically illustrated in
Fig. 2(b). The general solution can thus be plotted by
computing numerically the functions tj�ω∕z� solutions
of R0�tj� � −ω∕�γn0z�. Quantitative agreement between
the solution (10) and (11) and the numerical simulations
of the NLSE (1) and KE (2) is obtained, without using
adjustable parameters. This is remarkably illustrated
in Fig. 4 for α � 0 [Figs. 4(a) and 4(b)], and α � 2.6
[Figs. 4(c) and 4(d)]. It is interesting to note that for
α � 2.6, the averaged spectrum ~nω�z� exhibits rapid
and irregular oscillations, which result from the multiple
oscillating contributions to the sum involved in the
solution (10) and (11). Note that a temporal beating
associated with such incoherent spectral oscillations
cannot be identified in the temporal domain, in which
the field exhibits stationary statistics [see Figs. 4(e)
and 4(f)]. Finally, we remark that the predictions of
Figs. 4(c) and 4(d) can be observed in a standard
photonic crystal fiber, e.g., with β2 � 10−26 s2∕m, γ �
0.1 W−1 m−1, and a power of ∼100 W. Figure 4(c) would
thus correspond to a propagation length of 30 m and a
spectral blue shift of 72 THz.

The theoretical analysis reported here is general and
can be applied to any specific form of the response func-
tion R�t�. For instance, the design and development of
subwavelength photonic devices with metallic compo-
nents has become a subject of intense research. We have
extended our work by considering the two-temperature
model underlying the response of surface plasmon
polaritons in metal nanowires [36]. Our results confirm
the existence of the novel nonlinear regime of incoherent
spectral oscillations in metal-based plasmonic devices.
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Fig. 2. (a) Schematic representation of the derivative of the re-
sponse function for the exponential response, (b) damped har-
monic oscillator response for α � 0 (dashed green), α � 2.6
(solid blue), and the corresponding values of ωmin and ωmax
[see Eqs. (5) and (6)]. Note that t0j denotes tj∕τ0 (j � 1, 2, 3).

−10 0 10 20 30

S
pe
ct
ru
m

ωτ0

ωmin ωmax0.014

0.017 (a)

−20 0 20 40
ωτ0

(b)

ωmin ωmax

Fig. 3. Simulations of the NLSE (1) (gray) and KE (2) (green)
for the exponential response function (the solid black line de-
notes the initial condition). The incoherent wave exhibits a
spectral blue shift, instead of the expected red shift. Plot of
the analytical solution given in Eqs. (7) and (8) (red). Quanti-
tative agreement is obtained between the analytical solution
and the simulations of the NLSE and KE [(a) z � 1250Lnl;
(b) z � 2000Lnl]; τR � τ0 � 32 fs, ρ � 10. The vertical lines de-
note the analytical expressions of ωmin;max given in the text.
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Fig. 4. Simulations of the NLSE (gray) and KE (green) for the
damped harmonic oscillator response: (a), (b) α � 0; (c), (d)
α � 2.6 (the solid black line denotes the initial condition).
Quantitative agreement is obtained between the analytical sol-
ution [Eq. (7), red] and the simulations of the NLSE and KE
[(a) z � 400, (b) z � 1600, (c) z � 300, (d) z � 600, in units
of Lnl]; τR � τ0 � 32 fs, ρ � 10. (e) Typical intensity profiles
jAj2�t� corresponding to the spectra (c), (d).
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