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A statistical approach to target detection and localization

in the presence of noise
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The problem addressed in this paper is the combined detection and localization of a point
reflector embedded in a medium by sensor array imaging when the array response matrix is
obtained in a noisy environment. We study a detection test based on reverse-time migration of
the array response matrix that is the most powerful for a given false alarm rate and compare
it with a test based on the singular values of the response matrix. Moreover, we show that
reflector localization should be performed with reverse-time migration rather than any other
form of weighted-subspace migration and we give the standard deviation of the localization
error.

Keywords: Sensor array imaging, target detection, statistical testing, random matrix
theory, extreme value theory.

1. Introduction

The problem addressed in this paper is to detect and localize a point reflector
embedded in a medium by probing the medium with time-harmonic scalar waves
emitted from and recorded on a sensor array. We use stochastic and statistical tools
to study this problem when the array response matrix is acquired in a noisy envi-
ronment. We consider a clutter noise (small random fluctuations in the background
medium) in the multiple scattering regime and/or an additive measurement noise.
In both situations, up to a symmetrization of the response matrix, the noise can
be modeled by an additive symmetric Gaussian matrix with zero mean [5, 6].

Our first goal is to design an efficient detection procedure. Indeed the known
statistical structure of the response matrix allows us to analyze the statistical
distribution of the singular values of the matrix in the presence and in the absence of
a reflector, and also the statistical behavior of general weighted-subspace migration
functionals. The use of random matrix theory [20] and extreme value theory [1]
turns out to be convenient. This analysis then allows us to construct detection
tests based on the singular values (SV) of the noisy response matrix or based on
reverse-time migration that are the most powerful for a given false alarm rate, using
the Neyman-Pearson lemma [15]. We show that the migration-based test is more
powerful than the SV-based test. We can explain this result by remarking that the
migration-based test uses the known structure of the singular vector associated to
the point reflector while the SV-based test does not exploit this structure.
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The second aim of this paper is to provide weighted-subspace migration function-
als for localizing the point reflector and to compare their performance. We show
the optimality of the reverse-time migration imaging functional in the presence of
noise.

The paper is organized as follows. In Sections 3-4 we propose two detection tests,
one based on the singular values of the array response matrix and another one
based on the reverse-time migration functional of the response matrix. We study
general versions of these tests using random matrix theory, in particular recent
results on low-rank perturbations of random Gaussian matrices, and extreme value
theory for Gaussian fields. We identify the most powerful tests using the Neyman-
Pearson lemma and we show that the levels of the tests are prescribed in terms of
a Tracy-Widom distribution or a Gumbel distribution. Quantitative calculations
allow us to describe the regimes in which the migration-based test is more powerful
than the SV-based test. In Section 5 we identify the optimal migration technique
for estimating the location of the reflector in the presence of noise by using a
Bayesian approach. We find that reverse-time migration is slightly more robust
than Kirchhoff migration [9], and that both are much more robust than algorithms
of MUSIC-type (which stands for MUltiple SIgnal Classification) [10, 16, 19, 24].
We compute the standard deviation of the error in the localization for the optimal
reverse-time migration technique.

2. Problem formulation

2.1. The response matrix

Let us consider the propagation of scalar waves in a three-dimensional medium. In
the presence of a localized reflector and small random fluctuations of the medium
(clutter noise), the speed of propagation can be modeled by

1

c2(x)
=

1

c2
0

(

1 + σcluVclu(x) + σrVref(x)
)

. (1)

Here
- the constant c0 is the known background speed,
- the random process Vclu(x) represents the cluttered medium,
- the local variation Vref(x) of the speed of propagation induced by the reflector at
xref is

Vref(x) = 1Ωref
(x − xref), (2)

where Ωref is a compactly supported domain with volume l3ref .
Suppose that a time-harmonic point source acts at the point y ∈ R3 with fre-

quency ω. The field in the presence of the reflector and clutter noise is the solution
û(·,y) to the following transmission problem:

∆xû +
ω2

c2(x)
û = −δy(x), (3)

with the radiation condition imposed on û.
Suppose that we have co-localized transmitter and receiver arrays {y1, . . . ,yn}

of n elements, used to detect the reflector. The response matrix A = (Ajl)j,l=1,...,n

describes the transmit-receive process performed at this array. In the presence of a
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Figure 1. Sensor array imaging for the detection and localization of a reflector buried in a search region Ω.

reflector and clutter noise the field received by the jth receiving element yj when
the wave is emitted from yl is û(yj ,yl) (Figure 1). If we remove the incident field

then it is û(yj ,yl) − Ĝ0(ω,yj ,yl). The incident field is the homogeneous Green

function Ĝ0(ω,x,y) given by

Ĝ0(ω,x,y) =
e
i ω

c0
|x−y|

4π|x − y| . (4)

Finally, taking into account measurement noise, the entries of the response matrix
are

Ajl = û(yj,yl) − Ĝ0(ω,yj,yl) + wjl, (5)

where wjl represents the additive measurement noise. By reciprocity the response
matrix is complex symmetric in the absence of measurement noise.

2.2. The response matrix in the presence of a reflector and in the absence

of noise

In the Born approximation (see Appendix A) and in the absence of measurement
or clutter noise the response matrix A0 has the form

A0jl =
ω2

c2
0

σrl
3
refĜ0(ω,yj ,xref)Ĝ0(ω,xref ,yl), j, l = 1, . . . , n,

where σr is the scattering amplitude and l3ref is the volume of the scatterer. We
introduce the normalized vector of Green’s functions from the sensor array to the
point x, the so called illumination vector:

g(x) :=
1

(
∑n

l=1 |Ĝ0(ω,x,xl)|2
)1/2

(

Ĝ0(ω,x,xj)
)

j=1,...,n
. (6)

We can then write the response matrix in the form

A0 = σrefg(xref)g(xref)
T , (7)

with

σref :=
ω2

c2
0

σrl
3
ref

(

n
∑

l=1

|Ĝ0(ω,xref ,xl)|2
)

. (8)
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Here T denotes the transpose. The matrix A0 has rank 1 and its unique non-zero
singular value is σref . Note that σref scales as n. If the sensor array is at distance
L from the reflector, and if the diameter of the sensor array is small compared to
L, then

σref ≃
ω2σrl

3
ref

16π2c2
0L

2
n =

σrl
3
ref

4λ2
0L

2
n, (9)

where λ0 = 2πc0/ω is the wavelength.

2.3. The response matrix in the absence of a reflector and in the presence

of noise

In the case of clutter noise in the multiple scattering regime, the response matrix
A is complex symmetric with Gaussian statistics. The matrix satisfies Ajl = Alj

and the entries Ajl, j ≤ l are independent complex Gaussian random variables
with mean zero and variance δ2 off the diagonal (j 6= l) and 2δ2 on the diagonal
j = l. Here we have taken into account the enhanced backscattering effect [5, 6].

In the case of measurement noise, the response matrix A is complex with Gaus-
sian statistics. The entries Ajl, j, l = 1, . . . , n, are independent complex Gaussian
random variables with mean zero and variance 2δ2. Since we know that the unper-
turbed response matrix in the presence of a reflector is symmetric by reciprocity,
we symmetrize the measured response matrix and introduce As := (A + AT )/2.
The matrix satisfies As

jl = As
lj and the entries As

jl, j ≤ l are independent complex

Gaussian random variables with mean zero and variance δ2 off the diagonal (j 6= l)
and 2δ2 on the diagonal j = l.

In both situations the response matrix in the absence of a reflector is of the form

A = δW, (10)

where W is a complex symmetric Gaussian matrix with zero mean and with vari-
ance equal to one off the diagonal and to two on the diagonal.

2.4. The response matrix in the presence of a reflector and in the presence

of noise

The interesting problem is the case in which there is a point reflector and noise.
We consider the situation in which there is clutter noise in the multiple scattering
regime, or the situation in which there is an additive measurement noise and the
response matrix is symmetrized. In both situations the response matrix A can be
modeled by [6]:

A = A0 + δW, (11)

where A0 is given by (7) and W is a complex symmetric Gaussian matrix with zero
mean and with variance equal to one off the diagonal and to two on the diagonal.
In the presence of clutter noise one should use the coherent (or average) Green’s
function in the matrix A0 defined by (7) instead of the homogeneous Green’s
function. This means that we should incorporate a damping γ(ω) in the Green’s
function [2]:

Ĝ(ω,x,y) = Ĝ0(ω,x,y) exp
(

− γ(ω)|x − y|
)

.
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The problem we consider is to detect and localize the reflector from the response
matrix A in such a situation.

3. Detection of a point reflector by Singular Value Decomposition

The idea that it is possible to construct a detection test that predicts the presence
of a target when the largest singular value of the response matrix exceeds some
threshold value is described and analyzed in [6]. In this section we carry out a
complete statistical analysis and we give in Proposition 3.3 the statistical distribu-
tion of the ratio of the largest singular value over the l2-norm of the (n − 1) other
singular values of the noisy response matrix in the absence and in the presence of
a reflector. This allows us to calibrate the false alarm rate of the optimal SV-based
detection test based on Neyman-Pearson theory and to compute the probability of
detection of the test.

3.1. Singular Value Decomposition of the response matrix in the absence of

a reflector and in the presence of noise

We consider here the situation in which there is clutter noise in the multiple scat-
tering regime, or the situation in which there is an additive measurement noise and
the response matrix is symmetrized. In both situations the response matrix A is of

the form (10). We denote by σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the singular values of

the response matrix A sorted by decreasing order and by N (n) the corresponding
integrated density of states defined by

N (n)([a, b]) :=
1

n
Card

{

l = 1, . . . , n , σ
(n)
l ∈ [a, b]

}

, for any a < b.

N (n) is a counting measure which consists of a sum of Dirac masses:

N (n) =
1

n

n
∑

j=1

δσ(n)
j

.

We introduce the parameter σc =
√

nδ. For large n we have the following results.

Proposition 3.1:

a) The random measure N (n) almost surely converges to the deterministic abso-
lutely continuous measure N with compact support:

N([σu, σv]) =

∫ σv

σu

ρ(σ)dσ, ρ(σ) =
1

σc
ρqc

( σ

σc

)

, (12)

where ρqc is the quarter-circle law given by

ρqc(σ) =

{

1
π

√
4 − σ2 if 0 < σ ≤ 2,

0 otherwise.
(13)

b) The normalized l2-norm of the singular values satisfies

n
[ 1

n

n
∑

j=1

(σ
(n)
j )2 − σ2

c

]

n→∞−→ σ2
c +

√
2σ2

cZ in distribution, (14)
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where Z follows a Gaussian distribution with mean zero and variance one.

Here, the function ρ is the asymptotic density of states and ρ(σ)dσ gives the
proportion of singular values of the response matrix that lie in the elementary
interval [σ, σ + dσ].

Proof. Point a) is classical [21] and was already noticed in [6]. Point b) follows
from the expression of the normalized l2-norm of the singular values in terms of
the entries of the matrix:

1

n

n
∑

j=1

(σ
(n)
j )2 =

1

n
Tr

(

A
T
A

)

=
1

n

n
∑

j=1

|Ajj |2 +
2

n

∑

j<l

|Ajl|2,

and from the application of the central limit theorem in the regime n ≫ 1. �

3.2. Singular Value Decomposition of the response matrix in the presence of

a reflector and in the presence of noise

Here we consider the response matrix A obtained with a reflector in the presence

of noise. It is modeled by (11). Let us denote by σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the

singular values of the matrix A. We introduce as above the parameter σc =
√

nδ.
For large n, we can expand the distribution of the singular values and we get the
following results:

Proposition 3.2:

a) If σc > σref , then the largest singular value σ
(n)
1 obeys a non-Gaussian statistics.

More specifically, it is equal to 2σc up to a random correction of order σcn
−2/3:

σ
(n)
1

dist.
= σc

[

2 + 2−2/3n−2/3Z1 + o(n−2/3)
]

,

where
dist.
= means “equal in distribution” and the random variable Z1 follows a

Tracy-Widom distribution of type 1:P(Z1 ≤ z) =

∫ z

−∞
pTW1(x)dx = exp

(

− 1

2

∫ ∞

z
ϕ(x) + (x − z)ϕ2(x)dx

)

,E[Z1] ≃ −1.21, Var(Z1) ≃ 1.61.

Here E stands for the expectation (mean value), Var for the variance, and ϕ is
the solution of the Painlevé equation

ϕ′′(x) = xϕ(x) + 2ϕ(x)3, ϕ(x)
x→+∞≃ Ai(x), (15)

Ai being the Airy function.

b) If σc < σref , then the largest singular value σ
(n)
1 obeys Gaussian statistics with

the mean and varianceE[

σ
(n)
1

]

= σref + σ2
cσ

−1
ref , Var

(

σ
(n)
1

)

=
1

n
σ2

c

(

1 − σ2
cσ

−2
ref

)

. (16)

c) For any σc and σref , the second singular value σ
(n)
2 is equal to 2σc to leading

order as n → ∞.



July 1, 2010 11:2 Waves in Random and Complex Media wrcm

Waves in Random and Complex Media 7

d) For any σc and σref , the normalized l2-norm of the n−1 smallest singular values
satisfies

np
[ 1

n − 1

n
∑

j=2

(σ
(n)
j )2 − σ2

c

] n→∞−→ 0 in probability, (17)

for any p ∈ (0, 1).

We stress here that Eq. (16) is not an expansion valid only for σc ≪ σref , it is
valid for any σc < σref (see Figure 2). Point a) was already noticed in [6] in the
case σref = 0. Point d) shows that the fluctuations of the normalized l2-norm of
the n − 1 smallest singular values are smaller than the fluctuations of the largest
singular value which are of order n−2/3 or n−1/2 by a) and b).

Proof. Points a) and b) are proved in [17]. Point c) is proved in [13]. In order to
prove point d) we first note that we have

1

n − 1

n
∑

j=2

(σ
(n)
j )2 =

1

n − 1

n
∑

j=1

(σ
(n)
j )2 − (σ

(n)
1 )2

n − 1
=

1

n − 1
Tr

(

A
T
A

)

− (σ
(n)
1 )2

n − 1
.

We can write

n
[ 1

n − 1

n
∑

j=2

(σ
(n)
j )2−σ2

c

]

=
n2

n − 1

[ 1

n
Tr

(

A
T
A

)

−σ2
ref

n
−σ2

c

]

− n

n − 1

[

(σ
(n)
1 )2−σ2

ref−σ2
c

]

.

The second term converges in probability to σ̄2
1 −σ2

ref −σ2
c , where we have denoted

by σ̄1 = 2σc if σc > σref and = σref + σ2
cσ

−1
ref if σc < σref the deterministic leading

order term of σ
(n)
1 . The first term converges in distribution by the central limit

theorem:

n
[ 1

n
Tr

(

A
T
A

)

− σ2
ref

n
− σ2

c

]

n→∞−→ σ2
c +

√
2σ2

cZ in distribution,

where Z follows a Gaussian distribution with mean zero and variance one. There-
fore, by Slutsky’s theorem [18],

n
[ 1

n − 1

n
∑

j=2

(σ
(n)
j )2 − σ2

c

]

n→∞−→ 2σ2
c + σ2

ref − σ̄2
1 +

√
2σ2

cZ in distribution, (18)

which gives the result by Markov inequality [25]. �

Several interesting features can be noted:

1) The noise generates small singular values, whose largest one is σ
(n)
2 which is

of the order of 2σc = 2δ
√

n.

2) The first singular value, σ
(n)
1 , corresponding to the reflector, increases as the

noise increases. This is a manifestation of the level repulsion phenomenon well
known in random matrix theory [20]: the small singular values (and in particular

σ
(n)
2 ) increase as the noise level increases, and the first singular value is repelled

(see Figure 2).
3) The first singular value, corresponding to the reflector, and the second singular

value, that is the largest singular value generated by the noise, are well separated
as long as 2σc < σref , i.e. 2δ

√
n < σref . This indicates, as we will see in more detail
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Figure 2. First and second singular values as a function of the noise level σc/σref . Here we plot the expected

values, and the standard deviations are small (of order n−2/3 or n−1/2 as described in Proposition 3.2).

below, that it is possible to detect the reflector based on the singular values as long
as 2δ

√
n < σref .

3.3. SV-based detection test

Let us consider the ratio of the first singular value over the L2-norm of the other
singular values

R :=
σ

(n)
1

(

1
n−1

∑n
j=2

(

σ
(n)
j

)2)1/2
. (19)

The statistical distribution of the ratio R, in the presence and in the absence of a
reflector, is given by the following proposition.

Proposition 3.3: In the asymptotic regime n ≫ 1, we have:

(1) If the response matrix is obtained without a reflector, then the ratio (19) has
the following statistical distribution:

R
dist.
= 2 +

1

22/3n2/3
Z1, (20)

where Z1 is a random variable following a Tracy-Widom distribution of type 1.
(2) If the response matrix is obtained with a reflector, then:

a) For σc < σref , the ratio (19) has the following statistical distribution

R
dist.
=

σref

σc
+

σc

σref
+

1√
2n

√

1 − σ2
cσ

−2
ref Z, (21)

where Z follows a Gaussian distribution with mean zero and variance one.
b) For σc > σref we have (20).

Proof. For point (i):

(2n)2/3(R − 2) = (2n)2/3
( σ

(n)
1

(

1
n−1

∑n
j=2

(

σ
(n)
j

)2)1/2
− 2

)

= (2n)2/3 σ
(n)
1 − 2σc

σc
+ σ

(n)
1 (2n)2/3

( 1
(

1
n−1

∑n
j=2

(

σ
(n)
j

)2)1/2
− 1

σc

)

.
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By Proposition 3.2 the first term of the right-hand side converges in distribution
to Z1 and the second term converges in probability to 0. Using again Slutsky’s
theorem we obtain the result. Point (ii) can be shown in the same way. �

Based on the previous proposition and the Neyman-Pearson lemma, it is possible
to design an optimal test based on the singular values of the response matrix for
the detection of a reflector.

Define H0 the (null) hypothesis to be tested and HA the (alternative) hypothesis:

• H0: there is no reflector,

• HA: there is a reflector.

We want to test H0 against HA. Two types of errors can be made:

• Type I errors correspond to rejecting H0 when it is correct: false alarm. The
probability of type I error (false alarm rate) is

α := P(

accept HA|H0 true
)

,

• Type II errors correspond to accepting H0 when it is false: missed detection. The
probability of type II error (probability of missed detection) is

β := P(

accept H0|HA true
)

.

The probability of detection (power of the test) is therefore given by 1− β. The
general result is that it is not possible to maximize the probability of detection and
minimize the false alarm rate at the same time. However, amongst all possible tests
with a given false alarm rate, it is possible to identify the best test that maximizes
the probability of detection. Given the data, the decision rule for accepting H0 or
not can be derived accordingly from the Neyman-Pearson lemma:

Neyman-Pearson lemma: Let Y be the set of all possible data and let f0(y)
and f1(y) be the probability densities of Y under the null and alternative hypotheses:P(

Y ∈ A|H0 true
)

=

∫

A
f0(y)dy, P(

Y ∈ A|H0 false
)

=

∫

A
f1(y)dy.

The most powerful test has a critical region defined by

Yα :=

{

y ∈ Y
∣

∣

∣

f1(y)

f0(y)
≥ ηα

}

,

for a threshold ηα satisfying

∫

y∈Yα

f0(y)dy = α.

Neyman-Pearson test: If the data is y, we reject H0 if the likelihood ratio
f1(y)
f0(y) > ηα and accept H0 otherwise. The power of the (most powerful) test is given

by

1 − β =

∫

y∈Yα

f1(y)dy.
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Figure 3. Probability of detection of the SV-based test as a function of the signal-to-noise ratio σref/σc,
for different false alarm rates α.

If the data (i.e. the measured response matrix) gives the ratio R, then we propose
to use a test of the form R > r for the alarm corresponding to the presence of a
reflector. By the Neyman-Pearson lemma the decision rule of accepting HA if and
only if R > rα maximizes the probability of detection (POD) for a given false alarm
rate (FAR) α

FAR = α = P(R > rα|H0),

with the threshold

rα = 2 +
1

22/3n2/3
Φ−1

TW1(1 − α), (22)

where ΦTW1 is the cumulative distribution function of the Tracy-Widom distribu-
tion of type 1. The computation of the threshold rα is easy since it depends only on
the number of sensors n and on the false alarm probability α. This test is therefore
universal. Note that we should use a Tracy-Widom distribution table, and not a
Gaussian table. We have, for instance, Φ−1

TW1(0.9) ≃ 0.45, Φ−1
TW1(0.95) ≃ 0.98 and

Φ−1
TW1(0.99) ≃ 2.02.
Remark: In principle the decision region of the Neyman-Pearson test could be

two-sided since the Gaussian distribution has a heavier left tail ∼ exp(−z2/2) than
the Tracy-Widom distribution ∼ exp(−|z|3/24) as z → −∞ [8], but this is not
important in practice because the left side is negligible compared to the right side
in our framework.

The probability of detection 1 − β is the probability to sound the alarm when
there is a reflector:

POD = 1 − β = P(R > rα|HA).

It depends on the value σref and on the noise level σc =
√

nδ. Here we find that
the probability of detection is

POD = 1 − β = Φ

(√
2n

σref

σc
+ σc

σref
− rα

√

1 − (σc/σref)2

)

,

where Φ is the cumulative distribution function of the normal distribution with
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mean zero and variance one. We have for large n

POD ≃ 1 − e−nσ2
ref,c

√

4πnσ2
ref,c

, where σref,c =
σref

σc
+ σc

σref
− 2

√

1 − (σc/σref)2
,

so that the theoretical test performance improves very rapidly with n once σref >
σc. This result is indeed valid as long as σref > σc. When σref < σc, so that the
reflector is “hidden in noise” (more exactly, the singular value corresponding to the
reflector is buried into the quarter-circle distribution of the other singular values),
then we have 1 − β = 1 − ΦTW1

(

Φ−1
TW1(1 − α)

)

= α. Therefore the probability of
detection is given by

POD = max

{

Φ

(√
n

σref

σc
+ σc

σref
− rα

√

1 − (σc/σref)2

)

, α

}

. (23)

To summarize, the SV-based test becomes efficient (i.e., powerful) when σref >
σc. Since σref scales as n while σc =

√
nδ, the SV-based test becomes more and

more powerful as the number n of sensors increases and the variance δ2 of the
entries of the response matrix decreases.

4. Detection of a point reflector by migration

In the presence of a point reflector at xref and in the presence of noise the response
matrix is of the form (11). In the previous section we studied a SV-based test
that uses optimally the singular values of the response matrix. Here we would like
to exploit the known structure of the main singular vector of the unperturbed
response matrix and to design a better detection test using this information. For
this we can consider a general class of weighted-subspace migration functionals. As
we will see in Section 5, the optimal weighted-subspace migration functional in the
presence of additive noise is the reverse-time imaging functional defined by

IRT(x) := g(x)
T
Ag(x), (24)

where g(x) is the normalized vector of Green’s functions (6). Accordingly, we can
design an optimal test based on the maximal value of the reverse-time imaging
functional reached in the search region. Such a detection test was proposed and
implemented in [7]. In this section we carry out a complete statistical analysis of
the test and we clarify under which conditions the migration-based test is more
powerful than the SV-based test. The strategy for the analysis is similar as in the
previous section. We first compute the statistical distribution of the reverse-time
imaging functional in the absence and in the presence of a reflector, and then we
obtain the most powerful test by the Neyman-Pearson lemma.

4.1. The imaging functional in the presence of a reflector and in the

absence of noise

In the absence of noise δ = 0 the response matrix has the form (7) and the imaging
functional is given by

IRT(x) = I0(x) := σrefH(x,xref)
2, H(x,y) := g(x)

T
g(y), (25)
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Figure 4. Left: Point spread function corresponding to the imaging functional IRT in the presence of a
reflector at xref = 0 and in the absence of noise. Right: Speckle pattern corresponding to the imaging
functional in the absence of a reflector and in the presence of noise. Here the function h(x) = exp(−|x|2).

where σref is given by (8). The function H has been studied extensively in imaging,
it is the point spread function that describes the spatial profile of the peak obtained
at the reflector location in the imaging functional when the reflector is point-like
(Figure 4, left). A general result obtained by Cauchy-Schwarz inequality is that
the maximum of H(x,y) is reached at x = y and it is equal to one. Therefore, the
maximum of I0 over a search domain Ω (that contains xref) is reached at x = xref

and it is equal to

max
x∈Ω

|I0(x)|2 = σ2
ref . (26)

Full aperture array. If the sensor array is dense (i.e. the intersensor distance
is smaller than half a wavelength) and completely surrounds the region of inter-
est, then Helmholtz-Kirchhoff theorem states that H(x,y) is proportional to the

imaginary part of the Green function Ĝ(ω,x,y). If the medium is homogeneous
and three-dimensional, then we find

I0(x) = σrefh(x − xref), where h(x) = sinc2
(2π|x|

λ0

)

.

Finite aperture array. If the medium is homogeneous and three-dimensional,
if the sensor array is dense and occupies the domain Da ×{0}, with Da ⊂ R2 with
diameter a, and the search region is a domain Ω around (0, 0, L), then in the regime
a ≪ L and λ0L ≪ a2 we have

I0(x) = σrefh(x − xref),

where, for x = (x⊥, x3),

h(x) =
1

|Da|2
(

e
−i 2π

λ0
x3

∫

Da

exp
(

i
2πy⊥

λ0L
· x⊥ + i

π|y⊥|2
λ0L2

x3

)

dy⊥

)2

, (27)

which shows that the width of the function |h(x)| is of the order of λ0L/a in the
transverse directions (x⊥) and λ0L

2/a2 in the longitudinal direction (x3). These
are the classical Rayleigh resolution formulas [12].

4.2. The imaging functional in the absence of a reflector and in the

presence of noise

In the absence of a reflector and in the presence of noise the imaging functional is a
complex Gaussian random field (Figure 4, right). Its mean is zero and, taking into
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account the covariance function of the response matrix, the covariance function of
the imaging functional is:E[

IRT(x)IRT(y)
]

= 0, E[

IRT(x)IRT(y)
]

= 2δ2H(x,y)2. (28)

Full aperture array. In the case in which the medium is homogeneous and
three-dimensional with background speed c0 and the array completely surrounds
the region of interest, IRT is a stationary Gaussian random field with mean zero,
variance 2δ2, and covariance function:E[

IRT(x)IRT(y)
]

= 2δ2h(x − y), h(x) = sinc2
(2π|x|

λ0

)

.

The random field is a speckle pattern whose hotspot profiles are close to the func-
tion h. Here the hotspot profile refers to the local shape of the field around a local
maximum (see Appendix B). The hotspot volume is defined as

Vc :=
π3/2

(detH)1/2
, H :=

(

− ∂2
xjxl

h(0)
)

j,l=1,...,3
.

Here the matrix H is proportional to the identity and we have

−∂2
xjxj

h(0) =
8π2

3λ2
0

, j = 1, . . . , 3, Vc =
33/2λ3

0

29/2π3/2
.

The maximum of the functional over a domain Ω whose volume is much larger
than the hotspot volume is (see Appendix B)

max
x∈Ω

|IRT(x)|2 = 2δ2
(

ln
|Ω|
Vc

+
3

2
ln ln

|Ω|
Vc

− ln Z0

)

, (29)

where Z0 follows an exponential distribution with mean one, or equivalently, − ln Z0

follows a Gumbel distribution.
Finite aperture array. In the case in which the medium is homogeneous and

three-dimensional with background speed c0, the sensor array is dense and occupies
the domain Da × {0}, with Da ⊂ R2 with diameter a, and the search region is a
domain Ω around (0, 0, L), then the field IRT is a stationary Gaussian random field
with mean zero, variance 2δ2, and covariance function:E[

IRT(x)IRT(y)
]

= 2δ2h(x − y),

where h is given by (27). Here h is complex valued h(x) = hr(x) + ihi(x) where
hr is even and hi is odd. We denote ∇hi(0) = ih1 and introduce the auxiliary field
Ia(x) = IRT(x) exp(−ih1 · x). The Gaussian field Ia has the same intensity as
IRT and it is easier to get the results with this auxiliary field, which is such thatE[Ia(x)Ia(x)

]

= 0, E[Ia(x)∇Ia(x)
]

= 0, and E[∇Ia(x)∇Ia(x)T
]

= −H, where
the matrix H is given by

H =
(

− ∂2
xjxl

hr(0) − ∂xj
hi(0)∂xl

hi(0)
)

j,l=1,...,3
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which reads explicitly as (j, l = 1, 2)

Hjl =
8π2

λ2
0L

2

[ 1

|Da|

∫

Da

yjyldy⊥ −
( 1

|Da|

∫

Da

yjdy⊥

)( 1

|Da|

∫

Da

yldy⊥

)]

,

Hj3 =
4π2

λ2
0L

3

[ 1

|Da|

∫

Da

yj|y⊥|2dy⊥ −
( 1

|Da|

∫

Da

yjdy⊥

)( 1

|Da|

∫

Da

|y⊥|2dy⊥

)]

,

H33 =
2π2

λ2
0L

4

[ 1

|Da|

∫

Da

|y⊥|4dy⊥ −
( 1

|Da|

∫

Da

|y⊥|2dy⊥

)2]

.

The hotspot volume is defined as before as Vc = π3/2(detH)−1/2. If, additionally,
Da is a disk with center at (0, 0) and radius a/2 then H is diagonal and we have

Hjj =
π2a2

2λ2
0L

2
, j = 1, 2, H33 =

π2a4

96λ2
0L

4
, Vc =

8
√

6λ3
0L

4

π3a4
.

The maximum of the functional over a domain Ω whose volume is much larger
than the hotspot volume is given by (29) as before.

4.3. Migration-based detection test

The imaging functional in the presence of a reflector and noise is the superposition
of a Gaussian random field with mean zero and covariance (28) and a peak centered
at xref with shape (25). We assume that the function H(x,y)2 is of the form
h(x − y), as in the case of the full or partial array described above. We can then
define the hotspot volume Vc.

We consider the ratio of the maximum of the functional over its averaged value
over the domain Ω:

S :=
‖IRT‖2

L∞(Ω)|Ω|
‖IRT‖2

L2(Ω)

. (30)

In the regime in which |Ω|δ2 ≤ Vcσ
2
ref , the peak corresponding to the reflector is

of the order of σref , which is of the order of or larger than δ
√

|Ω|/Vc, which is much

larger than δ ln(|Ω|/Vc)
1/2. Therefore the peak is much stronger than the speckle

in the imaging functional, and detection is trivial. In the following we address the
non-trivial regime in which |Ω|δ2 ≫ Vcσ

2
ref . In this case, the L2-norm of the imaging

functional ‖IRT‖2
L2(Ω) is determined by the speckle and not by the peak due to the

reflector and it is a self-averaging quantity given by 2δ2|Ω|.

Proposition 4.1:

a) If the response matrix is obtained in the absence of a reflector and |Ω| ≫ Vc,
then

S
dist.
= ln

|Ω|
Vc

+
3

2
ln ln

|Ω|
Vc

− ln Z0, (31)

where Z0 follows an exponential distribution with mean one.
b) If the response matrix is obtained in the presence of a reflector, |Ω| ≫ Vc, and
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σref > δ, then

S
dist.
= max

{σ2
ref

2δ2
+

σref

δ
Z , ln

|Ω|
Vc

+
3

2
ln ln

|Ω|
Vc

− ln Z0

}

, (32)

where Z0 follows an exponential distribution with mean one and Z follows a
Gaussian distribution with mean zero and variance one and are independent.

In (32) the first term in the maximum comes from the peak generated by the
point reflector that is randomly perturbed by the noise (see (41) in Subsection 5.3),
while the second term is the maximum of the speckle in the image.

If the data gives the ratio S, then we propose to use a test of the form S > s
for the alarm corresponding to the presence of a reflector. By the Neyman-Pearson
lemma the decision rule of accepting HA if and only if S > sα maximizes the
probability of detection (POD) for a given false alarm rate (FAR) α

FAR = α = P(S > sα|H0),

with the threshold

sα = ln
|Ω|
Vc

+
3

2
ln ln

|Ω|
Vc

+ Φ−1
G (1 − α), (33)

where ΦG(x) = exp(−e−x) is the cumulative distribution function of the Gumbel
distribution. The level sα depends on α through a Gumbel table. We have, for
instance, Φ−1

G (0.9) ≃ 2.25, Φ−1
G (0.95) ≃ 2.97, and Φ−1

G (0.99) ≃ 4.60. The level sα

also depends on the volume of the search domain Ω, that we know, and on the
hotspot volume Vc, that we may not know. However, the estimation of Vc from
the data is possible by computing the empirical cross correlation of the imaging
functional IRT and fitting the peak at 0 with a quadratic form.

The probability of detection 1 − β is the probability to sound the alarm when
there is a reflector:

POD = 1 − β = P(S > sα|HA).

It depends on the value σref and on the noise level δ. Here we find that the proba-
bility of detection is

POD = 1 − β = Φ

( σ2
ref

2δ2 − sα
σref

δ

)

,

where Φ is the cumulative distribution function of the normal distribution with
mean zero and variance one. This result is valid as long as the first term in the
right side of (32) is larger than the second term, which occurs when the POD
becomes equal to α. Therefore we have

POD = max

{

Φ

(

1

2

σref

δ
− sα

δ

σref

)

, α

}

. (34)
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Figure 5. Probability of detection of the migration-based test as a function of σref/δ, for different false
alarm rates α. Here |Ω|/Vc = 106.

4.4. Discussion

To summarize, the migration-based test becomes powerful when σref >√
2δ ln1/2(|Ω|/Vc). Remember that the SV-based test becomes powerful when

σref > δ
√

n. Therefore the migration-based test is more (resp. less) powerful than
the SV-based test when n > (resp. <) 2 ln(|Ω|/Vc). In practice, we usually have
n > 2 ln(|Ω|/Vc), and therefore the migration-based test is more efficient than the
SV-based test. We can interpret the difference between the two tests as follows.
The SV-based test is essentially based on the maximization of uTAu over all unit
vectors u (which gives the first singular value), while the migration-based test is
essentially based on the maximization of gTAg over all unit vectors g of the form
g(x) for some x ∈ Ω. The migration-based test uses the known structure of the
singular vector associated to the reflector and is therefore more efficient than the
SV-based test that does not exploit this information.

The SV-based test is simpler to implement than the migration-based test. On
the one hand, the level rα of the SV-based test (22) depends only on the number of
sensors n. On the other hand, the level sα of the migration-based test (33) depends
also on the volume of the search domain Ω, that we know, and on the hotspot
volume Vc, that we may not know. However, the estimation of Vc from the data
is possible by computing the empirical cross correlation of the imaging functional
IRT and fitting the peak at 0 with a quadratic form.

5. Optimal migration for localization

In this section we go further by considering the localization problem once we have
detected the presence of a point reflector. We compare different imaging functionals
for localizing a point reflector, in particular weighted-subspace migration function-
als. We show the optimality of the reverse-time migration method in the presence
of noise for localizing a point reflector.

5.1. Weighted-subspace migration

Let A be the measured response matrix and (v(l))l=1,...,n form an orthonormal basis
of the image space of A:

A =
n

∑

l=1

σ(l)v(l)(v(l))T .
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A general imaging functional can be obtained using a weighted-subspace migration
[11]:

ISM(x,w) := g(x)
T
[

n
∑

l=1

wl(x)v(l)(v(l))T
]

g(x)

=
n

∑

l=1

wl(x)
(

g(x)
T
v(l)

)2
, (35)

where w(x) = (wl(x))l=1,...,n are filter (complex) weights that can depend on the
singular values and on the singular vectors of the measured MSR matrix and g(x)
is the normalized vector of Green’s functions (6).

Consider in particular the weights:

w
(1)
l (x) := σ(l), w

(2)
l (x) := exp

(

−i2 arg
(

g(x)
T
v(1)

)

)

11(l).

Then ISM(x,w(1)) corresponds to reverse-time migration (24):

ISM(x,w(1)) = IRT(x). (36)

Moreover we have the following connection of ISM(x,w(2)) to the MUSIC algo-
rithm:

IMUSIC(x) :=
∥

∥g(x) −
(

v(1)
T
g(x)

)

v(1)
∥

∥

−1/2
=

(

1 −
∣

∣g(x)
T
v(1)

∣

∣

2)−1/2

=
(

1 − ISM(x,w(2)
)−1/2

. (37)

The next subsection will make it clear that an appropriate weighted-subspace mi-
gration is optimal to find the location of the reflector in the presence of noise.

5.2. Optimal migration functional

The main result of this section is the following proposition.

Proposition 5.1: Given the response matrix A, the estimator

x̂ = argmax
x∈Ω

|IRT(x)|2 (38)

is the best estimator (in the maximum likelihood sense) to localize a reflector buried
in the search domain Ω.

This result holds in the presence of additive noise. The estimator (38) may be
not optimal for more complex cluttered noise for instance.

This proposition shows that the weighted-subspace migration with the weights
w(1), corresponding to reverse-time imaging, is more appropriate for the localiza-
tion of the reflector than the weighted-subspace migration ISM with the weights
w(2), corresponding to MUSIC, or even to the Kirchhoff migration functional:

IKM(x) := d(x)
T
Ad(x),
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which is close to the reverse-time imaging functional, but in which the amplitude
of the Green function for the backpropagation is normalized:

d(x) :=
1√
n

(

exp(i
ω

c0
|x − xj |)

)

j=1,...,n
.

Proof. We assume the model (11) for the data A. Given the observations A, we
find by using Bayes theorem with the Jeffreys prior for the parameters (a non-
informative prior distribution) that the likelihood function of the parameters x

(the reflector location), σ (the reflector singular value), and δ2 (the noise variance)
is proportional to

l0
(

x, σ, δ2 | A
)

=
1

δn2+n+1
exp

(

−
∥

∥A− σg(x)g(x)T
∥

∥

2

F

2δ2

)

, (39)

with the subscript F representing Frobenius norm. The maximum likelihood es-
timate of x and the nuisance parameters δ2 and σ are found by maximizing the
likelihood function (39) with respect to these:

(

x̂, σ̂, δ̂2
)

= argmax
x,σ,δ2

l0
(

x, σ, δ2 | A
)

.

We first eliminate δ2 by requiring

∂l0
(

x, σ, δ2 | A
)

∂δ
= 0.

This gives

δ̂2 =
‖A − σg(x)g(x)T ‖2

F

n2 + n + 1
,

and the likelihood ratio is then proportional to

l0
(

x, σ, δ̂2 | A
)

≃
∥

∥A− σg(x)g(x)T
∥

∥

−(n2+n+1)/2

F
.

Note that we have

∥

∥A− σg(x)g(x)T
∥

∥

2

F
=

∥

∥ṽ − σg̃(x)
∥

∥

2

2

for ṽ =
∑n

l=1 σ(l)v(l) ⊗ v(l) and g̃(x) = g(x) ⊗ g(x). Using that ‖g̃(x)‖2 =
‖g(x)‖2 = 1, we find

σ̂ = argmin
σ

‖ṽ − σg̃(x)‖2
2 = g̃(x)

T
ṽ.

We therefore conclude that the estimate x̂ of the reflector location derives from

x̂ = argmin
x

∥

∥

∥
ṽ −

(

g̃(x)
T
ṽ
)

g̃(x)
∥

∥

∥

2

2
.
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Note that

∥

∥

∥
ṽ −

(

g̃(x)
T
ṽ
)

g̃(x)
∥

∥

∥

2

2
= ‖ṽ‖2

2 −
∣

∣

∣
g̃(x)

T
ṽ

∣

∣

∣

2
= ‖ṽ‖2

2 −
∣

∣

∣

n
∑

l=1

σ(l)
(

g(x)
T
v(l)

)2
∣

∣

∣

2
.

From this representation we find that the estimate of the reflector location can
be expressed in terms of the weighted-subspace migration ISM with the weights
w(1) = (σ(l))l=1,...,n, which is the reverse-time imaging functional IRT defined by
(36): This gives x̂ = argmin

x

(

‖ṽ‖2
2 − |IRT(x)|2

)

, which completes the proof of the

proposition. �

5.3. Statistical analysis of the localization error

The localization of the reflector consists in looking after the maximum of an imaging
functional. In the presence of a reflector at xref the imaging functional has the form

IRT(x) = σrefh(x − xref) + I1(x),

where I1 is a complex Gaussian random field with mean zero, variance 2δ2 and
smooth covariance function 2δ2h(x − y).

We consider the case in which h is real-valued. The case in which h is complex-
valued can be addressed by introducing an auxiliary field as in Subsection 4.2. A
Taylor series expansion around xref gives:

∣

∣IRT(x)
∣

∣

2 ≃
∣

∣

∣
σref

(

1− 1

2
(x−xref)

TH(x−xref)
)

+I1(xref)+∇I1(xref)
T (x−xref)

∣

∣

∣

2
,

so that the estimation of the location of the maximum has the form:

x̂ = argmax
x

∣

∣IRT(x)
∣

∣

2
= xref +

1

σref
Re

(

H−1∇I1(xref)
)

,

provided the error is not too large (smaller than the radius of a hotspot). To leading
order (in δ/σref) the estimation x̂ is unbiased, i.e. its mean is the true location xref .
Moreover, using the fact that E[

Re∇I1(xref)Re∇I1(xref)
T
]

= δ2H, the covariance
matrix of the estimator x̂ isE[

(x̂ − xref)(x̂ − xref)
T
]

=
δ2

σ2
ref

H−1. (40)

This means that the relative error (relative to the radius of the peak function h)
in the localization of the reflector is of the order of δ/σref . Note also that, as a
byproduct of this analysis, we find that the perturbed value of the maximum of
the peak is of the form

∣

∣IRT(x̂)
∣

∣

2 ≃ σ2
ref + 2σrefRe

(

I1(xref)
)

+ O(δ2), (41)

where Re
(

I1(xref)
)

follows a Gaussian distribution with mean 0 and variance δ2.
Full aperture array. If the medium is homogeneous and three-dimensional, if

the sensor array is dense and surrounds the region of interest, then we haveE[

(x̂j − xref,j)
2
]

=
δ2

σ2
ref

3λ2
0

8π2
, j = 1, . . . , 3.
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Finite aperture array. If the medium is homogeneous and three-dimensional,
if the sensor array is dense and occupies the domain Da × {0}, with Da the disk
in R2 centered at (0, 0) with diameter a, and the search region is a domain Ω
around (0, 0, L) with L ≫ a, then we have in the transverse directions and in the
longitudinal directionE[

(x̂j − xref,j)
2
]

=
δ2

σ2
ref

2λ2
0L

2

π2a2
, j = 1, 2, E[

(x̂3 − xref,3)
2
]

=
δ2

σ2
ref

96λ2
0L

4

π2a4
.

5.4. Numerical simulations

The configuration for the numerical experiment is the following one:
- n = 100 sensors with location (xj , 0, 0) with xj = −200 + 4j, j = 0, . . . , 100.
- one point reflector with location xref = (0, 0, 50), with reflectivity σrl

3
ref = 0.018.

Since λ0 = 1, c0 = 1, this gives σref ≃ 5.9 10−5 from (8).
In Figure 6 the unperturbed imaging functionals are plotted in the (x, z)-plane

(the MUSIC functional is in fact the weighted-subspace migration functional (35)
with the weight w(2)).

In Figure 7 the imaging functionals are plotted in the presence of noise with
δ = 610−6, which corresponds to σc = 610−5. It is possible to see that the MUSIC
functional can be completely wrong, because the selected singular vector (i.e., the
one corresponding to the largest singular value) used for the backpropagation is
not correct (i.e., it is not the one associated to the reflector).

In Figure 8 the standard deviation in the reflector location is plotted versus the
noise level for the different imaging functionals. As predicted by the theory the
MUSIC algorithm is not very robust and fails when δ > 5 10−6, or equivalently
σc > 5 10−5 ∼ σref . The reverse-time imaging functional is more robust, and for
moderate noise level the standard deviation is linear in δ. Indeed the reverse-time
imaging functional backpropagates not only the first singular vector, but all of
them (weighted by their singular values), and since only the backpropagation of
the singular vector corresponding to the reflector gives a peak, while the back-
propagation of the other singular vectors just gives noise, we can still observe a
peak centered at the reflector location even in the regime when the first singular
vector is not the one corresponding to the reflector. This is what is shown by the
statistical arguments developed in the previous section.

We can also notice that reverse-time imaging performs slightly better than Kirch-
hoff migration imaging. This is in agreement with the theory of the previous section
and can be noticed in the simulations carried out here because the array has very
large aperture, so that the amplitudes of the Green functions in the vector g(x)
are not constant. If the array has small aperture then the vectors g(x) (used in
reverse-time migration) and d(x) (used in Kirchhoff migration) are very similar
and the difference between the two imaging functionals is small.

6. Conclusion

In this paper we have carefully studied detection tests based on the singular val-
ues of the response matrix on the one hand and on weighted-subspace migration
functionals on the other hand, by using recent tools of random matrix theory and
extreme value theory. In both cases we have proved a form of optimality in that the
tests are the most powerful for a given false alarm rate in the presence of additive
noise. We have proved that the migration-based test is more powerful than the
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Figure 6. Imaging functionals in the absence of noise (left: reverse-time migration, center: Kirchhoff mi-
gration, right: MUSIC).

Figure 7. Imaging functionals in the presence of noise.
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Figure 8. Standard deviation of the estimated reflector location obtained with three different migration
methods.

SV-based test and we explain this result by remarking that the migration-based
exploits the structure of the reflector singular vector, while the SV-based test does
not use it. We have also proved that, once the detection test comes out positive,
reflector localization should be performed with reverse-time migration rather than
any other form of weighted-subspace migration.

In this paper we have assumed that the background medium is homogeneous for
simplicity. It is possible to extend the results to the case in which the medium is
slowly and smoothly varying. We would obtain the same results as the one derived
in this paper by using a geometric approximation for the Green function associated
with the inhomogeneous medium.

The case with a point reflector that we address in this paper is a very simple
model, but the results could be extended to the detection and localization of small
inclusions and cracks using the asymptotic formalism provided in [3, 4]. This is be-
cause results on low-rank perturbations of random Gaussian matrices are available
and could be used as we did here [13, 14, 17].
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Appendix A. The Born approximation for a point reflector

We briefly describe the Born approximation [12] for the point reflector introduced in
Section 2.2 to calculate the response in the presence of a reflector. We assume that
the medium is homogeneous with background velocity c0 and that the localized
reflector around xref is modeled by the local variation Vref(x) of the speed of
propagation defined via (2). The solution of the full time-harmonic wave equation
(3) can be written as the sum

û(ω,x,y) = Ĝ0(ω,x,y) + û1(ω,x,y),

where Ĝ0 is the time-harmonic Green function of the background medium. The
scattered field û1 is solution of the homogeneous wave equation with the source
term ω2c−2

0 σrVref(x)û(ω,x,y), so that it is given by

û1(ω,x,y) =
ω2

c2
0

∫

Ĝ0(ω,x,z)σrVref(z)û(ω,z,y)dz. (A1)

This expression is exact. The Born approximation (or single-scattering approxi-

mation) consists in replacing û on the right side of (A1) by the field Ĝ0, which
gives:

û1(ω,x,y) ≃ ω2

c2
0

∫

Ĝ0(ω,x,z)σrVref(z)Ĝ0(ω,z,y)dz.

This approximation is valid if the scattered field û1 is small compared to the inci-
dent field Ĝ0, which holds if the scattering amplitude σr is small. We also assume
that the diameter lref of the scattering region Ωref is small compared to typical
wavelength. We can then model the scatterer by a point scatterer and we can write
the scattered field û1 in the form

û1(ω,x,y) =
ω2

c2
0

σrl
3
refĜ0(ω,x,xref)Ĝ0(ω,xref ,y). (A2)

Appendix B. Some results on complex Gaussian random fields

Let Ω ⊂ Rd be a bounded domain and let (A(x))x∈Ω be a stationary complex Gaus-
sian random field with mean zero, i.e. a speckle pattern. The statistical distribution
of the random field is characterized by the covariance function:

C(x) := E[

A(x′)A(x′ + x)
]

.

We assume here that C is real-valued and smooth, so that the realizations of the
random field are smooth [1, Theorem 1.4.2]. As we will see below, the relevant
statistical information about local and global maxima of the field is in the mean
intensity I0 = C(0) = E[|A(x)|2] and in the matrix

Λ :=
(E[

∂xj
A(x)∂xl

A(x)
])

j,l=1,...,d
=

(

− ∂2
xjxl

C(0)
)

j,l=1,...,d
.
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B.1. Local maxima of a complex Gaussian random field

We consider the intensity profile of the complex field:

I(x) := |A(x)|2,

and we look for the statistical distribution of the local maxima of I(x).
Let us denote by MΩ

u the number of local maxima of I(x) in Ω with values larger
than u:

MΩ
u := Card

{

local maxima of (I(x))x∈Ω with values larger than u
}

.

We have [26, Theorem 3.3]E[MΩ
u ] =

|Ω|
Vc

( u

I0

)
d

2 exp
(

− u

I0

)

(

1 + O
(

( u

I0

)−1/2
))

, for u ≫ I0,

where Vc is the hotspot volume defined in terms of the determinant of the Hessian
of the covariance function as:

Vc :=
I

d/2
0 πd/2

(detΛ)1/2
.

B.2. Global maximum of a complex Gaussian random field

Let us denote by IΩ
max the global maximum of the field over the domain Ω:

IΩ
max := max

x∈Ω
|A(x)|2.

Using [26, Corollary 3.4] it is possible to show that, when |Ω| ≫ Vc, the statistical
distribution of IΩ

max is of the form

IΩ
max = I0

[

ln
( |Ω|

Vc

)

+
d

2
ln ln

( |Ω|
Vc

)

− ln Z0

]

,

where Z0 follows an exponential distribution, or equivalently − ln Z0 follows a
Gumbel distribution with cumulative distribution function P(− ln Z0 ≤ x) =
exp(−e−x).

B.3. The local shape of a local maxium

We first state a classical and fundamental lemma about Gaussian vectors.

Let us consider a Rn1+n2-valued random vector

(

y1

y2

)

with Gaussian statistics:

L
((

y1

y2

))

∼ N
((

y1

y2

)

,

(

R11 R12

R21 R22

))

.

The mean vectors y1 and y2 are in Rn1 and Rn2 , respectively, the covariance matrix
R11 has size n1 × n1, R12 has size n1 × n2, R21 = RT

12 has size n2 × n1, and R22

has size n2 × n2. Assume that the distribution of y2 is not degenerate, i.e., that
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R22 is invertible.
Then, conditioned on y2, the distribution of y1 is Gaussian:

L
(

y1|y2

)

∼ N
(

y1 + R12R
−1
22 (y2 − y2),R11 − R12R

−1
22 R21

)

.

Using this lemma one can show that, given that the random field A(x) has a
local maximum at x0 with amplitude A0 (with |A0| ≫

√
I0), then we have locally

around x0:

A(x) ≃ A0

[C(x − x0)

I0
+ o(1)

]

, [|A0| ≫
√

I0].
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