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Abstract. Mode coupling in a random waveguide can be analyzed with asymptotic analysis
based on separation of scales when the propagation distance is large compared to the size of the
random inhomogeneities, which have small variance, and when the wavelength is comparable to the
scale of the inhomogeneities. In this paper we study the asymptotic form of the joint distribution
of the mode amplitudes at different frequencies. We derive a deterministic system of transport
equations that describe the evolution of mode powers. This result is applied to the computations of
pulse spreading in a random waveguide. It is also applied to the analysis of time reversal in a random
waveguide. We show that randomness enhances spatial refocusing and that diffraction-limited focal
spots can be obtained even with small-size time-reversal mirrors. The refocused field is statistically
stable for broadband pulses in general. We show here that it is also stable for narrowband pulses,
provided that the time-reversal mirror is large enough.
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1. Introduction. In a perfect waveguide, energy propagates through its guided
wave modes, which do not interact with each other. Imperfections in the mate-
rial or in the geometrical properties of the waveguide induce mode coupling. These
imperfections are usually small, but their effects accumulate over large propagation
distances and can be significant. In this paper we consider wave propagation in
an acoustic waveguide whose bulk modulus is a three-dimensional random function.
Using the propagating modes of the unperturbed waveguide, we can reduce the three-
dimensional wave propagation problem to the analysis of a system of coupled ordinary
differential equations with random coefficients. It is in the frequency domain that the
mode amplitudes satisfy these differential equations. We can analyze them as a sys-
tem of random differential equations in a diffusion approximation, in which the mode
amplitudes are a multidimensional diffusion process. This coupled mode asymptotic
analysis was considered previously for applications in underwater acoustics [14, 5],
fiber optics [17], and quantum mechanics [11].

The main purpose of this paper is to analyze the asymptotic behavior of the
coupled mode amplitudes in the time domain. This requires the analysis of the joint
distribution of the mode amplitudes at two nearby frequencies, which results in a
system of transport equations for the mode powers. This is done in section 6. In
section 7 we apply this result to the analysis of pulse spreading in a random waveguide.

In section 8 we consider time reversal in a random waveguide and present the
first analysis of the phenomenon of side-lobe suppression, which has been observed in
experiments [15] and in numerical simulations [2]. Side-lobe suppression is the main
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application of our asymptotic analysis. Time-reversal refocusing has been studied
extensively both experimentally and theoretically, in various contexts such as in ul-
trasound and underwater acoustics, as reviewed in [7, 8]. A time-reversal mirror is an
active array of transducers that records a signal, time reverses it, and re-emits it into
the medium. The waves generated at the time-reversal mirror propagate back to their
source and focus near it, as if wave propagation was run in reverse time. Surprisingly,
random inhomogeneities enhance the refocusing of the time-reversed waves near the
original source location [4, 8]. Ultrasonic wave propagation and time reversal in homo-
geneous waveguides is studied experimentally and theoretically in [22]. Time-reversal
refocusing was experimentally investigated in underwater acoustics in [15, 23], where
the random inhomogeneities in the environment reduce the side-lobes that are seen
in refocusing in a homogeneous waveguide.

In addition to enhanced refocusing and side-lobe suppression, statistical stabil-
ity of the refocused field is critical for applications in communications and detection.
Statistical stability means that the refocused field does not depend on the particu-
lar realization of the random medium. It has been studied in broadband regimes of
propagation in one-dimensional random media [3, 10], in three-dimensional randomly
layered media [9, 10], and in three-dimensional wave propagation in the paraxial ap-
proximation [2, 21]. Stabilization of the refocused field for broadband pulses results
from the superposition of its many approximately uncorrelated frequency components.
We show in section 8 that in random waveguides we have statistical stability of the
refocused field even for narrowband pulses, provided that the number of propagating
modes and the size of the time-reversal mirror are large enough.

2. Propagation in homogeneous waveguides. In this section we study wave
propagation in an acoustic waveguide that supports a finite number of propagating
modes. In an ideal waveguide the geometric structure and the medium parameters can
have a general form in the transverse directions but must be homogeneous along the
waveguide axis. There are two general types of ideal waveguides: those that surround
a homogeneous region with a confining boundary, and those in which the confinement
is achieved with a transversely varying index of refraction. We will present the anal-
ysis of the effects of random perturbations on waveguides of the first type and will
illustrate specific results with a planar waveguide. The main difference in working
with waveguides of the second type is that the transverse wave mode profiles depend
on the frequency, but this does not affect the theory we present here.

2.1. Modeling of the waveguide. We consider linear acoustic waves propa-
gating in three space dimensions modeled by the system of wave equations

(2.1) ρ(r)
∂u

∂t
+ ∇p = F ,

1

K(r)

∂p

∂t
+ ∇ · u = 0 ,

where p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the
medium, and K is the bulk modulus. The source is modeled by the forcing term
F(t, r). We assume that the transverse profile of the waveguide is a simply connected
region D in two dimensions. The direction of propagation along the waveguide axis
is z and the transverse coordinates are denoted by x ∈ D. In the interior of the
waveguide the medium parameters are homogeneous:

ρ(r) ≡ ρ̄, K(r) = K̄ for x ∈ D and z ∈ R .
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By differentiating the second equation of (2.1) with respect to time and substituting
the first equation into it, we get the standard wave equation for the pressure field,

(2.2) Δp− 1

c̄2
∂2p

∂t2
= ∇ · F ,

where Δ = Δ⊥ + ∂2
z and Δ⊥ is the transverse Laplacian. The sound speed is c̄ =√

K̄/ρ̄. We must now prescribe boundary conditions on the boundary ∂D of the
domain D. In underwater acoustics, or in seismic wave propagation, the density
is much smaller outside than inside the waveguide. This means that we must use
a pressure release boundary condition since the pressure is very weak outside, and
therefore, by continuity, the pressure is zero just inside the waveguide. Motivated by
such examples, we will use Dirichlet boundary conditions

(2.3) p(t,x, z) = 0 for x ∈ ∂D and z ∈ R .

We could also consider other types of boundary conditions if, for example, the bound-
ary of the waveguide is a rigid wall, in which case the normal velocity vanishes. By
(2.1) we obtain Neumann boundary conditions for the pressure.

2.2. The propagating and evanescent modes. A waveguide mode is a mono-
chromatic wave p(t,x, z) = p̂(ω,x, z)e−iωt with frequency ω, where p̂(ω,x, z) satisfies
the time harmonic form of the wave equation (2.2) without a source term:

(2.4) ∂2
z p̂(ω,x, z) + Δ⊥p̂(ω,x, z) + k2(ω)p̂(ω,x, z) = 0 .

Here k = ω/c̄ is the wavenumber and we have Dirichlet boundary conditions on ∂D.
The transverse Laplacian in D with Dirichlet boundary conditions on ∂D is self-adjoint
in L2(D). Its spectrum is an infinite number of discrete eigenvalues

−Δ⊥φj(x) = λjφj(x), x ∈ D, φj(x) = 0, x ∈ ∂D

for j = 1, 2, . . . . The eigenvalues are positive and nondecreasing, and we assume for
simplicity that they are simple, so we have 0 < λ1 < λ2 < · · · . The eigenmodes are
real and form an orthonormal set∫

D
φj(x)φl(x)dx = δjl ,

with δjl = 1 if j = l and 0 otherwise. For a given frequency ω, there exists a unique
integer N(ω) such that λN(ω) ≤ k2(ω) < λN(ω)+1 , with the convention that N(ω) = 0
if λ1 > k(ω). The modal wavenumbers βj(ω) ≥ 0 for j ≤ N(ω) are defined by

(2.5) β2
j (ω) = k2(ω) − λj .

The solutions p̂j(ω,x, z) = φj(x)e±iβj(ω)z, j = 1, . . . , N(ω), of the wave equation
(2.4) are the propagating waveguide modes. For j > N(ω) we define the modal
wavenumbers βj(ω) > 0 by β2

j (ω) = λj − k2(ω), and the corresponding solutions

q̂j(ω,x, z) = φj(x)e±βj(ω)z of the wave equation (2.4) are the evanescent modes.
In this paper we shall illustrate some results for the planar waveguide. This is the

case where D is (0, d) × R, and we consider only solutions that depend on x ∈ (0, d).
In this case we have λj = π2j2/d2, φj(x) =

√
2/d sin (πjx/d), j ≥ 1, and the number

of propagating modes is N(ω) = [(ωd)/(πc̄)], where [x] is the integer part of x.
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2.3. Excitation conditions for a source. We consider a point-like source
located at (x0, z = 0) that emits a signal with orientation in the z-direction:

F(t,x, z) = f(t)δ(x − x0)δ(z)ez .

Here ez is the unit vector pointing in the z-direction. By the first equation of (2.1),
this source term implies that the pressure satisfies the following jump conditions across
the plane z = 0:

p̂(ω,x, z = 0+) − p̂(ω,x, z = 0−) = f̂(ω)δ(x − x0) ,

while the second equation of (2.1) implies that there is no jump in the longitudinal
velocity so that the pressure field also satisfies ∂z p̂(ω,x, z = 0+) = ∂z p̂(ω,x, z = 0−).

Here f̂ is the Fourier transform of f with respect to time:

f̂(ω) =

∫
f(t)eiωtdt, f(t) =

1

2π

∫
f̂(ω)e−iωtdω .

The pressure field can be written as a superposition of the complete set of modes,

p̂(ω,x, z) =

⎡
⎣ N∑
j=1

âj(ω)√
βj(ω)

eiβjzφj(x) +

∞∑
j=N+1

ĉj(ω)√
βj(ω)

e−βjzφj(x)

⎤
⎦1(0,∞)(z)

+

⎡
⎣ N∑
j=1

b̂j(ω)√
βj(ω)

e−iβjzφj(x) +

∞∑
j=N+1

d̂j(ω)√
βj(ω)

eβjzφj(x)

⎤
⎦1(−∞,0)(z) ,

where âj is the amplitude of the jth right-going mode propagating in the right half-

space z > 0, b̂j is the amplitude of the jth left-going mode propagating in the left

half-space z < 0, and ĉj (resp., d̂j) is the amplitude of the jth right-going (resp.,
left-going) evanescent mode. Substituting this expansion into the jump conditions,
multiplying by φj(x), integrating with respect to x over D, and using the orthogonality
of the modes, we express the mode amplitudes in terms of the source:

âj(ω) = −b̂j(ω) =

√
βj(ω)

2
f̂(ω)φj(x0) , ĉj(ω) = −d̂j(ω) = −

√
βj(ω)

2
f̂(ω)φj(x0) .

3. Mode coupling in random waveguides. We consider a randomly per-
turbed waveguide section occupying the region z ∈ [0, L/ε2], with two homogeneous
waveguides occupying the two half-spaces z < 0 and z > L/ε2. The bulk modulus
and the density have the form

1

K(x, z)
=

{
1
K

(1 + εν(x, z)) for x ∈ D, z ∈ [0, L/ε2],

1
K

for x ∈ D, z ∈ (−∞, 0) ∪ (L/ε2,∞),

ρ(x, z) = ρ̄ for x ∈ D, z ∈ (−∞,∞) ,

where ν is a zero-mean, stationary, and ergodic random process with respect to the
axis coordinate z. Moreover, it is assumed to possess enough decorrelation; more
precisely, it fulfills the condition that “ν is φ-mixing, with φ ∈ L1/2(R+)” [16, section
4.6.2].
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The perturbed wave equation satisfied by the pressure field is

(3.1) Δp− 1 + εν(x, z)

c̄2
∂2p

∂t2
= ∇ · F ,

where the average sound speed is c̄ =
√
K̄/ρ̄. The pressure field also satisfies the

boundary conditions (2.3). We consider that a point-like source located at (x0, 0)
emits a pulse f(t) and we denote by âj,0(ω) the initial mode amplitudes as described
in the previous section. The weak fluctuations of the medium parameters induce a
coupling between the propagating modes, as well as between propagating and evanes-
cent modes, which build up and become of order one after a propagation distance of
order ε−2, as expected from the diffusion approximation theory.

3.1. Coupled amplitude equations. We fix the frequency ω and expand the
field p̂ inside the randomly perturbed waveguide in terms of the transverse eigenmodes,

(3.2) p̂(ω,x, z) =

N(ω)∑
j=1

φj(x)p̂j(ω, z) +

∞∑
j=N(ω)+1

φj(x)q̂j(ω, z) ,

where p̂j is the amplitude of the jth propagating mode and q̂j is the amplitude of the
jth evanescent mode. We introduce the right-going and left-going mode amplitudes
âj(ω, z) and b̂j(ω, z), defined by

p̂j =
1√
βj

(
âje

iβjz + b̂je
−iβjz

)
,

dp̂j
dz

= i
√
βj

(
âje

iβjz − b̂je
−iβjz

)

for j ≤ N(ω). The total field p̂ satisfies the time harmonic wave equation

(3.3) Δp̂(ω,x, z) + k2(ω)(1 + εν(x, z))p̂(ω,x, z) = 0 .

Using (3.2) in this equation, multiplying it by φl(x), and integrating over x ∈ D,
we deduce from the orthogonality of the eigenmodes (φj)j≥1 the following system of
coupled differential equations for the mode amplitudes:

dâj
dz

=
iεk2

2

∑
1≤l≤N

Cjl(z)√
βjβl

(
âle

i(βl−βj)z + b̂le
−i(βl+βj)z

)
,(3.4)

db̂j
dz

= − iεk2

2

∑
1≤l≤N

Cjl(z)√
βjβl

(
âle

i(βl+βj)z + b̂le
i(βj−βl)z

)
,(3.5)

where

(3.6) Cjl(z) =

∫
D
φj(x)φl(x)ν(x, z)dx ,

and we have neglected the evanescent modes. The system (3.4)–(3.5) is complemented
with the boundary conditions

(3.7) âj(ω, 0) = âj,0(ω), b̂j

(
ω,

L

ε2

)
= 0

for the propagating modes. The second condition indicates that no wave is incoming
from the right.
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It is possible to carry out a complete asymptotic analysis, including the coupling
with the evanescent modes, in a general context of random ordinary differential equa-
tions [20], and specifically for random waveguide problems [13, 12] and shallow water
waves [18]. The evanescent modes do affect the propagation statistics in the asymp-
totic regime considered here. A detailed asymptotic analysis shows, however, that the
coupling with evanescent modes does not remove energy from the propagating modes.
This coupling changes only the frequency-dependent phases of the propagating mode
amplitudes. The overall effect for these modes is an additional dispersive term, which
is given in terms of the two-point statistics of the random process ν, in the same
asymptotic regime as the one considered here. This effective dispersion affects the
operator L for the statistics of the complex mode amplitudes in (4.1) but not the
operator LP for their square modulus in (4.10). Therefore, all results that involve
the propagation of energy, which includes nearly all results presented here, are not
affected by the evanescent modes. We indicate in the following where the results are
affected and refer to [12] for their form when full evanescent coupling is included.

3.2. Propagator matrices. We introduce the rescaled propagating mode am-
plitudes âεj , b̂

ε
j , j = 1, . . . , N(ω), given by

(3.8) âεj(ω, z) = âj

(
ω,

z

ε2

)
, b̂εj(ω, z) = b̂j

(
ω,

z

ε2

)
.

The two-point linear boundary value problem (3.4), (3.5), (3.7) for (âε, b̂ε) can be
solved using propagator matrices. We first put the problem in vector-matrix form:

(3.9)
dXε

ω

dz
=

1

ε
Hω

( z

ε2

)
Xε

ω .

Here the 2N(ω)-vector Xε
ω, obtained by concatenating the N(ω)-vectors âε and b̂ε

and the 2N(ω) × 2N(ω) matrix Hω, is defined by

(3.10) Xε
ω(z) =

[
âε(ω, z)

b̂ε(ω, z)

]
, Hω(z) =

[
H

(a)
ω (z) H

(b)
ω (z)

H
(b)
ω (z) H

(a)
ω (z)

]
,

where the entries of the N(ω) ×N(ω) matrices H
(a)
ω (z) and H

(b)
ω (z) are given by

(3.11) H
(a)
ω,jl(z) =

ik2

2

Cjl(z)√
βjβl

ei(βl−βj)z , H
(b)
ω,jl(z) =

ik2

2

Cjl(z)√
βjβl

e−i(βl+βj)z .

The propagator matrices Pε
ω(z) are the 2N(ω) × 2N(ω) random matrices solution of

the initial value problem

(3.12)
dPε

ω

dz
=

1

ε
Hω

( z

ε2

)
Pε

ω ,

with the initial condition Pε
ω(z = 0) = I. The solution of (3.4), (3.5), (3.7) satisfies

(3.13)

[
âε(ω,L)

0

]
= Pε

ω(L)

[
â0(ω)

b̂ε(ω, 0)

]
,

so that âε(ω,L) can be expressed in terms of the entries of the propagator matrix
Pε

ω(L). The symmetry relation (3.10) satisfied by the matrix Hω imposes the condi-
tion that the propagator has the form

(3.14) Pε
ω(z) =

[
Pε,a

ω (z) Pε,b
ω (z)

Pε,b
ω (z) Pε,a

ω (z)

]
,
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where Pε,a
ω (z) and Pε,b

ω (z) are N(ω) × N(ω) matrices. Note that the matrix Pε,a
ω

describes the coupling between different right-going modes, while Pε,b
ω describes the

coupling between right-going and left-going modes.

3.3. The forward scattering approximation. The limit as ε → 0 of Pε
ω can

be obtained and identified as a multidimensional diffusion process, meaning that the
entries of the limit matrix satisfy a system of linear stochastic differential equations.
This follows from the application of the diffusion-approximation theorem proved in
[19]. The stochastic differential equations for the limit entries of Pε,b

ω (z) are coupled
to the limit entries of Pε,a

ω (z) through the coefficients∫ ∞

0

E[Cjl(0)Cjl(z)] cos((βj(ω) + βl(ω))z) dz, j, l = 1, . . . , N(ω) .

This is because the phase factors present in the matrix H
(b)
ω (z) are ±(βj + βl)z. On

the other hand, the stochastic differential equations for the limit entries of Pε,a
ω (z)

are coupled to each other through the coefficients∫ ∞

0

E[Cjl(0)Cjl(z)] cos((βj(ω) − βl(ω))z) dz, j, l = 1, . . . , N(ω) .

This is because the phase factors present in the matrix H
(a)
ω (z) are ±(βj −βl)z. If we

assume that the power spectral density of the process ν (i.e., the Fourier transform
of its z-autocorrelation function) possesses a cut-off frequency, then it is natural to
consider the case where

(3.15)

∫ ∞

0

E[Cjl(0)Cjl(z)] cos((βj(ω) + βl(ω))z) dz = 0, j, l = 1, . . . , N(ω),

while (at least) some of the intracoupling coefficients (those with |j − l| = 1) are not
zero. As a result of this assumption, the asymptotic coupling between Pε,a

ω (z) and
Pε,b

ω (z) becomes zero. If we also take into account the initial condition Pε,b
ω (z = 0) =

0, then the limit of Pε,b
ω (z) is 0.

In the forward scattering approximation, we neglect the left-going (backward)
propagating modes. As we have just seen, it is valid in the limit ε → 0 when the
condition (3.15) holds. In this case we can consider the simplified coupled mode
equation given by

(3.16)
dâε

dz
=

1

ε
H(a)

ω

( z

ε2

)
âε ,

where H
(a)
ω is the N(ω) × N(ω) complex matrix given by (3.11). The system (3.16)

is provided with the initial condition âεj(ω, z = 0) = âj,0(ω). Note that the matrix

H
(a)
ω is skew Hermitian, which implies the conservation relation

∑N
j=1 |âεj(L)|2 =∑N

j=1 |âj,0|2. We finally introduce the transfer, or propagator matrix Tε(ω, z), which
is the fundamental solution of (3.16). It is the N(ω) ×N(ω) matrix solution of

(3.17)
d

dz
Tε(ω, z) =

1

ε
H(a)

ω

( z

ε2

)
Tε(ω, z) ,

starting from Tε(ω, 0) = I. The (j, l)-entry of the transfer matrix is the transmission
coefficient T ε

jl(ω,L), i.e., the output amplitude of the mode j when the input wave is
a pure l mode with amplitude one. The transfer matrix Tε(ω,L) is unitary because

H
(a)
ω is skew Hermitian.
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4. The time harmonic problem. In this section we consider the system of
random differential equations (3.16) for a single frequency ω. Most of the results
presented in this section can be found in [14] and are known collectively as the “coupled
mode theory.” We reproduce this theory because the original two-frequency analysis
presented in the next section will give a new point of view on it.

4.1. The coupled mode diffusion process. We now apply the diffusion ap-
proximation theorem [19] to the system (3.16). The limit distribution of âε as ε → 0
is a diffusion on C

N(ω). We will assume that the longitudinal wavenumbers βj , along
with their sums and differences, are distinct. In this case the infinitesimal generator
of the limit â has a simple form, provided we write it in terms of â and â rather than
in terms of the real and imaginary parts of â. We get the following result.

Proposition 4.1. The mode amplitudes (âεj(ω, z))j=1,...,N converge in distribu-
tion as ε → 0 to the diffusion process (âj(ω, z))j=1,...,N , whose infinitesimal generator
is

L =
1

4

∑
j �=l

Γ
(c)
jl (ω)

(
AjlAjl + AjlAjl

)
+

1

2

∑
j,l

Γ
(1)
jl (ω)AjjAll

+
i

4

∑
j �=l

Γ
(s)
jl (ω)(All −Ajj) ,(4.1)

Ajl = âj
∂

∂âl
− âl

∂

∂âj
= −Alj .(4.2)

Here we have defined the complex derivatives in the standard way: if z = x+ iy, then
∂z = (1/2)(∂x − i∂y) and ∂z = (1/2)(∂x + i∂y). The coefficients Γ(c), Γ(s), and Γ(1)

are given by

Γ
(c)
jl (ω) =

ω4γ
(c)
jl (ω)

4c̄4βj(ω)βl(ω)
if j 
= l , Γ

(c)
jj (ω) = −

∑
n �=j

Γ
(c)
jn (ω) ,(4.3)

γ
(c)
jl (ω) = 2

∫ ∞

0

cos ((βj(ω) − βl(ω))z) E[Cjl(0)Cjl(z)]dz ,(4.4)

Γ
(s)
jl (ω) =

ω4γ
(s)
jl (ω)

4c̄4βj(ω)βl(ω)
if j 
= l , Γ

(s)
jj (ω) = −

∑
n �=j

Γ
(s)
jn (ω) ,(4.5)

γ
(s)
jl (ω) = 2

∫ ∞

0

sin ((βj(ω) − βl(ω))z) E[Cjl(0)Cjl(z)]dz ,(4.6)

Γ
(1)
jl (ω) =

ω4γ
(1)
jl

4c̄4βj(ω)βl(ω)
for all j, l ,(4.7)

γ
(1)
jl = 2

∫ ∞

0

E[Cjj(0)Cll(z)]dz .(4.8)

Let us discuss some qualitative properties of the diffusion process â.
(1) The coefficients of the second derivatives of the generator L are homogeneous

of degree two, while the coefficients of the first derivatives are homogeneous of degree
one. As a consequence we can write closed differential equations for moments of any
order, as we shall see in the next sections.

(2) The coefficients γ
(c)
jl , and thus Γ

(c)
jl , are proportional to the power spectral

densities of the stationary process Cjl(z) for j 
= l. They are, therefore, nonnegative.
In this paper we assume that the off-diagonal entries of the matrix Γ(c) are positive.
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(3) We have Ajn

(∑N
l=1 |âl|2

)
= 0 for any j, n, so that the infinitesimal generator

satisfies L
(∑N

l=1 |âl|2
)

= 0. This implies that the diffusion process is supported
on a sphere of C

N , whose radius R0 is determined by the initial condition R2
0 =∑N

l=1 |âl,0(ω)|2. The operator L is not self-adjoint on the sphere because of the term
Γ(s) in (4.1). This means that the process is not reversible. However, the uniform
measure on the sphere is invariant, and the generator is strongly elliptic. From the
theory of irreducible Markov processes with compact state space, we know that the
process is ergodic, which means in particular that for large z, the limit process â(z)
converges to the uniform distribution over the sphere of radius R0. This fact can be
used to compute the limit distribution of the mode powers (|âj |2)j=1,...,N for large z,
which is the uniform distribution over HN ,

(4.9) HN =

⎧⎨
⎩(Pj)j=1,...,N , Pj ≥ 0,

N∑
j=1

Pj = R2
0

⎫⎬
⎭ .

In the next section we carry out a more detailed analysis that is valid for any z.
(4) As noted at the end of section 3.1, coupling to the evanescent modes does

affect L in (4.1). All the coefficients (4.3)–(4.8) remain the same except for Γ
(s)
jl (ω)

in (4.5) which has an additional term [12]. This modification affects (6.1) and (6.7)
in the following sections.

4.2. Coupled power equations. The generator of the limit process â possesses
an important symmetry, which follows from noting that, when applying the generator
to a function of (|â1|2, . . . , |âN |2), we obtain another function of (|â1|2, . . . , |âN |2).
This implies that the limit process (|â1(z)|2)j=1,...,N is itself a Markov process.

Proposition 4.2. The mode powers (|âεj(ω, z)|2)j=1,...,N converge in distribution
as ε → to the diffusion process (Pj(ω, z))j=1,...,N , whose infinitesimal generator is

(4.10) LP =
∑
j �=l

Γ
(c)
jl (ω)

[
PlPj

(
∂

∂Pj
− ∂

∂Pl

)
∂

∂Pj
+ (Pl − Pj)

∂

∂Pj

]
.

As pointed out above, the diffusion process (Pj(ω, z))j=1,...,N is supported in HN .
As a first application of this result, we compute the mean mode powers:

P
(1)
j (ω, z) = E[Pj(ω, z)] = lim

ε→0
E[|âεj(ω, z)|2] .

Using the generator LP we get the following proposition.

Proposition 4.3. The mean mode powers E[|âεj(ω, z)|2] converge to P
(1)
j (ω, z),

which is the solution of the linear system

(4.11)
dP

(1)
j

dz
=
∑
n �=j

Γ
(c)
jn (ω)

(
P (1)
n − P

(1)
j

)
,

starting from P
(1)
j (ω, z = 0) = |âj,0(ω)|2, j = 1, . . . , N .

The solution of this system can be written in terms of the exponential of the
matrix Γ(c)(ω). We note that the vector P (1)(ω, z) has a probabilistic interpretation,
which we consider in some detail in section 6.3. We give here some basic properties.
First, the matrix Γ(c)(ω) is symmetric and real, its off-diagonal terms are positive,
and its diagonal terms are negative. The sums over the rows and columns are all
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zero. As a consequence of the Perron–Frobenius theorem, Γ(c)(ω) has zero as a simple
eigenvalue, and all other eigenvalues are negative. The eigenvector associated with
the zero eigenvalue is the uniform vector (1, . . . , 1)T . This shows that

sup
j=1,...,N

∣∣∣∣P (1)
j (ω, z) − 1

N
R2

0

∣∣∣∣ ≤ Ce−z/Lequip(ω),

where R2
0 =

∑N
j=1 |âj,0(ω)|2 and Lequip(ω) is the absolute value of the reciprocal of

the second eigenvalue of Γ(c)(ω). In other words, the mean mode powers converge
exponentially fast to the uniform distribution, which means that we have asymptotic
equipartition of mode energy. The length Lequip(ω) is the equipartition distance for
the mean mode powers.

4.3. Fluctuations theory. Proposition 4.2 also allows us to study the fluc-
tuations of the mode powers by looking at the fourth-order moments of the mode
amplitudes:

P
(2)
jl (ω, z) = lim

ε→0
E
[
|âεj(ω, z)|2|âεl (ω, z)|2

]
= E[Pj(ω, z)Pl(ω, z)] .

Using the generator LP we get a system of ordinary differential equations for limit

fourth-order moments (P
(2)
jl )j,l=1,...,N of the form

dP
(2)
jj

dz
=
∑
n �=j

Γ
(c)
jn

(
4P

(2)
jn − 2P

(2)
jj

)
,

dP
(2)
jl

dz
= −2Γ

(c)
jl P

(2)
jl +

∑
n

Γ
(c)
ln

(
P

(2)
jn − P

(2)
jl

)
+
∑
n

Γ
(c)
jn

(
P

(2)
ln − P

(2)
jl

)
, j 
= l .

The initial conditions are P
(2)
jl (z = 0) = |âj,0|2|âl,0|2. This is a system of linear ordi-

nary differential equations with constant coefficients that can be solved by computing
the exponent of the evolution matrix.

It is straightforward to check that the function P
(2)
jl ≡ 1 + δjl is a stationary

solution of the fourth-order moment system. Using the positivity of Γ
(c)
jl , j 
= l, we

conclude that this stationary solution is asymptotically stable, which means that the

solution P
(2)
jl (z) starting from P

(2)
jl (z = 0) = |âj,0|2|âl,0|2 converges as z → ∞ to

P
(2)
jl (z)

z→∞−→

⎧⎪⎨
⎪⎩

1

N(N + 1)
R4

0 if j 
= l ,

2

N(N + 1)
R4

0 if j = l ,

where R2
0 =

∑N
j=1 |âj,0|2. This implies that the correlation of Pj(z) and Pl(z) con-

verges to −1/(N − 1) if j 
= l and to (N − 1)/(N + 1) if j = l as z → ∞. We see
from the j 
= l result that if, in addition, the number of modes N becomes large, then
the mode powers become uncorrelated. The j = l result shows that, whatever the
number of modes N , the mode powers Pj are not statistically stable quantities.

5. Pulse propagation in waveguides. Bandwidth plays a basic role in the
propagation of pulses in a waveguide because of dispersion. We assume that a point
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source located inside the waveguide at (z = 0,x = x0) emits a pulse with carrier
frequency ω0 and bandwidth of order ε2:

(5.1) Fε(t,x, z) = fε(t)δ(x − x0)δ(z)ez , fε(t) = f(ε2t)eiω0t .

We have assumed in this model a narrowband source whose duration is of order ε−2,
that is, of the same order as the travel time through the waveguide whose length
is L/ε2. This is not the typical situation encountered in ultrasonic and underwater
sound experiments in connection with time reversal [22, 15], where broadband pulses
are used and, in the notation of this paper, fε(t) = f(εpt)eiω0t with 0 ≤ p < 2. The
analysis of these broadband regimes is carried out in [10]. The main results are similar
in the two regimes, except for those regarding statistical stability in time reversal. We
discuss this issue in sections 8.3 and 8.4, where we show that statistical stability in the
narrowband case (5.1) can be achieved by mode diversity rather than by frequency
diversity. The latter is typical for time-reversal refocusing of broadband pulses [10].
This is the reason that we consider the narrowband case in this paper.

The point source (5.1) generates left-going propagating modes that we do not
need to consider, as they propagate in a homogeneous half-space, and right-going
modes that we do analyze. As shown in section 2.3, the interface conditions at z = 0,
which are initial conditions in the forward scattering approximation, have the form

âεj(ω, 0) =
1

2

√
βj(ω)f̂ε(ω)φj(x0) , f̂ε(ω) =

1

ε2
f̂

(
ω − ω0

ε2

)

for j ≤ N(ω). The transmitted field observed in the plane z = L/ε2 and at time t/ε2

has the form

pεtr(t,x, L) := p

(
t

ε2
,x,

L

ε2

)
,

pεtr(t,x, L) =
1

4πε2

∫ N(ω)∑
j,l=1

√
βl(ω)√
βj(ω)

φj(x)φl(x0)f̂

(
ω − ω0

ε2

)
T ε
jl(ω)ei

βj(ω)L−ωt

ε2 dω .

We change variables ω = ω0 + ε2h and expand βj(ω0 + ε2h) with respect to ε:

pεtr(t,x, L) =
1

4π

∫ N∑
j,l=1

√
βl√
βj

φj(x)φl(x0)

×f̂(h)T ε
jl(ω0 + ε2h)ei

βj(ω0)L−ω0t

ε2 ei[β
′
j(ω0)L−t]hdh .(5.2)

Here β′
j(ω) is the ω-derivative of βj(ω). We do not show the dependence of N on ω0

after we approximate N(ω0 + ε2h) by N(ω0).
In a homogeneous waveguide we have that T ε

jl = δjl and

(5.3) pεtr (t,x, L) =
1

2

N∑
j=1

φj(x)φj(x0)e
i
βj(ω0)L−ω0t

ε2 f
(
t− β′

j(ω0)L
)
.

The transmitted field is therefore a superposition of modes, each of which is centered
around its travel time β′

j(ω0)L. The modal dispersion makes the overall spreading of
the transmitted field linearly increasing with L.

In a random waveguide, the integral representation (5.2) shows that the moments
of the transmitted field depend on the joint statistics of the entries of the transfer
matrix at different frequencies. The next section will give the needed results.
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6. Statistics of the transfer matrix.

6.1. Single frequency statistics of the transfer matrix. Using Proposition
4.1 with the special initial conditions âj(0) = δjl, we obtain the first moments of the
transmission coefficients.

Proposition 6.1. The expectations of the transmission coefficients E[T ε
jl(ω,L)]

converge to zero as ε → 0 if j 
= l and to T̄j(ω,L) if j = l, where

(6.1) T̄j(ω,L) = exp

(
Γ

(c)
jj (ω)L

2
−

Γ
(1)
jj (ω)L

2
+

iΓ
(s)
jj (ω)L

2

)
.

The real part of the exponential factor is [Γ
(c)
jj (ω) − Γ

(1)
jj (ω)]L/2. The coefficient

Γ
(c)
jj (ω) is negative. The coefficient Γ

(1)
jj (ω) is nonnegative because it is proportional

to the power spectral density of Cjj at zero-frequency. As a result, the damping
coefficient has a negative real part, and therefore the mean transmission coefficients
decay exponentially with propagation distance.

Using Proposition 4.3, we immediately get the following result.

Proposition 6.2. The mean square moduli of the transmission coefficients have

limits as ε → 0, limε→0 E[|T ε
jl(ω,L)|2] = T (l)

j (ω,L), which are the solutions of the
system of linear equations

(6.2)
dT (l)

j

dz
=
∑
n �=j

Γ
(c)
jn (ω)

(
T (l)
n − T (l)

j

)
, T (l)

j (ω, z = 0) = δjl .

The coefficients Γ
(c)
jl are given by (4.3).

From the analysis of section 4.2, we know that the mean square moduli of the
entries of the transfer matrix converge exponentially fast to the constant 1/N .

6.2. Transport equations for the autocorrelation of the transfer matrix.
In many physically interesting contexts, such as in calculating the mean transmitted
intensity or the mean refocused field amplitude, we need two-frequency statistical
information. We now introduce a proposition that describes the two-frequency statis-
tical properties that we will need in the applications discussed in this paper.

Proposition 6.3. The autocorrelation function of the transmission coefficients
at two nearby frequencies admits a limit as ε → 0:

E[T ε
jj(ω,L)T ε

ll(ω − ε2h, L)]
ε→0−→ eQjl(ω)L if j 
= l ,(6.3)

E[T ε
jl(ω,L)T ε

jl(ω − ε2h, L)]
ε→0−→ e−iβ′

j(ω)hL

∫
W(l)

j (ω, τ, L)eihτdτ ,(6.4)

E[T ε
jm(ω,L)T ε

ln(ω − ε2h, L)]
ε→0−→ 0 in the other cases,(6.5)

where (W(l)
j (ω, τ, z))j=1,...,N(ω) is the solution of the system of transport equations

(6.6)
∂W(l)

j

∂z
+ β′

j(ω)
∂W(l)

j

∂τ
=
∑
n �=j

Γ
(c)
jn (ω)

(
W(l)

n −W(l)
j

)
,
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starting from W(l)
j (ω, τ, z = 0) = δ(τ)δjl. The coefficients Γ

(c)
jl are given by (4.3). The

damping factors Qjl are

Qjl(ω) =
Γ

(c)
jj (ω) + Γ

(c)
ll (ω)

2
−

Γ
(1)
jj (ω) + Γ

(1)
ll (ω) − 2Γ

(1)
jl (ω)

2

+i
Γ

(s)
jj (ω) − Γ

(s)
ll (ω)

2
.(6.7)

We note that the real parts of the damping factors Qjl are negative and that the

solutions of the transport equations are measures. If j 
= l, then W(l)
j has a continuous

density, but W(l)
l has a Dirac mass at τ = β′

l(ω)z with weight exp(Γ
(c)
ll z), where Γ

(c)
ll

is given by (4.3), and a continuous density denoted by W(l)
l,c (ω, τ, z):

W(l)
l (ω, τ, z)dτ = eΓ

(c)
ll (ω)zδ(τ − β′

l(ω)z)dτ + W(l)
l,c (ω, τ, z)dτ .

Note also that by integrating the system of transport equations with respect to τ , we
recover the result of Proposition 6.2.

The system of transport equations describes the coupling between the N right-
going modes. It is the main theoretical result of this paper. It describes the evolution
of the coupled powers of the modes in frequency and time, with transport velocities
equal to the group velocities of the modes 1/β′

j(ω). Therefore, the transport equations
(6.6) could have been written as the natural space-time generalization of the coupled
power equations (6.2). The mathematical content of Proposition 6.3 gives the precise
connection between the quantities that satisfy this simple and intuitive space-time
extension of (6.2) and the moments of the random transfer matrix. The two-frequency
nature of the statistical quantities that satisfy the transport equations is clear in
Proposition 6.3.

Proof. For fixed indices m and n we consider the product of two transfer matrices,

Uε
jl(ω, h, z) = T ε

jm(ω, z)T ε
ln(ω − ε2h, z) ,

and note that it is the solution of

dUε
jl

dz
=

N∑
j1=1

1

ε
H

(a)
ω,jj1

( z

ε2

)
Uε
j1l +

N∑
l1=1

1

ε
H

(a)
ω−ε2h,ll1

( z

ε2

)
Uε
jl1 ,

with the initial conditions Uε
jl(ω, h, z = 0) = δmjδnl. We expand β·(ω − ε2h) with

respect to ε, and we introduce the Fourier transform

V ε
jl(ω, τ, z) =

1

2π

∫
e−ih(τ−β′

l(ω)z)Uε
jl(ω, h, z)dh ,

which is the solution of

∂V ε
jl

∂z
+ β′

l(ω)
∂V ε

jl

∂τ
=

N∑
j1=1

1

ε
H

(a)
ω,jj1

( z

ε2

)
V ε
j1l +

N∑
l1=1

1

ε
H

(a)
ω,ll1

( z

ε2

)
V ε
jl1 ,

with the initial conditions V ε
jl(ω, τ, z = 0) = δmjδnlδ(τ). We can now apply the

diffusion approximation theorem [19] and get the result stated in the proposition.
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6.3. Probabilistic interpretation of the transport equations. The trans-
port equations (6.6) have a probabilistic representation that can be used for Monte
Carlo simulations as well as for getting a diffusion approximation result. It is primar-
ily this diffusion approximation that we want to derive in this section. We will use
it in the applications that follow. We introduce the jump Markov process Jz, whose
state space is {1, . . . , N(ω)} and whose infinitesimal generator is

(6.8) Lφ(j) =
∑
l �=j

Γ
(c)
jl (ω) (φ(l) − φ(j)) .

We also define the process Bz by

(6.9) Bz =

∫ z

0

β′
Js
ds , z ≥ 0 ,

which is well defined because Jz is piecewise constant. In a manner similar to that
in [1], we get the probabilistic representation of the solutions to system (6.2) and the
solutions to the transport equations (6.6) in terms of the jump Markov process Jz:

T (n)
j (ω,L) = P (JL = j | J0 = n) ,(6.10) ∫ τ1

τ0

W(n)
j (ω, τ, L)dτ = P (JL = j , BL ∈ [τ0, τ1] | J0 = n) .(6.11)

The process Jz is an irreducible, reversible, and ergodic Markov process. Its
distribution converges as z → ∞ to the uniform distribution over {1, . . . , N}. The
convergence is exponential with a rate that is equal to the second eigenvalue of the

matrix Γ(c) = (Γ
(c)
jl )j,l=1,...,N . The first eigenvalue of this matrix is zero and the asso-

ciated eigenvector is the uniform distribution over {1, . . . , N}. The second eigenvalue
can be written in the form −1/Lequip, which defines the equipartition distance Lequip.

We next determine the asymptotic distribution of the process Bz. From the
ergodic theorem we have that with probability one,

(6.12)
Bz

z

z→∞−→ β′(ω) , where β′(ω) =
1

N(ω)

N(ω)∑
j=1

β′
j(ω) .

We can interpret the z large limit to mean that z is considerably larger than Lequip.

For a planar waveguide we have that βj =
√
ω2/c2 − π2j2/d2 and N(ω) =

[(ωd)/(πc̄)]. In the continuum limit N(ω) � 1, we obtain the expression β′(ω) =
π/(2c̄) , which is independent of ω. This ω independence property is likely to hold for
a broad class of waveguides.

By applying a central limit theorem for functionals of ergodic Markov processes,
we find that, in distribution,

(6.13)
Bz − β′(ω)z√

z

z→∞−→ N (0, σ2
β′(ω)) .

Here N (0, σ2
β′(ω)) is a zero-mean Gaussian random variable with variance

(6.14) σ2
β′(ω) = 2

∫ ∞

0

Ee

[
(β′

J0
(ω) − β′(ω))(β′

Js
(ω) − β′(ω))

]
ds ,
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where Ee stands for expectation with respect to the stationary process Jz. These
limit theorems imply that when L � Lequip, we have

T (n)
j (ω,L)

L�Lequip
 1

N(ω)
,(6.15)

W(n)
j (ω, τ, L)

L�Lequip
 1

N(ω)

1√
2πσ2

β′(ω)L
exp

(
− (τ − β′(ω)L)2

2σ2
β′(ω)L

)
.(6.16)

The asymptotic result (6.15) shows that T (n)
j becomes independent of n, the initial

mode index, and uniform over j ∈ {1, . . . , N(ω)}. This is the regime of energy equipar-
tition among all propagating modes. The asymptotic result (6.16) is equivalent to the
diffusion approximation for the system of transport equations (6.6).

7. Pulse propagation in random waveguides. We consider the transmitted
field (5.2) obtained in the setup described in section 5, and we now address the case of a
random waveguide. By Proposition 6.1, the mean transmitted field in the asymptotic
ε → 0 is given by

E[pεtr (t,x, L)] =
1

2

N∑
j=1

φj(x)φj(x0)T̄j(ω0, L)ei
βj(ω0)L−ω0t

ε2 f
(
t− β′

j(ω0)L
)
.

As in the homogeneous case, the mean field is a superposition of modes in the random
case, but the mean transmission coefficients are exponentially damped and vanish for
L large, L > Lequip(ω0). Therefore, the mean field vanishes for large L. We now turn
our attention to the mean intensity, which accounts for the conversion of the coherent
field into incoherent wave fluctuations. We express the transmitted intensity as the
expectation of a double integral

E

[
|pεtr(t,x, L)|2

]
=

1

16π2

N∑
j,l=1

N∑
m,n=1

√
βlβn√
βjβm

φj(x)φl(x0)φm(x)φn(x0)

×ei
[βj(ω0)−βm(ω0)]L

ε2

∫ ∫
f̂ (h) f̂ (h′)E[T ε

jl(ω0 + ε2h)T ε
mn(ω0 + ε2h′)]

×ei[β
′
j(ω0)L−t]h−[β′

m(ω0)L−t]h′
dhdh′ .

Using Proposition 6.3 we see that there are two contributions to this integral:

(7.1) E

[
|pεtr(t,x, L)|2

]
= Iε1(t,x, L) + Iε2(t,x, L) .

The limit of the first contribution is

Iε1(t,x, L)
ε→0
 1

4

N∑
j �=m=1

φj(x)φj(x0)φm(x)φm(x0)e
i
[βj(ω0)−βm(ω0)]L

ε2

×eQjm(ω0)Lf(t− β′
j(ω0)L)f(t− β′

m(ω0)L) .(7.2)

We see that it decays exponentially with the propagation distance because of the
damping factors exp(Qjm(ω0)L). We can therefore neglect this contribution for L �
Lequip(ω0). The limit of the second contribution is

(7.3) Iε2(t,x, L)
ε→0
 1

4

N∑
j,l=1

βl

βj
φ2
j (x)φ2

l (x0)

∫
W(l)

j (ω0, τ, L)f(t− τ)2dτ .
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In the asymptotic equipartition regime L � Lequip(ω0) we use the diffusion approxi-
mation (6.16). We conclude that

(7.4) lim
ε→0

E

[
|pεtr (t,x, L)|2

] L�Lequip
 Hω0,x0(x) × [Kω0,L ∗ (f2)](t) ,

where the spatial profile Hω0,x0 and the time convolution kernel Kω0,L are given by

Hω0,x0(x) =
1

4N(ω0)

N(ω0)∑
j=1

φ2
j (x)

βj(ω0)
×

N(ω0)∑
l=1

φ2
l (x0)βl(ω0) ,(7.5)

Kω0,L(t) =
1√

2πσ2
β′(ω0)

L
exp

(
− (t− β′(ω0)L)2

2σ2
β′(ω0)

L

)
.(7.6)

To sum up, the main results of this section are that
• the mean field decays exponentially with propagation distance,
• the mean transmitted intensity converges to the transverse spatial profile
Hω0,x0

, and

• the mean transmitted intensity is concentrated around the time β′(ω0)L with
a spread that is of the order of σβ′(ω0)

√
L ∼

√
LLequip(ω0)/c̄ for a pulse with

carrier frequency ω0.
Note that σβ′(ω0)

√
L � L/c̄, which means that pulse spreading increases as

√
L in a

random waveguide while it increases linearly in a homogeneous one. This is because
the modes are strongly coupled together and propagate with the same “average”
group velocity 1/β′(ω0) in the random waveguide. The “average” group velocity is
the harmonic average of the group velocities of the modes 1/β′

j(ω0). These results are
intuitively clear, but they were not discussed in detail in the early literature [14, 5].
We note that in (7.4) it is the mean of the pulse intensity that has the asymptotic
form that we have derived. The pulse intensity fluctuations can also be computed
and are not small.

8. Time reversal in a waveguide.

8.1. Time reversal setup. We now consider time reversal in a waveguide. A
point source located in the plane z = 0 at the lateral position x0 emits a pulse fε(t) of
the form (5.1). A time-reversal mirror is located in the plane z = L/ε2 and occupies
the subdomain DM ⊂ D. The transmitted wave observed in the plane z = L/ε2 at
time t/ε2 is (5.2). The time-reversal mirror records the field from time t0/ε

2 up to
time t1/ε

2, time reverses it, and sends it back into the waveguide. The new source at
the time-reversal mirror that generates the back propagating waves is

Fε
TR(t,x, z) = fε

TR(t,x)δ

(
z − L

ε2

)
ez ,(8.1)

fε
TR(t,x) = pεtr

(
t1 − ε2t,x, L

)
G1(t1 − ε2t)G2(x) ,

where pεtr is given by (5.2), G1 is the time-window function of the form G1(t) =
1[t0,t1](t), and G2 is the spatial-window function G2(x) = 1DM

(x). We have seen
that the power delay spread of the transmitted signal is not very long in the forward
scattering approximation. This is because there is no backscattering to produce long
codas (i.e., long incoherent wave fluctuations). Moreover, we focus our attention
more on spatial effects in this paper, so it is reasonable to assume that we record the
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field for all time at the time-reversal mirror. This means that we have G1(t) = 1
and Ĝ1(h) = 2πδ(h). Therefore, the left-going propagating modes generated by this
source have amplitudes

b̂m(ω) = −
√

βm(ω)

2

∫
D
f̂ε
TR(ω,x)φm(x)dxeiβm(ω) L

ε2

=
1

4ε2

N∑
j,l=1

√
βlβm√
βj

Mmjφl(x0)f̂

(
ω − ω0

ε2

)
T ε
jl(ω)ei[βm(ω)−βj(ω)] L

ε2
+iω

t1
ε2 ,(8.2)

where the coupling coefficients Mjl are given by

(8.3) Mjl =

∫
D
φj(x)G2(x)φl(x)dx .

We have explicit formulas for the coupling coefficients Mjl in two cases as follows:
• If the mirror spans the complete cross section D of the waveguide, then we

have G2(x) = 1 and Mjl = δjl.
• If the mirror is point-like at x = x1, meaning G2(x) = |D|δ(x−x1), with the

factor |D| added for dimensional consistency, then Mjl = |D|φj(x1)φl(x1).
The refocused field observed in the plane z = 0 in the Fourier domain is given by

(8.4) p̂TR(ω,x, 0) =

N∑
m,n=1

(Tε)Tnm(ω)b̂m(ω)√
βn

φn(x) .

Here (Tε)T (ω) is the transfer matrix for the left-going modes propagating from L/ε2

to 0, and it is the transpose of Tε(ω). This follows from the unitarity of the transfer
matrix Tε(ω). In the time domain, the refocused field observed at time tobs/ε

2 is

pTR

(
tobs

ε2
,x, 0

)
=

1

4π

N∑
j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)e
i[βm−βj ](ω0)

L
ε2

+iω0
t1−tobs

ε2

×
∫

f̂ (h)T ε
jl(ω0 + ε2h)T ε

mn(ω0 + ε2h)ei{[β
′
m−β′

j ](ω0)L+(t1−tobs)}hdh .(8.5)

8.2. Refocusing in a homogeneous waveguide. In this case, T ε
jl = δjl and

the refocused field is

pTR

(
tobs

ε2
,x, 0

)
=

1

2
eiω0

t1−tobs
ε2

N∑
j,m=1

ei[βm−βj ](ω0)
L
ε2

×Mmjφm(x)φj(x0)f
(
[β′

m − β′
j ](ω0)L + t1 − tobs

)
.(8.6)

The refocused field is a weighted sum of modes, whose weights depend on the mirror
through the coefficients Mmj . The oscillatory terms in (8.6) produce transverse side-
lobes in the refocused field, as seen in Figure 8.1.

8.3. The mean refocused field in a random waveguide. In the analysis
of time reversal considered up to now [3, 9, 2, 21], statistical stability is shown by
a frequency decoherence argument. More precisely, it is shown that the refocused
field is the superposition of many approximately uncorrelated frequency components,
which ensures self-averaging in the time domain. This argument cannot be used in
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the narrowband case (5.1) that we consider here. This is because the decoherence
frequency, which is of order ε2, is comparable to the bandwidth, which is also of order
ε2. In broadband cases with a bandwidth of order εp, p ∈ [0, 2), statistical stability
can be obtained by the usual frequency decoherence argument [10].

First we compute the mean refocused field and then consider the statistical stabil-
ity. By taking the expectation of (8.5), we find that the mean refocused field involves
the second-order moments of the transfer matrix. From Proposition 6.3 we have the
limit values of these second-order moments, so we can write

E

[
pTR

(
tobs

ε2
,x, 0

)]
= pε1 + pε2 ,(8.7)

pε1
ε→0
 1

2

N∑
j �=m=1

Mmjφm(x)φj(x0)e
i[βm−βj ](ω0)

L
ε2

+iω0
t1−tobs

ε2

×eQjm(ω0)Lf
(
[β′

m − β′
j ](ω0)L + t1 − tobs

)
,

pε2
ε→0
 1

2
eiω0

t1−tobs
ε2 f (t1 − tobs)

N∑
j,l=1

Mjjφl(x)φl(x0)T (l)
j (ω0, L) .

The term pε1 decays exponentially with propagation distance because of the damping
factors coming from Qjm. We can therefore neglect this term in the asymptotic
equipartition regime. The term pε2 does contribute and it refocuses around the time
tobs = t1 with the original pulse shape time reversed. The spatial focusing profile
is a weighted sum of modes, with weights that depend on the time-reversal mirror

through the coefficients Mjl and on the mean square transmission coefficients T (l)
j .

In the asymptotic equipartition regime L � Lequip, the coefficients T (l)
j (ω0, L)

converge to 1/N for all j and l, which for the mean refocused field gives

lim
ε→0

E

[
pTR

(
tobs

ε2
,x, 0

)]
L�Lequip
 eiω0

t1−tobs
ε2 f (t1 − tobs)

× 1

N(ω0)

N(ω0)∑
j

Mjj ×
1

2

N(ω0)∑
l=1

φl(x)φl(x0) .(8.8)

We note the difference between this expression and (8.6) in a homogeneous waveguide.
The oscillatory terms in (8.6) which generate the side-lobes are suppressed in (8.8).
The analytical understanding of side-lobe suppression in time reversal in random
waveguides is a new result in this paper.

The spatial refocusing profile can then be computed explicitly because it does
not depend on the mirror shape or size. In the case of a planar waveguide, we have
φj(x) =

√
2/d sin(πjx/d), and in the continuum limit N � 1, we have

1

2

N∑
l=1

φl(x)φl(x0)
N�1
 1

λ0
sinc

(
2π

x− x0

λ0

)
.

The mean refocused field is therefore concentrated around the original source location
x0 with a resolution of half of a wavelength, which is the diffraction limit.

8.4. Statistical stability of the refocused field. As we noted already, we
cannot claim that the refocused field is statistically stable by using the same argument
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as in the broadband case, because here we have a narrowband pulse. However, we
can achieve statistical stability through the summation over the modes. We will
show this in the quasi-monochromatic case, where the pulse envelope f(t) = 1 and

f̂(h) = 2πδ(h). In this case, it is clear that statistical stability cannot arise from time
averaging, and the refocused field is

pTR

(
tobs

ε2
,x, 0

)
=

1

2

N∑
j,l,m,n=1

√
βlβm√
βjβn

Mmjφn(x)φl(x0)

×ei[βm−βj ](ω0)
L
ε2

+iω0
t1−tobs

ε2 T ε
jl(ω0)T

ε
mn(ω0) .(8.9)

From (8.8), the mean refocused field at x = x0 is in the asymptotic equipartition
regime

(8.10) lim
ε→0

E

[
pTR

(
tobs

ε2
,x0, 0

)]
L�Lequip
 eiω0

t1−tobs
ε2

R2
0

2N

N∑
j=1

Mjj ,

where R2
0 =

∑N
l=1 φ

2
l (x0). We now compute the second moment of the refocused field

observed at x = x0. By taking the expectation of the square of (8.9), we find that
this moment involves fourth-order moments of the transfer matrix. From the results
of section 4.3, we have

lim
ε→0

E[T ε
jlT

ε
mnT

ε
j′l′T

ε
m′n′ ]

L�Lequip


⎧⎪⎪⎨
⎪⎪⎩

2
N(N+1) if (j, l) = (m,n) = (j′, l′) = (m′, n′) ,

1
N(N+1) if (j, l) = (m,n) 
= (j′, l′) = (m′, n′) ,

1
N(N+1) if (j, l) = (m′, n′) 
= (j′, l′) = (m,n) ,

0 otherwise .

Using these fourth-order moment results in the expression for the second moment of
the refocused field we see that, in the limit ε → 0 and in the asymptotic equipartition
regime L � Lequip,

lim
ε→0

E

[∣∣∣∣pTR

(
tobs

ε2
,x0, 0

)∣∣∣∣
2
]

L�Lequip
 R4
0

4N(N + 1)

⎡
⎢⎣
⎛
⎝∑

j

Mjj

⎞
⎠

2

+
∑
j,j′

M2
jj′

⎤
⎥⎦ .

Let us introduce the relative standard deviation S of the refocused field amplitude,

(8.11) S2 := lim
ε→0

E

[∣∣pTR

(
tobs

ε2 ,x0, 0
)∣∣2]− ∣∣E [pTR

(
tobs

ε2 ,x0, 0
)]∣∣2∣∣E [pTR

(
tobs

ε2 ,x0, 0
)]∣∣2 .

We have statistical stability when S is small. In the asymptotic equipartition regime,
S2 is given by

(8.12) S2
L�Lequip
 − 1

N + 1
+

N

N + 1

1

Qmirror
, Qmirror =

∑N
j,l=1 MjjMll∑N

j,l=1 M
2
jl

.

The quality factor Qmirror depends only on the time-reversal mirror. We will have
statistical stability when the number of modes N is large and when the quality factor
Qmirror is large. This analytical criterion for statistical stability in narrowband time
reversal is a new result in this paper.

We can consider two extreme cases:
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• If the time-reversal mirror spans the waveguide cross section, then Mjl = δjl
and the quality factor is equal to N , which is optimal since the relative
standard deviation is then zero for any N . This result is not surprising since
the time-reversal mirror records the transmitted signal fully, in both time and
space, which implies optimal refocusing.

• If the time-reversal mirror is point-like at x1, then Mjl = φj(x1)φl(x1) and
the quality factor is 1, which is bad, because the relative standard deviation S
is asymptotically equal to

√
N − 1/

√
N + 1. The fluctuations of the refocused

field are, therefore, of the same order as the mean field, which means that
there is no statistical stability.

In the next section, we address a particular case which allows explicit calculations.

8.5. Numerical illustration. In this section we illustrate the time reversal
results in the quasi-monochromatic case for a particular random waveguide. We
consider a random planar waveguide with diameter d. The random process ν is
stationary and mixing in the z-direction. Its autocorrelation function is

E[ν(x, z)ν(x′, z′)] = σ2 exp

(
−|z − z′|

lc

)
R(x, x′) ,

where the support of R is contained in [0, d]2, σ is the standard deviation of the
medium fluctuations, and lc is the axial correlation length. This decomposition of the

autocorrelation function makes it easy to compute the effective coefficients Γ
(c)
jl , Γ

(s)
jl ,

and Γ
(1)
jl . We obtain

γ
(c)
jl =

2σ2lcGl,j

1 + (βj − βl)2l2c
, γ

(s)
jl =

2σ2(βj − βl)l
2
cGl,j

1 + (βj − βl)2l2c
, γ

(1)
jl = 2lcGl,j ,

Gl,j = Sj−l,j−l + Sj+l,j+l − Sj−l,j+l − Sj+l,j−l ,

where

Sj,l =
1

d2

∫ d

0

∫ d

0

cos

(
jπx

d

)
cos

(
lπx′

d

)
R(x, x′)dxdx′ .

For simplicity, we shall make two hypotheses. First, we introduce a band-limiting
idealization; i.e., we assume that the support of S lies with a finite square so that
S(j, l) 
= 0 only if |j| ≤ 1 and |l| ≤ 1. Second, we assume that lc is smaller than
βj −βj−1 for all j. The expressions of the effective coefficients can then be simplified.

The matrix Γ
(s)
jl is essentially zero, while the matrices Γ

(c)
jl and Γ

(s)
jl are tridiagonal,

Γ
(c)
jl 
 Γ

(1)
jl 
 ω4σ2lcdS1,1

4c̄4βj(ω)βl(ω)
if |j − l| = 1 , Γ

(1)
jj 
 ω4σ2lcdS0,0

4c̄4β2
j (ω)

,

and Γ
(c)
jj is chosen so that the lines of the matrix are zero.

Homogeneous waveguide. In the homogeneous case the spatial profile of the re-
focused field is (8.6). Let us consider a time-reversal mirror of size a located in
x ∈ [d/2 − a/2, d/2 + a/2]: G2(x) = 1[d/2−a/2,d/2+a/2](x). We then have

Mjl =
a

d

[
cos

(
(j − l)π

2

)
sinc

(
(j − l)πa

2d

)
− cos

(
(j + l)π

2

)
sinc

(
(j + l)πa

2d

)]
.

Using these formulas, we plot in Figure 8.1 the spatial profile of the refocused field for
different sizes a of the time-reversal mirror. The peak at the original source location
is there in all cases, but for small time-reversal mirrors, large side-lobes appear.
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Fig. 8.1. Transverse profile of the refocused field in a homogeneous waveguide with diameter
d and length L. Here d = 20, L = 200, and λ0 = 1, so there are 40 modes. The original source
location is x0 = 8. The dashed curve is the sinc profile, which is the focusing profile of a full-
size time-reversal mirror. The solid curves are refocusing profiles for time-reversal mirrors of size
a = 2.5 (a) and a = 10 (b).
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Fig. 8.2. (a) Transverse profile of the mean refocused field in a random waveguide with diameter
d and length L. Here d = 20, L = 200, λ0 = 1, the time-reversal mirror has size a = 5, and the
original source location is x0 = 8. The axial correlation length of the random medium is lc = 0.25
and the random fluctuations have standard deviation σ. The dashed curve is the spatial profile
obtained in homogeneous medium σ = 0. The solid lines stand for the mean profiles obtained in
random media σ = 0.015. The random case is very close to the equipartition regime, for which the
focusing profile is a sinc. (b) The relative standard deviation S, from (8.12), of the refocused field
in the equipartition regime as a function of the mirror size a. Here d = 20 and λ0 = 1.

Random waveguide. The mean spatial profile of the refocused field is (8.7). In
the absence of randomness, this formula reduces to (8.6). The mean spatial profile
is plotted in Figure 8.2(a), which illustrates the transition from the poor spatial
refocusing in a homogeneous medium to the diffraction-limited refocusing obtained in
the equipartition regime. In the equipartition regime L � Lequip, the mean spatial
profile is given by (8.8) and becomes independent of the mirror size, up to an amplitude
factor. However, the statistical stability of the refocused field depends on the size of
the time-reversal mirror, as shown in Figure 8.2(b).

9. Summary and conclusions. The main result of this paper is the derivation
from first principles of the system of transport equations (6.6) for the coupled mode
powers, in the asymptotic limit of section 3. It is easy to write such equations by
simply adding a time-dispersive term in (4.11). We identify here the field quantity
that has the mean which satisfies this space-time transport equation.

We apply the transport equation (6.6) to pulse spreading in order to get (7.4),
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which shows how randomness reduces time dispersion at the expense of introducing
random fluctuations. We also apply it to time reversal in a random waveguide, in a
narrowband regime, and show in (8.8) how side-lobes are suppressed in refocusing. We
also show in (8.12) how statistical stability depends on the quality factor Qmirror. This
quality factor does not depend on the random medium in the energy equipartition
regime, but it does depend on the size of the time-reversal mirror relative to the
waveguide cross section.
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