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JOSSELIN GARNIER∗ AND GEORGE PAPANICOLAOU†

Abstract. Array imaging in a strongly scattering medium is limited because coherent signals
recorded at the array and coming from a reflector to be imaged are weak and dominated by incoherent
signals coming from multiple scattering by the medium. If, however, an auxiliary passive array can
be placed between the reflector to be imaged and the scattering medium then the cross correlations
of the incoherent signals on this array can also be used to image the reflector. In this paper we show
both in the weakly scattering paraxial regime and in strongly scattering layered media that this
cross correlation approach produces images as if the medium between the sources and the passive
array was homogeneous and the auxiliary passive array was an active one made of both sources and
receivers.
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1. Introduction. Consider an array of sources and receivers that can be used
to image a reflector whose location and reflectivity are not known. The sources are
located at (~xs)

Ns
s=1 and the receivers at (~xr)

Nr
r=1, as in Figure 1.1 (the two arrays can

be coincident). The array response matrix (p(t, ~xr; ~xs))t∈R,r=1,...,Nr,s=1,...,Ns consists
of the signals recorded by the rth receiver when the sth source emits a short pulse.
We obtain an image by migrating the array response matrix to estimate the locations
of reflectors in the medium. The Kirchhoff migration function [4, 5] at a search point
~yS is

I(~yS) =
Nr∑

r=1

Ns∑

s=1

p
(
T (~xs, ~y

S) + T (~yS , ~xr), ~xr; ~xs
)
,

where T (~x, ~y) is an estimated travel time between the points ~x and ~y. When the
medium is homogeneous then

T (~x, ~y) =
|~x− ~y|
c0

,

where c0 is the constant propagation speed. In this case the images produced by
Kirchhoff migration can be analyzed easily. For a point reflector the range resolution
is c/B, where B is the bandwidth of the probing pulse, and the cross range resolution
is λ0L/a, where λ0 is the central wavelength of the pulse, L is the distance from the
array to the reflector, and a is the size of the array. These are the Rayleigh resolution
formulas [16]. When, however, the medium is inhomogeneous then migration may not
work well. In weakly scattering media the images can be stabilized statistically by
using coherent interferometry [9, 10, 11], which is a special correlation based imaging
method. Statistical stability means high signal-to-noise ratio. In strongly scattering
media we may be able to obtain an image by using special signal processing methods
[8] but often we cannot get any image at all because the coherent signal from the
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Fig. 1.1. Sensor array imaging of a reflector located at ~y through a scattering medium. ~xs is
a source, ~xr is a receiver, and ~y is a reflector.

x
s

x
q

x
q’

y

Fig. 1.2. Use of an auxiliary passive array for imaging through a scattering medium. ~xs is a
source, ~xq and ~xq′ are two receivers located below the scattering medium, and ~y is a reflector.

reflector received at the array is very weak compared to the backscatter from the
medium.

Consider now an imaging setup in which there is an auxiliary passive array, located

at (~xq)
Nq

q=1, and the strongly scattering medium is between it and the surface source-
receiver array, as in Figure 1.2. Can the auxiliary passive array be used to get an
image by mitigating the effects of the strong scattering between it and the surface
source-receiver array? If we consider the strong scattering as producing signals that
appear to come from spatially dispersed noisy sources, then we are in a daylight
imaging setup with ambient noise sources, which was analyzed in [21]. Daylight
imaging means illumination from behind the array. By analogy with the situation in
which there are Ns uncorrelated point sources at (~xs)s=1,...,Ns , we expect that, even
in the case of active impulsive sources, the matrix of cross correlations at the auxiliary
array

CT (τ, ~xq, ~xq′) =
∫ T

0

Ns∑

s=1

p(t, ~xq; ~xs)p(t+ τ, ~xq′ ; ~xs)dt , q, q′ = 1, . . . , Nq

behaves roughly as if it is the array response matrix of the auxiliary array. This means
that it can be used for imaging with Kirchhoff migration:

I(~yS) =
Nq∑

q,q′=1

CT
(
T (~xq, ~y

S) + T (~yS , ~xq′), ~xq, ~xq′
)
.

In this paper we will show analytically the striking result that the resolution of the
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Fig. 1.3. Sensor array imaging of a reflector located at ~y in the presence of a strong interface
that generates multiples by reverberation between the interface and the free surface.

resulting images is given by the Rayleigh resolution formulas as if the medium was ho-
mogeneous [22]. This result is not obvious at all because scattering by inhomogeneities
in the medium of waves emitted by the impulsive sources at the surface produces
signals on the auxiliary passive array that are very different from those coming from
spatially uncorrelated noise sources. This is especially true when addressing randomly
layered media, which do not provide any lateral diversity enhancement since scatter-
ing does not change the transverse wavevectors. Nevertheless, it has been observed
in exploration geophysics contexts [3, 35, 40] that imaging with the cross correlations
of the auxiliary array is very effective and produces images that are nearly as good as
in a homogeneous medium.

The first objective of this paper is to show analytically that for acoustic waves
in randomly layered media, in a certain asymptotic regime which was studied in [18]
and is described in Section 2, Kirchhoff migration images with cross correlations of
the auxiliary array have the same resolution as those of a homogeneous medium. The
reason why this kind of imaging works so well is because, by wave field reciprocity,
the cross correlations CT (τ, ~xq, ~xq′) can be given a time-reversal interpretation, which
is well known [14], and then the analysis of time reversal refocusing in random media
can be applied. The main results in time reversal in random media are (i) the en-
hanced refocusing, which means that the primary peak in the cross correlation will be
observable only when the sensors in the auxiliary array are close enough with time lag
close to zero, and then Kirchhoff migration to image the reflector will not be affected,
and (ii) the statistical stability of the cross correlation function relative to the random
medium inhomogeneities, provided that the source illumination from the surface is
broadband (see [18, Chapters 12 and 15] and [17, 19]).

We also show in this paper, in Section 3, that when the auxiliary passive array
is placed on or below a medium interface between the surface array and the reflector
to be imaged, then Kirchhoff migration imaging with the auxiliary array cross corre-
lations produces an image as if there is no interface (Figure 1.3). This is commonly
encountered in exploration geophysics with marine surveys, where the surface source-
receiver array is on the sea surface and the interface is at the bottom of the sea. The
auxiliary array may be attached to the sea bottom and the reflectors to be imaged are
underground. The problem addressed here, for a layered medium, is well-known in
connection with the removal of multiple reflections from the sea surface and bottom
in the data [2, 13].

In both randomly layered media and in media with a deterministic interface, it
is expected [31] that decomposing the auxiliary array data into up and down going
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wave signals and then calculating cross correlations only of the up going with the down
going ones improves the Kirchhoff migration images. For the up and down going wave
signal decomposition to be possible it is necessary to have both the pressure and the
vertical velocity recorded at the array, or the three dimensional velocity. We quantify
analytically in Section 2.6.3 the improvement in the Kirchhoff migration image.

What happens when the medium between the surface and the auxiliary array
is not layered and is weakly, not strongly scattering so that backscattering can be
neglected? In this case Kirchhoff migration with cross correlations of the auxiliary
array produces images again as if the medium were homogeneous and the auxiliary
array were active. Using the paraxial or parabolic approximation [28, 38, 39, 26, 27,
15, 23], we explain why this is so in Section 4. This shows that, although the technical
details in the randomly layered case and in the random paraxial case are very different
from each other, the final result is the same. We therefore expect that this result holds
for a broad class of random media. In particular, if the medium between the surface
and the auxiliary array is isotropically strongly scattering then it is not known (from
the theoretical point of view) if imaging with cross correlations of the auxiliary array
is effective. However, it is expected that it will be considerably better than imaging
directly with the surface source-receiver array.

How do we image when the medium between the auxiliary array and the reflector
is scattering, a randomly inhomogeneous medium? If the scattering is weak, then we
can use cross correlations of the auxiliary array to form a coherent interferometric
image, which amounts to using special fourth order cross correlations. This type
of imaging was introduced in [9] and while some resolution is lost compared to a
homogeneous medium, the images are statistically stable, that is, they tend not to
depend on the realization of the random medium. The gain in signal-to-noise ratio
in coherent interferometry compared to Kirchhoff migration is analyzed in [7] where
it is shown that it can be quite significant. Of course, when the scattering is strong
between the auxiliary array and the reflector it is unlikely that any image can be
formed.

2. Imaging through a Randomly Layered Medium.

2.1. Acoustic Model. In this section we consider linear acoustic waves propa-
gating in a three-dimensional layered medium and generated by a point source. Mo-
tivated by geophysical applications, we take a typical wavelength of the probing pulse
to be larger than the correlation length of the medium and smaller than the propa-
gation distance. This is the regime studied for instance in [1, 18] and is appropriate
in exploration geophysics [41], in which the correlation length lc is estimated to be
2− 3m, the central wavelength λ is 150m, and the propagation distance L is typically
5 − 10km. This corresponds to a peak frequency of 50Hz and with a mean speed of
propagation 3km/sec. In the analysis we abstract this regime of physical parameters
by introducing dimensionless parameter ε that captures roughly the ordering of the
scaling ratios:

lc
L

∼ ε2,
λ

L
∼ ε. (2.1)

As is the case when asymptotic theories are applied to physical problems, what is
essential here is that (i) the mathematical scaling is broadly compatible with the
physical parameters, and (ii) the cumulative effects of multiple scattering by the
random inhomogeneities upon the propagating waves are significant and captured by
the analysis.
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The governing equations for the acoustic waves are

ρε(z)
∂~uε

∂t
+∇pε = ~F ε(t, ~x),

1

Kε(z)

∂pε

∂t
+∇ · ~uε = 0, (2.2)

where pε is the pressure field, ~uε is the three-dimensional velocity field, ρε is the
density of the medium, Kε is the bulk modulus of the medium, and ~x = (x, z) ∈ R

2×R

are the space coordinates. The parameters of the medium ρε and Kε vary only along
the z-direction. The forcing term ~F ε models the source located just below the surface
z = 0.

We consider in this section the situation in which a layered medium occupies the
section z ∈ (−L, 0) and is sandwiched in between two homogeneous half-spaces. The
homogeneous half-space z ≤ −L is matched to the layered section z ∈ (−L, 0) (we will
consider the un-matched case in Section 3). Motivated by geophysical applications we
assume that the density ρa in the homogeneous half-space z ≥ 0 is much smaller than
the density ρε(z) in the layered medium for z ≤ 0. Since the velocity and pressure are
continuous, the pressure in z > 0 goes to zero and hence, by continuity, also at z = 0.
These are the so-called pressure release boundary conditions: pε(t, (x, z = 0)) = 0.

We consider the case with a randomly layered medium in the region z ∈ (−L, 0).
The parameters of the medium are assumed to be of the form

(Kε)
−1

(z) =

{
K−1

0 if z ∈ (−∞,−L]
K−1

0 [1 + ν( zε2 )] if z ∈ (−L, 0) , (2.3)

ρε(z) = ρ0 if z ∈ (−∞, 0). (2.4)

In this model the parameters of the medium have random and rapid fluctuations with
a typical scale of variation much smaller than the thickness of the layer. The small
dimensionless parameter ε2 is the ratio between these two scales. The small-scale
random fluctuations are described by the random process ν(z). The process ν is
bounded in magnitude by a constant less than one, so that Kε is a positive quantity.
The random process ν(z) is stationary and zero mean. It is supposed to have strong
mixing properties so that we can use averaging techniques for stochastic differential
equations as presented in [18, Chapter 6]. The important quantity from the statistical
point of view is the integrated covariance of the fluctuations of the random medium
defined by

γ =

∫ ∞

−∞
E[ν(z′)ν(z′ + z)]dz. (2.5)

By the Wiener-Khintchine theorem it is nonnegative valued as it is the power spectral
density evaluated at zero-frequency. The integrated covariance γ plays the role of
scattering coefficient. It is of the order of the product of the variance of the medium
fluctuations times the correlation length of the medium fluctuations. As will become
clear in the sequel, the statistics of the wave field depend on the random medium via
this integrated covariance or power spectral density.

The source is modeled by the forcing term ~F ε. We assume that it is point-like,
located at ~xs = (xs, 0

−), i.e. just below the surface z = 0, and that it emits a short
pulse whose central wavelength is of order ε:

~F ε(t,x, z) = ~fε(t)δ(z)δ(x− xs), ~fε(t) = ε ~f
( t
ε

)
, (2.6)
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where we assume that the support of the Fourier transform of ~f = (fx, fz) is bounded

away from zero and of rapid decay at infinity. The particular scaling of ~fε in (2.6)
means that the central wavelength is large compared to the microscopic scale of varia-
tion of the random fluctuations of the medium and small compared to the macroscopic
scale of variation of the background medium, as in (2.1). The normalizing amplitude
factor ε multiplying the source term is not important as the wave equation is linear,
but it will make the quantities of interest of order one as ε → 0, which explains our
choice.

We define the background velocity and impedance by

c0 =

√
K0√
ρ0
, ζ0 =

√
K0ρ0. (2.7)

2.2. Review of Wave Propagation in Randomly Layered Media. A ran-
domly layered medium is a model that is both mathematically tractable and phys-
ically relevant. In this paper we will give some precise results but we would like
to give a few qualitative results in this subsection [18, Chapter 7]. If we consider
a plane wave p̂εinc(ω, z) = exp(iεωz) with frequency εω normally incident to a ran-
domly layered medium with matched boundary conditions, then the transmission
coefficient T ε(ω) describes how the wave is transmitted through the random medium
p̂εtr(ω, z) = T ε(ω) exp(iεωz).

The mean transmission coefficient E[T ε] gives the behavior of the coherent com-
ponents of the transmitted wave. The analysis shows that it decays exponentially with
the size of the random medium with the rate exp(−L/lsca) where lsca = 4c20/(ω

2γ) is
called the scattering mean free path in the physical literature. This is the result of an
exponential decay of the amplitude and a random phase that averages out to enhance
the decay of the expectation E[T ε] .

The mean power transmission coefficient E[|T ε|2] gives the behavior of the in-
coherent components of the transmitted wave. The analysis shows that it decays
exponentially with the rate exp(−2L/lloc) where lloc = 32c20/(ω

2γ) is called the local-
ization length in the physical literature. In a randomly layered medium the localiza-
tion length and the scattering mean free path are proportional in the regime described
in the previous subsection, but this is not true for other types of random media. Note
that, in the regime L > lloc, the coherent transmitted wave energy |E[T ε]|2 is much
smaller than the incoherent transmitted wave energy E[|T ε|2].

In this paper we have in mind the regime in which the size of the random medium
is larger than the scattering mean free path, which means that there is almost no coher-
ent wave transmitted through the random medium. As a first consequence, migration
of the recorded fields will not give good images in a situation such as in Figure 1.2,
because migration only uses coherent information. As a second consequence the waves
being transmitted through the random medium and going through the auxiliary array
are incoherent (although they still present some correlation structure since scattering
by a randomly layered medium does not enhance lateral diversity). By analogy with
ambient noise imaging, we anticipate that migration of cross correlations will produce
good images.

2.3. The Main Results about Migration Imaging. The calculation of the
empirical cross correlation at two receivers ~xq = (xq,−L) and ~xq′ = (xq′ ,−L) of the
auxiliary array located at depth z = −L is carried out as follows:
1) For a given point source at ~xs = (xs, 0), the pressure fields are recorded at the two
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receivers ~xq and ~xq′ and the cross correlation between these fields is computed:

Cε(τ, ~xq, ~xq′ ;xs) =

∫
pε(t, ~xq; ~xs)p

ε(t+ τ, ~xq′ ; ~xs)dt. (2.8)

2) The cross correlations are summed over all point sources. Assuming a dense source
array (sampled at the scale of the wavelength) covering the whole surface z = 0, we
obtain the following cross correlation (the wavelength being of order ε):

Cε(τ, ~xq, ~xq′) = ε−2

∫
Cε(τ, ~xq, ~xq′ ;xs)dxs. (2.9)

In this subsection we assume that a small reflector is buried below the random
medium at position ~y = (y,−Ly). We use the Born approximation to describe the
interaction of the wave field with the reflector (see Subsection 2.5.2). We give in
Subsections 2.3.1-2.3.3 the main results of this paper which are proved in Sections
2.6-2.7.

2.3.1. Migration of the Cross Correlation Matrix of the Auxiliary Ar-
ray Data. The Kirchhoff migration function for the search point ~yS is

IεC(~yS) =
1

N2
q

Nq∑

q,q′=1

Cε
( |~xq − ~yS |+ |~yS − ~xq′ |

c0
, ~xq, ~xq′

)
, (2.10)

where Nq is the number of receivers at the auxiliary array.
Proposition 2.1. If the receiver array at depth −L is a dense square array

centered at xA and with sidelength a (i.e. the distance between the sensors is smaller
than or equal to half-a-central wavelength), then, denoting the search point by

~yS = ~y + (ξ, η),

we have

IεC(~yS)
ε→0−→ iσref

2(2π)3c30(Ly − L)2
sinc2

( πaξ1
λ0(Ly − L)

)
sinc2

( πaξ2
λ0(Ly − L)

)

×
∫
ω3|f̂z(ω)|2 exp

(
2i
ω

c0
(η + ξ · xA − y

Ly − L
)
)
dω. (2.11)

Here σref is the scattering cross section of the reflector. f̂z is the Fourier transform
of the source pulse

f̂z(ω) =

∫
fz(t)e

iωtdt.

The central wavelength is defined by λ0 = 2πc0/ω0 where ω0 is the central frequency
of the source pulse. In order to simplify the expression we have assumed the following
hypothesis:

The sidelength a is smaller than the depth Ly − L.
The bandwidth B of the source pulse is small compared
to the central frequency ω0.

(2.12)

Note that the result is not changed quantitatively if a is of the same order as or larger
than Ly − L or if the bandwidth is of the same order as the central frequency, but
then the transverse shape is not a sinc anymore.
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This shows that
- The migration of the cross correlation gives the same result as if we were migrating
the array response matrix of the auxiliary array. Indeed the imaging function (2.11)
is almost exactly the imaging function that we would obtain if the medium were ho-
mogeneous, if the auxiliary receiver array could be used as an active array, and if
the response matrix of the auxiliary array were migrated to the search point yS (see
Appendix B). In particular the cross range resolution is λ0(L− Ly)/a and the range
resolution is c0/B.
- Although the coherent components of the waves that illuminate the region of interest
z < −L through the array are exponentially damped and have random wavefront dis-
tortions, the cross correlation technique efficiently uses all the coherent and incoherent
components that illuminate the region of interest.

In contrast, we state in the next subsections that migration of signals recorded
by the surface array or by the auxiliary array does not give good images.

2.3.2. Migration of the Surface Array Data. The data set is here the signals
(vertical velocity fields) recorded at the surface at points ~xr = (xr, 0) and emitted by
a point source at ~xs = (xs, 0). The Kirchhoff migration function for the search point
~yS is

IεS(~yS) =
1

NsNr

Ns∑

s=1

Nr∑

r=1

uε
( |~xs − ~yS |+ |~yS − ~xr|

c0
, ~xr; ~xs

)
, (2.13)

where Ns is the number of sources and Nr is the number of observation points at the
surface.

If the source and receiver arrays at the surface z = 0 are a dense array that covers
completely the surface, then, denoting the search point by ~yS = ~y + (ξ, η), we have

IεS(~yS)
ε→0−→

iσrefL
2
y

2(2π)
(γω2

0

4c20
L− iω0

√
γ√
2c0
W0(L)

)2 exp
[
− ω2

0 |ξ|2

c20
(γω2

0

4c20
L− iω0

√
γ

2
√
2c0
W0(L)

)
]

×
∫
ω3f̂z(ω) exp

(
2i
ω

c0

(
η +

√
γ

2
√
2c0

W0(L)
))

exp
(
− γω2

4c20
L
)
dω, (2.14)

where W0(L) is a Gaussian random variable with mean zero and variance L. Here we
have assumed that the damping due to the random fluctuations is relatively strong
ω2
0γL/c

2
0 > 1 and that the bandwidth B of the probing pulse is small compared to

the central frequency ω0.

Compared to the imaging function using the cross correlation matrix, and due to
the fact that the usual imaging function only uses the coherent wave components, we
observe:
- an exponential damping, more exactly, a spreading by a Gaussian convolution kernel,
which reduces both the range resolution and the signal-to-noise ratio,
- an error in the range estimation due to random wavefront distortions. More exactly,
the range identification is wrong by a random shift given by −√

γW0(L)/
√
8,

- the focal spot shape is not deterministic but random.

2.3.3. Migration of the Auxiliary Array Data. The data set is here the
signals (pressure fields or vertical velocity fields) recorded at the auxiliary passive
array at points ~xq = (xq,−L) and emitted by a point source at ~xs = (xs, 0). This
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is exactly the same data set as the one used in the function (2.10). The Kirchhoff
migration function for the search point ~yS is

IεR(~yS) =
1

NsNq

Ns∑

s=1

Nq∑

q=1

pε
( |~xs − ~yS |+ |~yS − ~xq|

c0
, ~xq; ~xs

)
, (2.15)

where Ns is the number of sources at the surface and Nq is the number of receivers
in the auxiliary passive array.

If the source array at the surface z = 0 is a dense array that covers completely
the surface and if the auxiliary receiver array is a dense square array centered at xA
and with sidelength a, then, denoting the search point by ~yS = ~y + (ξ, η), we have

IεR(~yS)
ε→0−→ − iσrefLy

2(2π)2(Ly − L)
(γω2

0

4c20
L− iω0

√
γ

2c0
W0(L)

)

×sinc
( aξ1ω0

2c0(Ly − L)

)
sinc

( aξ2ω0

2c0(Ly − L)

)
exp

[
− ω2

0 |ξ|2

c20
(γω2

0

2c20
L− iω0

√
γ

c0
W0(L)

)
]

×
∫
ω3f̂z(ω) exp

(
i
ω

c0

(
2η + ξ · xA − y

Ly − L
+

√
γ

2
W0(L)

))
exp

(
− γω2

8c20
L
)
dω. (2.16)

In order to simplify the expression we have here assumed Hypothesis (2.12) and we
have assumed that the damping due to the random fluctuations is strong ω2

0γL/c
2
0 > 1.

Compared to the imaging function using the cross correlation matrix, and due to
the fact that the usual imaging function only uses the coherent wave components, we
observe:
- an exponential damping, more exactly, a spreading by a Gaussian convolution kernel,
which reduces both the range resolution and the signal-to-noise ratio,
- an error in the range estimation due to random wavefront distortions. More exactly,
the range identification is wrong by a random shift given by −√

γW0(L)/4,
- the focal spot is not always deterministic but it can be random, if the Gaussian in
ξ dominates the sinc functions in (2.16), which happens if the receiver array is too
small: a2 < c20(Ly − L)2/(γω2

0L).

2.4. The Field in the Absence of a Reflector. In this section we analyze the
wave transmitted through a randomly layered medium when there is no embedded
reflector.

2.4.1. Integral Representation of the Field. When there is a point source
at ~xs = (xs, 0) (see Figure 2.1) the pressure field recorded at some point ~x = (x, z)
below the random medium z ≤ −L has the integral representation

pε(t, ~x; ~xs) = − 1

(2π)3ε

∫
f̂z(ω)Gεω,κ exp

(
− i

ω

ε

(
t− κ · (x− xs) +

z

c0(κ)

))
ω2dκdω.

(2.17)
This expression is proved in Appendix A.1. Similarly, the vertical velocity field is

uε(t, ~x; ~xs) =
1

(2π)3ε

∫
f̂z(ω)

ζ0(κ)
Gεω,κ exp

(
−iω

ε

(
t−κ·(x−xs)+

z

c0(κ)

))
ω2dκdω. (2.18)

Here, we have used the notation κ = |κ|, and:
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Fig. 2.1. Emission from a point source located at ~xs = (xs, 0) in the surface array. The
receiver is located at ~xq = (xq ,−L) in the auxiliary array. The medium is random in the region
z ∈ (−L, 0).

• The Fourier transforms are defined by

f̂z(ω) =

∫
fz(t)e

iωtdt.

• ζ0(κ) and c0(κ) are the mode-dependent impedance and velocity

ζ0(κ) =
ζ0√

1− κ2c20
, c0(κ) =

c0√
1− κ2c20

. (2.19)

• The random complex coefficient Gεω,κ is the Fourier-transformed Green’s func-
tion (for pressure release boundary conditions). Here the Fourier transform is taken
both with respect to time and with respect to the transverse spatial variables. The
Green’s function captures the interaction of the wave with the medium, both the
scattering and the pressure release boundary conditions. It can be expressed in terms
of the mode-dependent reflection and transmission coefficients Rεω,κ and T εω,κ of the
random section (for matched boundary conditions, that is, transparent boundary
conditions), which are described in detail in Appendix A.1 (see Figure A.2) in the
following way:

Gεω,κ =
T εω,κ

1−Rεω,κ
. (2.20)

We describe the statistical properties of the Green’s function Gεω,κ in Section 2.6.1.
We remark that the expansion

Gεω,κ =

∞∑

j=0

T εω,κ(R
ε
ω,κ)

j

reflects the physical situation that the waves recorded at the bottom surface z = −L
are the sum of the contributions of the waves that have been transmitted through
the random medium from the source plane z = 0 to the bottom surface z = −L
(term j = 0) and the contributions of the waves that have been reflected back and
forth by the top surface and by the random region generating “multiples”, until they
eventually reach the bottom surface (see Figure 2.2). These reflections and multiples
arise because of the pressure release boundary conditions at the surface which are an
important aspect in the model in geophysical applications.
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Fig. 2.2. Schematic of the geometric configuration: The source is in the plane z = 0, the
medium is random in the section z ∈ (−L, 0), and the interface z = 0 is transparent (left, matched
boundary conditions) or reflecting (right, pressure release boundary conditions). R, resp. T , is the
reflection, resp. transmission, coefficient of the random medium.

• The integrals in κ in (2.17-2.18) are limited to κ < c−1
0 . Modes generated with

transverse slownesses that violate this condition are exponentially damped, so they
can be neglected. Recall that the random medium is layered so that scattering does
not change the slowness vector. In fact, we can limit the integral in κ to a smaller
domain κ < c−1

0 − δ, for some δ > 0 because the travel time for mode κ to go from
0 to −L is Lc0(κ)/c

2
0. Therefore, if the time of the experiment is limited to T , then

only the modes with κ < c−1
0 (1− c20T 2/L2)1/2 can be recorded at the surface z = −L.

This limitation will allow us to neglect the contributions of the grazing modes (those
with κ close to c−1

0 ) and to avoid other technical difficulties.

2.4.2. Special Case with a Homogeneous Medium. In this section we con-
sider the particular case when there is no random medium so that ν = 0. The pressure
field recorded at the point ~xq = (xq,−L) at depth z = −L then has the integral rep-
resentation (see Appendix A.1):

pε(t, ~xq; ~xs) = − 1

(2π)3ε

∫
f̂z(ω) exp

(
−iω

ε

(
t−κ·(xq−xs)−i

L

c0(κ)

))
ω2dκdω. (2.21)

We consider here the limit ε → 0. In the absence of microscopic random fluc-
tuations of the medium this is simply a high-frequency regime. We now exploit this
to obtain a simplified expression for the transmitted field by applying the stationary
phase method [18, Chapter 14]. We find that the leading order value for the integral
(2.21) is given by the contribution around the stationary slowness vector

κsp =
1

c0

xq − xs√
L2 + |xq − xs|2

,

and this gives a contribution that is concentrated around the critical time

tsp =

√
L2 + |xq − xs|2

c0
=

|~xq − ~xs|
c0

,

that is, the travel time from the source to the observation point. We find that the
wave energy at ~xq arrives only around the travel time |~xq − ~xs|/c0 in the form of a
short pulse:

lim
ε→0

pε
( |~xq − ~xs|

c0
+ εs, ~xq; ~xs

)
= − L

2πc0|~xq − ~xs|2
f ′
z(s), (2.22)

where the prime stands for time-derivative. This is characteristic of wave propagation
in homogeneous media in the high-frequency regime.
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Fig. 2.3. Emission from a point source located at ~xs = (xs, 0). The reflector position is
~y = (y,−Ly). The receivers are located at depth −L: ~xq = (xq ,−L) and ~xq′ = (xq′ ,−L). The
medium is random in the region z ∈ (−L, 0).

2.5. The Field in the Presence of an Embedded Reflector. We consider
the same situation as in Section 2.4 but with a reflector placed below the random
medium. Figure 2.3 illustrates the geometry of the configuration: a point source is
located at the top surface ~xs = (xs, 0), the reflector position is ~y = (y,−Ly), and the
receivers are at depth z = −L: ~xq = (xq,−L), ~xq′ = (xq′ ,−L).

We model the reflector as a local change in the density of the medium

ρ(x, z) = ρ0 + ρref1Ω(x, z) ,

where Ω is a small domain around ~y. The system that governs the propagation of the
acoustic waves can be written in the form

ρ0
∂~uε

∂t
+∇pε = ~F ε − ρref1Ω(x, z)

∂~uε

∂t
,

1

Kε(z)

∂pε

∂t
+∇ · ~uε = 0 .

2.5.1. The Born Approximation for an Embedded Reflector. We apply
the Born approximation (or single-scattering approximation) for the modeling of the
scattering by the reflector ~y [32]: the total field

~uε = ~uε0 + ~uε1 + ~uεr , pε = pε0 + pε1 + pεr (2.23)

is the superposition of the primary field (~uε0, p
ε
0) that solves

ρ0
∂~uε0
∂t

+∇pε0 = ~F ε ,

1

Kε(z)

∂pε0
∂t

+∇ · ~uε0 = 0 ,

and of a secondary field (~uε1, p
ε
1) that originates from the emission of a secondary

source located at ~y. The emission of the secondary source is proportional to the
primary field at the position of the reflector:

ρ0
∂~uε1
∂t

+∇pε1 = −ρref1Ω(x, z)
∂~uε0
∂t

, (2.24)

1

Kε(z)

∂pε1
∂t

+∇ · ~uε1 = 0 . (2.25)
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Both the primary and secondary fields satisfy the pressure release boundary condi-
tions at z = 0. In the Born approximation the reminder (~uεr, p

ε
r) is negligible (see

Proposition 2.2 for conditions ensuring the validity of this approximation). Note that
the Born approximation concerns only the interaction of the wave with the reflector
at ~y. The multiple scattering of the wave with the random medium is taken into
account.

2.5.2. Integral Expressions for the Wave Fields. We first consider the pri-
mary field (~uε0, p

ε
0). The pressure field at the surface is zero pε0(t, (x, 0); ~xs) = 0 and

the vertical velocity field is

uε0
(
t, (x, 0); ~xs

)
=

1

(2π)3ε

∫ [1 +Rεω,κ(−L, 0)
1−Rεω,κ(−L, 0)

f̂z(ω)

2ζ0(κ)
+

κ · f̂x(ω)

ρ0

]

×e−iωε (t−κ·(x−xs))ω2dω dκ , (2.26)

as shown in Appendix A.2. The pressure and velocity fields at the position ~x = (x, z)
below the random medium (z ≤ −L) are given by:

pε0(t, ~x; ~xs) = − 1

(2π)3ε

∫
Gεω,κ(−L, 0)e−i

ω
ε
(t−κ·(x−xs)+z/c0(κ))f̂z(ω)ω

2dωdκ , (2.27)

uε0(t, ~x; ~xs) =
1

(2π)3ε

∫ Gεω,κ(−L, 0)
ζ0(κ)

e−i
ω
ε
(t−κ·(x−xs)+z/c0(κ))f̂z(ω)ω

2dωdκ , (2.28)

vε0(t, ~x; ~xs) = − 1

(2π)3ε

∫
κGεω,κ(−L, 0)

ρ0
e−i

ω
ε
(t−κ·(x−xs)+z/c0(κ))f̂z(ω)ω

2dωdκ ,(2.29)

where ~uε0 = (vε0, u
ε
0), as shown in the previous section, and Gεω,κ is given by (2.20).

The secondary field is described in the following proposition.

Proposition 2.2. When ρrefVol(Ω) = ρ0σrefε
2 with σref ≪ 1, then the Born

approximation is valid and we have at the observation point ~xq = (xq,−L) (see Figure
2.3):

pε1(t, ~xq; ~xs) =
iσref

2(2π)5ε2

∫ (
−ζ0(κ)κ · κ′

ρ0
+

ρ0
ζ0(κ′)

)
f̂z(ω)ω

5Gεω,κ′

×
[
ei

ω
ε
φI(κ,κ

′) −
(
R̃εω,κ(−L, 0) +

(T εω,κ(−L, 0))2
1−Rεω,κ(−L, 0)

)
ei

ω
ε
φII (κ,κ

′)
]
dωdκdκ′ , (2.30)

where the two rapidly varying phases are

φI(κ,κ
′) = −t+ κ · (xq − y) +

Ly − L

c0(κ)
+ κ′ · (y − xs) +

Ly
c0(κ′)

, (2.31)

φII(κ,κ
′) = −t+ κ · (xq − y) +

Ly + L

c0(κ)
+ κ′ · (y − xs) +

Ly
c0(κ′)

. (2.32)

Here R̃εω,κ(−L, 0) is the adjoint mode-dependent reflection coefficient of the random
section (for matched boundary conditions), which is described in Appendix A.4 (see
Figure A.3).

Proof. We consider the secondary field solution of (2.24-2.25). We take a Fourier
transform with respect to the time and the transverse spatial variables defined by
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(A.1-A.2) to obtain

−ρ0
iω

ε
v̂ε1 + i

ω

ε
κp̂ε1 = ρref

iω

ε

∫
vε0(t,x, z)1Ω(x, z)e

iω
ε
(t−κ·x) dt dx ,

−ρ0
iω

ε
ûε1 +

∂p̂ε1
∂z

= ρref
iω

ε

∫
uε0(t,x, z)1Ω(x, z)e

iω
ε
(t−κ·x) dt dx ,

− 1

Kε(z)

iω

ε
p̂ε1 + i

ω

ε
κ · v̂ε1 +

∂ûε1
∂z

= 0 ,

where ~uε1 = (vε1, u
ε
1). We assume that the scattering region Ω is smaller than the

wavelength, and we model it by a point reflector with scattering cross section of order
ε2σref , with σref small, so that ρrefVol(Ω) = ρ0σrefε

2 and

ρref1Ω(x, z) = ε2ρ0σrefδ(x− y)δ(z + Ly) .

Therefore, the secondary field (~uε1, p
ε
1) solves

−ρ0
iω

ε
v̂ε1 + i

ω

ε
κp̂ε1 = ε2f̂ε1,x(ω; ~xs)e

−iω
ε
κ·yδ(z + Ly) , (2.33)

− ρ0
iω

ε
ûε1 +

∂p̂ε1
∂z

= ε2f̂ ε1,z(ω; ~xs)e
−iω

ε
κ·yδ(z + Ly) , (2.34)

− 1

Kε(z)

iω

ε
p̂ε1 + i

ω

ε
κ · v̂ε1 +

∂ûε1
∂z

= 0 , (2.35)

with the secondary source terms given by

f̂ε1,x(ω; ~xs) = − iσref
(2π)2ε

∫
κ′Gεω,κ′ei

ω
ε
(κ′·(y−xs)+Ly/c0(κ

′))f̂z(ω)ω
3dκ′ , (2.36)

f̂ ε1,z(ω; ~xs) =
iσref
(2π)2ε

∫
ρ0

ζ0(κ′)
Gεω,κ′ei

ω
ε
(κ′·(y−xs)+Ly/c0(κ

′))f̂z(ω)ω
3dκ′ . (2.37)

Note that the problem (2.33-2.35) has the same form as the system (2.38-2.40) for the
primary field:

−ρ0
iω

ε
v̂ε0 + i

ω

ε
κp̂ε0 = ε2f̂ε

x
(ω)e−i

ω
ε
κ·xsδ(z) , (2.38)

− ρ0
iω

ε
ûε0 +

∂p̂ε0
∂z

= ε2f̂ εz (ω)e
−iω

ε
κ·xsδ(z) , (2.39)

− 1

Kε(z)

iω

ε
p̂ε0 + i

ω

ε
κ · v̂ε0 +

∂ûε0
∂z

= 0 , (2.40)

but with a source term ~fε1 that is now below the random medium.

It is easy to check from (2.36-2.37) that E[|f̂ε1,x(ω; ~xs)|2] and E[|f̂ ε1,z(ω; ~xs)|2] are
of order σ2

ref uniformly in ε. In fact we have

∫
E[|f̂ε1,x(ω; ~xs)|2]dxs =

∫
E[|f̂ ε1,z(ω; ~xs)|2]dxs =

σ2
refω

2

8πc20
|f̂z(ω)|2.

The fact that the parameter σref is small ensures the validity of the Born approxima-
tion, in the sense that in the expansion (2.23) we have

(~uε0, p
ε
0) ∼ 1 , (~uε1, p

ε
1) ∼ σref , (~uεr, p

ε
r) ∼ σ2

ref . (2.41)
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Let us consider the secondary pressure field pε1 at the observation point ~xq =
(xq,−L) as illustrated in Figure 2.3. From the analysis carried out in Appendix A.4,
we get

pε1(t, ~xq; ~xs) =
1

(2π)3ε

∫ √
ζ0(κ)

2

[
âε1(ω,κ,−L)e−i

ω
ε
L/c0(κ) − b̂ε1(ω,κ,−L)ei

ω
ε
L/c0(κ)

]

×e−iωε (t−κ·xq)ω2dωdκ , (2.42)

with

âε1(ω,κ,−L) = Ŝεa(ω,κ) , (2.43)

b̂ε1(ω,κ,−L) =
(
R̃εω,κ(−L, 0) +

(T εω,κ(−L, 0))2
1−Rεω,κ(−L, 0)

)
Ŝεa(ω,κ) , (2.44)

Ŝεa(ω,κ) =
[√ζ0(κ)

ρ0
κ · f̂ε1,x(ω; ~xs) +

1√
ζ0(κ)

f̂ ε1,z(ω; ~xs)
]
ei

ω
ε
(−κ·y+Ly/c0(κ)) .

Thus, pε1 is given by (2.30).

2.5.3. Matched Boundary Conditions At the Surface. The preasure re-
lease boundary conditions are appropriate for geophysical applications. In different
contexts matched boundary conditions at the surface may be relevant. In this case,
the results are modified as follows. The primary field at ~xq = (xq,−L) is

pε0(t, ~xq; ~xs) = − 1

(2π)3ε

∫
T εω,κ(−L, 0)e−i

ω
ε
(t−κ·(xq−xs)−L/c0(κ))Ŝ(ω,κ)ω2dωdκ , (2.45)

Ŝ(ω,κ) =
1

2

[
− ζ0(κ)

ρ0
κ · f̂x(ω) + f̂z(ω)

]
, (2.46)

and the secondary field is

pε1(t, ~xq; ~xs) =
iσref

2(2π)5ε2

∫ (
−ζ0(κ)κ · κ′

ρ0
+

ρ0
ζ0(κ′)

)
Ŝ(ω,κ)ω5T εω,κ′(−L, 0)

×
[
ei

ω
ε
φI (κ,κ

′) − R̃εω,κ(−L, 0)ei
ω
ε
φII(κ,κ

′)
]
dωdκdκ′ , (2.47)

where the two rapidly varying phases are given by (2.31-2.32) again.

2.6. Cross Correlation of the Fields. In Subsection 2.6.2 we will give the
asymptotic behavior of the cross correlation Cε defined by (2.9) in the limit ε→ 0 and
in the presence of a small reflector. We first give in Subsection 2.6.1 results concerning
the moments of the transmission coefficients that are needed for our analysis.

2.6.1. The Statistics of the Transmission Coefficients. The first proposi-
tion gives the moments of the transmission coefficient [18, Chapter 7]. This is useful
for computing the behavior of the coherent wave. The proposition shows that the
mean transmission coefficient T εω,κ decays exponentially with the rate exp(−L/lsca)
where lsca = 1/(ω2γκ) and γκ is defined by (2.50). The characteristic length lsca is
called the scattering mean free path in the physical literature.

Proposition 2.3. For any test function φ(ω,κ), we have
∫
φ(ω,κ)T εω,κ(−L, 0)dωdκ

ε→0−→
∫
φ(ω,κ)T (0)

ω,κ(−L, 0)dωdκ, (2.48)

T (0)
ω,κ(−L, 0) = exp

(
iω

√
γκW0(L)−

ω2γκL

2

)
, (2.49)
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in distribution, where W0(L) is a standard Brownian motion and

γκ =
γc0(κ)

2

4c40
. (2.50)

The moments of the transmission coefficients are

E
[
T εω,κ(−L, 0)n

] ε→0−→ exp
(
− n2 + n

2
ω2γκL

)
. (2.51)

The second proposition gives the moments of the power transmission coefficient
[18, Chapter 7]. This is useful for computing the behavior of the incoherent waves. The
proposition shows that the power transmission coefficient |T εω,κ|2 decays exponentially
with the rate exp(−2L/lloc) with lloc = 8/(ω2γκ). The characteristic length lloc is
called the localization length in the physical literature. In a randomly layered medium
the localization length and the scattering mean free path are proportional, but this is
not true for other types of random media.

Proposition 2.4. The moments of the power transmission coefficients are

E
[
|T εω,κ(−L, 0)|2n

] ε→0−→ ξn
(
ω2γκL

)
, (2.52)

where

ξn(l) = exp
(
− l

4

) ∫ ∞

0

e−µ
2l 2πµ sinh(πµ)

cosh2(πµ)
K(n)(µ)dµ, (2.53)

with K(1)(µ) = 1 and for n ≥ 2:

K(n)(µ) =

n−1∏

j=1

1

j2

[
µ2 +

(
j − 1

2

)2]
.

The third proposition gives the first two moments (mean and variance) of the
square modulus of the Green’s function |Gεω,κ|2. This is useful for computing the be-
havior of the incoherent waves in the presence of pressure release boundary conditions.

Proposition 2.5. The mean of the square modulus of the Green’s function is
equal to one in the limit ε→ 0:

lim
ε→0

E
[
|Gεω,κ|2

]
= 1. (2.54)

The variance of the square modulus of the Green’s function has the limit:

lim
ε→0

Var
(
|Gεω,κ|2

)
=

6

5
exp

(
10ω2γκL

)
− 6

5
. (2.55)

These results were obtained in [24]. The proof is based on the expansion of the
square modulus of the Green’s function in a series expansion (from (2.20)) and in
the evaluation of the expectation of each term of the expansion. It is important
to understand that the relation (2.54) is true only after statistical averaging. The
square modulus of the Green’s function |Gεω,κ|2 has in fact large fluctuations when the
medium is strongly random as shown by the expression of the variance.

We can briefly comment on the fact that E
[
|Gεω,κ|2

]
= 1. When the medium is

homogeneous it is straightforward to understand that the reflexion coefficient Rε is
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zero and the transmission coefficient T ε is one so that the square modulus of the
Green’s function is equal to one. When the medium is strongly random, the reflexion
coefficient of the random medium is close to one, so the wave is trapped within the
waveguide formed by the deterministic surface at z = 0 and the random medium
below it. The wave is reflected back and forth and the internal intensity within the
random medium reaches high values. However, at the lower interface z = −L, it turns
out that, on average, the intensity is one. In a heuristic sense, the wave has no other
choice but to escape through the lower interface z = −L, but the transmitted wave
is highly incoherent when the size L is larger than the localization length. This is a
wave phenomenon that can be observed also in a purely deterministic situation, for
instance in the presence of a strong interface at z = −L instead of a random medium
in z ∈ (−L, 0). This case is addressed in Subsection 3.1 where we show that the
square modulus of the Green’s function has strong oscillations as a function of the
frequency ω and the transverse wavenumber κ, but its average in frequency is one.

2.6.2. The Primary and Secondary Cross Correlations. The cross corre-
lation Cε of the signals recorded at the auxiliary array is defined by (2.9). In the
presence of a reflector at ~y, it can be written as the sum

Cε(τ, ~xq, ~xq′) = Cεpp(τ, ~xq, ~xq′) + Cεps(τ, ~xq, ~xq′) + Cεsp(τ, ~xq, ~xq′), (2.56)

Here Cεpp is the cross correlation of the primary field (2.27) at ~xq = (xq,−L) with the
primary field at ~xq′ = (xq′ ,−L),

Cεpp(τ, ~xq, ~xq′) = ε−2

∫
dxs

∫
dtpε0(t, ~xq; ~xs)p

ε
0(t+ τ, ~xq′ ; ~xs), (2.57)

Cεps is the cross correlation of the primary field (2.27) at ~xq with the secondary field
(2.30) at ~xq′ ,

Cεps(τ, ~xq, ~xq′) = ε−2

∫
dxs

∫
dtpε0(t, ~xq; ~xs)p

ε
1(t+ τ, ~xq′ ; ~xs), (2.58)

and Cεsp is the cross correlation of the secondary field (2.30) at ~xq with the primary
field (2.27) at ~xq′ ,

Cεsp(τ, ~xq, ~xq′) = ε−2

∫
dxs

∫
dtpε1(t, ~xq; ~xs)p

ε
0(t+ τ, ~xq′ ; ~xs). (2.59)

The next three propositions give the asymptotic behaviors of the primary cross
correlation Cεpp and of the secondary cross correlations Cεps and Cεsp. The convergence
results hold true in distribution. When the limit is deterministic, then the convergence
also holds true in probability.

Proposition 2.6. If xq′ = xq + εξ and τ = εs then

εCεpp(τ, ~xq, ~xq′)
ε→0−→ δ(ξ)

1

2π

∫
|f̂z(ω)|2eiωsdω. (2.60)

Moreover

1

ε

∫
Var

(
Cεpp(τ, ~xq, ~xq′)

)
dτdxq′

ε→0−→ 6

5(2π)3

∫ [
exp

(5γc0(κ)2ω2L

2c40

)
− 1

]
|f̂z(ω)|4ω2dκdω. (2.61)
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The proposition shows that the primary cross correlation possesses a strong peak
when xq′ ≃ xq centered at τ = 0. Otherwise it has small fluctuations distributed in
space and time lag that are of order ε1/2.

Proof. We have

Cε(~xq, ~xq′ , τ) =
1

(2π)3ε

∫
|Gεω,κ|2ei

ω
ε
(κ·(xq−xq′ )+τ)|f̂z(ω)|2ω2dκdω.

Using the fact that |Gεω,κ|2 is self-averaging and has mean one we obtain (2.60). The
variance (2.60) follows from (2.55).

Proposition 2.7. The ps-secondary cross correlation centered at τ = [|~y− ~xq|+
|~xq′ − ~y|]/c0 has the form:

Cεps
( |~y − ~xq|+ |~xq′ − ~y|

c0
+ εs, ~xq, ~xq′

)

ε→0−→ iσref
2(2π)3c30

|Ly − L| (~y − ~xq) · (~xq′ − ~y)

|~y − ~xq|3 |~xq′ − ~y|2
∫

|f̂z(ω)|2ω3 exp
(
iωs

)
dω. (2.62)

The ps-secondary cross correlation centered at τ = [|~y − ~xq| + |~x(s)
q′ − ~y|]/c0 has the

form:

Cεps
( |~y − ~xq|+ |~x(s)

q′ − ~y|
c0

+ εs, ~xq, ~xq′
)

ε→0−→ − iσref
2(2π)3c30

|L+ Ly| (~y − ~xq) · (~x(s)
q′ − ~y)

|~y − ~xq|3 |~x(s)
q′ − ~y|2

×
∫

|f̂z(ω)|2ω3 exp
(
iω

(
s− 2

√
γ
x

(s)

q′
W0(L)

)
− ω2γ

x
(s)

q′
L
)
dω, (2.63)

where ~x
(s)
q′ = (xq′ , L) is the point obtained from ~xq′ = (xq′ ,−L) by a symmetry with

respect to the surface z = 0 and

γ
x

(s)

q′
=

γ

4c20

|~x(s)
q′ − ~y|2

(L+ Ly)2
.

The ps-secondary cross correlation is negligible elsewhere.

Proof. After integration in t an xs, the expression of the ps-secondary cross
correlation is

Cεps(τ, ~xq, ~xq′) =
iσref

2(2π)5ε2

∫
|f̂z(ω)|2

(
− ζ0(κ

′)

ρ0
κ′ · κ+

ρ0
ζ0(κ)

)∣∣Gεω,κ
∣∣2

×
(
ei

ω
ε
ψI(κ,κ

′) −
(
R̃εω,κ′(−L, 0) +

T εω,κ′

2

1− T εω,κ′

(−L, 0)
)
ei

ω
ε
ψII(κ,κ

′)
)
ω5dκdκ′dω,

ψI(κ,κ
′) = κ · (xq − y) +

L− Ly
c0(κ)

− κ′ · (xq′ − y) +
L− Ly
c0(κ′)

+ τ,

ψII(κ,κ
′) = κ · (xq − y) +

L− Ly
c0(κ)

− κ′ · (xq′ − y) +
−L− Ly
c0(κ′)

+ τ.
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We then apply the stationary phase method. We find that the stationary points for
the terms with the rapid phases ψI and ψII are respectively:

κsp,I =
1

c0

y − xq√
|y − xq|2 + (L− Ly)2

, κ′
sp,I =

1

c0

xq′ − y√
|xq′ − y|2 + (L − Ly)2

,

and

κsp,II =
1

c0

y − xq√
|y − xq|2 + (L− Ly)2

, κ′
sp,II =

1

c0

xq′ − y√
|xq′ − y|2 + (L + Ly)2

,

that give the first and second peak described in the proposition.
Proposition 2.8. The sp-secondary cross correlation centered at τ = −[|~y −

~xq|+ |~xq′ − ~y|]/c0 has the form:

Cεsp
(
− |~y − ~xq|+ |~xq′ − ~y|

c0
+ εs, ~xq, ~xq′

)

ε→0−→ iσref
2(2π)3c30

|Ly − L| (~y − ~xq) · (~xq′ − ~y)

|~y − ~xq|2 |~xq′ − ~y|3
∫

|f̂z(ω)|2ω3 exp
(
− iωs

)
dω. (2.64)

The sp-secondary cross correlation centered at τ = −[|~y− ~x
(s)
q |+ |~xq′ − ~y|]/c0 has the

form:

Cεsp
(
− |~y − ~x

(s)
q |+ |~xq′ − ~y|
c0

+ εs, ~xq, ~xq′
)

ε→0−→ iσref
2(2π)3c30

|Ly − L| (~y − ~x
(s)
q ) · (~xq′ − ~y)

|~y − ~x
(s)
q |2 |~xq′ − ~y|3

×
∫

|f̂z(ω)|2ω3 exp
(
iω

(
− s− 2

√
γ
x

(s)
q
W0(L)

)
− ω2γ

x
(s)
q
L
)
dω, (2.65)

where ~x
(s)
q = (xq, L) is the point obtained from ~xq = (xq,−L) by a symmetry with

respect to the surface z = 0 and

γ
x

(s)
q

=
γ

4c20

|~y − ~x
(s)
q |2

(L+ Ly)2
.

The sp-secondary cross correlation is negligible elsewhere.
Note that τ → (Cεps + Cεsp)(τ, ~xq, ~xq′) is close to be an even function, but not

exactly. It has two quasi-symmetric peaks at ±[|~y − ~xq| + |~xq′ − ~y|]/c0, which are
approximations of the causal and anti-causal Green’s function from ~xq to ~xq′ through a
scattering event at ~y. The phases of the cross correlation and of the Green’s function
coincide exactly, but the amplitudes are not equal because the illumination of the
auxiliary receiver array is not uniform and isotropic, so that the Helmholtz-Kirchhoff
identity that usually ensures the equivalence between cross correlations and Green’s
functions cannot be applied [21].

2.6.3. Separation between Up- and Down-Going Waves. As shown in
the previous subsection, there are small fluctuations and additional peaks in the cross
correlation that may affect the quality of the image. It is possible to remove these
fluctuations and additional peaks if the three-dimensional velocity components are
recorded (the vertical velocity field and the pressure field would be an alternative).
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Indeed, if the three-dimensional velocity field is recorded at the receiver array at depth
z = −L, then by taking a Fourier transform in time and lateral spatial variables
(defined by (A.1-A.2)) it is possible to compute the up-going field:

p̂εu(ω, (κ,−L); ~xs) =
ζ0(κ)

2
ûε(ω, (κ,−L); ~xs) +

ρ0κ

2κ2
· v̂ε(ω, (κ,−L); ~xs) (2.66)

and the down-going field:

p̂εd(ω, (κ,−L); ~xs) = −ζ0(κ)
2

ûε(ω, (κ,−L); ~xs) +
ρ0κ

2κ2
· v̂ε(ω, (κ,−L); ~xs). (2.67)

The up-going primary and secondary fields at the auxiliary array ~xq = (xq,−L) are

pεu,0(t, ~xq; ~xs) = 0, (2.68)

pεu,1(t, ~xq; ~xs) =
1

(2π)3ε

∫ √
ζ0(κ)

2
âε1(ω,κ,−L)e−i

ω
ε
(t−κ·(xq−xs)+L/c0(κ))ω2dκdω,(2.69)

where âε1 is given by (2.43). The down-going primary and secondary fields at the
auxiliary array are

pεd,0(t, ~xq; ~xs) =
−1

(2π)3ε

∫
Gεω,κf̂z(ω)e−i

ω
ε
(t−κ·(xq−xs)−L/c0(κ))ω2dκdω, (2.70)

pεd,1(t, ~xq; ~xs) =
−1

(2π)3ε

∫ √
ζ0(κ)

2
b̂ε1(ω,κ,−L)e−i

ω
ε
(t−κ·(xq−xs)−L/c0(κ))ω2dκdω,(2.71)

where b̂ε1 is given by (2.44). As a consequence, the cross correlation of the down-going
field with the up-going field completely eliminates the contribution of the primary
cross correlation, and the secondary cross correlation reduces to the cross correlation
of pεu,1 with pεd,0, which eliminates the additional components present in pεd,1. We
obtain the following proposition.

Proposition 2.9. Let us define

Cε,du(τ, ~xq, ~xq′) = ε−2

∫
dxs

∫
dtpεd(t, ~xq; ~xs)p

ε
u(t+ τ, ~xq′ ; ~xs). (2.72)

As ε → 0, there is no term of order one in σref , and the term of order σref has only
one peak centered at τ = [|~y − ~xq|+ |~xq′ − ~y|]/c0:

Cε,du
( |~y − ~xq|+ |~xq′ − ~y|

c0
+ εs, ~xq, ~xq′

)

ε→0−→ iσref
2(2π)3c30

|Ly − L| (~y − ~xq) · (~xq′ − ~y)

|~y − ~xq|3 |~xq′ − ~y|2
∫

|f̂z(ω)|2ω3 exp
(
iωs

)
dω. (2.73)

Let us define

Cε,ud(τ, ~xq, ~xq′) = ε−2

∫
dxs

∫
dtpεu(t, ~xq)p

ε
d(t+ τ, ~xq′). (2.74)

As ε → 0, there is no term of order one in σref , and the term of order σref has only
one peak centered at τ = −[|~y − ~xq|+ |~xq′ − ~y|]/c0:

Cε,ud
(
− |~y − ~xq|+ |~xq′ − ~y|

c0
+ εs, ~xq, ~xq′

)

ε→0−→ iσref
2(2π)3c30

|Ly − L| (~y − ~xq) · (~xq′ − ~y)

|~y − ~xq|2 |~xq′ − ~y|3
∫

|f̂z(ω)|2ω3 exp
(
− iωs

)
dω. (2.75)
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In order to exploit all the data set, one can therefore form the sum:

Cε(~xq, ~xq′ , τ) =
1

2

[
Cε,du(~xq, ~xq′ , τ) + Cε,ud(~xq, ~xq′ ,−τ)

]
(2.76)

that possesses a peak with higher amplitude centered at τ = [|~y− ~xq|+ |~xq′ − ~y|]/c0.

2.7. Detailed Analysis of Kirchhoff Migration.

2.7.1. Migration of the Cross Correlation Matrix. In this section we study
the migration of the cross correlation matrix. We use the cross correlation of the up-
going and down-going field (2.76) if the three-dimensional velocity field has been
recorded, or the cross correlation of the pressure field with itself if only the pressure
field is recorded. In the first case the cross correlation only presents a peak at (plus
and minus) the sum of travel times [|~xq−~y|+|~y−~xq′ |]/c0 which is perfect for imaging.
In the second case the cross correlation also presents peaks at (plus or minus) the sums

of travel times [|~xq − ~y|+ | − ~y− ~x
(s)
q′ |]/c0 and [|~x(s)

q − ~y|+ |~y− ~xq′ |]/c0. These peaks
are randomly shifted and they are exponentially damped as shown by Propositions
2.7-2.8. As a consequence, if the up- and down-going waves decomposition is not
available, then strong scattering by the random medium is in fact favorable as it
cancels the additional peaks.

The Kirchhoff migration function for the search point ~yS is

IεC(~yS) =
1

N2
q

Nq∑

q,q′=1

Cε
( |~xq − ~yS |+ |~yS − ~xq′ |

c0
, ~xq, ~xq′

)
, (2.77)

where Nq is the number of receivers at the auxiliary array.

If the receiver array at depth −L is a dense square array centered at xA and with
sidelength a, so that we can replace the discrete sums by continuous integrals:

1

N2
q

Nq∑

q,q′=1

≈ 1

a4

∫

xq−xA∈[−a/2,a/2]2
dxq

∫

xq′−xA∈[−a/2,a/2]2
dxq′ ,

then, denoting the search point by

~yS = ~y + (ξ, η), (2.78)

we have

IεC(~yS)
ε→0−→ iσref

2(2π)3c30(Ly − L)2

∫
ω3|f̂z(ω)|2 exp

(
2i
ω

c0
(η + ξ · xA − y

Ly − L
)
)

×sinc2
( aξ1ω

2c0(Ly − L)

)
sinc2

( aξ2ω

2c0(Ly − L)

)
dω. (2.79)

In order to simplify the expression we have assumed that the sidelength a is smaller
than the depth Ly−L. If, in addition, the bandwidth B of the probing pulse is small
compared to the central frequency ω0, then we have (2.11).
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2.7.2. Migration of the Surface Array Data. The data set is here the signals
(vertical velocity fields) recorded at the surface z = 0 at points ~xr = (xr, 0) and
emitted by a point source at ~xs = (xs, 0). The Kirchhoff migration function for the
search point ~yS is

IεS(~yS) =
1

NsNr

Ns∑

s=1

Nr∑

r=1

uε
( |~xs − ~yS |+ |~yS − ~xr|

c0
, ~xr; ~xs

)
, (2.80)

where Ns is the number of sources and Nr is the number of observation points at the
surface. In the following we analyze two situations: in the first one (I) the surface
array is finite; in the second one (II) the surface array is infinite.

(I) If the source and receiver array at the surface z = 0 are a dense square array
centered at xA and with sidelength a, then, denoting the search point by (2.78), we
have

IεS(~yS)
ε→0−→ iσref

2(2π)3L2
y

∫
ω3f̂z(ω) exp

(
2i
ω

c0
(η + ξ · xA − y

Ly
)
)

×sinc2
( aξ1ω

2c0Ly

)
sinc2

( aξ2ω

2c0Ly

)
exp

(
iω

√
γ√
2c0

W0(L)−
γω2

4c20
L
)
dω. (2.81)

In order to simplify the expression we have here assumed that the sidelength a is
smaller than the depth Ly. If, in addition, the bandwidth B of the probing pulse is
small compared to the central frequency ω0, then we have (2.16).

(II) If the source and receiver array at the surface z = 0 are a dense array that
covers completely the surface, then we have

IεS(~yS)
ε→0−→

iσrefL
2
y

2(2π)

∫
ω3f̂z(ω) exp

(
2i
ω

c0
η + iω

√
γ√
2c0

W0(L)−
γω2

4c20
L
)

×
(γω2

4c20
L− iω

√
γ

2
√
2c0

W0(L)
)−2

exp
[
− ω2|ξ|2

c20
(
γω2

4c20
L− iω

√
γ

2
√
2c0
W0(L)

)
]
dω.(2.82)

Here we have assumed that the damping due to the random fluctuations is strong
ω2
0γL/c

2
0 > 1. If, in addition, the bandwidth B of the probing pulse is small compared

to the central frequency ω0, then we have (2.14).

2.7.3. Migration of the Auxiliary Array Data. The data set is here the
signals (pressure fields or vertical velocity fields) recorded at the auxiliary passive
array at points ~xq = (xq,−L) and emitted by a point source at ~xs = (xs, 0). This
is exactly the same data set as the one used in the function (2.10). The Kirchhoff
migration function for the search point ~yS is

IεR(~yS) =
1

NsNq

Ns∑

s=1

Nq∑

q=1

pε
( |~xs − ~yS |+ |~yS − ~xq|

c0
, ~xq; ~xs

)
, (2.83)

where Ns is the number of sources at the surface and Nq is the number of receivers
in the auxiliary passive array. The recorded field pε is the sum of the primary field
pε0 given by (2.27) and of the secondary field pε1 given by (2.30), which contains the
information about the reflector at ~y. If it is possible, the decomposition of the recorded
field into up-going and down-going waves can be useful to reduce the noise level: by
migrating only the up-going wave, only the first component in pε1 in (2.30) is migrated.
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Fig. 3.1. Emission from a point source located at ~xs = (xs, 0). The receiver is located at depth
−L: ~xq = (xq ,−L). There is an interface at depth z = −Li.

If the source array at the surface z = 0 is a dense array that covers completely
the surface and if the auxiliary receiver array is a dense square array centered at xA
and with sidelength a, then, denoting the search point by (2.78), we have

IεR(~yS)
ε→0−→ − iσrefLy

2(2π)2(Ly − L)

∫
ω3f̂z(ω) exp

(
i
ω

c0

(
2η + ξ · xA − y

Ly − L

))

×sinc
( aξ1ω

2c0(Ly − L)

)
sinc

( aξ2ω

2c0(Ly − L)

)
exp

(
iω

√
γ

2c0
W0(L)−

γω2

8c20
L
)

×
(γω2

4c20
L− iω

√
γ

2c0
W0(L)

)−1

exp
[
− ω2|ξ|2

c20
(
γω2

2c20
L− iω

√
γ

c0
W0(L)

)
]
dω. (2.84)

In order to simplify the expression we have here assumed that the sidelength a is
smaller than the depth Ly and we have assumed that the damping due to the random
fluctuations is strong ω2

0γL/c
2
0 > 1. If, in addition, the bandwidth B of the probing

pulse is small compared to the central frequency ω0, then we have (2.16).

3. Imaging through a Strong Interface. In this section we depart from the
situation with a homogeneous background medium modulated by random fluctua-
tions, which is our main focus, and discuss the case of a background medium with a
strong and deterministic interface and without random fluctuations. This allows us
to contrast the wave multiples seen in a random medium with the ones obtained in
a homogeneous medium and generated by a jump in the background. In Section 3.1
we describe the primary field (the field without the embedded reflector). In Section
3.2 we describe the secondary field (the field scattered by the embedded reflector in
the Born approximation). In Sections 3.3-3.4 we analyze the migration of the cross
correlations of the auxiliary array data.

3.1. Primary Field. We assume that the density and bulk modulus of the
medium are stepwise constant (see Figure 3.1):

Kε−1(z) =

{
K−1

1 if z ∈ (−∞,−Li)
K−1

0 if z ∈ (−Li, 0)
, (3.1)

ρε(z) =

{
ρ1 if z ∈ (−∞,−Li)
ρ0 if z ∈ (−Li, 0)

, (3.2)

giving a jump in the impedance at the interface z = −Li, where −Li ∈ (−L, 0).
The pressure field at the surface z = 0 is zero. In these conditions we find by the
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method of Appendix A that the pressure and vertical velocity fields recorded at a
point ~x = (x, z) at depth z ≤ −L have the representations:

uε(t, ~x; ~xs) =
1

(2π)3ε

∫
Gεω,κ

f̂z(ω)√
ζ0(κ)ζ1(κ)

e−i
ω
ε
(t−κ·(x−xs)+z/c1(κ))ω2dκdω, (3.3)

pε(t, ~x; ~xs) = − 1

(2π)3ε

∫
Gεω,κ

√
ζ1(κ)√
ζ0(κ)

f̂z(ω)e
−iω

ε
(t−κ·(x−xs)+z/c1(κ))ω2dκdω. (3.4)

Here the Fourier-transformed Green’s function has the form

Gεω,κ = Ti(κ) exp
( iω
ε

( 1

c0(κ)
− 1

c1(κ)

)
Li

)[
1−Ri(κ) exp

(
2

iω

εc0(κ)
Li

)]−1

, (3.5)

where

Ri(κ) =
ζ0(κ)− ζ1(κ)

ζ1(κ) + ζ0(κ)
and Ti(κ) =

2
√
ζ0(κ)ζ1(κ)

ζ1(κ) + ζ0(κ)
(3.6)

are the mode-dependent reflection and transmission coefficients of the interface at
z = −Li. The Green’s function can be expanded as

Gεω,κ = Ti(κ) exp
(
− iω

εc1(κ)
Li

) ∞∑

j=0

Rji (κ) exp
(
(2j + 1)

iω

εc0(κ)
Li

)
. (3.7)

Each term of the sum can be interpreted as the contribution of the waves reflected
back and forth j times between the surface z = 0 and the interface z = −Li, and
finally transmitted through the interface z = −Li and propagated till z = −L.

We next consider the pressure field at the position ~xq = (xq,−L) with xq = xs in
the limit ε→ 0. We apply the stationary phase method and find that the value of the
integral (3.4) for the j-th multiple is given by the contribution around the stationary
slowness vector κsp,j = 0 and is concentrated around the time

tsp,j =
L− Li

c1
+

(2j + 1)Li

c0
, (3.8)

which is the travel time of the ray going from the source ~xs = (xs, 0) to the observation
point ~xq = (xs,−L) after j reflections between the surface z = 0 and the interface
z = −Li. Finally, we find that the wave is transmitted in the form of train of short
pulses that are received at the travel times {tsp,j , j ∈ N} and we have for any j ∈ N:

lim
ε→0

pε
(
tsp,j + εs, ~xq; ~xs

)
= −

√
ζ1Ti(0)R

j
i (0)

2π
√
ζ0[c1(L− Li) + (2j + 1)c0Li]

f ′
z(s). (3.9)

Beyond the power law decay due to the geometric spreading, the exponential decay
of the energies carried by the multiples can be observed due to the factor Rji (0). This
exponential decay is typical of a deterministic interface. Note that the wave front
(j = 0) possesses a fraction |Ti|2 of the total power, and that the multiples have the
fraction |Ri|2 = 1 − |Ti|2. Therefore, in the case of a strong interface, most of the
transmitted power is in the multiples.

We now highlight that some of the particular features of the surface wave energy
that originate from the pressure release boundary conditions, and which we have
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discussed in the context of a random medium, are also present in the case with a
deterministic interface. The square modulus of the Green’s function |Gεω,κ|2 is given
by

|Gεω,κ|2 =
1−R2

i (κ)

|1 −Ri(κ) exp
(
2i ω
εc0(κ)

Li

)
|2 , (3.10)

where we have used the relation T 2
i (κ) = 1−R2

i (κ). For a given slowness κ, the square
modulus of the Green’s function displays an interesting behavior as a function of the
frequency ω. It oscillates periodically between the two extremal values

min
ω

|Gεω,κ|2 =
1− |Ri(κ)|
1 + |Ri(κ)|

, max
ω

|Gεω,κ|2 =
1 + |Ri(κ)|
1− |Ri(κ)|

,

with the small period ωp = επc0(κ)/Li. The interesting point is that its frequency-
average is equal to one whatever the value of the reflectivity of the interface Ri(κ):

〈
|Gεω,κ|2

〉
ω
= 1. (3.11)

Note that this conservation relation is valid only after frequency averaging, and that
the variations of the square modulus of the Green’s function within the period are
large when the interface is strong |Ri(κ)| ∼ 1:

〈
|Gεω,κ|4

〉
ω
=

1 +R2
i (κ)

1−R2
i (κ)

. (3.12)

Eq. (3.11) shows that the total energy emitted by a broadband source such as (2.6)
and received at the surface z = −L does not depend on the reflectivity of the interface.
With a weak interface |Ri(κ)| ≪ 1, most of the energy is carried by the direct waves
(the term j = 0) which have strong amplitudes. With a strong interface |Ri(κ)| ∼ 1,
the energy is distributed over a long train of short pulses which have small and expo-
nentially decaying amplitudes. Therefore, although the energy distribution amongst
the multiples depends strongly on the interface reflectivity, the total received energy
does not.

3.2. Secondary Field. We now assume that there is a point reflector at ~y =
(y,−Ly) (see Figure 3.2) and compute the secondary field at ~xq = (xq,−L):

pε1(t, ~xq; ~xs) =
1

(2π)3ε

∫ √
ζ1(κ)

2

[
âε1(ω,κ,−L)e−i

ω
ε
L/c1(κ) − b̂ε1(ω,κ,−L)ei

ω
ε
L/c1(κ)

]

×e−iωε (t−κ·xq)ω2dωdκ , (3.13)

with

âε1(ω,κ,−L) = Ŝεa(ω,κ) , (3.14)

b̂ε1(ω,κ,−L) = e
−2iω

ε

Li
c1(κ)

(
−Ri(κ) +

Ti(κ)
2e

2iω
ε

Li
c0(κ)

1−Ri(κ)e
2iω

ε

Li
c0(κ)

)
Ŝεa(ω,κ) , (3.15)

Ŝεa(ω,κ) =
[√ζ1(κ)

ρ1
κ · f̂ε1,x(ω; ~xs) +

1√
ζ1(κ)

f̂ ε1,z(ω; ~xs)
]
ei

ω
ε
(−κ·y+Ly/c1(κ)) ,
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Fig. 3.2. Emission from a point source located at ~xs = (xs, 0). The reflector position is
~y = (y,−Ly). The receivers are located at depth −L: ~xq = (xq ,−L) and ~xq′ = (xq′ ,−L). There
is an interface at depth z = −Li.

with the secondary source terms given by

f̂ε1,x(ω; ~xs) = − iσref
(2π)2ε

∫
κ′

√
ζ1(κ′)√
ζ0(κ′)

Gεω,κ′ei
ω
ε
(κ′·(y−xs)+Ly/c1(κ

′))f̂z(ω)ω
3dκ′ , (3.16)

f̂ ε1,z(ω; ~xs) =
iσref
(2π)2ε

∫
ρ1√

ζ0(κ′)ζ1(κ′)
Gεω,κ′ei

ω
ε
(κ′·(y−xs)+Ly/c1(κ

′))f̂z(ω)ω
3dκ′ .(3.17)

This gives:

pε1(t, ~xq; ~xs) =
iσref

2(2π)5ε2

∫ √
ζ1(κ′)√
ζ0(κ′)

(
−ζ1(κ)κ · κ′

ρ1
+

ρ1
ζ1(κ′)

)
f̂z(ω)ω

5Gεω,κ′

×
[
ei

ω
ε
φI(κ,κ

′) −
(
−Ri(κ) +

Ti(κ)
2e

2iω
ε

Li
c0(κ)

1−Ri(κ)e
2iω

ε

Li
c0(κ)

)
ei

ω
ε
φII(κ,κ

′)
]
dωdκdκ′ , (3.18)

where the two rapid phases are given by:

φI(κ,κ
′) = −t+ κ · (xq − y) +

Ly − L

c1(κ)
+ κ′ · (y − xs) +

Ly
c1(κ′)

, (3.19)

φII(κ,κ
′) = −t+ κ · (xq − y) +

Ly + L− 2Li

c1(κ)
+ κ′ · (y − xs) +

Ly
c1(κ′)

. (3.20)

Let us briefly analyze the case in which xs = xq = y (the source point, the
receiver and the reflector are on the same vertical line) and L = Li (the receiver is at
the interface depth). Then the secondary field consists in a sequence of short pulses
that arrive at times

tsp,j = 2
Ly − Li

c1
+ (1 + 2j)

Li

c0
,

for j = 0, 1, . . .. For j = 0 we have

pε1(tsp,0 + εs, ~xq; ~xs)
ε→0−→ − σref

√
ζ1

2(2π)2
√
ζ0c1

Ti(0)(1 +Ri(0))[
c0Li + c1(Ly − Li)

][
c1(Ly − Li)

]f (3)
z (s),

and for j = 1,

pε1(tsp,1 + εs, ~xq; ~xs)
ε→0−→ − σref

√
ζ1

2(2π)2
√
ζ0c1

[ Ti(0)Ri(0)(1 +Ri(0))[
3c0Li + c1(Ly − Li)

][
c1(Ly − Li)

]

− Ti(0)
2

[
c0Li + c1(Ly − Li)

][
2c0Li + c1(Ly − Li)

]
]
f (3)
z (s).
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3.3. The Cross Correlation. From now on we will assume that the receivers
are at the interface, which means L = Li. This models the situation in geophysics in
which sources are at the surface of the sea, and a sensor array records the signals at
the surface of the sea bottom. These two interfaces generate a lot of multiples that
are problematic for the standard imaging technique.

The secondary cross correlation between ~xq and ~xq′ has a peak centered at the
sum of travel times [|~y − ~xq|+ |~xq′ − ~y|]/c1:

Cε
( |~y − ~xq|+ |~xq′ − ~y|

c1
+ εs, ~xq, ~xq′

)

ε→0−→ iσref
2(2π)3c31

(~y − ~xq) · (~xq′ − ~y)

|~y − ~xq|3 |~xq′ − ~y|2
ρ1
√
c21|~y − ~xq|2 − c20|y − xq|2

ρ0c0

×
∫

|f̂z(ω)|2ω3 exp
(
iωs

)
dω, (3.21)

and another peak centered at −[|~y − ~xq|+ |~xq′ − ~y|]/c1:

Cε
(
− |~y − ~xq|+ |~xq′ − ~y|

c1
+ εs, ~xq, ~xq′

)

ε→0−→ iσref
2(2π)3c31

(~y − ~xq) · (~xq′ − ~y)

|~y − ~xq|2 |~xq′ − ~y|3
ρ1
√
c21|~xq′ − ~y|2 − c20|xq′ − y|2

ρ0c0

×
∫

|f̂z(ω)|2ω3 exp
(
− iωs

)
dω. (3.22)

Note that the amplitudes of these peaks are independent of the transmission/reflection
coefficients through the interface. This comes again from the fact that the evaluation
of the cross correlation summed over the surface array that covers the plane z = 0
involves the integral in frequency of the square modulus |Gεω,κ|2, which is a periodic
function in ω with a small period of order ε and with an average equal to one. That
is why the reflectivity of the interface does not appear in the final expression.

3.4. Kirchhoff Migration of Cross Correlations. The analysis of the Kirch-
hoff migration of the cross correlation matrix then follows the same lines as in the
case of a randomly layered medium. The Kirchhoff migration function for the search
point ~yS is defined as in (2.10) by

IεC(~yS) =
1

N2
q

Nq∑

q,q′=1

Cε
( |~xq − ~yS |+ |~yS − ~xq′ |

c1
, ~xq, ~xq′

)
, (3.23)

where Nq is the number of receivers at the auxiliary array. If the receiver array at
depth −L is a dense square array centered at xA and with sidelength a, then, denoting
the search point by ~yS = ~y + (ξ, η), we have

IεC(~yS)
ε→0−→ iσref

2(2π)3c31(Ly − L)2
sinc2

( πaξ1
λ1(Ly − L)

)
sinc2

( πaξ2
λ1(Ly − L)

)

×
∫
ω3|f̂z(ω)|2 exp

(
2i
ω

c1
(η + ξ · xA − y

Ly − L
)
)
dω. (3.24)

Here we have simplified the expression by assuming Hypothesis (2.12) and the central
wavelength is λ1 = 2πc1/ω0.
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4. Imaging through a Random Medium in the Paraxial Regime. In this
section we analyze a scaling regime in which scattering is isotropic and weak, which
allows us to use the random paraxial wave model to describe the wave propagation in
the scattering region. In this approximation, backscattering is negligible but there is
significant lateral scattering as the wave advances and over long propagation distances.
Even though they are weak, these effects accumulate and can be a limiting factor
in imaging and communications if not mitigated in some way. Wave propagation
in random media in the paraxial regime has been used extensively in underwater
sound propagation as well as in the microwave and optical regimes in the atmosphere
[28, 39, 38, 26]. We formulate the regime of paraxial wave propagation in random
media with a scaling of parameters that allows detailed and effective mathematical
analysis [23]. It is described as follows.

1) We assume that the correlation length lc of the medium is much smaller than
the typical propagation distance L. We denote by ε2 the ratio between the correlation
length and the typical propagation distance:

lc
L

∼ ε2.

2) We assume that the transverse width of the source R0 and the correlation
length of the medium lc are of the same order. This means that the ratio R0/L is
of order ε2. This scaling is motivated by the fact that, in this regime, there is a
non-trivial interaction between the fluctuations of the medium and the beam.

3) We assume that the typical wavelength λ is much smaller than the propagation
distance L, more precisely, we assume that the ratio λ/L is of order ε4. This high-
frequency scaling is motivated by the following considerations. The Rayleigh length
for a beam with initial width R0 and central wavelength λ is of the order of R2

0/λ
when there is no random fluctuation (the Rayleigh length is the distance from beam
waist where the beam area is doubled by diffraction). In order to get a Rayleigh
length of the order of the propagation distance L, the ratio λ/L must be of order ε4

since R0/L ∼ ε2:

λ

L
∼ ε4.

4) We assume that the typical amplitude of the random fluctuations of the medium
is small. More exactly, we assume that the relative amplitude of the fluctuations is
of order ε3. This scaling has been chosen so as to obtain an effective regime of order
one when ε goes to zero. That is, if the magnitude of the fluctuations is smaller
than ε3, then the wave would propagate as if the medium was homogeneous, while if
the order of magnitude is larger, then the wave would not be able to penetrate the
random medium. The scaling that we consider here corresponds to the physically
most interesting situation.

4.1. The Random Paraxial Wave Equation. We consider the time-harmonic
form of the scalar wave equation

(∂2z +∆⊥)p̂+
ω2

c20

(
1 + µ(x, z)

)
p̂ = 0. (4.1)

Here µ is a zero-mean, stationary, three-dimensional random process with mixing
properties in the z-direction. In the high-frequency regime described above,

ω → ω

ε4
, µ(x, z) → ε3µ

( x
ε2
,
z

ε2
)
, (4.2)
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the rescaled function φε defined by

p̂ε(ω,x, z) = exp
(
i
ω

ε4
z

c0

)
φε

( ω
ε4
,
x

ε2
, z
)

satisfies

∂2zφ
ε +

1

ε4

(
2i
ω

c0
∂zφ

ε +∆⊥φ
ε +

ω2

εc20
µ
(
x,

z

ε2
)
φε

)
= 0.

In the regime ε ≪ 1, it has been shown in [23] that the forward-scattering approx-
imation in direction z is valid and the function φε can be considered to satisfy the
Schrödinger-type equation

2i
ω

c0
∂zφ

ε +∆⊥φ
ε +

ω2

εc20
µ
(
x,

z

ε2
)
φε = 0.

Note that the random potential in this Schrödinger equation has the form of a white
noise in z, i.e. 1

εµ(
z
ε2 ), which explains the choice of the amplitude ε3 for the per-

turbation of the index of refraction in (4.2). We introduce the fundamental solution
Ĝε

(
ω, (x, z), (x0, z0)

)
:

2i
ω

c0
∂zĜ

ε +∆⊥Ĝ
ε +

ω2

εc20
µ(x,

z

ε2
)Ĝε = 0, (4.3)

starting from Ĝε
(
ω, (x, z = z0), (x0, z0)

)
= δ(x − x0). In a homogeneous medium

(µ ≡ 0) the fundamental solution is

Ĝ0

(
ω, (x, z), (x0, z0)

)
=

ω

2iπc0|z − z0|
exp

(
i
ω|x− x0|2
2c0|z − z0|

)
. (4.4)

In a random medium and in the scaling regime described above, the first two moments
of the random fundamental solution have the following behaviors.

Proposition 4.1. The first order-moment of the random fundamental solution
exhibits frequency-dependent damping:

E
[
Ĝε

(
ω, (x, z), (x0, z0)

)] ε→0−→ Ĝ0

(
ω, (x, z), (x0, z0)

)
exp

(
− γ0(0)ω

2|z − z0|
8c20

)
, (4.5)

where γ0(x) =
∫∞
−∞ E[µ(0, 0)µ(x, z)]dz.

The second order-moment of the random fundamental solution exhibits spatial
decorrelation:

E
[
Ĝε

(
ω, (x, z), (x0, z0)

)
Ĝε

(
ω, (x′, z), (x0, z0)

)]

ε→0−→ Ĝ0

(
ω, (x, z), (x0, z0)

)
Ĝ0

(
ω, (x′, z), (x0, z0)

)
exp

(
− ω2|z − z0|γ2(x− x′)

4c20

)
, (4.6)

where γ2(x) =
∫ 1

0
γ0(0)− γ0(xs)ds.

These are classical results [27, Chapter 20] once the the random paraxial equation
has been proved to be correct, as is the case here. The result on the first-order
moment shows that any coherent wave imaging method cannot give good images if the
propagation distance is larger than the scattering mean free path lsca = 8c20/(γ0(0)ω

2),
because the coherent wave components will then be exponentially damped. This is
the situation we have in mind, and this is the situation in which imaging by migration
of cross correlations turns out to be efficient. The results on the second-order moment
will be used in the next subsection to analyse the cross correlation of the recorded
signals in a quantitative way.
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4.2. The Cross Correlation of Recorded Field in the Presence of a
Reflector. We consider the situation in which the medium is random in the region
z ∈ (−L, 0) and there is a reflector below the random medium placed at ~y = (y,−Ly),
Ly > L (see Figure 1.2). Assume that there are point sources at the surface array

(~xs)
Ns
s=1, where ~xs = (xs, 0). When the source at ~xs emits the scaled pulse f(t/ε4), the

signals pε(t, ~xq; ~xs) are recorded at the points (~xq)
Nq

q=1 of an auxiliary array, where
~xq = (xq,−L). We consider the cross correlation of the signals recorded at the
auxiliary array defined by:

Cε
(
τ, ~xq, ~xq′

)
=

∫ T

0

Ns∑

s=1

pε(t, ~xq; ~xs)p
ε(t+ τ, ~xq′ ; ~xs)dt. (4.7)

Using the Born approximation for the point reflector at ~y, we obtain the following
proposition.

Proposition 4.2. In the random paraxial wave regime ε → 0, when there is a
point reflector at ~y = (y,−Ly), then the cross correlation of the recorded signals at
the auxiliary array satisfies

Cε
(2Ly − 2L

c0
+ ε4s, ~xq, ~xq′

)
ε→0−→ − iσref

4π3c0(Ly − L)2

∫
ω3|f̂(ω)|2

× exp
(
− iω

(
s− 1

2c0

|y − xq|2 + |y − xq′ |2
Ly − L

))
dω. (4.8)

This shows that

- the cross correlation has a peak at time lag τ =
2Ly−2L

c0
+ ε4

2c0

|y−xq|2+|y−xq′ |2
Ly−L ,

which is the sum of travel times from ~xq to ~y and from ~y to ~xq′ in the paraxial
approximation:

T (~xq, ~y) + T (~y, ~xq′) =
1

c0

√
(Ly − L)2 + ε4|y − xq|2 +

1

c0

√
(Ly − L)2 + ε4|y − xq′ |2

=
2Ly − 2L

c0
+

ε4

2c0

|y − xq|2 + |y − xq′ |2
Lt − L

+O(ε8).

- the effect of the random medium has completely disappeared.
The conclusion is therefore that Kirchhoff migration with cross correlations of the
auxiliary array produces images as if the medium was homogeneous and the auxiliary
array was active. We formulate this result in the next subsection.

Proof. We first describe the different wave signals that can be recorded at the
surface array or at the auxiliary array.
1) The field recorded at the auxiliary passive array at ~xq = (xq,−L) around time
L/c0 is the field transmitted through the scattering layer in z ∈ (−L, 0):

pε
( L
c0

+ ε4s, ~xq; ~xs
)
=

1

2π

∫
f̂(ω)e−iωsĜε

(
ω, (xq,−L), (xs, 0)

)
dω.

2) Using the Born approximation for the reflector, the field recorded at the surface
array at ~xr = (xr, 0) around time 2Ly/c0 is of the form

pε
(2Ly
c0

+ ε4s, ~xr; ~xs
)
=
iσrefc0
π

∫∫∫
ωf̂(ω)e−iωsĜε

(
ω, (xr, 0), (x

′,−L)
)

×Ĝ0

(
ω, (x′,−L), (y,−Ly)

)
Ĝ0

(
ω, (y,−Ly), (x,−L)

)
Ĝε

(
ω, (x,−L), (xs, 0)

)
dxdx′dω.
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Using the reciprocity this also reads

pε
(2Ly
c0

+ ε4s, ~xr; ~xs
)
=
iσrefc0
π

∫∫∫
ωf̂(ω)e−iωsĜε

(
ω, (x′,−L), (xr, 0)

)

×Ĝ0

(
ω, (y,−Ly), (x′,−L)

)
Ĝ0

(
ω, (y,−Ly), (x,−L)

)
Ĝε

(
ω, (x,−L), (xs, 0)

)
dxdx′dω.

There is no other wave component recorded at ~xr around a time t0 6= 2Ly/c0.
3) The field recorded at the auxiliary passive array at ~xq′ = (xq′ ,−L) around time
(2Ly − L)/c0 is of the form

pε
(2Ly − L

c0
+ ε4s, ~xq′ ; ~xs

)
=
iσrefc0
π

∫∫
ωf̂(ω)e−iωsĜ0

(
ω, (y,−Ly), (xq′ ,−L)

)

×Ĝ0

(
ω, (y,−Ly), (x,−L)

)
Ĝε

(
ω, (x,−L), (xs, 0)

)
dxdω.

In the Born approximation there is no other wave component recorded at ~xq′ around
a time t0 6∈ {L/c0, (2Ly − L)/c0}.
As a consequence the cross correlation of the signals recorded at the auxiliary array
defined by (4.7) is concentrated around time lag 2(Ly − L)/c0 and it is of the form

Cε
(2Ly − 2L

c0
+ ε4s, ~xq, ~xq′

)
=
iσrefc0
π

∫∫∫
ω|f̂(ω)|2e−iωsĜ0

(
ω, (y,−Ly), (xq′ ,−L)

)

×Ĝ0

(
ω, (y,−Ly), (x,−L)

)
Ĝε

(
ω, (x,−L), (xs, 0)

)
Ĝε

(
ω, (xq,−L), (xs, 0)

)
dxsdxdω,

when the source array is dense and covers the full surface z = 0. Using Proposition
4.1 and the self-averaging property of the product of two fundamental solutions (one
of them being complex conjugated) [33, 34, 23] we get

Cε
(2Ly − 2L

c0
+ ε4s, ~xq, ~xq′

) ε→0−→ iσrefc0
π

∫∫∫
ω|f̂(ω)|2e−iωsĜ0

(
ω, (y,−Ly), (xq′ ,−L)

)

×Ĝ0

(
ω, (y,−Ly), (x,−L)

)
Ĝ0

(
ω, (x,−L), (xs, 0)

)
Ĝ0

(
ω, (xq,−L), (xs, 0)

)

× exp
(
− ω2Lγ2(x− xq)

4c20

)
dxsdxdω.

Using the explicit expression (4.4) and integrating in xs, it appears a Dirac distribu-
tion δ(x − xq). The exponential damping term then disappears because γ2(0) = 0
and we finally obtain (4.8).

4.3. Kirchhoff Migration of Cross Correlations. The Kirchhoff migration
function for the search point ~yS is

IεC(~yS) =
1

N2
q

Nq∑

q,q′=1

Cε
( |~xq − ~yS |+ |~yS − ~xq′ |

c0
, ~xq, ~xq′

)
, (4.9)

where Nq is the number of receivers at the auxiliary array.

If the receiver array at depth −L is a dense square array centered at 0 and with
sidelength a, then, denoting the search point by

~yS = ~y + (ε2ξ, ε4η), (4.10)
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we have

IεC(~yS)
ε→0−→ − iσref

4π3c0(Ly − L)2

∫
ω3|f̂(ω)|2 exp

(
2i
ω

c0
η
)

×sinc2
( aξ1ω

2c0(Ly − L)

)
sinc2

( aξ2ω

2c0(Ly − L)

)
dω. (4.11)

Assuming Hypothesis (2.12) we have

IεC(~yS)
ε→0−→ − iσref

4π3c0(Ly − L)2
sinc2

( πaξ1
λ0(Ly − L)

)
sinc2

( πaξ2
λ0(Ly − L)

)

×
∫
ω3|f̂(ω)|2 exp

(
2i
ω

c0
η
)
dω. (4.12)

This shows that the migration of the cross correlation migration gives the same
result as if we were migrating the array response matrix of the auxiliary array (see
Appendix B). Indeed the imaging function (4.12) is exactly the imaging function
that we would obtain if the medium were homogeneous, if the auxiliary receiver array
could be used as an active array, and if the response matrix of the auxiliary array
were migrated to the search point ~yS . In particular the cross range resolution is
λ0(L− Ly)/a and the range resolution is c0/B.

5. Conclusion. In this paper we have shown in different strongly scattering
situations that the data recorded at a passive receiver array can be used in order
to improve migration techniques. As already noted, the kind of surface-auxiliary
array imaging configuration that we consider here, with and without scattering media
and interfaces, has been applied successfully in exploration geophysics. It is also
of interest, however, in other applications in imaging where mitigating the effects
of strong scattering is needed and could be implemented with the use of auxiliary
passive arrays. One such case is in high-frequency radar imaging where the “surface”
source array is near the ground, the auxiliary array is on a moving platform above
the troposphere, and the reflectors to be imaged are near-orbit satellites.
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Appendix A. Derivation of the Integral Representations of the Fields
in a Randomly Layered Medium. We consider the general model (2.3-2.4) for
the parameters of the random medium. We use the same approach as in [18, page
369] applying a propagator formulation. We first take a scaled Fourier transform in
time and transverse spatial coordinates:

p̂ε(ω,κ, z) =

∫
pε(t,x, z)ei

ω
ε
(t−κ·x)dtdx, (A.1)

ûε(ω,κ, z) =

∫
uε(t,x, z)ei

ω
ε
(t−κ·x)dtdx. (A.2)
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+
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Fig. A.1. Boundary conditions for the wave modes with a source at z = 0−, a preasure release
boundary condition at z = 0+, and a radiation conditions at −∞ (there is no reflector below z = −L

here).

We introduce the up- and down-going modes defined by

âε(ω,κ, z) =
( 1√

ζ0(κ)
p̂ε(ω,κ, z) +

√
ζ0(κ)û

ε(ω,κ, z)
)
e
−iω

ε
z

c0(κ) , (A.3)

b̂ε(ω,κ, z) =
(
− 1√

ζ0(κ)
p̂ε(ω,κ, z) +

√
ζ0(κ)û

ε(ω,κ, z)
)
e
iω
ε

z
c0(κ) . (A.4)

The pressure release boundary conditions at the surface z = 0+ is p̂ε = 0, or equiva-
lently (see Figure A.1)

âε(ω,κ, 0+) = b̂ε(ω,κ, 0+). (A.5)

A.1. Derivation of (2.17-2.18). We consider the situation with a point source
at ~xs = (xs, 0). The jump conditions across the source plane at z = 0 are

[
p̂ε
]0+
0−

= ε2f̂z(ω)e
−iω

ε
κ·xs ,

[
ûε
]0+
0−

=
ε2

ρ0
κ · f̂x(ω)e

−iω
ε
κ·xs ,

which give:

[
âε
]0+
0−

= ε2
( f̂z(ω)√

ζ0(κ)
+

√
ζ0(κ)

ρ0
κ · f̂x(ω)

)
e−i

ω
ε
κ·xs , (A.6)

[
b̂ε
]0+
0−

= ε2
(
− f̂z(ω)√

ζ0(κ)
+

√
ζ0(κ)

ρ0
κ · f̂x(ω)

)
e−i

ω
ε
κ·xs , (A.7)

Using (A.5):

âε(ω,κ, 0−)− b̂ε(ω,κ, 0−) = −2ε2
f̂z(ω)√
ζ0(κ)

e−i
ω
ε
κ·xs . (A.8)

We also have the radiation condition at z = −L:

âε(ω,κ,−L) = 0. (A.9)
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Fig. A.2. Reflection and transmission coefficients.

We introduce the propagator matrix, that is the matrix such that, for any −L <
z0 ≤ z ≤ 0:

Pε(ω,κ, z0, z)

[
âε(ω,κ, z0)

b̂ε(ω,κ, z0)

]
=

[
âε(ω,κ, z)

b̂ε(ω,κ, z)

]
. (A.10)

It is the solution of the linear system

dPε

dz
= Mε(ω, κ, z)Pε, (A.11)

with the initial condition Pε(ω,κ, z0, z = z0) = I. Here the entries of the 2×2 matrix
Mε(ω, κ, z) are given by

M ε
11 =

iωc0(κ)

2c20ε
ν
( z
ε2

)
, M ε

21 =M ε
11e

2iω
ε

z
c0(κ) , M ε

12 =M ε
21, M ε

22 =M ε
11.

Note that Pε(ω,κ, z0, z) depends on κ only through the modulus κ = |κ|.
We introduce the transmission and reflection coefficients (T εω,κ, R

ε
ω,κ) defined by

the relation

Pε(ω, κ,−L, z)
[

0
T εω,κ(−L, z)

]
=

[
Rεω,κ(−L, z)

1

]
, (A.12)

which corresponds to the scattering problem for a unit-power incident plane wave
incoming from the half-space (z,∞) and probing the inhomogeneous layer in (−L, z)
with transparent boundary conditions (see Figure A.2). By inverting this matrix-
vector relation we get

T εω,κ(−L, z) =
1

P ε22(ω, κ,−L, z)
, Rεω,κ(−L, z) =

P ε12(ω, κ,−L, z)
P ε22(ω, κ,−L, z)

. (A.13)

From the relation (A.10) evaluated at z = 0− and z0 = −L, we get using (A.8) and
(A.9)

b̂ε(ω,κ,−L) = 1

P ε22(ω, κ,−L, 0)− P ε12(ω, κ,−L, 0)
2ε2

f̂z(ω)√
ζ0(κ)

e−i
ω
ε
κ·xs

=
T εω,κ(−L, 0)

1−Rεω,κ(−L, 0)
2ε2

f̂z(ω)√
ζ0(κ)

e−i
ω
ε
κ·xs , (A.14)
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From (A.3-A.4) and the radiation condition (A.9) we obtain for z ≤ −L:

p̂ε(ω,κ, z) = −
√
ζ0(κ)

2
b̂ε(ω,κ,−L)e−i

ω
ε

z
c0(κ) ,

ûε(ω,κ, z) =
1

2
√
ζ0(κ)

b̂ε(ω,κ,−L)e−i
ω
ε

z
c0(κ) .

Substituting (A.14) into these equations give (2.17-2.18) with (2.20).
If the medium is homogeneous ν ≡ 0, then the propagator matrix is equal to the

identity matrix and we obtain from (A.14):

b̂ε(ω,κ,−L) = 2ε2
f̂z(ω)√
ζ0(κ)

.

This expression gives (2.21) in Section 2.4.2.

A.2. Derivation of (2.26). We consider the same situation as in the previous
subsection and we compute the vertical velocity field at the surface. Substituting
(A.9) and (A.14) into the relation (A.10) evaluated at z = 0− and z0 = −L we
obtain:

âε(ω,κ, 0−) =
2Rεω,κ(−L, 0)

1−Rεω,κ(−L, 0)
ε2

f̂z(ω)√
ζ0(κ)

e−i
ω
ε
κ·xs ,

b̂ε(ω,κ, 0−) =
2

1−Rεω,κ(−L, 0)
ε2

f̂z(ω)√
ζ0(κ)

e−i
ω
ε
κ·xs ,

which in turn gives

âε(ω,κ, 0+) = b̂ε(ω,κ, 0+) =
1 +Rεω,κ(−L, 0)
1−Rεω,κ(−L, 0)

ε2
f̂z(ω)√
ζ0(κ)

e−i
ω
ε
κ·xs

+ε2
κ · f̂x(ω)

√
ζ0(κ)

ρ0
e−i

ω
ε
κ·xs . (A.15)

Substituting into

ûε(ω,κ, 0+) =
1

2
√
ζ0(κ)

[
âε(ω,κ, 0+) + b̂ε(ω,κ, 0+)

]

gives (2.26).

A.3. Conservation of Energy Relation. An important relation is the con-
servation of energy relation. Since M ε

22 = M ε
11 and M ε

12 = M ε
21, the entries of the

propagator matrix satisfy P ε22 = P ε11 and P ε12 = P ε21. Moreover, since Mε has trace
zero we have ∂z

(
detPε

)
=

(
TrMε

)(
detPε

)
= 0, and therefore detPε = 1. This

gives the conservation of energy relation

|Rεω,κ(−L, 0)|2 + |T εω,κ(−L, 0)|2 =
|P ε12(−L, 0)|2 + 1

|P ε22(−L, 0)|2

=
P ε12P

ε
21(−L, 0) + P ε11P

ε
22(−L, 0)− P ε12P

ε
21(−L, 0)

P ε11P
ε
22(−L, 0)

= 1. (A.16)
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Fig. A.3. Adjoint reflection and transmission coefficients (T̃ ε
ω,κ

, R̃ε
ω,κ

).

A.4. Derivation of (2.42-2.44). We consider the situation with an incoming
up-going wave coming from the lower half-space:

âε(ω,κ,−L) = Ŝεa(ω,κ). (A.17)

Here there is no other source.
We introduce the adjoint transmission and reflection coefficients (T̃ εω,κ, R̃

ε
ω,κ) de-

fined by the relation

Pε(ω, κ, z, 0)

[
1

R̃εω,κ(z, 0)

]
=

[
T̃ εω,κ(z, 0)

0

]
, (A.18)

which corresponds to the scattering problem for a unit-power incident plane wave
incoming from the half-space (−∞, z) and probing the inhomogeneous layer in (z, 0)
with transparent boundary conditions (see Figure A.3). By inverting this matrix-
vector relation for z = −L we get

T̃ εω,κ(−L, 0) =
1

P ε22(ω, κ,−L, 0)
= T εω,κ(−L, 0), R̃εω,κ(−L, 0) = −P

ε
21(ω, κ,−L, 0)
P ε22(ω, κ,−L, 0)

.

(A.19)
From the relation (A.10) evaluated at z = 0− and z0 = −L, we get using (A.8)

and (A.17):

âε(ω,κ, 0) =
P ε11P

ε
22(ω, κ,−L, 0)− P ε12P

ε
21(ω, κ,−L, 0)

P ε22(ω, κ,−L, 0)− P ε12(ω, κ,−L, 0)
âε(ω,κ,−L)

=

(
detPε(ω, κ,−L, 0)

)
T εω,κ(−L, 0)

1−Rεω,κ(−L, 0)
âε(ω,κ,−L).

Using the fact that detPε = 1 we can simplify the previous expression:

âε(ω,κ, 0) =
T εω,κ(−L, 0)

1−Rεω,κ(−L, 0)
âε(ω,κ,−L).

Moreover:

b̂ε(ω,κ,−L) = 1

P ε22(ω, κ,−L, 0)
[
âε(ω,κ, 0)− P ε12(ω, κ,−L, 0)âε(ω,κ,−L)

]

=
[ (T εω,κ(−L, 0))2
1−Rεω,κ(−L, 0)

+ R̃εω,κ(−L, 0)
]
âε(ω,κ,−L). (A.20)
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From (A.3-A.4) we obtain

p̂ε(ω,κ,−L) =
√
ζ0(κ)

2

[
âε(ω,κ,−L)e−i

ω
ε

L
c0(κ) − b̂ε(ω,κ,−L)ei

ω
ε

L
c0(κ)

]
.

Substituting (A.20) and (A.17) into this equation gives (2.42-2.44).

Appendix B. Migration of the Array Response Matrix in a Homoge-
neous Medium. In this appendix we address the ideal situation in which:
1) the background medium is homogeneous with speed of propagation c0 and there is
a small reflector embedded in this medium at ~y = (y,−Ly),
2) the response matrix of the array (~xq)

Nq

q=1 is available. This means that we have per-
formed a sequence of Nq experiments. In the qth experiment a short pulse is emitted
from ~xq = (xq,−L) (modeled by a source term of the form f(t) in the scalar wave
equation) and the signals p(t, ~xq′ ; ~xq) are recorded by all sensors ~xq′ of the array,
q′ = 1, . . . , Nq.

The Kirchhoff migration function of the array response matrix for the search point
~yS is:

IKM(~yS) =
1

N2
q

Nq∑

q,q′=1

p
( |~xq − ~yS |+ |~xq′ − ~yS |

c0
, ~xq′ ; ~xq

)
. (B.1)

This function produces a good image of the reflector as shown by the following propo-
sition.

Proposition B.1. If the receiver array at depth −L is a dense square array
centered at xA and with sidelength a, then, denoting the search point by ~yS = ~y+(ξ, η),
we have

IKM(~yS) =
σref

32π3(Ly − L)2
sinc2

( πaξ1
λ0(Ly − L)

)
sinc2

( πaξ2
λ0(Ly − L)

)

×
∫
ω2f̂z(ω) exp

(
2i
ω

c0
(η + ξ · xA − y

Ly − L
)
)
dω. (B.2)

Here σref is the scattering cross section of the reflector and we have simplified the
expression by assuming Hypothesis (2.12).

Proof. Using the Born approximation for the reflector, the recorded field is of the
form

p̂(ω, ~xq′ ; ~xq) = Ĝ(ω, ~xq, ~xq′) + σrefω
2Ĝ(ω, ~xq, ~y)Ĝ(ω, ~y, ~xq′),

in the Fourier domain, where Ĝ is the time-harmonic Green’s function of the homo-
geneous background:

Ĝ(ω, ~x, ~x′) =
1

4π|~x− ~x′| exp
(
i
ω

c0
|~x− ~x′|

)
.

By the triangular inequality, we have |~xq− ~yS|+ |~xq′ − ~yS | > |~xq− ~xq′ | and therefore
the direct field does not contribute to the migration function, only the scattered field
can contribute. Using the fact that the array is dense (i.e. the distance between
the sensors is smaller than or equal to half-a-central wavelength), we can we apply a
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continuum approximation which gives

IKM(~yS) =
σref

32π3(Ly − L)2

∫
ω2f̂z(ω)

×
[ 1

a2

∫

xq−xA∈[−a/2,a/2]2
exp

(
i
ω

c0
(|~xq − ~y| − |~xq − ~yS |)

)
dxq

]2
dω,

where we have also simplified the amplitude term by taking into account that a ≪
Ly − L. Next we expand the difference

|~xq − ~y| − |~xq − ~yS | ≃ η +
ξ · (xq − y)

Ly − L
,

which gives the desired result.
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